451
|
Ren B, Chen Q, Hong S, Zhao W, Feng J, Feng H, Zuo J. The Arabidopsis eukaryotic translation initiation factor eIF5A-2 regulates root protoxylem development by modulating cytokinin signaling. THE PLANT CELL 2013; 25:3841-57. [PMID: 24163315 PMCID: PMC3877783 DOI: 10.1105/tpc.113.116236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/04/2013] [Accepted: 10/06/2013] [Indexed: 05/07/2023]
Abstract
The phytohormone cytokinin regulates various aspects of plant growth and development, including root vascular development. In Arabidopsis thaliana, mutations in the cytokinin signaling components cause misspecification of protoxylem cell files. Auxin antagonizes cytokinin-regulated root protoxylem differentiation by inducing expression of Arabidopsis phosphotransfer protein6 (AHP6), a negative regulator of cytokinin signaling. However, the molecular mechanism of cytokinin-regulated protoxylem differentiation is not fully understood. Here, we show that a mutation in Arabidopsis fumonisin B1-resistant12 (FBR12), which encodes a eukaryotic translation initiation factor 5A, causes defective protoxylem development and reduced sensitivity to cytokinin. FBR12 genetically interacts with the cytokinin receptor cytokinin response1 (CRE1) and downstream AHP genes, as double mutants show enhanced phenotypes. FBR12 forms a protein complex with CRE1 and AHP1, and cytokinin regulates formation of this protein complex. Intriguingly, ahp6 partially suppresses the fbr12 mutant phenotype, and the fbr12 mutation causes increased expression of AHP6, indicating that FBR12 negatively regulates AHP6. Consistent with this, ectopic expression of FBR12 in the CRE1-expressing domain partially rescues defective protoxylem development in fbr12, and overexpression of AHP6 causes an fbr12-like phenotype. These results define a regulatory role of the highly conserved FBR12 in cytokinin-mediated root protoxylem specification.
Collapse
Affiliation(s)
- Bo Ren
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingguo Chen
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sulei Hong
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenming Zhao
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Feng
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haizhong Feng
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
452
|
Giordano F, Saheki Y, Idevall-Hagren O, Colombo SF, Pirruccello M, Milosevic I, Gracheva EO, Bagriantsev SN, Borgese N, De Camilli P. PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 2013; 153:1494-509. [PMID: 23791178 DOI: 10.1016/j.cell.2013.05.026] [Citation(s) in RCA: 461] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/24/2013] [Accepted: 05/10/2013] [Indexed: 12/28/2022]
Abstract
Most available information on endoplasmic reticulum (ER)-plasma membrane (PM) contacts in cells of higher eukaryotes concerns proteins implicated in the regulation of Ca(2+) entry. However, growing evidence suggests that such contacts play more general roles in cell physiology, pointing to the existence of additionally ubiquitously expressed ER-PM tethers. Here, we show that the three extended synaptotagmins (E-Syts) are ER proteins that participate in such tethering function via C2 domain-dependent interactions with the PM that require PI(4,5)P2 in the case of E-Syt2 and E-Syt3 and also elevation of cytosolic Ca(2+) in the case of E-Syt1. As they form heteromeric complexes, the E-Syts confer cytosolic Ca(2+) regulation to ER-PM contact formation. E-Syts-dependent contacts, however, are not required for store-operated Ca(2+) entry. Thus, the ER-PM tethering function of the E-Syts (tricalbins in yeast) mediates the formation of ER-PM contacts sites, which are functionally distinct from those mediated by STIM1 and Orai1.
Collapse
Affiliation(s)
- Francesca Giordano
- Department of Cell Biology, Program in Cellular Neuroscience, Neurodegeneration, and Repair, and Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
453
|
Konermann S, Brigham MD, Trevino A, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F. Optical control of mammalian endogenous transcription and epigenetic states. Nature 2013; 500:472-476. [PMID: 23877069 PMCID: PMC3856241 DOI: 10.1038/nature12466] [Citation(s) in RCA: 633] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/16/2013] [Indexed: 12/25/2022]
Abstract
The dynamic nature of gene expression enables cellular programming, homeostasis and environmental adaptation in living systems. Dissection of causal gene functions in cellular and organismal processes therefore necessitates approaches that enable spatially and temporally precise modulation of gene expression. Recently, a variety of microbial and plant-derived light-sensitive proteins have been engineered as optogenetic actuators, enabling high-precision spatiotemporal control of many cellular functions. However, versatile and robust technologies that enable optical modulation of transcription in the mammalian endogenous genome remain elusive. Here we describe the development of light-inducible transcriptional effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana. LITEs do not require additional exogenous chemical cofactors, are easily customized to target many endogenous genomic loci, and can be activated within minutes with reversibility. LITEs can be packaged into viral vectors and genetically targeted to probe specific cell populations. We have applied this system in primary mouse neurons, as well as in the brain of freely behaving mice in vivo to mediate reversible modulation of mammalian endogenous gene expression as well as targeted epigenetic chromatin modifications. The LITE system establishes a novel mode of optogenetic control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states.
Collapse
Affiliation(s)
- Silvana Konermann
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark D Brigham
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,School of Engineering and Applied Sciences, Harvard University Cambridge, MA 02138, USA
| | - Alexandro Trevino
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patrick D Hsu
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Matthias Heidenreich
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Le Cong
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Randall J Platt
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A Scott
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - George M Church
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
454
|
Yoo SC, Chen C, Rojas M, Daimon Y, Ham BK, Araki T, Lucas WJ. Phloem long-distance delivery of FLOWERING LOCUS T (FT) to the apex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:456-68. [PMID: 23607279 DOI: 10.1111/tpj.12213] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/05/2013] [Accepted: 04/16/2013] [Indexed: 05/05/2023]
Abstract
Cucurbita moschata FLOWERING LOCUS T-LIKE 2 (hereafter FTL2) and Arabidopsis thaliana (Arabidopsis) FLOWERING LOCUS T (FT), components of the plant florigenic signaling system, move long-distance through the phloem from source leaves to the vegetative apex where they mediate floral induction. The mechanisms involved in long-distance trafficking of FT/FTL2 remain to be elucidated. In this study, we identified the critical motifs on both FT and FTL2 required for cell-to-cell trafficking through mutant analyses using a zucchini yellow mosaic virus expression vector. Western blot analysis, performed on phloem sap collected from just beneath the vegetative apex of C. moschata plants, established that all mutant proteins tested retained the ability to enter the phloem translocation stream. However, immunolocalization studies revealed that a number of these FTL2/FT mutants were defective in the post-phloem zone, suggesting that a regulation mechanism for FT trafficking exists in the post-phloem unloading step. The selective movements of FT/FTL2 were further observed by microinjection and trichome rescue studies, which revealed that FT/FTL2 has the ability to dilate plasmodesmata microchannels during the process of cell-to-cell trafficking, and various mutants were compromised in their capacity to traffic through plasmodesmata. Based on these findings, a model is presented to account for the mechanism by which FT/FTL2 enters the phloem translocation stream and subsequently exits the phloem and enters the apical tissue, where it initiates the vegetative to floral transition.
Collapse
Affiliation(s)
- Soo-Cheul Yoo
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
455
|
Dynamic determination of the functional state in photolyase and the implication for cryptochrome. Proc Natl Acad Sci U S A 2013; 110:12972-7. [PMID: 23882072 DOI: 10.1073/pnas.1311077110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The flavin adenine dinucleotide cofactor has an unusual bent configuration in photolyase and cryptochrome, and such a folded structure may have a functional role in initial photochemistry. Using femtosecond spectroscopy, we report here our systematic characterization of cyclic intramolecular electron transfer (ET) dynamics between the flavin and adenine moieties of flavin adenine dinucleotide in four redox forms of the oxidized, neutral, and anionic semiquinone, and anionic hydroquinone states. By comparing wild-type and mutant enzymes, we have determined that the excited neutral oxidized and semiquinone states absorb an electron from the adenine moiety in 19 and 135 ps, whereas the excited anionic semiquinone and hydroquinone states donate an electron to the adenine moiety in 12 ps and 2 ns, respectively. All back ET dynamics occur ultrafast within 100 ps. These four ET dynamics dictate that only the anionic hydroquinone flavin can be the functional state in photolyase due to the slower ET dynamics (2 ns) with the adenine moiety and a faster ET dynamics (250 ps) with the substrate, whereas the intervening adenine moiety mediates electron tunneling for repair of damaged DNA. Assuming ET as the universal mechanism for photolyase and cryptochrome, these results imply anionic flavin as the more attractive form of the cofactor in the active state in cryptochrome to induce charge relocation to cause an electrostatic variation in the active site and then lead to a local conformation change to initiate signaling.
Collapse
|
456
|
Martínez-Navarro AC, Galván-Gordillo SV, Xoconostle-Cázares B, Ruiz-Medrano R. Vascular gene expression: a hypothesis. FRONTIERS IN PLANT SCIENCE 2013; 4:261. [PMID: 23882276 PMCID: PMC3713349 DOI: 10.3389/fpls.2013.00261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/26/2013] [Indexed: 05/05/2023]
Abstract
The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a "primitive" vascular tissue (a lycophyte), as well as from others that lack a true vascular tissue (a bryophyte), and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non-vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT, and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.
Collapse
|
457
|
Abstract
Secreted proteins fused to the plant photoreceptor protein UVR8 are conditionally sequestered in the ER until a pulse of light triggers trafficking through the secretory pathway, allowing precise control of forward secretory trafficking. Optical control of protein interactions has emerged as a powerful experimental paradigm for manipulating and studying various cellular processes. Tools are now available for controlling a number of cellular functions, but some fundamental processes, such as protein secretion, have been difficult to engineer using current optical tools. Here we use UVR8, a plant photoreceptor protein that forms photolabile homodimers, to engineer the first light-triggered protein secretion system. UVR8 fusion proteins were conditionally sequestered in the endoplasmic reticulum, and a brief pulse of light triggered robust forward trafficking through the secretory pathway to the plasma membrane. UVR8 was not responsive to excitation light used to image cyan, green, or red fluorescent protein variants, allowing multicolor visualization of cellular markers and secreted protein cargo as it traverses the cellular secretory pathway. We implemented this novel tool in neurons to demonstrate restricted, local trafficking of secretory cargo near dendritic branch points.
Collapse
Affiliation(s)
- Daniel Chen
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | | | | |
Collapse
|
458
|
Lee S, Shin K, Lee I, Song HR, Noh YS, Lee RA, Lee S, Kim SY, Park SK, Lee S, Soh MS. Genetic identification of a novel locus, ACCELERATED FLOWERING 1 that controls chromatin modification associated with histone H3 lysine 27 trimethylation in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 208:20-27. [PMID: 23683925 DOI: 10.1016/j.plantsci.2013.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
Flowering on time is a critically important for successful reproduction of plants. Here we report an early-flowering mutant in Arabidopsis thaliana, accelerated flowering 1-1D (afl1-1D) that exhibited pleiotropic developmental defects including semi-dwarfism, curly leaf, and increased branching. Genetic analysis showed that afl1-1D mutant is a single, dominant mutant. Chromosomal mapping indicates that AFL1 resides at the middle of chromosome 4, around which no known flowering-related genes have been characterized. Expression analysis and double mutant studies with late flowering mutants in various floral pathways indicated that elevated FT is responsible for the early-flowering of afl1-1D mutant. Interestingly, not only flowering-related genes, but also several floral homeotic genes were ectopically overexpressed in the afl1-1D mutants in both FT-dependent and -independent manner. The degree of histone H3 Lys27-trimethylation (H3K27me3) was reduced in several chromatin including FT, FLC, AG and SEP3 in the afl1-1D, suggesting that afl1-1D might be involved in chromatin modification. In support, double mutant analysis of afl1-1D and lhp1-4 revealed epistatic interaction between afl1-1D and lhp1-4 in regard to flowering control. Taken together, we propose that AFL1 regulate various aspect of development through chromatin modification, particularly associated with H3K27me3 in A. thaliana.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Molecular Biology, College of Life Science, Sejong University, Seoul 143-747, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
459
|
Herbel V, Orth C, Wenzel R, Ahmad M, Bittl R, Batschauer A. Lifetimes of Arabidopsis cryptochrome signaling states in vivo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:583-92. [PMID: 23398192 DOI: 10.1111/tpj.12144] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/16/2013] [Accepted: 02/03/2013] [Indexed: 05/20/2023]
Abstract
One crucial component in light signaling is the quantity of photoreceptor present in the active signaling state. The lifetime of the signaling state of a photoreceptor is limited because of thermal or otherwise back reversion of the chromophore to the ground state, and/or degradation of the photoreceptor in the light-activated state. It was previously shown that the lit state of plant cryptochromes contains flavin-neutral semiquinone, and that the half-lives of the lit state were in the range of 3-4 min in vitro. However, it was unknown how long-lived the signaling states of plant cryptochromes are in situ. Based on the loss of degradation of cry2 after prolonged dark incubation and loss of reversibility of photoactivated cry1 by a pulse of green light, we estimate the in vivo half-lives of the signaling states of cry1 and cry2 to be in the range of 5 and 16 min, respectively. Based on electron paramagnetic resonance measurements, the lifetime of the Arabidopsis cry1 lit state in insect cells was found to be ~6 min, and thus very similar to the lifetime of the signaling state in planta. Thus, the signaling state lifetimes of plant cryptochromes are not, or are only moderately, stabilized in planta.
Collapse
Affiliation(s)
- Vera Herbel
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps-University, 35032, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
460
|
Bugaj LJ, Choksi AT, Mesuda CK, Kane RS, Schaffer DV. Optogenetic protein clustering and signaling activation in mammalian cells. Nat Methods 2013; 10:249-52. [PMID: 23377377 DOI: 10.1038/nmeth.2360] [Citation(s) in RCA: 361] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/03/2013] [Indexed: 12/23/2022]
Abstract
We report an optogenetic method based on Arabidopsis thaliana cryptochrome 2 for rapid and reversible protein oligomerization in response to blue light. We demonstrated its utility by photoactivating the β-catenin pathway, achieving a transcriptional response higher than that obtained with the natural ligand Wnt3a. We also demonstrated the modularity of this approach by photoactivating RhoA with high spatiotemporal resolution, thereby suggesting a previously unknown mode of activation for this Rho GTPase.
Collapse
Affiliation(s)
- Lukasz J Bugaj
- Department of Bioengineering, University of California, Berkeley (UC Berkeley), Berkeley, California, USA
| | | | | | | | | |
Collapse
|
461
|
Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice. PLoS Genet 2013; 9:e1003281. [PMID: 23437005 PMCID: PMC3578780 DOI: 10.1371/journal.pgen.1003281] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 11/28/2012] [Indexed: 12/19/2022] Open
Abstract
Land plants have evolved increasingly complex regulatory modes of their flowering time (or heading date in crops). Rice (Oryza sativa L.) is a short-day plant that flowers more rapidly in short-day but delays under long-day conditions. Previous studies have shown that the CO-FT module initially identified in long-day plants (Arabidopsis) is evolutionary conserved in short-day plants (Hd1-Hd3a in rice). However, in rice, there is a unique Ehd1-dependent flowering pathway that is Hd1-independent. Here, we report isolation and characterization of a positive regulator of Ehd1, Early heading date 4 (Ehd4). ehd4 mutants showed a never flowering phenotype under natural long-day conditions. Map-based cloning revealed that Ehd4 encodes a novel CCCH-type zinc finger protein, which is localized to the nucleus and is able to bind to nucleic acids in vitro and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional regulator. Ehd4 expression is most active in young leaves with a diurnal expression pattern similar to that of Ehd1 under both short-day and long-day conditions. We show that Ehd4 up-regulates the expression of the “florigen” genes Hd3a and RFT1 through Ehd1, but it acts independently of other known Ehd1 regulators. Strikingly, Ehd4 is highly conserved in the Oryza genus including wild and cultivated rice, but has no homologs in other species, suggesting that Ehd4 is originated along with the diversification of the Oryza genus from the grass family during evolution. We conclude that Ehd4 is a novel Oryza-genus-specific regulator of Ehd1, and it plays an essential role in photoperiodic control of flowering time in rice. Rice is an important source of calories for mankind. Flowering time determines cropping seasons and regional adaptability of crops. Rice is originated from its wild progenitor, O. rufipogon, which is mainly distributed at tropical latitudes with a northern limit about 28 °N, more than 10,000 years ago. However, cultivated rice is now grown widely in Asia, with a northern limit of nearly 53 °N. The northward expansion of cultivated rice must be accompanied by human selection of the flowering time trait during domestication and breeding, to secure a harvest before cold weather approaches. By identifying a rice mutant that never flowers under natural long-day conditions (NLDs), we cloned Ehd4 as a novel transcriptional regulator that promotes flowering through activation of two “florigen” genes, the signals for flowering initiation. We found that Ehd4 has two major haplotypes: Hap_2 is the major haplotype in indica accessions mostly distributed in lower latitude and elevation zones, whereas Hap_3 is the major haplotype in japonica accessions mostly distributed in higher latitudes and elevation zones. Genetic studies showed that Hap_3 is functionally more potent in promoting flowering under NLDs, implying that Ehd4 may have contributed to the northward expansion and regional adaptability of cultivated rice into higher latitudes.
Collapse
|
462
|
Yin T, Wu YI. Guiding lights: recent developments in optogenetic control of biochemical signals. Pflugers Arch 2013; 465:397-408. [PMID: 23417571 DOI: 10.1007/s00424-013-1244-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
Optogenetics arises from the innovative application of microbial opsins in mammalian neurons and has since been a powerful technology that fuels the advance of our knowledge in neuroscience. In recent years, there has been growing interest in designing optogenetic tools extendable to broader cell types and biochemical signals. To date, a variety of photoactivatable proteins (refers to induction of protein activity in contrast to fluorescence) have been developed based on the understanding of plant and microbial photoreceptors including phototropins, blue light sensors using flavin adenine dinucleotide proteins, cryptochromes, and phytochromes. Such tools offered researchers reversible, quantitative, and precise spatiotemporal control of enzymatic activity, protein-protein interaction, protein translocation, as well as gene transcription in cells and in whole animals. In this review, we will briefly introduce these photosensory proteins, describe recent developments in optogenetics, and compare and contrast different methods based on their advantages and limitations.
Collapse
Affiliation(s)
- Taofei Yin
- Robert D. Berlin Center for Cell Analysis & Modeling, Department of Genetics & Developmental Biology, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | |
Collapse
|
463
|
Nicolas P, Lecourieux D, Gomès E, Delrot S, Lecourieux F. The grape berry-specific basic helix-loop-helix transcription factor VvCEB1 affects cell size. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:991-1003. [PMID: 23314819 PMCID: PMC3580811 DOI: 10.1093/jxb/ers374] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of fleshy fruits involves complex physiological and biochemical changes. After fertilization, fruit growth usually begins with cell division, continues with both cell division and expansion, allowing fruit set to occur, and ends with cell expansion only. In spite of the economical importance of grapevine, the molecular mechanisms controlling berry growth are not fully understood. The present work identified and characterized Vitis vinifera cell elongation bHLH protein (VvCEB1), a basic helix-loop-helix (bHLH) transcription factor controlling cell expansion in grape. VvCEB1 was expressed specifically in berry-expanding tissues with a maximum around veraison. The study of VvCEB1 promoter activity in tomato confirmed its specific fruit expression during the expansion phase. Overexpression of VvCEB1 in grape embryos showed that this protein stimulates cell expansion and affects the expression of genes involved in cell expansion, including genes of auxin metabolism and signalling. Taken together, these data show that VvCEB1 is a fruit-specific bHLH transcription factor involved in grape berry development.
Collapse
Affiliation(s)
- Philippe Nicolas
- Present address: Departamento de Biología Medioambiental, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
464
|
Bai MY, Fan M, Oh E, Wang ZY. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. THE PLANT CELL 2012; 24:4917-29. [PMID: 23221598 PMCID: PMC3556966 DOI: 10.1105/tpc.112.105163] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/22/2012] [Accepted: 11/13/2012] [Indexed: 05/18/2023]
Abstract
Environmental and endogenous signals, including light, temperature, brassinosteroid (BR), and gibberellin (GA), regulate cell elongation largely by influencing the expression of the paclobutrazol-resistant (PRE) family helix-loop-helix (HLH) factors, which promote cell elongation by interacting antagonistically with another HLH factor, IBH1. However, the molecular mechanism by which PREs and IBH1 regulate gene expression has remained unknown. Here, we show that IBH1 interacts with and inhibits a DNA binding basic helix-loop-helix (bHLH) protein, HBI1, in Arabidopsis thaliana. Overexpression of HBI1 increased hypocotyl and petiole elongation, whereas dominant inactivation of HBI1 and its homologs caused a dwarf phenotype, indicating that HBI1 is a positive regulator of cell elongation. In vitro and in vivo experiments showed that HBI1 directly bound to the promoters and activated two EXPANSIN genes encoding cell wall-loosening enzymes; HBI1's DNA binding and transcriptional activities were inhibited by IBH1, but the inhibitory effects of IBH1 were abolished by PRE1. The results indicate that PREs activate the DNA binding bHLH factor HBI1 by sequestering its inhibitor IBH1. Altering each of the three factors affected plant sensitivities to BR, GA, temperature, and light. Our study demonstrates that PREs, IBH1, and HBI1 form a chain of antagonistic switches that regulates cell elongation downstream of multiple external and endogenous signals.
Collapse
|
465
|
Liu H, Gomez G, Lin S, Lin S, Lin C. Optogenetic control of transcription in zebrafish. PLoS One 2012; 7:e50738. [PMID: 23226369 PMCID: PMC3511356 DOI: 10.1371/journal.pone.0050738] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/24/2012] [Indexed: 01/12/2023] Open
Abstract
Light inducible protein-protein interactions are powerful tools to manipulate biological processes. Genetically encoded light-gated proteins for controlling precise cellular behavior are a new and promising technology, called optogenetics. Here we exploited the blue light-induced transcription system in yeast and zebrafish, based on the blue light dependent interaction between two plant proteins, blue light photoreceptor Cryptochrome 2 (CRY2) and the bHLH transcription factor CIB1 (CRY-interacting bHLH 1). We demonstrate the utility of this system by inducing rapid transcription suppression and activation in zebrafish.
Collapse
Affiliation(s)
- Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research-Shanghai, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | | | | | | | | |
Collapse
|
466
|
Abstract
Plants respond to the changing seasons to initiate developmental programmes precisely at particular times of year. Flowering is the best characterized of these seasonal responses, and in temperate climates it often occurs in spring. Genetic approaches in Arabidopsis thaliana have shown how the underlying responses to changes in day length (photoperiod) or winter temperature (vernalization) are conferred and how these converge to create a robust seasonal response. Recent advances in plant genome analysis have demonstrated the diversity in these regulatory systems in many plant species, including several crops and perennials, such as poplar trees. Here, we report progress in defining the diverse genetic mechanisms that enable plants to recognize winter, spring and autumn to initiate flower development.
Collapse
|
467
|
Peter E, Dick B, Baeurle SA. Regulatory mechanism of the light-activable allosteric switch LOV-TAP for the control of DNA binding: a computer simulation study. Proteins 2012; 81:394-405. [PMID: 23042418 DOI: 10.1002/prot.24196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/17/2012] [Accepted: 10/02/2012] [Indexed: 12/23/2022]
Abstract
The spatio-temporal control of gene expression is fundamental to elucidate cell proliferation and deregulation phenomena in living systems. Novel approaches based on light-sensitive multiprotein complexes have recently been devised, showing promising perspectives for the noninvasive and reversible modulation of the DNA-transcriptional activity in vivo. This has lately been demonstrated in a striking way through the generation of the artificial protein construct light-oxygen-voltage (LOV)-tryptophan-activated protein (TAP), in which the LOV-2-Jα photoswitch of phototropin1 from Avena sativa (AsLOV2-Jα) has been ligated to the tryptophan-repressor (TrpR) protein from Escherichia coli. Although tremendous progress has been achieved on the generation of such protein constructs, a detailed understanding of their functioning as opto-genetical tools is still in its infancy. Here, we elucidate the early stages of the light-induced regulatory mechanism of LOV-TAP at the molecular level, using the noninvasive molecular dynamics simulation technique. More specifically, we find that Cys450-FMN-adduct formation in the AsLOV2-Jα-binding pocket after photoexcitation induces the cleavage of the peripheral Jα-helix from the LOV core, causing a change of its polarity and electrostatic attraction of the photoswitch onto the DNA surface. This goes along with the flexibilization through unfolding of a hairpin-like helix-loop-helix region interlinking the AsLOV2-Jα- and TrpR-domains, ultimately enabling the condensation of LOV-TAP onto the DNA surface. By contrast, in the dark state the AsLOV2-Jα photoswitch remains inactive and exerts a repulsive electrostatic force on the DNA surface. This leads to a distortion of the hairpin region, which finally relieves its tension by causing the disruption of LOV-TAP from the DNA.
Collapse
Affiliation(s)
- Emanuel Peter
- Department of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg D-93040, Germany
| | | | | |
Collapse
|
468
|
Wang Q, Fristedt R, Yu X, Chen Z, Liu H, Lee Y, Guo H, Merchant SS, Lin C. The γ-carbonic anhydrase subcomplex of mitochondrial complex I is essential for development and important for photomorphogenesis of Arabidopsis. PLANT PHYSIOLOGY 2012; 160:1373-83. [PMID: 22991283 PMCID: PMC3490601 DOI: 10.1104/pp.112.204339] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/11/2012] [Indexed: 05/20/2023]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is the entry point for electrons into the respiratory electron transport chain; therefore, it plays a central role in cellular energy metabolism. Complex I from different organisms has a similar basic structure. However, an extra structural module, referred to as the γ-carbonic anhydrase (γCA) subcomplex, is found in the mitochondrial complex I of photoautotrophic eukaryotes, such as green alga and plants, but not in that of the heterotrophic eukaryotes, such as fungi and mammals. It has been proposed that the γCA subcomplex is required for the light-dependent life style of photoautotrophic eukaryotes, but this hypothesis has not been successfully tested. We report here a genetic study of the genes γCAL1 and γCAL2 that encode two subunits of the γCA subcomplex of mitochondrial complex I. We found that mutations of γCAL1 and γCAL2 in Arabidopsis (Arabidopsis thaliana) result in defective embryogenesis and nongerminating seeds, demonstrating the functional significance of the γCA subcomplex of mitochondrial complex I in plant development. Surprisingly, we also found that reduced expression of γCAL1 and γCAL2 genes altered photomorphogenic development. The γcal1 mutant plant expressing the RNA interference construct of the γCAL2 gene showed a partial constitutive photomorphogenic phenotype in young seedlings and a reduced photoperiodic sensitivity in adult plants. The involvement of the γCA subcomplex of mitochondrial complex I in plant photomorphogenesis and the possible evolutionary significance of this plant-specific mitochondrial protein complex are discussed.
Collapse
|
469
|
Wang J, Hopkins CJ, Hou J, Zou X, Wang C, Long Y, Kurup S, King GJ, Meng J. Promoter variation and transcript divergence in Brassicaceae lineages of FLOWERING LOCUS T. PLoS One 2012; 7:e47127. [PMID: 23071733 PMCID: PMC3469537 DOI: 10.1371/journal.pone.0047127] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/10/2012] [Indexed: 02/02/2023] Open
Abstract
Brassica napus (AACC, 2n = 38), an oil crop of world-wide importance, originated from interspecific hybridization of B. rapa (AA, 2n = 20) and B. oleracea (CC, 2n = 18), and has six FLOWERING LOCUS T (FT) paralogues. Two located on the homeologous chromosomes A2 and C2 arose from a lineage distinct from four located on A7 and C6. A set of three conserved blocks A, B and C, which were found to be essential for FT activation by CONSTANS (CO) in Arabidopsis, was identified within the FT upstream region in B. napus and its progenitor diploids. However, on chromosome C2, insertion of a DNA transposable element (TE) and a retro-element in FT upstream blocks A and B contributed to significant structural divergence between the A and C genome orthologues. Phylogenetic analysis of upstream block A indicated the conserved evolutionary relationships of distinct FT genes within Brassicaceae. We conclude that the ancient At-α whole genome duplication contributed to distinct ancestral lineages for this key adaptive gene, which co-exist within the same genus. FT-A2 was found to be transcribed in all leaf samples from different developmental stages in both B. rapa and B. napus, whereas FT-C2 was not transcribed in either B. napus or B. oleracea. Silencing of FT-C2 appeared to result from TE insertion and consequent high levels of cytosine methylation in TE sequences within upstream block A. Interestingly, FT-A7/C6 paralogues were specifically silenced in winter type B. napus but abundantly expressed in spring type cultivars under vernalization-free conditions. Motif prediction indicated the presence of two CO protein binding sites within all Brassica block A and additional sites for FT activation in block C. We propose that the ancestral whole genome duplications have contributed to more complex mechanisms of floral regulation and niche adaptation in Brassica compared to Arabidopsis.
Collapse
Affiliation(s)
- Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
470
|
Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 2012; 76:331-82. [PMID: 22688816 DOI: 10.1128/mmbr.05021-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays.
Collapse
|
471
|
Bacchus W, Fussenegger M. The use of light for engineered control and reprogramming of cellular functions. Curr Opin Biotechnol 2012; 23:695-702. [DOI: 10.1016/j.copbio.2011.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/07/2011] [Accepted: 12/07/2011] [Indexed: 11/16/2022]
|
472
|
Pin PA, Nilsson O. The multifaceted roles of FLOWERING LOCUS T in plant development. PLANT, CELL & ENVIRONMENT 2012; 35:1742-55. [PMID: 22697796 DOI: 10.1111/j.1365-3040.2012.02558.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One of the key developmental processes in flowering plants is the differentiation of the shoot apical meristem into a floral meristem. This transition is regulated through the integration of environmental and endogenous stimuli, involving a complex, hierarchical signalling network. In arabidopsis, the FLOWERING LOCUS T (FT) protein, a mobile signal recognized as a major component of florigen, has a central position in mediating the onset of flowering. FT-like genes seem to be involved in regulating the floral transition in all angiosperms examined to date. Evidence from molecular evolution studies suggests that the emergence of FT-like genes coincided with the evolution of the flowering plants. Hence, the role of FT in floral promotion is conserved, but appears to be restricted to the angiosperms. Besides flowering, FT-like proteins have also been identified as major regulatory factors in a wide range of developmental processes including fruit set, vegetative growth, stomatal control and tuberization. These multifaceted roles of FT-like proteins have resulted from extensive gene duplication events, which occurred independently in nearly all modern angiosperm lineages, followed by sub- or neo-functionalization. This review assesses the plethora of roles that FT-like genes have acquired during evolution and their implications in plant diversity, adaptation and domestication.
Collapse
Affiliation(s)
- P A Pin
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | |
Collapse
|
473
|
Wang ZY, Bai MY, Oh E, Zhu JY. Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 2012; 46:701-24. [PMID: 23020777 DOI: 10.1146/annurev-genet-102209-163450] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In plants, the steroidal hormone brassinosteroid (BR) regulates numerous developmental processes, including photomorphogenesis. Genetic, proteomic, and genomic studies in Arabidopsis have illustrated a fully connected BR signal transduction pathway from the cell surface receptor kinase BRI1 to the BZR1 family of transcription factors. Genome-wide analyses of protein-DNA interactions have identified thousands of BZR1 target genes that link BR signaling to various cellular, metabolic, and developmental processes, as well as other signaling pathways. In controlling photomorphogenesis, BR signaling is highly integrated with the light, gibberellin, and auxin pathways through both direct interactions between signaling proteins and transcriptional regulation of key components of these pathways. BR signaling also cross talks with other receptor kinase pathways to modulate stomata development and innate immunity. The molecular connections in the BR signaling network demonstrate a robust steroid signaling system that has evolved in plants to orchestrate signal transduction, genome expression, metabolism, defense, and development.
Collapse
Affiliation(s)
- Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
474
|
Osorio MB, Bücker-Neto L, Castilhos G, Turchetto-Zolet AC, Wiebke-Strohm B, Bodanese-Zanettini MH, Margis-Pinheiro M. Identification and in silico characterization of soybean trihelix-GT and bHLH transcription factors involved in stress responses. Genet Mol Biol 2012; 35:233-46. [PMID: 22802709 PMCID: PMC3392876 DOI: 10.1590/s1415-47572012000200005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Environmental stresses caused by either abiotic or biotic factors greatly affect agriculture. As for soybean [Glycine max (L.) Merril], one of the most important crop species in the world, the situation is not different. In order to deal with these stresses, plants have evolved a variety of sophisticated molecular mechanisms, to which the transcriptional regulation of target-genes by transcription factors is crucial. Even though the involvement of several transcription factor families has been widely reported in stress response, there still is a lot to be uncovered, especially in soybean. Therefore, the objective of this study was to investigate the role of bHLH and trihelix-GT transcription factors in soybean responses to environmental stresses. Gene annotation, data mining for stress response, and phylogenetic analysis of members from both families are presented herein. At least 45 bHLH (from subgroup 25) and 63 trihelix-GT putative genes reside in the soybean genome. Among them, at least 14 bHLH and 11 trihelix-GT seem to be involved in responses to abiotic/biotic stresses. Phylogenetic analysis successfully clustered these with members from other plant species. Nevertheless, bHLH and trihelix-GT genes encompass almost three times more members in soybean than in Arabidopsis or rice, with many of these grouping into new clades with no apparent near orthologs in the other analyzed species. Our results represent an important step towards unraveling the functional roles of plant bHLH and trihelix-GT transcription factors in response to environmental cues.
Collapse
Affiliation(s)
- Marina Borges Osorio
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
475
|
Light-mediated control of DNA transcription in yeast. Methods 2012; 58:385-91. [PMID: 22922268 DOI: 10.1016/j.ymeth.2012.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/27/2012] [Accepted: 08/07/2012] [Indexed: 11/21/2022] Open
Abstract
A variety of methods exist for inducible control of DNA transcription in yeast. These include the use of native yeast promoters or regulatory elements that are responsive to small molecules such as galactose, methionine, and copper, or engineered systems that allow regulation by orthogonal small molecules such as estrogen. While chemically regulated systems are easy to use and can yield high levels of protein expression, they often provide imprecise control over protein levels. Moreover, chemically regulated systems can affect many other proteins and pathways in yeast, activating signaling pathways or physiological responses. Here, we describe several methods for light mediated control of DNA transcription in vivo in yeast. We describe methodology for using a red light and phytochrome dependent system to induce transcription of genes under GAL1 promoter control, as well as blue light/cryptochrome dependent systems to control transcription of genes under GAL1 promoter or LexA operator control. Light is dose dependent, inexpensive to apply, easily delivered, and does not interfere with cellular pathways, and thus has significant advantages over chemical systems.
Collapse
|
476
|
De novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS One 2012; 7:e42082. [PMID: 22916120 PMCID: PMC3419236 DOI: 10.1371/journal.pone.0042082] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/02/2012] [Indexed: 12/13/2022] Open
Abstract
Background Transcriptome sequencing can be used to determine gene sequences and transcript abundance in non-model species, and the advent of next-generation sequencing (NGS) technologies has greatly decreased the cost and time required for this process. Transcriptome data are especially desirable in bamboo species, as certain members constitute an economically and culturally important group of mostly semelparous plants with remarkable flowering features, yet little bamboo genomic research has been performed. Here we present, for the first time, extensive sequence and transcript abundance data for the floral transcriptome of a key bamboo species, Dendrocalamus latiflorus, obtained using the Illumina GAII sequencing platform. Our further goal was to identify patterns of gene expression during bamboo flower development. Results Approximately 96 million sequencing reads were generated and assembled de novo, yielding 146,395 high quality unigenes with an average length of 461 bp. Of these, 80,418 were identified as putative homologs of annotated sequences in the public protein databases, of which 290 were associated with the floral transition and 47 were related to flower development. Digital abundance analysis identified 26,529 transcripts differentially enriched between two developmental stages, young flower buds and older developing flowers. Unigenes found at each stage were categorized according to their putative functional categories. These sequence and putative function data comprise a resource for future investigation of the floral transition and flower development in bamboo species. Conclusions Our results present the first broad survey of a bamboo floral transcriptome. Although it will be necessary to validate the functions carried out by these genes, these results represent a starting point for future functional research on D. latiflorus and related species.
Collapse
|
477
|
Burney S, Wenzel R, Kottke T, Roussel T, Hoang N, Bouly JP, Bittl R, Heberle J, Ahmad M. Single Amino Acid Substitution Reveals Latent Photolyase Activity inArabidopsiscry1. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
478
|
Burney S, Wenzel R, Kottke T, Roussel T, Hoang N, Bouly JP, Bittl R, Heberle J, Ahmad M. Single Amino Acid Substitution Reveals Latent Photolyase Activity inArabidopsiscry1. Angew Chem Int Ed Engl 2012; 51:9356-60. [DOI: 10.1002/anie.201203476] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Indexed: 11/11/2022]
|
479
|
Castelain M, Le Hir R, Bellini C. The non-DNA-binding bHLH transcription factor PRE3/bHLH135/ATBS1/TMO7 is involved in the regulation of light signaling pathway in Arabidopsis. PHYSIOLOGIA PLANTARUM 2012; 145:450-60. [PMID: 22339648 DOI: 10.1111/j.1399-3054.2012.01600.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant basic Helix-loop-helix (bHLH) proteins are transcription factors that are involved in many developmental mechanisms, including light signaling and hormone homeostasis. Some of them are non-DNA-binding proteins and could act as dominant negative regulators of other bHLH proteins by forming heterodimers, in a similar way to animal inhibitor of DNA-binding proteins. It has been recently reported that several non-DNA-binding bHLHs are involved in light signaling (KDR/PRE6), gibberellic acid signaling (PRE1/BNQ1/bHLH136) or brassinosteroid signaling (ATBS1). Here we report that Arabidopsis lines overexpressing the PRE3/bHLH135/ATBS1/TMO7 gene are less responsive to red, far-red and blue light than wild-type which is likely to explain the light hyposensitive phenotype displayed when grown under white light conditions. Using quantitative polymerase chain reaction, we show that the expression of PRE3 and KDR/PRE6 genes is regulated by light and that light-related genes are deregulated in the PRE3-ox lines. We show that PRE3 is expressed in the shoot and root meristems and that PRE3-ox lines also have a defect in lateral root development. Our results not only suggest that PRE3 is involved in the regulation of light signaling, but also support the hypothesis that non-DNA-binding bHLH genes are promiscuous genes regulating a wide range of both overlapping and specific regulatory pathways.
Collapse
Affiliation(s)
- Mathieu Castelain
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
| | | | | |
Collapse
|
480
|
Hughes RM, Vrana JD, Song J, Tucker CL. Light-dependent, dark-promoted interaction between Arabidopsis cryptochrome 1 and phytochrome B proteins. J Biol Chem 2012; 287:22165-72. [PMID: 22577138 DOI: 10.1074/jbc.m112.360545] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Plant photoreceptors transduce environmental light cues to downstream signaling pathways, regulating a wide array of processes during growth and development. Two major plant photoreceptors with critical roles in photomorphogenesis are phytochrome B (phyB), a red/far-red absorbing photoreceptor, and cryptochrome 1 (CRY1), a UV-A/blue photoreceptor. Despite substantial genetic evidence for cross-talk between phyB and CRY1 pathways, a direct interaction between these proteins has not been observed. Here, we report that Arabidopsis phyB interacts directly with CRY1 in a light-dependent interaction. Surprisingly, the interaction is light-dissociated; CRY1 interacts specifically with the dark/far-red (Pr) state of phyB, but not with the red light-activated (Pfr) or the chromophore unconjugated form of the enzyme. The interaction is also regulated by light activation of CRY1; phyB Pr interacts only with the unstimulated form of CRY1 but not with the photostimulated protein. Further studies reveal that a small domain extending from the photolyase homology region (PHR) of CRY1 regulates the specificity of the interaction with different conformational states of phyB. We hypothesize that in plants, the phyB/CRY1 interaction may mediate cross-talk between the red/far-red- and blue/UV-sensing pathways, enabling fine-tuning of light responses to different spectral inputs.
Collapse
Affiliation(s)
- Robert M Hughes
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
481
|
Lopez L, Carbone F, Bianco L, Giuliano G, Facella P, Perrotta G. Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues. PLANT, CELL & ENVIRONMENT 2012; 35:994-1012. [PMID: 22082487 DOI: 10.1111/j.1365-3040.2011.02467.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In order to sense and respond to the fluctuating light conditions, higher plants possess several families of photoreceptors, such as phytochromes (PHYs), cryptochromes (CRYs) and phototropins. CRYs are responsible for photomorphogenesis and play a role in circadian, developmental and adaptive growth regulation of plants. In tomato (Solanum lycopersicum), CRY2 controls vegetative development, flowering time, fruit antioxidant content as well as the diurnal transcription of several other photoreceptor genes. We applied large-scale molecular approaches to identify altered transcripts and proteins in tomato wild-type (WT) versus a CRY2 overexpressing transgenic genotype, under a diurnal rhythm. Our results showed that tomato CRY2 profoundly affects both gene and protein expression in response to daily light cycle. Particularly altered molecular pathways are related to biotic/abiotic stress, photosynthesis, including components of the light and dark reactions and of starch and sucrose biosynthesis, as well as to secondary metabolism, such as phenylpropanoid, phenolic and flavonoid/anthocyanin biosynthesis pathways. One of the most interesting results is the coordinated up-regulation, in the transgenic genotype, of a consistent number of transcripts and proteins involved in photorespiration and photosynthesis. It is conceivable that light modulates the energetic metabolism of tomato through a fine CRY2-mediated transcriptional control.
Collapse
Affiliation(s)
- Loredana Lopez
- ENEA, Trisaia Research Center, Rotondella (MT), Italy ENEA, Casaccia Research Center, Rome, Italy
| | | | | | | | | | | |
Collapse
|
482
|
van Zanten M, Tessadori F, Peeters AJM, Fransz P. Shedding light on large-scale chromatin reorganization in Arabidopsis thaliana. MOLECULAR PLANT 2012; 5:583-90. [PMID: 22528207 DOI: 10.1093/mp/sss030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants need to respond quickly and appropriately to various types of light signals from the environment to optimize growth and development. The immediate response to shading, reduced photon flux (low light), and changes in spectral quality involves changes in gene regulation. In the case of more persistent shade, the plant shows a dramatic change in the organization of chromatin. Both plant responses are controlled via photoreceptor signaling proteins. Recently, several studies have revealed similar features of chromatin reorganization in response to various abiotic and biotic signals, while others have unveiled intricate molecular networks of light signaling towards gene regulation. This opinion paper briefly describes the chromatin (de)compaction response from a light-signaling perspective to provide a link between chromatin and the molecular network of photoreceptors and E3 ubiquitin ligase complexes.
Collapse
Affiliation(s)
- Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
483
|
Hao Y, Oh E, Choi G, Liang Z, Wang ZY. Interactions between HLH and bHLH factors modulate light-regulated plant development. MOLECULAR PLANT 2012; 5:688-97. [PMID: 22331621 PMCID: PMC3628346 DOI: 10.1093/mp/sss011] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/19/2012] [Indexed: 05/19/2023]
Abstract
Phytochromes (Phy) and phytochrome-interacting factor (PIF) transcription factors constitute a major signaling module that controls plant development in response to red and far-red light. A low red:far-red ratio is interpreted as shading by neighbor plants and induces cell elongation-a phenomenon called shade-avoidance syndrome (SAS). PAR1 and its closest homolog PAR2 are negative regulators of SAS; they belong to the HLH transcription factor family that lacks a typical basic domain required for DNA binding, and they are believed to regulate gene expressions through DNA binding transcription factors that are yet to be identified. Here, we show that light signal stabilizes PAR1 protein and PAR1 interacts with PIF4 and inhibits PIF4-mediated gene activation. DNA pull-down and chromatin immunoprecipitation (ChIP) assays showed that PAR1 inhibits PIF4 DNA binding in vitro and in vivo. Transgenic plants overexpressing PAR1 (PAR1OX) are insensitive to gibberellin (GA) or high temperature in hypocotyl elongation, similarly to the pifq mutant. In addition to PIF4, PAR1 also interacts with PRE1, a HLH transcription factor activated by brassinosteroid (BR) and GA. Overexpression of PRE1 largely suppressed the dwarf phenotype of PAR1OX. These results indicate that PAR1-PRE1 and PAR1-PIF4 heterodimers form a complex HLH/bHLH network regulating cell elongation and plant development in response to light and hormones.
Collapse
Affiliation(s)
- Yaqi Hao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA
| | - Eunkyoo Oh
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 305–701, Korea
| | - Zongsuo Liang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA
- To whom correspondence should be addressed. E-mail
| |
Collapse
|
484
|
Heijde M, Ulm R. UV-B photoreceptor-mediated signalling in plants. TRENDS IN PLANT SCIENCE 2012; 17:230-7. [PMID: 22326562 DOI: 10.1016/j.tplants.2012.01.007] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/12/2012] [Accepted: 01/16/2012] [Indexed: 05/05/2023]
Abstract
Ultraviolet-B radiation (UV-B) is a key environmental signal that is specifically perceived by plants to promote UV acclimation and survival in sunlight. Whereas the plant photoreceptors for visible light are rather well characterised, the UV-B photoreceptor UVR8 was only recently described at the molecular level. Here, we review the current understanding of the UVR8 photoreceptor-mediated pathway in the context of UV-B perception mechanism, early signalling components and physiological responses. We further outline the commonalities in UV-B and visible light signalling as well as highlight differences between these pathways.
Collapse
Affiliation(s)
- Marc Heijde
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
485
|
Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, Harberd NP, Wigge PA. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 2012; 484:242-245. [PMID: 22437497 PMCID: PMC4972390 DOI: 10.1038/nature10928] [Citation(s) in RCA: 531] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 02/06/2012] [Indexed: 12/21/2022]
Affiliation(s)
- S Vinod Kumar
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Doris Lucyshyn
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Katja E Jaeger
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Enriqueta Alós
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Elizabeth Alvey
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Nicholas P Harberd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK.,Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Philip A Wigge
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
486
|
Tucker CL. Manipulating cellular processes using optical control of protein-protein interactions. PROGRESS IN BRAIN RESEARCH 2012; 196:95-117. [PMID: 22341323 DOI: 10.1016/b978-0-444-59426-6.00006-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tools for optical control of proteins offer an unprecedented level of spatiotemporal control over biological processes, adding a new layer of experimental opportunity. While use of light-activated cation channels and anion pumps has already revolutionized neurobiology, an emerging class of more general optogenetic tools may have similar transformative effects. These tools consist of light-dependent protein interaction modules that allow control of target protein interactions and localization with light. Such tools are modular and can be applied to regulate a wide variety of biological activities. This chapter reviews the different properties of light-induced dimerization systems, based on plant phytochromes, cryptochromes, and light-oxygen-voltage domain proteins, exploring advantages and limitations of the different systems and practical considerations related to their use. Potential applications of these tools within the neurobiology field, including light control of various signaling pathways, neuronal activity, and DNA recombination and transcription, are discussed.
Collapse
Affiliation(s)
- Chandra L Tucker
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
487
|
Li X, Wang Q, Yu X, Liu H, Yang H, Zhao C, Liu X, Tan C, Klejnot J, Zhong D, Lin C. Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. Proc Natl Acad Sci U S A 2011; 108:20844-9. [PMID: 22139370 PMCID: PMC3251054 DOI: 10.1073/pnas.1114579108] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryptochromes are blue-light receptors mediating various light responses in plants and animals. The photochemical mechanism of cryptochromes is not well understood. It has been proposed that photoactivation of cryptochromes involves the blue-light-dependent photoreduction of flavin adenine dinucleotide via the electron transport chain composed of three evolutionarily conserved tryptophan residues known as the "trp triad." We investigated this hypothesis by analyzing the photochemical and physiological activities of Arabidopsis cryptochrome 2 (CRY2) mutations altered in each of the three trp-triad residues. We found that all trp-triad mutations of CRY2 tested lost photoreduction activity in vitro but retained the physiological and biochemical activities in vivo. Some of the trp-triad mutations of CRY2 remained responsive to blue light; others, such as CRY2(W374A), became constitutively active. In contrast to wild-type CRY2, which undergoes blue-light-dependent interaction with the CRY2-signaling proteins SUPPRESSOR OF PHYA 1 (SPA1) and cryptochrome-interaction basic helix-loop-helix 1 (CIB1), the constitutively active CRY2(W374A) interacts with SPA1 and CIB1 constitutively. These results support the hypothesis that cryptochromes mediate blue-light responses via a photochemistry distinct from trp-triad-dependent photoreduction and that the trp-triad residues are evolutionarily conserved in the photolyase/cryptochrome superfamily for reasons of structural integrity rather than for photochemistry per se.
Collapse
Affiliation(s)
- Xu Li
- Bioenergy and Biomaterial Research Center, Hunan University, Changsha 410082, China
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095; and
| | - Qin Wang
- Bioenergy and Biomaterial Research Center, Hunan University, Changsha 410082, China
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095; and
| | - Xuhong Yu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095; and
| | - Hongtao Liu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095; and
| | - Huan Yang
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095; and
| | - Chenxi Zhao
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095; and
| | - Xuanming Liu
- Bioenergy and Biomaterial Research Center, Hunan University, Changsha 410082, China
| | | | - John Klejnot
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095; and
| | - Dongping Zhong
- Departments of Physics
- Chemistry, and
- Biochemistry, Ohio State University, Columbus, OH 43210
| | - Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095; and
| |
Collapse
|
488
|
Liu H, Liu B, Zhao C, Pepper M, Lin C. The action mechanisms of plant cryptochromes. TRENDS IN PLANT SCIENCE 2011; 16:684-91. [PMID: 21983106 PMCID: PMC3277817 DOI: 10.1016/j.tplants.2011.09.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 08/01/2011] [Accepted: 09/05/2011] [Indexed: 05/12/2023]
Abstract
Cryptochromes (CRY) are blue-light receptors that mediate various light responses in plants. The photoexcited CRY molecules undergo several biophysical and biochemical changes, including electron transfer, phosphorylation and ubiquitination, resulting in conformational changes to propagate light signals. Two modes of CRY signal transduction have recently been discovered: the cryptochrome-interacting basic-helix-loop-helix 1 (CIB)-dependent CRY2 regulation of transcription; and the SUPPRESSOR OF PHYA1/CONSTITUTIVELY PHOTOMORPHOGENIC1 (SPA1/COP1)-dependent cryptochrome regulation of proteolysis. Both CRY signaling pathways rely on blue light-dependent interactions between the CRY photoreceptor and its signaling proteins to modulate gene expression changes in response to blue light, leading to altered developmental programs in plants.
Collapse
Affiliation(s)
- Hongtao Liu
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
489
|
Lu SX, Liu H, Knowles SM, Li J, Ma L, Tobin EM, Lin C. A role for protein kinase casein kinase2 α-subunits in the Arabidopsis circadian clock. PLANT PHYSIOLOGY 2011; 157:1537-45. [PMID: 21900482 PMCID: PMC3252133 DOI: 10.1104/pp.111.179846] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/05/2011] [Indexed: 05/17/2023]
Abstract
Circadian rhythms are autoregulatory, endogenous rhythms with a period of approximately 24 h. A wide variety of physiological and molecular processes are regulated by the circadian clock in organisms ranging from bacteria to humans. Phosphorylation of clock proteins plays a critical role in generating proper circadian rhythms. Casein Kinase2 (CK2) is an evolutionarily conserved serine/threonine protein kinase composed of two catalytic α-subunits and two regulatory β-subunits. Although most of the molecular components responsible for circadian function are not conserved between kingdoms, CK2 is a well-conserved clock component modulating the stability and subcellular localization of essential clock proteins. Here, we examined the effects of a cka1a2a3 triple mutant on the Arabidopsis (Arabidopsis thaliana) circadian clock. Loss-of-function mutations in three nuclear-localized CK2α subunits result in period lengthening of various circadian output rhythms and central clock gene expression, demonstrating that the cka1a2a3 triple mutant affects the pace of the circadian clock. Additionally, the cka1a2a3 triple mutant has reduced levels of CK2 kinase activity and CIRCADIAN CLOCK ASSOCIATED1 phosphorylation in vitro. Finally, we found that the photoperiodic flowering response, which is regulated by circadian rhythms, was reduced in the cka1a2a3 triple mutant and that the plants flowered later under long-day conditions. These data demonstrate that CK2α subunits are important components of the Arabidopsis circadian system and their effects on rhythms are in part due to their phosphorylation of CIRCADIAN CLOCK ASSOCIATED1.
Collapse
|
490
|
Zhao Y, Zhou LM, Chen YY, Yang SG, Tian WM. MYC genes with differential responses to tapping, mechanical wounding, ethrel and methyl jasmonate in laticifers of rubber tree (Hevea brasiliensis Muell. Arg.). JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1649-58. [PMID: 21489651 DOI: 10.1016/j.jplph.2011.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 05/05/2023]
Abstract
MYC2 transcription factor is a key component of the core module COI1-JAZ-MYC2 of jasmonate signaling in Arabidopsis, but the MYC transcription factor (s) associated with jasmonate signaling in jasmonate-responsive laticifer cells remains to be identified. Two full-length cDNAs, designated HblMYC1 and HblMYC2, were isolated from laticifer cells in Hevea brasiliensis by the method of RACE. HblMYC1 contained 1431bp ORF encoding a putative protein of 476 amino acids while HblMYC2 contained 1428bp ORF encoding a putative protein of 475 amino acids. Bioinformatic analysis showed that the putative proteins, HblMYC1 and HblMYC2, possessed a bHLH domain and were most related to the MYC2 among the selected 27 MYC members with identified functions in Arabidopsis. In addition to the presence of cis-regulatory elements involving jasmonate responsiveness in the promoter regions of HblMYC1 and HblMYC2, the abscisic acid-, salicylic acid- and gibberellin-responsive elements were found in the promoter region of HblMYC1. Transcripts of HblMYC1 and HblMYC2 were most abundant in latex, relatively low in male flowers and nearly undetected in bark tissues and roots by real-time RT-PCR analysis. Regular tapping, mechanical wounding, and ethrel remarkably up-regulated HblMYC1 expression, but had little effect on the expression of HblMYC2 in laticifer cells. Successive tapping, however, significantly down-regulated the expression of HblMYC2 while up-regulating the expression of HblMYC1. The HblMYC2 expression took a mutual ebb and flow relationship with the HblMYC1 expression upon treatment with methyl jasmonate. Characterization of HblMYC1 and HblMYC2 will contribute to the understanding of jasmonate signaling in laticifiers, a kind of specialized tissue for natural rubber biosynthesis in Hevea brasiliensis.
Collapse
Affiliation(s)
- Yue Zhao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, PR China
| | | | | | | | | |
Collapse
|
491
|
Abstract
The absorption of light by bound or diffusible chromophores causes conformational rearrangements in natural and artificial photoreceptor proteins. These rearrangements are coupled to the opening or closing of ion transport pathways, the association or dissociation of binding partners, the enhancement or suppression of catalytic activity, or the transcription or repression of genetic information. Illumination of cells, tissues, or organisms engineered genetically to express photoreceptor proteins can thus be used to perturb biochemical and electrical signaling with exquisite cellular and molecular specificity. First demonstrated in 2002, this principle of optogenetic control has had a profound impact on neuroscience, where it provides a direct and stringent means of probing the organization of neural circuits and of identifying the neural substrates of behavior. The impact of optogenetic control is also beginning to be felt in other areas of cell and organismal biology.
Collapse
Affiliation(s)
- Gero Miesenböck
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
492
|
Gao S, Xie X, Yang S, Chen Z, Wang X. The changes of GA level and signaling are involved in the regulation of mesocotyl elongation during blue light mediated de-etiolation in Sorghum bicolor. Mol Biol Rep 2011; 39:4091-100. [DOI: 10.1007/s11033-011-1191-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 07/11/2011] [Indexed: 12/17/2022]
|
493
|
Zuo Z, Liu H, Liu B, Liu X, Lin C. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr Biol 2011; 21:841-7. [PMID: 21514160 PMCID: PMC3150455 DOI: 10.1016/j.cub.2011.03.048] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/28/2011] [Accepted: 03/17/2011] [Indexed: 11/22/2022]
Abstract
Cryptochromes are blue light receptors that mediate light regulation of gene expression in all major evolution lineages, but the molecular mechanism underlying cryptochrome signal transduction remains not fully understood. It has been reported that cryptochromes suppress activity of the multifunctional E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) to regulate gene expression in response to blue light. But how plant cryptochromes mediate light suppression of COP1 activity remains unclear. We report here that Arabidopsis CRY2 (cryptochrome 2) undergoes blue light-dependent interaction with the COP1-interacting protein SUPPRESSOR OF PHYTOCHROME A 1 (SPA1). We demonstrate that SPA1 acts genetically downstream from CRY2 to mediate blue light suppression of the COP1-dependent proteolysis of the flowering-time regulator CONSTANS (CO). We further show that blue light-dependent CRY2-SPA1 interaction stimulates CRY2-COP1 interaction. These results reveal for the first time a wavelength-specific mechanism by which a cryptochrome photoreceptor mediates light regulation of protein degradation to modulate developmental timing in Arabidopsis.
Collapse
Affiliation(s)
- Zecheng Zuo
- College of Life Sciences, Hunan University, Changsha 410082, China
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hongtao Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xuanming Liu
- College of Life Sciences, Hunan University, Changsha 410082, China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
494
|
Fankhauser C, Ulm R. Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression. Genes Dev 2011; 25:1004-9. [PMID: 21576261 PMCID: PMC3093115 DOI: 10.1101/gad.2053911] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cryptochromes are a class of photosensory receptors that control important processes in animals and plants primarily by regulating gene expression. How photon absorption by cryptochromes leads to changes in gene expression has remained largely elusive. Three recent studies, including Lian and colleagues (pp. 1023-1028) and Liu and colleagues (pp. 1029-1034) in this issue of Genes & Development, demonstrate that the interaction of light-activated Arabidopsis cryptochromes with a class of regulatory components of E3 ubiquitin ligase complexes leads to environmentally controlled abundance of transcriptional regulators.
Collapse
Affiliation(s)
- Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
495
|
Li G, Siddiqui H, Teng Y, Lin R, Wan XY, Li J, Lau OS, Ouyang X, Dai M, Wan J, Devlin PF, Deng XW, Wang H. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 2011; 13:616-22. [PMID: 21499259 DOI: 10.1038/ncb2219] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/28/2011] [Indexed: 12/23/2022]
Abstract
The circadian clock controls many metabolic, developmental and physiological processes in a time-of-day-specific manner in both plants and animals. The photoreceptors involved in the perception of light and entrainment of the circadian clock have been well characterized in plants. However, how light signals are transduced from the photoreceptors to the central circadian oscillator, and how the rhythmic expression pattern of a clock gene is generated and maintained by diurnal light signals remain unclear. Here, we show that in Arabidopsis thaliana, FHY3, FAR1 and HY5, three positive regulators of the phytochrome A signalling pathway, directly bind to the promoter of ELF4, a proposed component of the central oscillator, and activate its expression during the day, whereas the circadian-controlled CCA1 and LHY proteins directly suppress ELF4 expression periodically at dawn through physical interactions with these transcription-promoting factors. Our findings provide evidence that a set of light- and circadian-regulated transcription factors act directly and coordinately at the ELF4 promoter to regulate its cyclic expression, and establish a potential molecular link connecting the environmental light-dark cycle to the central oscillator.
Collapse
Affiliation(s)
- Gang Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
496
|
Liu B, Zuo Z, Liu H, Liu X, Lin C. Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev 2011; 25:1029-34. [PMID: 21511871 DOI: 10.1101/gad.2025011] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plant photoreceptors mediate light suppression of the E3 ubiquitin ligase COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) to affect gene expression and photomorphogenesis. However, how photoreceptors mediate light regulation of COP1 activity remains unknown. We report here that Arabidopsis blue-light receptor cryptochrome 1 (CRY1) undergoes blue-light-dependent interaction with the COP1-interacting protein SPA1 (SUPPRESSOR OF PHYTOCHROME A). We further show that the CRY1-SPA1 interaction suppresses the SPA1-COP1 interaction and COP1-dependent degradation of the transcription factor HY5. These results are consistent with a hypothesis that photoexcited CRY1 interacts with SPA1 to modulate COP1 activity and plant development.
Collapse
Affiliation(s)
- Bin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
497
|
Fransz P, de Jong H. From nucleosome to chromosome: a dynamic organization of genetic information. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:4-17. [PMID: 21443619 DOI: 10.1111/j.1365-313x.2011.04526.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Gene activity is controlled at different levels of chromatin organization, which involve genomic sequences, nucleosome structure, chromatin folding and chromosome arrangement. These levels are interconnected and influence each other. At the basic level nucleosomes generally occlude the DNA sequence from interacting with DNA-binding proteins. Evidently, nucleosome positioning is a major factor in gene control and chromatin organization. Understanding the biological rules that govern the deposition and removal of the nucleosomes to and from the chromatin fiber is the key to understanding gene regulation and chromatin organization. In this review we describe and discuss the relationship between the different levels of chromatin organization in plants and animals.
Collapse
Affiliation(s)
- Paul Fransz
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | |
Collapse
|
498
|
Rizzini L, Favory JJ, Cloix C, Faggionato D, O'Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R. Perception of UV-B by the Arabidopsis UVR8 protein. Science 2011; 332:103-6. [PMID: 21454788 DOI: 10.1126/science.1200660] [Citation(s) in RCA: 738] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To optimize their growth and survival, plants perceive and respond to ultraviolet-B (UV-B) radiation. However, neither the molecular identity of the UV-B photoreceptor nor the photoperception mechanism is known. Here we show that dimers of the UVR8 protein perceive UV-B, probably by a tryptophan-based mechanism. Absorption of UV-B induces instant monomerization of the photoreceptor and interaction with COP1, the central regulator of light signaling. Thereby this signaling cascade controlled by UVR8 mediates UV-B photomorphogenic responses securing plant acclimation and thus promotes survival in sunlight.
Collapse
Affiliation(s)
- Luca Rizzini
- Faculty of Biology, Institute of Biology II, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
499
|
Wang Y, Noguchi K, Terashima I. Photosynthesis-dependent and -independent responses of stomata to blue, red and green monochromatic light: differences between the normally oriented and inverted leaves of sunflower. PLANT & CELL PHYSIOLOGY 2011; 52:479-89. [PMID: 21257606 DOI: 10.1093/pcp/pcr005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The effects of growth light environment on stomatal light responses were analyzed. We inverted leaves of sunflower (Helianthus annuus) for 2 weeks until their full expansion, and measured gas exchange properties of the adaxial and abaxial sides separately. The sensitivity to light assessed as the increase in stomatal conductance was generally higher in the abaxial stomata than in the adaxial stomata, and these differences could not be completely changed by the inversion treatment. We also treated the leaves with DCMU to inhibit photosynthesis and evaluated the photosynthesis-dependent and -independent components of stomatal light responses. The red light response of stomata in both normally oriented and inverted leaves relied only on the photosynthesis-dependent component. The blue light response involved both the photosynthesis-dependent and photosynthesis-independent components, and the relative contributions of the two components differed between the normally oriented and inverted leaves. A green light response was observed only in the abaxial stomata, which also involved the photosynthesis-dependent and photosynthesis-independent components, strongly suggesting the existence of a green light receptor in sunflower leaves. Moreover, acclimation of the abaxial stomata to strong direct light eliminated the photosynthesis-independent component in the green light response. The results showed that stomatal responses to monochromatic light change considerably in response to growth light environment, although some of these responses appear to be determined inherently.
Collapse
Affiliation(s)
- Yin Wang
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033 Japan.
| | | | | |
Collapse
|
500
|
Drepper T, Krauss U, Meyer zu Berstenhorst S, Pietruszka J, Jaeger KE. Lights on and action! Controlling microbial gene expression by light. Appl Microbiol Biotechnol 2011; 90:23-40. [PMID: 21336931 DOI: 10.1007/s00253-011-3141-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 01/10/2023]
Abstract
Light-mediated control of gene expression and thus of any protein function and metabolic process in living microbes is a rapidly developing field of research in the areas of functional genomics, systems biology, and biotechnology. The unique physical properties of the environmental factor light allow for an independent photocontrol of various microbial processes in a noninvasive and spatiotemporal fashion. This mini review describes recently developed strategies to generate photo-sensitive expression systems in bacteria and yeast. Naturally occurring and artificial photoswitches consisting of light-sensitive input domains derived from different photoreceptors and regulatory output domains are presented and individual properties of light-controlled expression systems are discussed.
Collapse
Affiliation(s)
- Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany.
| | | | | | | | | |
Collapse
|