451
|
Epand RF, Martinou JC, Montessuit S, Epand RM. Transbilayer Lipid Diffusion Promoted by Bax: Implications for Apoptosis†. Biochemistry 2003; 42:14576-82. [PMID: 14661970 DOI: 10.1021/bi035348w] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is known that the proapoptotic protein Bax facilitates the formation of pores in bilayers, resulting in the release of proteins from the intermitochondrial space. We demonstrate that another consequence of the interaction of Bax with membranes is an increase in the rate of lipid transbilayer diffusion. We use two independent assays for transbilayer diffusion, one involving the formation of asymmetric liposomes by placing a pyrene-labeled lipid into the outer monolayer of preformed vesicles and another assay based on the initial preparation of liposomes having an asymmetric transbilayer distribution of lipids. With both methods we find that oligomeric BaxDeltaC or full-length Bax in the presence of tBid, but not monomeric full-length Bax, strongly promotes the rate of transbilayer diffusion. Although biological membranes exhibit rates of lipid transbilayer diffusion of minutes or less, they are able to maintain an asymmetric distribution of lipids across the bilayer. In the case of mitochondria, cardiolipin is sequestered on the inner leaflet of the inner mitochondrial membrane. However, during apoptosis this lipid translocates to the outer surface of the outer mitochondrial membrane. This phenomenon must involve an increase in the rate of transbilayer diffusion. The results of the present paper demonstrate that an activated form of Bax can cause this increased rate.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry, McMaster University Health Sciences Centre, Hamilton, Ontario L8N 3Z5, Canada.
| | | | | | | |
Collapse
|
452
|
Abstract
Apoptosis, the cell-suicide programme executed by caspases, is critical for maintaining tissue homeostasis, and impaired apoptosis is now recognized to be a key step in tumorigenesis. Whether a cell should live or die is largely determined by the Bcl-2 family of anti- and proapoptotic regulators. These proteins respond to cues from various forms of intracellular stress, such as DNA damage or cytokine deprivation, and interact with opposing family members to determine whether or not the caspase proteolytic cascade should be unleashed. This review summarizes current views of how these proteins sense stress, interact with their relatives, perturb organelles such as the mitochondrion and endoplasmic reticulum and govern pathways to caspase activation. It briefly explores how family members influence cell-cycle entry and outlines the evidence for their involvement in tumour development, both as oncoproteins and tumour suppressors. Finally, it discusses the promise of novel anticancer therapeutics that target these vital regulators.
Collapse
Affiliation(s)
- Suzanne Cory
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3050, Victoria, Australia.
| | | | | |
Collapse
|
453
|
Affiliation(s)
- Jerry M Adams
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia.
| |
Collapse
|
454
|
Zazzeroni F, Papa S, Algeciras-Schimnich A, Alvarez K, Melis T, Bubici C, Majewski N, Hay N, De Smaele E, Peter ME, Franzoso G. Gadd45 beta mediates the protective effects of CD40 costimulation against Fas-induced apoptosis. Blood 2003; 102:3270-9. [PMID: 12855571 DOI: 10.1182/blood-2003-03-0689] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In B lymphocytes, induction of apoptosis or programmed cell death (PCD) by Fas (CD95/APO-1) is suppressed by the triggering of CD40. This suppression controls various aspects of the humoral immune response, including antibody affinity maturation. The opposing effects of these receptors are also crucial to B-cell homeostasis, autoimmune disease, and cancer. Cytoprotection by CD40 involves activation of protective genes mediated by NF-kappa B transcription factors; however, its basis remains poorly understood. Here, we report that, in B cells, Gadd45 beta is induced by CD40 through a mechanism that requires NF-kappa B and that this induction suppresses Fas-mediated killing. Importantly, up-regulation of Gadd45 beta by CD40 precedes Fas-induced caspase activation, as well as up-regulation of other NF-kappa B-controlled inhibitors of apoptosis such as Bcl-xL and c-FLIPL. In the presence of Gadd45 beta, the Fas-induced apoptotic cascade is halted at mitochondria. However, in contrast to Bcl-xL, Gadd45 beta is unable to hamper the "intrinsic" pathway for apoptosis and in fact appears to block Fas cytotoxicity herein by suppressing a mitochondria-targeting mechanism activated by this receptor. These findings identify Gadd45 beta as a critical mediator of the prosurvival response to CD40 stimulation and provide important new insights into the apoptotic mechanism that is triggered by Fas in B cells.
Collapse
Affiliation(s)
- Francesca Zazzeroni
- Gwen Knapp Center for Lupus and Immunoolgy Research, Ben May Institute, and Committee on Immunology, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
455
|
Affiliation(s)
- Simon Willis
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | |
Collapse
|
456
|
Sulistijo ES, Jaszewski TM, MacKenzie KR. Sequence-specific dimerization of the transmembrane domain of the "BH3-only" protein BNIP3 in membranes and detergent. J Biol Chem 2003; 278:51950-6. [PMID: 14532263 DOI: 10.1074/jbc.m308429200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondria-mediated apoptosis is regulated by proteins of the Bcl-2 superfamily, most of which contain a C-terminal hydrophobic domain that plays a role in membrane targeting. Experiments with BNIP3 have implicated the transmembrane (TM) domain in its proapoptotic function, homodimerization, and interactions with Bcl-2 and Bcl-xL. We show that the BNIP3 TM domain self-associates strongly in Escherichia coli cell membranes and causes reversible dimerization of a soluble protein in the detergent SDS when expressed as an in-frame fusion. Limited mutational analysis identifies specific residues that are critical for BNIP3 TM self-association in membranes, and these residues are also important for dimerization in SDS micelles, suggesting that the self-association observed in membranes is preserved in detergent. The effects of sequence changes at positions Ala176 and Gly180 suggest that the BNIP3 TM domain associates using a variant of the GXXXG motif previously shown to be important in the dimerization of glycophorin A. The importance of residue His173 in BNIP3 TM domain dimerization indicates that polar residues, which have been implicated in self-association of model TM peptides, can act in concert with the AXXXG motif to stabilize TM domain interactions. Our results demonstrate that the hydrophobic C-terminal TM domain of the pro-apoptotic BNIP3 protein dimerizes tightly in lipidic environments, and that this association has a strong sequence dependence but is independent of the identity of flanking regions. Thus, the transmembrane domain represents another region of the Bcl-2 superfamily of proteins that is capable of mediating strong and specific protein-protein interactions.
Collapse
Affiliation(s)
- Endah S Sulistijo
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
457
|
Priault M, Camougrand N, Kinnally KW, Vallette FM, Manon S. Yeast as a tool to study Bax/mitochondrial interactions in cell death. FEMS Yeast Res 2003; 4:15-27. [PMID: 14554193 DOI: 10.1016/s1567-1356(03)00143-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has proven to be a powerful tool in investigations of the molecular aspects of the events involved in apoptosis, particularly the steps implicating mitochondria. Yeast does not have obvious homologs of the proteins involved in the regulation of apoptosis, and provides a simplified model system in which the function of these proteins can be unraveled. This review focuses on the interactions of two of the major pro-apoptotic Bcl-2 family members, Bax and Bid, with mitochondria. It is shown that yeast has allowed questioning of several crucial aspects of the function of these two proteins, namely the molecular mechanisms driving their insertion into the mitochondrial outer membrane and those leading to the permeabilization to cytochrome c. More recently, signaling pathways leading to Bax-induced cell death, as well as other forms of cell death, have been identified in yeast. Both 'apoptosis-like' and autophagy-related forms of cell degradation are involved, and mitochondria play a central role in these two signaling pathways.
Collapse
Affiliation(s)
- Muriel Priault
- IBGC/CNRS, 1 Rue Camille Saint-Saëns, Université de Bordeaux 2, F-33077 Bordeaux, France
| | | | | | | | | |
Collapse
|
458
|
Cao X, Deng X, May WS. Cleavage of Bax to p18 Bax accelerates stress-induced apoptosis, and a cathepsin-like protease may rapidly degrade p18 Bax. Blood 2003; 102:2605-14. [PMID: 12816867 DOI: 10.1182/blood-2003-01-0211] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bax is cleaved by calpain at aspartate 33 (Asp33) to yield p18 Bax during stress-induced apoptosis. To assess the role of p18 Bax in apoptosis, an ecdysone-inducible expression system was generated. Similar levels of wild-type (WT) and noncleavable Asp33Ala (Asp-->Ala) Bax are induced in 293 cells while expression of N-terminal-deleted p18 (Delta1-33) Bax remains low (20% of full-length p21 Bax) due to a reduced half-life (2 hours versus 12 hours for p21 Bax) resulting from increased sensitivity to cathepsin-like proteolytic degradation. Expression of p18 Bax is enhanced to levels comparable to p21 Bax when induction is carried out in the presence of cathepsin inhibitors, Z-Phe-Gly-NHO-Bz or N-Acetyl-Leu-Leu-Met-CHO. Compared with WT Bax, expression of similar levels of p18 Bax and, surprisingly, Asp33Ala Bax more potently induces apoptosis as indicated by increased cytochrome c release, caspase-9/-3 activation, and DNA fragmentation, potentially due to their increased homo-oligomerization in mitochondrial membranes. Studies in A-549, U-937, K-562, and HL-60 cells confirm that inhibition of Bax cleavage results in 25% to 35% reduction of drug-induced apoptosis, while inhibition of p18 Bax degradation enhances apoptosis by 25% to 40%. Results indicate that although cleavage to p18 Bax is not required for Bax to initiate apoptosis, p18 Bax potently accelerates the apoptotic process.
Collapse
Affiliation(s)
- Xuefang Cao
- University of Florida Shands Cancer Center, UF Shands Cancer Center, Gainesville, USA
| | | | | |
Collapse
|
459
|
James DI, Parone PA, Mattenberger Y, Martinou JC. hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 2003; 278:36373-9. [PMID: 12783892 DOI: 10.1074/jbc.m303758200] [Citation(s) in RCA: 509] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The balance between the fission and fusion mechanisms regulate the morphology of mitochondria. In this study we have identified a mammalian protein that we call hFis1, which is the orthologue of the yeast Fis1p known to participate in yeast mitochondrial division. hFis1, when overexpressed in various cell types, localized to the outer mitochondrial membrane and induced mitochondrial fission. This event was inhibited by a dominant negative mutant of Drp1 (Drp1(K38A)), a major component of the fission apparatus. Fragmentation of the mitochondrial network by hFis1 was followed by the release of cytochrome c and ultimately apoptosis. Bcl-xL was able to block cytochrome c release and apoptosis but failed to prevent mitochondrial fragmentation. Our studies show that hFis1 is part of the mammalian fission machinery and suggest that regulation of the fission processes might be involved in apoptotic mechanisms.
Collapse
Affiliation(s)
- Dominic I James
- Department of Cell Biology, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
460
|
Shibue T, Takeda K, Oda E, Tanaka H, Murasawa H, Takaoka A, Morishita Y, Akira S, Taniguchi T, Tanaka N. Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 2003; 17:2233-8. [PMID: 12952892 PMCID: PMC196460 DOI: 10.1101/gad.1103603] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The tumor suppressor p53 exerts its versatile function to maintain the genomic integrity of a cell, and the life of cancerous cells with DNA damage is often terminated by induction of apoptosis. We studied the role of Noxa, one of the transcriptional targets of p53 that encodes a proapoptotic protein of the Bcl-2 family, by the gene-targeting approach. Mouse embryonic fibroblasts deficient in Noxa [Noxa(-/-) mouse embryonic fibroblasts (MEFs)] showed notable resistance to oncogene-dependent apoptosis in response to DNA damage, which was further increased by introducing an additional null zygosity for Bax. These MEFs also showed increased sensitivity to oncogene-induced cell transformation in vitro. Furthermore, Noxa is also involved in the oncogene-independent gradual apoptosis induced by severe genotoxic stresses, under which p53 activates both survival and apoptotic pathways through induction of p21(WAF1/Cip1) and Noxa, respectively. Noxa(-/-) mice showed resistance to X-ray irradiation-induced gastrointestinal death, accompanied with impaired apoptosis of the epithelial cells of small intestinal crypts, indicating the contribution of Noxa to the p53 response in vivo.
Collapse
Affiliation(s)
- Tsukasa Shibue
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
461
|
Konishi A, Shimizu S, Hirota J, Takao T, Fan Y, Matsuoka Y, Zhang L, Yoneda Y, Fujii Y, Skoultchi AI, Tsujimoto Y. Involvement of Histone H1.2 in Apoptosis Induced by DNA Double-Strand Breaks. Cell 2003; 114:673-88. [PMID: 14505568 DOI: 10.1016/s0092-8674(03)00719-0] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is poorly understood how apoptotic signals arising from DNA damage are transmitted to mitochondria, which release apoptogenic factors into the cytoplasm that activate downstream destruction programs. Here, we identify histone H1.2 as a cytochrome c-releasing factor that appears in the cytoplasm after exposure to X-ray irradiation. While all nuclear histone H1 forms are released into the cytoplasm in a p53-dependent manner after irradiation, only H1.2, but not other H1 forms, induced cytochrome c release from isolated mitochondria in a Bak-dependent manner. Reducing H1.2 expression enhanced cellular resistance to apoptosis induced by X-ray irradiation or etoposide, but not that induced by other stimuli including TNF-alpha and UV irradiation. H1.2-deficient mice exhibited increased cellular resistance in thymocytes and the small intestine to X-ray-induced apoptosis. These results indicate that histone H1.2 plays an important role in transmitting apoptotic signals from the nucleus to the mitochondria following DNA double-strand breaks.
Collapse
Affiliation(s)
- Akimitsu Konishi
- Department of Post-Genomics and Diseases, Osaka University Medical School, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
462
|
Siskind LJ, Davoody A, Lewin N, Marshall S, Colombini M. Enlargement and contracture of C2-ceramide channels. Biophys J 2003; 85:1560-75. [PMID: 12944273 PMCID: PMC1303332 DOI: 10.1016/s0006-3495(03)74588-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ceramides are known to play a major regulatory role in apoptosis by inducing cytochrome c release from mitochondria. We have previously reported that ceramide, but not dihydroceramide, forms large and stable channels in phospholipid membranes and outer membranes of isolated mitochondria. C(2)-ceramide channel formation is characterized by conductance increments ranging from <1 to >200 nS. These conductance increments often represent the enlargement and contracture of channels rather than the opening and closure of independent channels. Enlargement is supported by the observation that many small conductance increments can lead to a large decrement. Also the initial conductances favor cations, but this selectivity drops dramatically with increasing total conductance. La(+3) causes rapid ceramide channel disassembly in a manner indicative of large conducting structures. These channels have a propensity to contract by a defined size (often multiples of 4 nS) indicating the formation of cylindrical channels with preferred diameters rather than a continuum of sizes. The results are consistent with ceramides forming barrel-stave channels whose size can change by loss or insertion of multiple ceramide columns.
Collapse
Affiliation(s)
- Leah J Siskind
- Department of Biology, University of Maryland, College Park, Maryland 20742 USA
| | | | | | | | | |
Collapse
|
463
|
Wei Y, Chen K, Sharp GC, Braley-Mullen H. FLIP and FasL expression by inflammatory cells vs thyrocytes can be predictive of chronic inflammation or resolution of autoimmune thyroiditis. Clin Immunol 2003; 108:221-33. [PMID: 14499245 DOI: 10.1016/s1521-6616(03)00146-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Spontaneous autoimmune thyroiditis (SAT) in NOD.H-2h4 mice is a model of chronic inflammation of the thyroid, while granulomatous experimental autoimmune thyroiditis (G-EAT) is a model with spontaneous resolution of inflammation. In chronic inflammation (SAT), Fas, FasL, and FLIP were upregulated and predominant in inflammatory cells. There were few apoptotic cells, and low expression of active caspase-8 and -3. In resolving G-EAT in CBA/J and NOD.H-2h4 mice, FasL and FLIP were predominantly expressed by thyrocytes. There were many apoptotic inflammatory cells, and increased expression of active caspase-8 and -3. Depletion of CD8+ T cells inhibited G-EAT resolution and resulted in chronic inflammation. FLIP was expressed predominantly by inflammatory cells, and apoptosis of inflammatory cells and expression of active caspase-3 was reduced as in chronic SAT. Thus, differences in expression of pro- or antiapoptotic molecules in SAT or G-EAT were apparently related to the acute vs chronic nature of the inflammatory response rather than the method of disease induction. Upregulation of FLIP by inflammatory cells may block Fas-mediated apoptosis, contributing to chronic inflammation, whereas increased FLIP expression by thyrocytes in resolving G-EAT may protect thyrocytes from apoptosis, and FasL expression by thyrocytes may induce apoptosis of inflammatory cells, contributing to resolution.
Collapse
Affiliation(s)
- Yongzhong Wei
- Department of Internal Medicine, University of Missouri, School of Medicine, Columbia, MO 65212, USA
| | | | | | | |
Collapse
|
464
|
Polcic P, Forte M. Response of yeast to the regulated expression of proteins in the Bcl-2 family. Biochem J 2003; 374:393-402. [PMID: 12780347 PMCID: PMC1223605 DOI: 10.1042/bj20030690] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Revised: 05/30/2003] [Accepted: 06/03/2003] [Indexed: 01/30/2023]
Abstract
The mechanisms by which pro-apoptotic members of the Bcl-2 family of proteins promote the release of mitochondrial factors like cytochrome c, subsequently activating the apoptotic cascade, or by which anti-apoptotic family members block this release, are still not understood. When expressed in yeast, Bcl-2 family members act directly upon conserved mitochondrial components that correspond to their apoptotic substrates in mammalian cells. Here we describe a system in which the levels of representative pro- and anti-apoptotic members of the Bcl-2 family can be regulated independently in yeast. Using this system, we have focused on the action of the anti-apoptotic family member Bcl-x(L), and have defined the quantitative relationships that underlie the antagonistic action of this protein on the lethal consequences of expression of the pro-apoptotic family member Bax. This system has also allowed us to demonstrate biochemically that Bcl-x(L) has two actions at the level of the mitochondrion. Bcl-x(L) is able to inhibit the stable integration of Bax into mitochondrial membranes, as well as hinder the action of Bax that does become stably integrated into these membranes. Taken together, our results suggest that both the functional and biochemical actions of Bcl-x(L) may be based on the ability of this molecule to disrupt the interaction of Bax with a resident mitochondrial target that is required for Bax action. Finally, we confirm that VDAC (voltage-dependent anion channel) is not required for the functional responses observed following the expression of either pro- or anti-apoptotic members of the Bcl-2 family.
Collapse
Affiliation(s)
- Peter Polcic
- Vollum Institute, Oregon Health & Science University, 3181 S. W. Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
465
|
El-Hassan H, Anwar K, Macanas-Pirard P, Crabtree M, Chow SC, Johnson VL, Lee PC, Hinton RH, Price SC, Kass GEN. Involvement of mitochondria in acetaminophen-induced apoptosis and hepatic injury: roles of cytochrome c, Bax, Bid, and caspases. Toxicol Appl Pharmacol 2003; 191:118-29. [PMID: 12946648 DOI: 10.1016/s0041-008x(03)00240-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The role of apoptosis in acetaminophen (AAP)-induced hepatic injury was investigated. Six hours after AAP administration to BALB/c mice, a significant loss of hepatic mitochondrial cytochrome c was observed that was similar in extent to the loss observed after in vivo activation of CD95 by antibody treatment. AAP-induced loss of mitochondrial cytochrome c coincided with the appearance in the cytosol of a fragment corresponding to truncated Bid (tBid). At the same time, tBid became detectable in the mitochondrial fraction, and concomitantly, Bax was found translocated to mitochondria. However, AAP failed to activate the execution caspases 3 and 7 as evidenced by a lack of procaspase processing and the absence of an increase in caspase-3-like activity. In contrast, the administration of the pan-inhibitor of caspases, benzyloxycarbonyl-Val-Ala-DL-Asp-fluoromethylketone (but not its analogue benzyloxycarbonyl-Phe-Ala-fluoromethylketone) prevented the development of liver injury by AAP and the appearance of apoptotic parenchymal cells. This correlated with the inhibition of the processing of Bid to tBid. The caspase inhibitor failed to prevent both the redistribution of Bax to the mitochondria and the loss of cytochrome c. In conclusion, apoptosis is an important causal event in the initiation of the hepatic injury inflicted by AAP. However, as suggested by the lack of activation of the main execution caspases, apoptosis is not properly executed and degenerates into necrosis.
Collapse
Affiliation(s)
- Hasan El-Hassan
- School of Biomedical and Life Sciences, University of Surrey, Guildford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
466
|
Wilson-Annan J, O'Reilly LA, Crawford SA, Hausmann G, Beaumont JG, Parma LP, Chen L, Lackmann M, Lithgow T, Hinds MG, Day CL, Adams JM, Huang DCS. Proapoptotic BH3-only proteins trigger membrane integration of prosurvival Bcl-w and neutralize its activity. J Cell Biol 2003; 162:877-87. [PMID: 12952938 PMCID: PMC2172834 DOI: 10.1083/jcb.200302144] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prosurvival Bcl-2-like proteins, like Bcl-w, are thought to function on organelles such as the mitochondrion and to be targeted to them by their hydrophobic COOH-terminal domain. We unexpectedly found, however, that the membrane association of Bcl-w was enhanced during apoptosis. In healthy cells, Bcl-w was loosely attached to the mitochondrial membrane, but it was converted into an integral membrane protein by cytotoxic signals that induce binding of BH3-only proteins, such as Bim, or by the addition of BH3 peptides to lysates. As the structure of Bcl-w has revealed that its COOH-terminal domain occupies the hydrophobic groove where BH3 ligands bind, displacement of that domain by a BH3 ligand would displace the hydrophobic COOH-terminal residues, allowing their insertion into the membrane. To determine whether BH3 ligation is sufficient to induce the enhanced membrane affinity, or to render Bcl-w proapoptotic, we mimicked their complex by tethering the Bim BH3 domain to the NH2 terminus of Bcl-w. The chimera indeed bound avidly to membranes, in a fashion requiring the COOH-terminal domain, but neither promoted nor inhibited apoptosis. These results suggest that ligation of a proapoptotic BH3-only protein alters the conformation of Bcl-w, enhances membrane association, and neutralizes its survival function.
Collapse
Affiliation(s)
- Julie Wilson-Annan
- Walter and Eliza Hall Institute of Medical Research, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
467
|
Valentijn AJ, Metcalfe AD, Kott J, Streuli CH, Gilmore AP. Spatial and temporal changes in Bax subcellular localization during anoikis. J Cell Biol 2003; 162:599-612. [PMID: 12925707 PMCID: PMC2173801 DOI: 10.1083/jcb.200302154] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bax, a member of the Bcl-2 family, translocates to mitochondria during apoptosis, where it forms oligomers which are thought to release apoptogenic factors such as cytochrome c. Using anoikis as a model system, we have examined spatial and temporal changes in Bax distribution. Bax translocates to mitochondria within 15 min of detaching cells from extracellular matrix, but mitochondrial permeabilization does not occur for a number of hours. The formation of Bax oligomers and perimitochondrial clusters occurs concomitant with caspase activation and loss of mitochondrial membrane potential, before nuclear condensation. Cells can be rescued from apoptosis if they are replated onto extracellular matrix within an hour, whereas cells detached for longer could not. The loss of ability to rescue cells from anoikis occurs after Bax translocation, but before the formation of clusters and cytochrome c release. Our data suggest that Bax regulation occurs at several levels, with formation of clusters a late event, and with critical changes determining cell fate occurring earlier.
Collapse
Affiliation(s)
- Anthony J Valentijn
- Wellcome Trust Centre for Cell Matrix Research, School of Biological Sciences, University of Manchester, 3.35 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
468
|
Bidère N, Lorenzo HK, Carmona S, Laforge M, Harper F, Dumont C, Senik A. Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 2003; 278:31401-11. [PMID: 12782632 DOI: 10.1074/jbc.m301911200] [Citation(s) in RCA: 339] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated human T lymphocytes exposed to apoptotic stimuli targeting mitochondria (i.e. staurosporine), enter an early, caspase-independent phase of commitment to apoptosis characterized by cell shrinkage and peripheral chromatin condensation. We show that during this phase, AIF is selectively released from the intermembrane space of mitochondria, and that Bax undergo conformational change, relocation to mitochondria, and insertion into the outer mitochondrial membrane, in a Bid-independent manner. We analyzed the subcellular distribution of cathepsins (Cat) B, D, and L, in a search for caspase-independent factors responsible for Bax activation and AIF release. All were translocated from lysosomes to the cytosol, in correlation with limited destabilization of the lysosomes and release of lysosomal molecules in a size selective manner. However, only inhibition of Cat D activity by pepstatin A inhibited the early apoptotic events and delayed cell death, even in the presence of bafilomycin A1, an inhibitor of vacuolar type H+-ATPase, which inhibits acidification in lysosomes. Small interfering RNA-mediated gene silencing was used to inactivate Cat D, Bax, and AIF gene expression. This allowed us to define a novel sequence of events in which Cat D triggers Bax activation, Bax induces the selective release of mitochondrial AIF, and the latter is responsible for the early apoptotic phenotype.
Collapse
Affiliation(s)
- Nicolas Bidère
- Laboratoire de Greffes d'Epithéliums et Régulation de l'Activation Lymphocytaire, Unité INSERM 542, Hôpital Paul Brousse, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
469
|
Dong Z, Wang JZ, Yu F, Venkatachalam MA. Apoptosis-resistance of hypoxic cells: multiple factors involved and a role for IAP-2. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:663-71. [PMID: 12875985 PMCID: PMC1868200 DOI: 10.1016/s0002-9440(10)63693-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hypoxia is an important pathogenic factor in ischemic disease and tumorigenesis. Under hypoxia, some cells are irreversibly damaged, whereas others adapt to the stress and may become more resistant to injury. The mechanism underlying such adaptive responses is unclear. Our recent study showed hypoxic induction of inhibitor of apoptosis protein-2 (IAP-2). Here we have investigated the critical steps in the apoptotic cascade that are affected by hypoxia and have identified a role for IAP-2 in apoptosis resistance of hypoxic cells. The results show that cells cultured in hypoxia became resistant to staurosporine-induced apoptosis. Apoptosis resistance of these cells took place at the mitochondria and in the cytosol. At the mitochondrial level, membrane accumulation of the proapoptotic molecule Bax was suppressed. This was accompanied by less cytochrome c (cyt. c) release from the organelles. In the cytosol, hypoxia induced IAP-2; the cytosol with IAP-2 was resistant to cyt. c-stimulated caspase activation. Of significance, immunodepletion of IAP-2 from the hypoxic cytosol restored its competence for caspase activation. Thus, death resistance of hypoxic cells involves multiple factors targeting different stages of apoptosis, with IAP-2 suppressing caspases in the cytosol.
Collapse
Affiliation(s)
- Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | | | |
Collapse
|
470
|
Fukazawa T, Walter B, Owen-Schaub LB. Adenoviral Bid overexpression induces caspase-dependent cleavage of truncated Bid and p53-independent apoptosis in human non-small cell lung cancers. J Biol Chem 2003; 278:25428-34. [PMID: 12690107 DOI: 10.1074/jbc.m302058200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proapoptotic gene transfer to promote death or to augment killing by DNA-damaging agents represents a promising strategy for cancer therapy. We have constructed an adenoviral Tet-Off trade mark vector with tightly controlled expression of Bid (Ad-Bid) (Clontech, Palo Alto, CA). Using the non-small cell lung cancer cell lines H460, H358, and A549, low dose Ad-Bid was shown to induce high levels of full-length Bid as well as caspase-3 and -9 activity. Although only a small fraction of Bid was processed to truncated Bid (a step inhibited by benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone), Ad-Bid gene transfer resulted in mitochondrial changes consistent with apoptosis (mitochondrial depolarization, cytochrome c release), DNA fragmentation, and a dramatic loss of cell viability. The proapoptotic effects of Ad-Bid were independent of p53 status and were augmented markedly by caspase-8 activators such as the DNA-damaging agent cisplatin. When Ad-Bid and cisplatin were used together, chemosensitivity was restored in p53-null H358 cells, increasing death from 35% following treatment with cisplatin and Ad-LacZ to >90% death with Ad-Bid and cisplatin (Ad-Bid alone induced 50% cell death under these conditions). Ad-Bid can induce apoptosis in malignant cells and enhance chemosensitivity in the absence of p53, suggesting this approach as a potential cancer therapy.
Collapse
Affiliation(s)
- Takuya Fukazawa
- Department of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | | | | |
Collapse
|
471
|
Abstract
The Staphylococcus aureus cid and lrg operons have been shown to encode putative membrane proteins that are involved in the regulation of murein hydrolase activity and penicillin tolerance. Cid proteins enhance murein hydrolase activity and penicillin sensitivity, whereas Lrg proteins have an inhibitory effect on these processes. It has been proposed that the Cid and Lrg proteins function in a way analogous to bacteriophage-encoded holins and antiholins, respectively, which control the timing of bacteriophage-induced lysis. This article explores the possibility that the Cid-Lrg regulatory system controls bacterial programmed cell death using a molecular strategy that it is functionally analogous to that mediated by the eukaryotic Bcl-2 family of apoptosis regulatory proteins.
Collapse
Affiliation(s)
- Kenneth W Bayles
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA.
| |
Collapse
|
472
|
Kawatani M, Imoto M. Deletion of the BH1 domain of Bcl-2 accelerates apoptosis by acting in a dominant negative fashion. J Biol Chem 2003; 278:19732-42. [PMID: 12644466 DOI: 10.1074/jbc.m213038200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To investigate the exact biochemical functions by which Bcl-2 regulates apoptosis, we established a stable human small cell lung carcinoma cell line, Ms-1, overexpressing wild-type human Bcl-2 or various deletion and point mutants thereof, and examined the effect of these Bcl-2 mutants on apoptosis induced by antitumor drugs such as camptothecin. Cytochrome c release, caspase-3-(-like) protease activation, and apoptosis induced by antitumor drugs were accelerated by overexpression of Bcl-2 lacking a Bcl-2 homology (BH) 1 domain (Bcl-2/ DeltaBH1), but not by that of BH2, BH3, or BH4 domain-deleted Bcl-2. A similar result was obtained upon the substitution of glycine 145 with alanine in the BH1 domain (Bcl-2/G145A), which failed to interact with either Bax or Bak. Pro-apoptotic Bax and Bak have been known to be activated in response to antitumor drugs, and Bcl-2/G145A as well as Bcl-2/DeltaBH1 also accelerated Bax- or Bak-induced apoptosis in HEK293T cells. These two mutants still retained the ability to interact with wild-type Bcl-2 and Bcl-xL, and abrogated the inhibitory effect of wild-type Bcl-2 or Bcl-xL on Bax- or Bak-induced apoptosis. In addition, immunoprecipitation studies revealed that Bcl-2/DeltaBH1 and Bcl-2/G145A interrupted the association between wild-type Bcl-2 and Bax/Bak. Taken together, our results demonstrate that Bcl-2/DeltaBH1 or Bcl-2/G145A acts as a dominant negative of endogenous anti-apoptotic proteins such as Bcl-2 and Bcl-xL, thereby enhancing antitumor drug-induced apoptosis, and that this dominant negative activity requires both a failure of interaction with Bax and Bak through the BH1 domain of Bcl-2 and retention of the ability to interact with Bcl-2 and Bcl-xL.
Collapse
Affiliation(s)
- Makoto Kawatani
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | | |
Collapse
|
473
|
Chandra D, Tang DG. Mitochondrially localized active caspase-9 and caspase-3 result mostly from translocation from the cytosol and partly from caspase-mediated activation in the organelle. Lack of evidence for Apaf-1-mediated procaspase-9 activation in the mitochondria. J Biol Chem 2003; 278:17408-20. [PMID: 12611882 DOI: 10.1074/jbc.m300750200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Active caspase-9 and caspase-3 have been observed in the mitochondria, but their origins are unclear. Theoretically, procaspase-9 might be activated in the mitochondria in a cytochrome c/Apaf-1-dependent manner, or activated caspase-9 and -3 may translocate to the mitochondria, or the mitochondrially localized procaspases may be activated by the translocated active caspases. Here we present evidence that the mitochondrially localized active caspase-9 and -3 result mostly from translocation from the cytosol (into the intermembrane space) and partly from caspase-mediated activation in the organelle rather than from the Apaf-1-mediated activation. Apaf-1 localizes exclusively in the cytosol and, upon apoptotic stimulation, translocates to the perinuclear area but not to the mitochondria. In most cases, the mitochondrially localized procaspase-9 and -3 are released early during apoptosis and translocate to the cytosol and/or perinuclear area. Cytochrome c and the mitochondrial matrix protein Hsp60 are also rapidly released to the cytosol early during apoptosis. Both the early release of proteins like cytochrome c and Hsp60 from the mitochondria as well as the later translocation of the active caspase-9/-3 are partially inhibited by cyclosporin A, an inhibitor of mitochondrial membrane permeabilization. The mitochondrial active caspases may function as a positive feedback mechanism to further activate other or residual mitochondrial procaspases, degrade mitochondrial constituents, and disintegrate mitochondrial functions.
Collapse
Affiliation(s)
- Dhyan Chandra
- Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park Research Division, Smithville, Texas 78957, USA
| | | |
Collapse
|
474
|
Yi X, Yin XM, Dong Z. Inhibition of Bid-induced apoptosis by Bcl-2. tBid insertion, Bax translocation, and Bax/Bak oligomerization suppressed. J Biol Chem 2003; 278:16992-9. [PMID: 12624108 DOI: 10.1074/jbc.m300039200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bcl-2 family proteins are important regulators of apoptosis. They can be pro-apoptotic (e.g. Bid, Bax, and Bak) or anti-apoptotic (e.g. Bcl-2 and Bcl-x(L)). The current study examined Bid-induced apoptosis and its inhibition by Bcl-2. Transfection of Bid led to apoptosis in HeLa cells. In these cells, Bid was processed into active forms of truncated Bid or tBid. Following processing, tBid translocated to the membrane-bound organellar fraction. Bcl-2 co-transfection inhibited Bid-induced apoptosis but did not prevent Bid processing or tBid translocation. On the other hand, Bcl-2 blocked the release of mitochondrial cytochrome c in Bid-transfected cells, suggesting actions at the mitochondrial level. Alkaline treatment stripped off tBid from the membrane-bound organellar fraction of Bid plus Bcl-2-co-transfected cells, but not from cells transfected with only Bid, suggesting inhibition of tBid insertion into mitochondrial membranes by Bcl-2. Bcl-2 also prevented Bid-induced Bax translocation from cytosol to the membrane-bound organellar fraction. Finally, Bcl-2 diminished Bid-induced oligomerization of Bax and Bak within the membrane-bound organellar fraction, shown by cross-linking experiments. In conclusion, Bcl-2 inhibited Bid-induced apoptosis at the mitochondrial level by blocking cytochrome c release, without suppressing Bid processing or activation. Critical steps blocked by Bcl-2 included tBid insertion, Bax translocation, and Bax/Bak oligomerization in the mitochondrial membranes.
Collapse
Affiliation(s)
- Xiaolan Yi
- Department of Anatomy and Cell Biology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
475
|
Abstract
Recent studies on cells derived from mice deficient in both multi-domain pro-apoptotic genes of the Bcl-2 family, Bax and Bak, suggest that one or other of these proteins are required for the release of apoptogens such as cytochrome c from mitochondria. In addition BH-3 only proteins of this family such as Bid are suggested to act as critical death inducing ligands via interactions with pro- and anti-apoptotic Bcl-2 family proteins with Bax or Bak at the mitochondrial surface. Despite this increase in knowledge it remains unclear precisely how Bak and Bax promote outer mitochondrial membrane (OMM) permeabilisation. We suggest that Bax and Bak may not operate in precisely the same manner and evaluate the current models for their function. We also consider the emerging information that lipid-protein interactions may be crucial to the actions of Bax and Bak.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Cancer Research UK Cellular and Molecular Pharmacology Group, School of Biological Sciences, University of Manchester, G38 Stopford Building, Oxford Road, Manchester M134 9PT, UK
| | | |
Collapse
|
476
|
Scorrano L, Korsmeyer SJ. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 2003; 304:437-44. [PMID: 12729577 DOI: 10.1016/s0006-291x(03)00615-6] [Citation(s) in RCA: 530] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A crucial amplificatory event in several apoptotic cascades is the nearly complete release of cytochrome c from mitochondria. Proteins of the BCL-2 family which include both anti- and proapoptotic members control this step. Here, we review the proposed mechanisms by which proapoptotic BCL-2 family members induce cytochrome c release. Data support a model in which the apoptotic pathway bifurcates following activation of a "BH3 only" family member. BH3 only molecules induce the activation of the multidomain proapoptotics BAX and BAK, resulting in the permeabilization of the outer mitochondrial membrane and the efflux of cytochrome c. This is coordinated with the activation of a distinct pathway characterized by profound changes of the inner mitochondrial membrane morphology and organization. This mitochondrial remodelling insures complete release of cytochrome c and the onset of mitochondrial dysfunction that is a typical feature of many apoptotic deaths.
Collapse
Affiliation(s)
- Luca Scorrano
- Howard Hughes Medical Institute, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
477
|
Abstract
An increase in the permeability of the outer mitochondrial membrane is central to apoptotic cell death, since it leads to the release of several apoptogenic factors, such as cytochrome c and Smac/Diablo, into the cytoplasm that activate downstream death programs. During apoptosis, the mitochondria also release AIF and endonuclease G, both of which are translocated to the nucleus and are implicated in apoptotic nuclear changes that occur in a caspase-independent manner. Mitochondrial membrane permeability is directly controlled by the major apoptosis regulator, i.e., the Bcl-2 family of proteins, mainly through regulation of the formation of apoptotic protein-conducting pores in the outer mitochondrial membrane, although the precise molecular mechanisms are still not completely understood. Here, I focus on the mechanisms by which Bcl-2 family members control the permeability of mitochondrial membrane during apoptosis.
Collapse
Affiliation(s)
- Yoshihide Tsujimoto
- Osaka University Graduate School of Medicine, Department of Post-Genomics and Diseases, Laboratory of Molecular Genetics, CREST of Japanese Science and Technology, Suita, Osaka, Japan.
| |
Collapse
|
478
|
Dewson G, Snowden RT, Almond JB, Dyer MJS, Cohen GM. Conformational change and mitochondrial translocation of Bax accompany proteasome inhibitor-induced apoptosis of chronic lymphocytic leukemic cells. Oncogene 2003; 22:2643-54. [PMID: 12730678 DOI: 10.1038/sj.onc.1206326] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chemotherapy resistance remains a major clinical problem in patients with B-cell chronic lymphocytic leukemia (B-CLL). Proteasome inhibitors are able to induce apoptosis in chemotherapy-resistant B-CLL cells in vitro. Exposure of B-CLL cells to the proteasome inhibitors, MG132 and lactacystin, resulted in inhibition of proteasomal activity within 30 min of treatment and was accompanied by an increase in the level of ubiquitinated proteins. Proteasome inhibitors did not alter the levels of expression of the proapoptotic Bcl-2 family proteins, Bax and Bid, prior to the onset of apoptosis. Instead, proteasome inhibitors induced a caspase-independent conformational change in Bax (as shown by a conformation-specific Bax antibody) and its translocation to mitochondria, resulting in mitochondrial perturbation, as evidenced by loss of the mitochondrial membrane potential and cytochrome c release. Similar conformational change and subcellular localization of Bax were observed during apoptosis induced with fludarabine, chlorambucil and prednisolone. These data suggest that alteration of Bax conformation and its redistribution to mitochondria are common and early features of B-CLL apoptosis in response to proteasome inhibitors and other chemotherapeutic agents.
Collapse
Affiliation(s)
- Grant Dewson
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, PO Box 138, Lancaster Road, Leicester LE1 9HN, UK
| | | | | | | | | |
Collapse
|
479
|
Wang B, Nguyen M, Breckenridge DG, Stojanovic M, Clemons PA, Kuppig S, Shore GC. Uncleaved BAP31 in association with A4 protein at the endoplasmic reticulum is an inhibitor of Fas-initiated release of cytochrome c from mitochondria. J Biol Chem 2003; 278:14461-8. [PMID: 12529377 DOI: 10.1074/jbc.m209684200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BAP31 is a polytopic integral protein of the endoplasmic reticulum membrane and, like BID, is a preferred substrate of caspase-8. Upon Fas/CD95 stimulation, BAP31 is cleaved within its cytosolic domain, generating proapoptotic p20 BAP31. In human KB epithelial cells expressing the caspase-resistant mutant crBAP31, Fas stimulation resulted in cleavage of BID and insertion of BAX into mitochondrial membrane, but subsequent oligomerization of BAX and BAK, egress of cytochrome c to the cytosol, and apoptosis were impaired. Bap31-null mouse cells expressing crBAP31 cannot generate the endogenous p20 BAP31 cleavage product, yet crBAP31 conferred resistance to cellular condensation and cytochrome c release in response to activation of ectopic FKBPcasp8 by FK1012z. Full-length BAP31, therefore, is a direct inhibitor of these caspase-8-initiated events, acting independently of its ability to sequester p20, with which it interacts. Employing a novel split ubiquitin yeast two-hybrid screen for BAP31-interacting membrane proteins, the putative ion channel protein of the endoplasmic reticulum, A4, was detected and identified as a constitutive binding partner of BAP31 in human cells. Ectopic A4 that was introduced into A4-deficient cells cooperated with crBAP31 to resist Fas-induced egress of cytochrome c from mitochondria and cytoplasmic apoptosis.
Collapse
Affiliation(s)
- Bing Wang
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y, Canada
| | | | | | | | | | | | | |
Collapse
|
480
|
Rodrigues CMP, Solá S, Sharpe JC, Moura JJG, Steer CJ. Tauroursodeoxycholic acid prevents Bax-induced membrane perturbation and cytochrome C release in isolated mitochondria. Biochemistry 2003; 42:3070-80. [PMID: 12627974 DOI: 10.1021/bi026979d] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bax is a potent pro-apoptotic member of the Bcl-2 protein family that localizes to the mitochondrial membrane during apoptosis. Tauroursodeoxycholic acid (TUDCA) modulates the apoptotic threshold, in part, by preventing Bax translocation both in vitro and in vivo. The mechanisms by which Bax induces and TUDCA inhibits release of cytochrome c are unclear. We show here that recombinant Bax protein induced cytochrome c release in isolated mitochondria without detectable swelling. Co-incubation with TUDCA prevented efflux of mitochondrial factors and proteolytic processing of caspases in cytosolic extracts. Spectroscopic analyses of mitochondria exposed to Bax revealed increased polarity and fluidity of the membrane lipid core as well as altered protein order, indicative of Bax binding, together with loss of spin-label paramagnetism, characteristic of oxidative damage. TUDCA markedly abrogated the Bax-induced membrane perturbation. In conclusion, our results indicate that Bax protein directly induces cytochrome c release from mitochondria through a mechanism that does not require the permeability transition. Rather, it is accompanied by changes in the organization of membrane lipids and proteins. TUDCA is a potent inhibitor of Bax association with mitochondria. Thus, TUDCA modulates apoptosis by suppressing mitochondrial membrane perturbation through pathways that are also independent of the mitochondrial permeability transition.
Collapse
Affiliation(s)
- Cecília M P Rodrigues
- Centro de Patogénese Molecular, Faculty of Pharmacy, University of Lisbon, Lisbon 1600-083, Portugal.
| | | | | | | | | |
Collapse
|
481
|
Clerk A, Cole SM, Cullingford TE, Harrison JG, Jormakka M, Valks DM. Regulation of cardiac myocyte cell death. Pharmacol Ther 2003; 97:223-61. [PMID: 12576135 DOI: 10.1016/s0163-7258(02)00339-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac myocyte death, whether through necrotic or apoptotic mechanisms, is a contributing factor to many cardiac pathologies. Although necrosis and apoptosis are the widely accepted forms of cell death, they may utilize the same cell death machinery. The environment within the cell probably dictates the final outcome, producing a spectrum of response between the two extremes. This review examines the probable mechanisms involved in myocyte death. Caspases, the generally accepted executioners of apoptosis, are significant in executing cardiac myocyte death, but other proteases (e.g., calpains, cathepsins) also promote cell death, and these are discussed. The two principal cell death pathways (death receptor- and mitochondrial-mediated) are described in relation to the emerging structural information for the principal proteins, and they are discussed relative to current understanding of myocyte cell death mechanisms. Whereas the mitochondrial pathway is probably a significant factor in myocyte death in both acute and chronic phases of myocardial diseases, the death receptor pathway may prove significant in the longer term. The Bcl-2 family of proteins are key regulators of the mitochondrial death pathway. These proteins are described and their possible functions are discussed. The commitment to cell death is also influenced by protein kinase cascades that are activated in the cell. Whereas certain pathways are cytoprotective (e.g., phosphatidylinositol 3'-kinase), the roles of other kinases are less clear. Since myocyte death is implicated in a number of cardiac pathologies, attenuation of the death pathways may prove important in ameliorating such disease states, and possible therapeutic strategies are explored.
Collapse
Affiliation(s)
- Angela Clerk
- NHLI Division (Cardiac Medicine Section), Faculty of Medicine, Imperial College of Science, Technology and Medicine, Flower's Building, Armstrong Road, South Kensington, London SW7 2AZ, UK.
| | | | | | | | | | | |
Collapse
|
482
|
Mikhailov V, Mikhailova M, Degenhardt K, Venkatachalam MA, White E, Saikumar P. Association of Bax and Bak homo-oligomers in mitochondria. Bax requirement for Bak reorganization and cytochrome c release. J Biol Chem 2003; 278:5367-76. [PMID: 12454021 DOI: 10.1074/jbc.m203392200] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ATP depletion induced by hypoxia or mitochondrial inhibitors results in Bax translocation from cytosol to mitochondria and release of cytochrome c from mitochondria into cytosol in cultured rat proximal tubule cells. Translocated Bax undergoes further conformational changes to oligomerize into high molecular weight complexes (Mikhailov, V., Mikhailova, M., Pulkrabek, D. J., Dong, Z., Venkatachalam, M. A., and Saikumar, P. (2001) J. Biol. Chem. 276, 18361-18374). Here we report that following Bax translocation in ATP-depleted rat proximal tubule cells, Bak, a proapoptotic molecule that normally resides in mitochondria, also reorganizes to form homo-oligomers. Oligomerization of both Bax and Bak occurred independently of Bid cleavage and/or translocation. Western blots of chemically cross-linked membrane extracts showed nonoverlapping "ladders" of Bax and Bak complexes in multiples of approximately 21 and approximately 23 kDa, respectively, consistent with molecular homogeneity within each ladder. This indicated that Bax and Bak complexes were homo-oligomeric. Nevertheless, each oligomer could be co-immunoprecipitated with the other, suggesting a degree of affinity between Bax and Bak that permitted co-precipitation but not cross-linking. Furthermore, dissociation of cross-linked complexes by SDS and renaturation prior to immunoprecipitation did not prevent reassociation of the two oligomeric species. Notably, expression of Bcl-2 prevented not only the oligomerization of Bax and Bak, but also the association between these two proteins in energy-deprived cells. Using Bax-deficient HCT116 and BMK cells, we show that there is stringent Bax requirement for Bak homo-oligomerization and for cytochrome c release during energy deprivation. Using Bak-deficient BMK cells we further show that Bak deficiency is associated with delayed kinetics of Bax translocation but does not affect either the oligomerization of translocated Bax or the leakage of cytochrome c. These results suggest a degree of functional cooperation between Bax and Bak in this form of cell injury, but also demonstrate an absolute requirement of Bax for mitochondrial permeabilization.
Collapse
Affiliation(s)
- Valery Mikhailov
- Department of Pathology, The University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | |
Collapse
|
483
|
Nomura M, Shimizu S, Sugiyama T, Narita M, Ito T, Matsuda H, Tsujimoto Y. 14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax. J Biol Chem 2003; 278:2058-65. [PMID: 12426317 DOI: 10.1074/jbc.m207880200] [Citation(s) in RCA: 279] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Bcl-2 family of proteins comprises well characterized regulators of apoptosis, consisting of anti-apoptotic members and pro-apoptotic members. Pro-apoptotic members possessing BH1, BH2, and BH3 domains (such as Bax and Bak) act as a gateway for a variety of apoptotic signals. Bax is normally localized to the cytoplasm in an inactive form. In response to apoptotic stimuli, Bax translocates to the mitochondria and undergoes oligomerization to induce the release of apoptogenic factors such as cytochrome c, but it is still largely unknown how the mitochondrial translocation and pro-apoptotic activity of Bax is regulated. Here we report that cytoplasmic protein 14-3-3 theta binds to Bax and, upon apoptotic stimulation, releases Bax by a caspase-independent mechanism, as well as through direct cleavage of 14-3-3 theta by caspases. Unlike Bad, the interaction with 14-3-3 theta is not dependent on the phosphorylation of Bax. In isolated mitochondria, we found that 14-3-3 theta inhibited the integration of Bax and Bax-induced cytochrome c release. Bax-induced apoptosis was inhibited by overexpression of either 14-3-3 theta or its mutant (which lacked the ability to bind to various phosphorylated targets but still bound to Bax), whereas overexpression of 14-3-3 theta was unable to inhibit apoptosis induced by a Bax mutant that did not bind to 14-3-3 theta. These findings indicate that 14-3-3 theta plays a crucial role in negatively regulating the activity of Bax.
Collapse
Affiliation(s)
- Masaya Nomura
- Department of Post-genomics & Diseases, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
484
|
Usuda J, Chiu SM, Murphy ES, Lam M, Nieminen AL, Oleinick NL. Domain-dependent photodamage to Bcl-2. A membrane anchorage region is needed to form the target of phthalocyanine photosensitization. J Biol Chem 2003; 278:2021-9. [PMID: 12379660 DOI: 10.1074/jbc.m205219200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photodynamic therapy using the photosensitizer Pc 4 and red light photochemically destroys the antiapoptotic protein Bcl-2 and induces apoptosis. To characterize the requirements for photodamage, we transiently transfected epitope-tagged Bcl-2 deletion mutants into DU-145 cells. Using confocal microscopy and Western blots, wild-type Bcl-2 and mutants with deletions near the N terminus were found in mitochondria, endoplasmic reticulum, and nuclear membranes and were photodamaged. A mutant missing the C terminus, including the transmembrane domain, spread diffusely in cells and was not photodamaged. Bcl-2 missing alpha-helices 5/6 was also not photodamaged. Bcl-2 missing only one of those alpha-helices, with or without substitutions of the singlet oxygen-targeted amino acids, behaved like wild-type Bcl-2 with respect to localization and photodamage. Using green fluorescent protein (GFP)-tagged Bcl-2 or mutants in live cells, no change in either the localization or the intensity of GFP fluorescence was observed in response to Pc 4 photodynamic therapy. Western blot analysis of either GFP- or Xpress-tagged Bcl-2 revealed that the photodynamic therapy-induced disappearance of the Bcl-2 band was accompanied by the appearance of bands indicative of heavily cross-linked Bcl-2 protein. Therefore, the alpha(5)/alpha(6) region of Bcl-2 is required for photodamage and cross-linking, and domain-dependent photodamage to Bcl-2 offers a unique mechanism for activation of apoptosis.
Collapse
Affiliation(s)
- Jitsuo Usuda
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106,USA
| | | | | | | | | | | |
Collapse
|
485
|
García-Ruiz C, Colell A, Marí M, Morales A, Calvo M, Enrich C, Fernández-Checa JC. Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J Clin Invest 2003; 111:197-208. [PMID: 12531875 PMCID: PMC151862 DOI: 10.1172/jci16010] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study addressed the contribution of acidic sphingomyelinase (ASMase) in TNF-alpha-mediated hepatocellular apoptosis. Cultured hepatocytes depleted of mitochondrial glutathione (mGSH) became sensitive to TNF-alpha, undergoing a time-dependent apoptotic cell death preceded by mitochondrial membrane depolarization, cytochrome c release, and caspase activation. Cyclosporin A treatment rescued mGSH-depleted hepatocytes from TNF-alpha-induced cell death. In contrast, mGSH-depleted hepatocytes deficient in ASMase were resistant to TNF-alpha-mediated cell death but sensitive to exogenous ASMase. Furthermore, although in vivo administration of TNF-alpha or LPS to galactosamine-pretreated ASMase(+/+) mice caused liver damage, ASMase(-/-) mice exhibited minimal hepatocellular injury. To analyze the requirement of ASMase, we assessed the effect of glucosylceramide synthetase inhibition on TNF-alpha-mediated apoptosis. This approach, which blunted glycosphingolipid generation by TNF-alpha, protected mGSH-depleted ASMase(+/+) hepatocytes from TNF-alpha despite enhancement of TNF-alpha-stimulated ceramide formation. To further test the involvement of glycosphingolipids, we focused on ganglioside GD3 (GD3) because of its emerging role in apoptosis through interaction with mitochondria. Analysis of the cellular redistribution of GD3 by laser scanning confocal microscopy revealed the targeting of GD3 to mitochondria in ASMase(+/+) but not in ASMase(-/-) hepatocytes. However, treatment of ASMase(-/-) hepatocytes with exogenous ASMase induced the colocalization of GD3 and mitochondria. Thus, ASMase contributes to TNF-alpha-induced hepatocellular apoptosis by promoting the mitochondrial targeting of glycosphingolipids.
Collapse
Affiliation(s)
- Carmen García-Ruiz
- Liver Unit, Instituto de Malalties Digestives, Hospital Clinic i Provincial, Instituto de Investigaciones Biomédicas August Pi Suñer, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
486
|
Abstract
Members of the Bcl-2 family are crucial integrators of survival and death signals in higher eukaryotes. Although recent studies have provided novel and quite unexpected insights into the mechanisms by which these proteins might issue life permits or death sentences in cells, we are still on the way to fully understand their modes of action. This review provides a snapshot on where we are on this journey and how we may exploit our knowledge on this family of proteins to unveil the mysteries of immune regulation.
Collapse
Affiliation(s)
- Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany.
| |
Collapse
|
487
|
Ferrero E, Belloni D, Contini P, Foglieni C, Ferrero ME, Fabbri M, Poggi A, Zocchi MR. Transendothelial migration leads to protection from starvation-induced apoptosis in CD34+CD14+ circulating precursors: evidence for PECAM-1 involvement through Akt/PKB activation. Blood 2003; 101:186-93. [PMID: 12393747 DOI: 10.1182/blood-2002-03-0768] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present paper we show that transendothelial migration of a subset of CD14(+) circulating leukocytes, coexpressing the CD34 precursor marker, leads to protection from the apoptosis that follows growth factor(s) withdrawal. The resistance of this cell subset to starvation-induced programmed cell death, lasting from 48 to 96 hours, is accompanied by a rise of mitochondrial adenosine triphosphate (ATP), a high nicotinamide adenine dinucleotide (NAD)/reduced nicotinamide adenine dinucleotide (NADH) ratio, and by the up-regulation of expression of the antiapoptotic proteins Bcl-2 and Bcl-X, together with an increase in the cytoplasmic, inactive, form of Bax. This suggests that protection from apoptosis is due to the preservation of mitochondrial function(s). Interestingly, ligation of the platelet endothelial cell adhesion molecule-1 (PECAM-1), which drives CD14(+)CD34(+) transendothelial migration, leads to an increase in Bcl-2 A1 and Bcl-X intracellular content, and to protection from starvation-induced apoptosis. This event is dependent on the engagement of phosphatidylinositol-3 kinase and activation of Akt/PKB that is known to contribute to Bcl-2 and Bcl-X induction. These data point to a critical role of endothelium in preventing the apoptotic program triggered by starvation, possibly inducing a prolonged survival of antigen presenting cell precursors, in order to allow recirculation of these cells and localization to the site of priming of T lymphocytes.
Collapse
|
488
|
Roucou X, Montessuit S, Antonsson B, Martinou JC. Bax oligomerization in mitochondrial membranes requires tBid (caspase-8-cleaved Bid) and a mitochondrial protein. Biochem J 2002; 368:915-21. [PMID: 12193163 PMCID: PMC1223025 DOI: 10.1042/bj20020972] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Revised: 08/20/2002] [Accepted: 08/23/2002] [Indexed: 11/17/2022]
Abstract
In response to various apoptotic stimuli, Bax, a pro-apoptotic member of the Bcl-2 family, is oligomerized and permeabilizes the mitochondrial outer membrane to apoptogenic factors, including cytochrome c. Bax oligomerization can also be induced by incubating isolated mitochondria containing endogenous Bax with recombinant tBid (caspase-8-cleaved Bid) in vitro. The mechanism by which Bax oligomerizes under these conditions is still unknown. To address this question, recombinant human full-length Bax was purified as a monomeric protein. Bax failed to oligomerize spontaneously in isolated mitochondria or in liposomes composed of either cardiolipin or lipids extracted from mitochondria. However, in the presence of tBid, the protein formed large complexes in mitochondrial membranes and induced the release of cytochrome c. tBid also induced Bax oligomerization in isolated mitochondrial outer membranes, but not in other membranes, such as plasma membranes or microsomes. Moreover, tBid-induced Bax oligomerization was inhibited when mitochondria were pretreated with protease K. The presence of the voltage-dependent anion channel was not required either for Bax oligomerization or for Bax-induced cytochrome c release. Finally, Bax oligomerization was reconstituted in proteoliposomes made from mitochondrial membrane proteins. These findings imply that tBid is necessary but not sufficient for Bax oligomerization; a mitochondrial protein is also required.
Collapse
Affiliation(s)
- Xavier Roucou
- Departement de Biologie Cellulaire, University of Geneva, 30 quai E. Ansermet, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
489
|
Epand RF, Martinou JC, Montessuit S, Epand RM, Yip CM. Direct evidence for membrane pore formation by the apoptotic protein Bax. Biochem Biophys Res Commun 2002; 298:744-9. [PMID: 12419316 DOI: 10.1016/s0006-291x(02)02544-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Direct imaging of the interaction of the apoptotic protein, Bax, with membrane bilayers shows the presence of toroidal-shaped pores using atomic force microscopy. These pores are sufficiently large to allow passage of proteins from the intermitochondrial space. Both the perturbation of the membrane and the amount of protein bound to the bilayer are increased in the presence of calcium. The results from the imaging are consistent with leakage studies from liposomes of the same composition. The work shows that Bax by itself can form pores in membrane bilayers.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry, McMaster University Health Sciences Centre, Hamilton, Ont., Canada.
| | | | | | | | | |
Collapse
|
490
|
Epand RF, Martinou JC, Montessuit S, Epand RM. Membrane perturbations induced by the apoptotic Bax protein. Biochem J 2002; 367:849-55. [PMID: 12180909 PMCID: PMC1222950 DOI: 10.1042/bj20020986] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2002] [Revised: 08/05/2002] [Accepted: 08/15/2002] [Indexed: 01/06/2023]
Abstract
The apoptotic protein Bax, in oligomeric form, is effective in promoting both leakage and lipid mixing in liposomes composed of cardiolipin and phosphatidylethanolamine and/or phosphatidylcholine, upon the addition of calcium. In contrast, monomeric Bax is not active. At low concentrations at which caspase-8-cut Bid (tBid) alone has little effect on leakage, tBid augments the leakage caused by monomeric Bax. When solutions of oligomeric Bax are diluted to lower detergent concentrations than those required for Bax oligomerization, the protein is initially active in inducing liposomal leakage, indicating that the potency of the oligomeric form is not a consequence of being initially added to the liposomes in a high detergent concentration. However, in solutions of low detergent concentration, in the absence of liposomes, the oligomer gradually loses its lytic potency. This is accompanied by a loss of binding of bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'-disulphonic acid), indicating the loss of exposed hydrophobic sites, as well as a loss of the ability of the protein to translocate to membranes. Membrane translocation was measured by an energy-transfer assay. It was demonstrated that membrane binding was greatly enhanced by oligomerization and by the presence of calcium. Thus the membrane-active form of Bax is unstable in the absence of detergent or lipid. In addition, we find that translocation to the membrane is enhanced by oligomerization as well as by the presence of high concentrations of calcium.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry, McMaster University Health Sciences Centre, Hamilton, ON L8N 3Z5, Canada.
| | | | | | | |
Collapse
|
491
|
Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 2002; 111:331-42. [PMID: 12419244 DOI: 10.1016/s0092-8674(02)01036-x] [Citation(s) in RCA: 1117] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bcl-2 family proteins regulate the release of proteins like cytochrome c from mitochondria during apoptosis. We used cell-free systems and ultimately a vesicular reconstitution from defined molecules to show that outer membrane permeabilization by Bcl-2 family proteins requires neither the mitochondrial matrix, the inner membrane, nor other proteins. Bid, or its BH3-domain peptide, activated monomeric Bax to produce membrane openings that allowed the passage of very large (2 megadalton) dextran molecules, explaining the translocation of large mitochondrial proteins during apoptosis. This process required cardiolipin and was inhibited by antiapoptotic Bcl-x(L). We conclude that mitochondrial protein release in apoptosis can be mediated by supramolecular openings in the outer mitochondrial membrane, promoted by BH3/Bax/lipid interaction and directly inhibited by Bcl-x(L).
Collapse
Affiliation(s)
- Tomomi Kuwana
- La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
492
|
Yamaguchi H, Wang HG. Bcl-XL protects BimEL-induced Bax conformational change and cytochrome C release independent of interacting with Bax or BimEL. J Biol Chem 2002; 277:41604-12. [PMID: 12198137 DOI: 10.1074/jbc.m207516200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Bcl-2 homology (BH) 3-only pro-apoptotic Bcl-2 family protein Bim plays an essential role in the mitochondrial pathway of apoptosis through activation of the BH1-3 multidomain protein Bax or Bak. To further understand how the BH3-only protein activates Bax, we provide evidence here that BimEL induces Bax conformational change and apoptosis through a Bcl-XL-suppressible but heterodimerization-independent mechanism. Substitution of the conserved leucine residue in the BH3 domain of BimEL for alanine (M1) inhibits the interaction of BimEL with Bcl-XL but does not abolish the ability of BimEL to induce Bax conformational change and apoptosis. However, removal of the C-terminal hydrophobic region from the M1 mutant (M1DeltaC) abolishes its ability to activate Bax and to induce apoptosis, although deletion of the C-terminal domain (DeltaC) alone has little if any effect on the pro-apoptotic activity of BimEL. Subcellular fractionation experiments show that the Bim mutant M1DeltaC is localized in the cytosol, indicating that both the C-terminal hydrophobic region and the BH3 domain are required for the mitochondrial targeting and pro-apoptotic activity of BimEL. Moreover, the Bcl-XL mutant (mt1), which is unable to interact with Bax and BimEL, blocks Bax conformational change and cytochrome c release induced by BimEL in intact cells and isolated mitochondria. BimEL or Bak-BH3 peptide induces Bax conformational change in vitro only under the presence of mitochondria, and the outer mitochondrial membrane fraction is sufficient for induction of Bax conformational change. Interestingly, native Bax is attached loosely on the surface of isolated mitochondria, which undergoes conformational change and insertion into mitochondrial membrane upon stimulation by BimEL, Bak-BH3 peptide, or freeze/thaw damage. Taken together, these findings indicate that BimEL may activate Bax by damaging the mitochondrial membrane structure directly, in addition to its binding and antagonizing Bcl-2/Bcl-XL function.
Collapse
Affiliation(s)
- Hirohito Yamaguchi
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612, USA
| | | |
Collapse
|
493
|
Capano M, Crompton M. Biphasic translocation of Bax to mitochondria. Biochem J 2002; 367:169-78. [PMID: 12097139 PMCID: PMC1222873 DOI: 10.1042/bj20020805] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2002] [Revised: 07/01/2002] [Accepted: 07/04/2002] [Indexed: 11/17/2022]
Abstract
Using green fluorescent protein-tagged Bax, we demonstrate that Bax is sequestered from the cytosol of cardiomyocytes in two distinct phases following the induction of apoptosis with staurosporine. In the first phase, lasting several hours, Bax removal from the cytosol was relatively small. In the second phase, Bax was very largely removed from the cytosol and sequestered into large aggregates associated with the mitochondria. To test which of the phases involved cytochrome c release, cells were transfected with a red fluorescent protein-cytochrome c fusion. The cytochrome c fusion protein was accumulated by mitochondria of healthy cells and was released by staurosporine in phase 1. When green fluorescent protein-Bax was immunoprecipitated from extracts of cells in phase 1 and phase 2, the voltage-dependent anion channel (mitochondrial outer membrane) and the adenine nucleotide translocase (mitochondrial inner membrane) were also precipitated. These data support a two-phase model of Bax translocation in which Bax targets the mitochondrial intermembrane contact sites and releases cytochrome c in the first phase, and is then packaged into large aggregates on mitochondria in the second.
Collapse
Affiliation(s)
- Michela Capano
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | | |
Collapse
|
494
|
Salgado J, García-Sáez AJ, Malet G, Mingarro I, Pérez-Payá E. Peptides in apoptosis research. J Pept Sci 2002; 8:543-60. [PMID: 12450324 DOI: 10.1002/psc.414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Apoptosis is a complex process that plays a central role in physiological and pathological cell death. This fast evolving research area has experienced incredible development in the past few years. Progress in the knowledge of the structure of many of the main molecular actors of the apoptotic signal transduction pathways has driven the design of synthetic peptides that in some cases can function as simplified versions of their parent proteins. These molecules are contributing to a better understanding of the activity and regulation of apoptotic proteins and also are setting the basis for the discovery of effective drugs to combat important diseases related to apoptosis. Most applications of peptides in apoptosis research are so far related to caspases, caspase regulatory proteins, such as LAPs and Smac, and proteins of the Bcl-2 family. Additionally, important perspectives are open to other systems, such as the macromolecular assemblies that are responsible for the activation of initiator caspases.
Collapse
Affiliation(s)
- Jesús Salgado
- Departament de Bíoquimica i Biologia Molecular, Universitat de València, E-461 00 Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
495
|
Epand RF, Martinou JC, Fornallaz-Mulhauser M, Hughes DW, Epand RM. The apoptotic protein tBid promotes leakage by altering membrane curvature. J Biol Chem 2002; 277:32632-9. [PMID: 12082098 DOI: 10.1074/jbc.m202396200] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apoptotic protein tBid is effective in promoting both leakage and lipid mixing in liposomes composed of cardiolipin and phosphatidylcholine at a molar ratio of 1:2 in the presence of calcium. When half of the phosphatidylcholine component of these liposomes is replaced with phosphatidylethanolamine, a lipid that promotes negative membrane curvature, the rates of both leakage and lipid mixing caused by tBid are substantially increased. Replacement of cardiolipin with phosphatidylglycerol, a lipid that is structurally similar to cardiolipin but does not promote negative membrane curvature in the presence of calcium, prevents the tBid from promoting leakage. The promotion of leakage by tBid is also inhibited by several substances that promote positive membrane curvature, including lysophosphatidylcholine, tritrpticin, a potent antimicrobial peptide, and cyclosporin A, a known inhibitor of cytochrome c release from mitochondria. We directly measured the effect of tBid on membrane curvature by (31)P NMR. We found that tBid promotes the formation of highly curved non-lamellar phases. All of these data are consistent with the hypothesis that tBid promotes negative curvature, and as a result it destabilizes bilayer membranes. Bcl-X(L) inhibits leakage and lipid mixing induced by tBid. Bcl-X(L) is anti-apoptotic. It reduces the promotion of non-bilayer phases by tBid, although by itself Bcl-X(L) is capable of promoting their formation. Bcl-X(L) has little effect on liposomal integrity. Our results suggest that the anti-apoptotic activity of Bcl-X(L) is not a consequence of its interaction with membranes, but rather with other proteins, such as tBid.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry, McMaster University Health Sciences Centre, Hamilton, Ontario L8N 3Z5, Canada.
| | | | | | | | | |
Collapse
|
496
|
Baell JB, Huang DCS. Prospects for targeting the Bcl-2 family of proteins to develop novel cytotoxic drugs. Biochem Pharmacol 2002; 64:851-63. [PMID: 12213579 DOI: 10.1016/s0006-2952(02)01148-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Over the last decade the molecular mechanisms controlling programmed cell death (apoptosis) have become clearer. It appears that many physiological and damage signals activate the cell death machinery by inhibiting the pro-survival Bcl-2 proteins. Since many chemotherapeutic drugs used to treat cancers activate the cell death machinery indirectly, there is much interest in developing peptide and non-peptide mimics of the BH3-only proteins, a family of proteins that act as direct antagonists of Bcl-2, as novel anti-cancer agents. This commentary review current progress in our search for such drugs and discusses recent findings in light of our current understanding of the cell death signaling. The potential for discovering novel agents that may form a useful part of the treatment of malignant disease is enormous but we still lack critical understanding of precisely how Bcl-2 function. However, the frequency of mutations affecting proteins that (directly or indirectly) impinge on apoptosis suggests that the approach of targeting Bcl-2 might be a profitable one.
Collapse
Affiliation(s)
- Jonathan B Baell
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Vic. 3050, Australia
| | | |
Collapse
|
497
|
Abstract
Tissue homeostasis is regulated by apoptosis, the cell-suicide programme that is executed by proteases called caspases. The Bcl2 family of intracellular proteins is the central regulator of caspase activation, and its opposing factions of anti- and pro-apoptotic members arbitrate the life-or-death decision. Apoptosis is often impaired in cancer and can limit conventional therapy. A better understanding of how the Bcl2 family controls caspase activation should result in new, more effective therapeutic approaches.
Collapse
Affiliation(s)
- Suzanne Cory
- The Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Victoria 3050, Australia.
| | | |
Collapse
|
498
|
Gajkowska B, Wojewódzka U. A novel embedment-free immunoelectron microscopy technique reveals association of apoptosis-regulating proteins with subcellular structures. THE HISTOCHEMICAL JOURNAL 2002; 34:441-6. [PMID: 12814192 DOI: 10.1023/a:1023643722886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
By employing two electron microscopy techniques, postembedding double- and triple immunocytochemical gold-labelling combined with embedment-free electron microscopy (EF-EM), we have detected previously unreported nuclear and cytoplasmic complexes between different proapoptatic proteins in a human cancer cell line COLO 205 stimulated to apoptosis by nimesulide, a specific cyclooxygenase-2 inhibitor. Experiments with the use of double- and triple immunolabelling visualized the colocalization of proapoptotic proteins such as Bax with Bid, Bax with Bid and voltage-dependent anion channel protein (VDAC-1), and Bax with Bid and caspase-8, on organellar membranes and within the nucleus. Application of this technique in combination with EF-EM technique augments our knowledge on the precise identification and relationship of subcellular structures containing Bax, Bid, VDAC-1 and caspase-8.
Collapse
Affiliation(s)
- B Gajkowska
- Laboratory of Cell Ultrastructure, Medical Research Centre, Polish Academy of Sciences, 5 Pawinski Street, 02 106 Warsaw, Poland
| | | |
Collapse
|
499
|
Werner AB, de Vries E, Tait SWG, Bontjer I, Borst J. Bcl-2 family member Bfl-1/A1 sequesters truncated bid to inhibit is collaboration with pro-apoptotic Bak or Bax. J Biol Chem 2002; 277:22781-8. [PMID: 11929871 DOI: 10.1074/jbc.m201469200] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Following caspase-8 mediated cleavage, a carboxyl-terminal fragment of the BH3 domain-only Bcl-2 family member Bid transmits the apoptotic signal from death receptors to mitochondria. In a screen for possible regulators of Bid, we defined Bfl-1/A1 as a potent Bid interacting protein. Bfl-1 is an anti-apoptotic Bcl-2 family member, whose preferential expression in hematopoietic cells and endothelium is controlled by inflammatory stimuli. Its mechanism of action is unknown. We find that Bfl-1 associates with both full-length Bid and truncated (t)Bid, via the Bid BH3 domain. Cellular expression of Bfl-1 confers protection against CD95- and Trail receptor-induced cytochrome c release. In vitro assays, using purified mitochondria and recombinant proteins, demonstrate that Bfl-1 binds full-length Bid, but does not interfere with its processing by caspase-8, or with its mitochondrial association. Confocal microscopy supports that Bfl-1, which at least in part constitutively localizes to mitochondria, does not impede tBid translocation. However, Bfl-1 remains tightly and selectively bound to tBid and blocks collaboration between tBid and Bax or Bak in the plane of the mitochondrial membrane, thereby preventing mitochondrial apoptotic activation. Lack of demonstrable interaction between Bfl-1 and Bak or Bax in the mitochondrial membrane suggests that Bfl-1 generally prevents the formation of a pro-apoptotic complex by sequestering BH3 domain-only proteins.
Collapse
Affiliation(s)
- Arlette B Werner
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | | | | | | | | |
Collapse
|
500
|
Roucou X, Rostovtseva T, Montessuit S, Martinou JC, Antonsson B. Bid induces cytochrome c-impermeable Bax channels in liposomes. Biochem J 2002; 363:547-52. [PMID: 11964155 PMCID: PMC1222507 DOI: 10.1042/0264-6021:3630547] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bax is a proapoptotic member of the Bcl-2 family of proteins. The Bax protein is dormant in the cytosol of normal cells and is activated upon induction of apoptosis. In apoptotic cells, Bax gets translocated to mitochondria, inserts into the outer membrane, oligomerizes and triggers the release of cytochrome c, possibly by channel formation. The BH3 domain-only protein Bid induces a conformational change in Bax before its insertion into the outer membrane. The mechanism by which Bid promotes Bax activation is not understood, and whether Bid is the only protein required for Bax activation is unclear. Here we report that recombinant full-length Bax (Bax(FL)) does not form channels in lipid bilayers when purified as a monomer. In contrast, in the presence of Bid cut with caspase 8 (cut Bid), Bax forms ionic channels in liposomes and planar bilayers. This channel-forming activity requires an interaction between cut Bid and Bax, and is inhibited by Bcl-x(L). Moreover, in the absence of the putative transmembrane C-terminal domain, Bax does not form ionic channels in the presence of cut Bid. Cut Bid does not induce Bax oligomerization in liposomes and the Bax channels formed in the presence of cut Bid are not large enough to permeabilize vesicles to cytochrome c. In conclusion, our results suggest that monomeric Bax(FL) can form channels only in the presence of cut Bid. Cut Bid by itself is unable to induce Bax oligomerization in lipid membranes. It is suggested that another factor that might be present in mitochondria is required for Bax oligomerization.
Collapse
Affiliation(s)
- Xavier Roucou
- Département de Biologie Cellulaire, Sciences III, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|