451
|
Ji Y, Ferracci G, Warley A, Ward M, Leung KY, Samsuddin S, Lév̂que C, Queen L, Reebye V, Pal P, Gkaliagkousi E, Seager M, Ferro A. beta-Actin regulates platelet nitric oxide synthase 3 activity through interaction with heat shock protein 90. Proc Natl Acad Sci U S A 2007; 104:8839-44. [PMID: 17502619 PMCID: PMC1885589 DOI: 10.1073/pnas.0611416104] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytoskeletal proteins are crucial in maintaining cellular structure and, in certain cell types, also play an essential role in motility and shape change. Nitric oxide (NO) is an important paracrine mediator of vascular and platelet function and is produced in the vasculature by the enzyme NO synthase type 3 (NOS-3). Here, we demonstrate in human platelets that the polymerization state of beta-actin crucially regulates the activation state of NOS-3, and hence NO formation, through altering its binding of heat shock protein 90 (Hsp90). We found that NOS-3 binds to the globular, but not the filamentous, form of beta-actin, and the affinity of NOS-3 for globular beta-actin is, in turn, increased by Hsp90. Formation of this ternary complex among NOS-3, globular beta-actin, and Hsp90, in turn, results in an increase in both NOS activity and cyclic guanosine-3',5'-monophosphate, an index of bioactive NO, as well as an increased rate of Hsp90 degradation, thus limiting the duration for which NOS-3 remains activated. These observations suggest that beta-actin plays a critical role in regulating NO formation and signaling in platelets.
Collapse
Affiliation(s)
- Yong Ji
- *Department of Clinical Pharmacology, Cardiovascular Division, School of Medicine
- Atherosclerosis Research Center, Nanjing Medical University, Nanjing 210029, China
| | - Géraldine Ferracci
- Unité de Méthodologie des Interactions Moléculaires, Faculté de Médecine Nord, Institut Jean Roche, 13916 Marseille, France; and
| | | | - Malcolm Ward
- Proteome Sciences plc, Institute of Psychiatry, King's College London, London SE1 9NH, United Kingdom
| | - Kit-Yi Leung
- Proteome Sciences plc, Institute of Psychiatry, King's College London, London SE1 9NH, United Kingdom
| | - Salma Samsuddin
- *Department of Clinical Pharmacology, Cardiovascular Division, School of Medicine
| | - Christian Lév̂que
- Unité de Méthodologie des Interactions Moléculaires, Faculté de Médecine Nord, Institut Jean Roche, 13916 Marseille, France; and
| | - Lindsay Queen
- *Department of Clinical Pharmacology, Cardiovascular Division, School of Medicine
| | - Vikash Reebye
- *Department of Clinical Pharmacology, Cardiovascular Division, School of Medicine
| | - Pallavi Pal
- *Department of Clinical Pharmacology, Cardiovascular Division, School of Medicine
| | - Eugenia Gkaliagkousi
- *Department of Clinical Pharmacology, Cardiovascular Division, School of Medicine
| | - Michael Seager
- Institut National de la Santé et de la Recherche Médicale Unité 464, Faculté de Médecine Secteur Nord, 13916 Marseille, France
| | - Albert Ferro
- *Department of Clinical Pharmacology, Cardiovascular Division, School of Medicine
- **To whom correspondence should be addressed at:
3.07 Franklin-Wilkins Building, King's College London (Cardiovascular Division), 150 Stamford Street, London SE1 9NH, United Kingdom. E-mail:
| |
Collapse
|
452
|
Jaubert AM, Mehebik-Mojaat N, Lacasa D, Sabourault D, Giudicelli Y, Ribière C. Nongenomic estrogen effects on nitric oxide synthase activity in rat adipocytes. Endocrinology 2007; 148:2444-52. [PMID: 17303666 DOI: 10.1210/en.2006-1329] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Estrogens exert multiple genomic effects on adipose tissue through binding to nuclear estrogen receptors. However, there is evidence for additional nongenomic mechanisms whereby estrogens may exert their control on adipose tissue metabolism through rapid activation of various membrane-initiated kinase cascades. Here, we tested rapid effects of estrogens on nitric oxide production in white adipose tissue using 17-beta estradiol (E2) and its membrane impermeant albumin conjugated form (17-beta estradiol hemisuccinate BSA, E2-BSA). We found that both E2 and E2-BSA stimulate nitric oxide synthase (NOS) activity in adipocytes. These effects were abolished by 1) ICI 182-780, a selective estrogen receptor antagonist; 2) wortmannin, an inhibitor of phosphatidylinositol 3-kinase; and 3) N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide (H-89) an inhibitor of protein kinase A. In contrast to NOS activation by E2, E2-BSA-induced NOS activity was abolished by UO126, an inhibitor of MAPK kinase/ERK (p42/p44 MAPKs). Immunoblotting studies have shown that both estrogens phosphorylate endothelial NOS (NOS III) on Ser(1179), an effect that is prevented by wortmannin and H89, suggesting that NOS III is the target for estrogen-induced NOS activity. Furthermore, only the E2-BSA-induced NOS III phosphorylation on Ser(1179) was totally abolished by UO126. These results indicate that the signaling cascades involved in adipocyte NOS stimulation by estrogens are different depending on whether estrogens are free or conjugated to albumin and therefore underline the importance of estrogen receptor locations in the nongenomic actions of estrogens in these cells.
Collapse
Affiliation(s)
- Anne-Marie Jaubert
- Départment de Biochimie et de Biologie Moléculaire, Université de Versailles Saint-Quentine en Yuelines, Versailles, France
| | | | | | | | | | | |
Collapse
|
453
|
Hwang J, Lee HI, Chang YS, Lee SJ, Kim KP, Park SI. 15-Deoxy-Δ12,14-prostaglandin J2-induced down-regulation of endothelial nitric oxide synthase in association with HSP70 induction. Biochem Biophys Res Commun 2007; 357:206-11. [PMID: 17418102 DOI: 10.1016/j.bbrc.2007.03.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 03/19/2007] [Indexed: 02/04/2023]
Abstract
A natural ligand of peroxisome proliferator-activated receptor gamma (PPARgamma), 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), decreases endothelial nitric oxide synthase (eNOS) expression by an unknown mechanism. Here we found that 15d-PGJ(2)-induced eNOS reduction is inversely associated with heat shock protein 70 (HSP70) induction in endothelial cells. Treatment of cells with 15d-PGJ(2) decreased eNOS protein expression in a concentration- and time-dependent manner, but independently of PPARgamma with no effect on mRNA levels. Although 15d-PGJ(2) elicited endothelial apoptosis, inhibition of both pan-caspases and cathepsins failed to reverse reduction of eNOS protein. Interestingly, we observed that 15d-PGJ(2) induced HSP70 in a dose-dependent manner. Immunoprecipitation and heat shock treatment demonstrated that eNOS reduction was strongly related to HSP70 induction. Cellular fractionation revealed that treatment with 15d-PGJ(2) increased eNOS distribution 2.5-fold from soluble to insoluble fractions. These findings provide new insights into mechanisms whereby eNOS regulation by 15d-PGJ(2) is related to HSP70 induction.
Collapse
Affiliation(s)
- Jinah Hwang
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
454
|
Kubota Y, Isotani E, Mizuno Y, Ohno K, Azuma H. Alterations of intracellular calcium concentration and nitric oxide generation in pulmonary artery endothelium after subarachnoid hemorrhage of the rabbit. Vascul Pharmacol 2007; 47:90-8. [PMID: 17524957 DOI: 10.1016/j.vph.2007.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Accepted: 04/12/2007] [Indexed: 11/17/2022]
Abstract
The present study was designed to investigate whether endothelial intracellular calcium concentration ([Ca(2+)](i)), endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) generation altered in association with impaired endothelium-dependent relaxation (EDR) in pulmonary artery (PA) specimens from experimental subarachnoid hemorrhage (SAH) rabbits. Injecting non-heparinized autologous arterial blood into cisterna magna induced the SAH. Simultaneous measurements of endothelial [Ca(2+)](i) and isometric tension of PA specimens were performed using fura 2. The subjects included normal control rabbits (group N), SAH rabbits with normal EDR (group A) and with impaired EDR (group B). When treated with 10(-7) M acetylcholine (ACh), endothelial [Ca(2+)](i) was significantly lower in group B (74.1+/-8.5 nM) than that in groups A (153.0+/-28.0 nM, p<0.05) and N (184.8+/-27.8 nM, p<0.01). Basal and ACh-stimulated cyclic GMP productions as a marker of NO generation were also significantly (p<0.005) decreased in group B as compared to those in the other two groups. Meanwhile, there were no differences in eNOS activity per se among the three groups. These results suggest that the attenuated endothelial [Ca(2+)](i) elevation leads to the impaired NO generation in PA endothelium, which in turn impairs the EDR and possibly increases the vascular resistance of PA following SAH.
Collapse
Affiliation(s)
- Yoshihiro Kubota
- Department of Neurosurgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | |
Collapse
|
455
|
Numao N, Masuda H, Sakai Y, Okada Y, Kihara K, Azuma H. Roles of attenuated neuronal nitric-oxide synthase protein expression and accelerated arginase activity in impairing neurogenic relaxation of corpus cavernosum in aged rabbits. BJU Int 2007; 99:1495-9. [PMID: 17428245 DOI: 10.1111/j.1464-410x.2007.06860.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate whether changes in neuronal nitric oxide synthase (nNOS) protein expression and arginase activity are implicated in impairing the neurogenic cavernosal relaxation in aged rabbits, as NO is important in the neurogenic relaxation of corpus cavernosum during the erectile state. MATERIALS AND METHODS Cavernosal specimens of young adult (3-6 months old) and aged (36-48 months old) rabbits were used for isometric tension experiments, Western blot analysis, cGMP determination and measurements of NOS and arginase activities. RESULTS The neurogenic relaxation and cGMP production in response to electrical-field stimulation were significantly impaired in aged cavernosal specimens. Western blot analysis showed that nNOS protein was highly expressed in cavernosal specimens from young rabbits, but was undetectable or greatly decreased in old rabbits, with no change in overall NOS activity. Arginase activity in aged cavernosal specimens was significantly higher than in young rabbits. Supplementing with excess l-arginine, or giving S-(2-boronoethyl)-l-cysteine as an arginase inhibitor, significantly increased the neurogenic relaxation at lower frequencies only in the younger rabbits. CONCLUSION These results suggest that impairment of neurogenic and NO-mediated relaxation in the aged corpus cavernosum possibly results from the down-regulation of nNOS protein. The reduced l-arginine bioavailability to nNOS due to accelerated arginase activity would lead to further impairment of neurogenic NO production, in concert with decreased nNOS protein expression.
Collapse
Affiliation(s)
- Noboru Numao
- Department of Urology, Tokyo Medical and Dental University, Yushima, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
456
|
Silva CLM, Tamura EK, Macedo SMD, Cecon E, Bueno-Alves L, Farsky SHP, Ferreira ZS, Markus RP. Melatonin inhibits nitric oxide production by microvascular endothelial cells in vivo and in vitro. Br J Pharmacol 2007; 151:195-205. [PMID: 17375079 PMCID: PMC2013957 DOI: 10.1038/sj.bjp.0707225] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE We have previously shown that melatonin inhibits bradykinin-induced NO production by endothelial cells in vitro. The purpose of this investigation was to extend this observation to an in vivo condition and to explore the mechanism of action of melatonin. EXPERIMENTAL APPROACH RT-PCR assays were performed with rat cultured endothelial cells. The putative effect of melatonin upon arteriolar tone was investigated by intravital microscopy while NO production by endothelial cells in vitro was assayed by fluorimetry, and intracellular Ca(2+) measurements were assayed by confocal microscopy. KEY RESULTS No expression of the mRNA for the melatonin synthesizing enzymes, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase, or for the melatonin MT(2) receptor was detected in microvascular endothelial cells. Melatonin fully inhibited L-NAME-sensitive bradykinin-induced vasodilation and also inhibited NO production induced by histamine, carbachol and 2-methylthio ATP, but did not inhibit NO production induced by ATP or alpha, beta-methylene ATP. None of its inhibitory effects was prevented by the melatonin receptor antagonist, luzindole. In nominally Ca(2+)-free solution, melatonin reduced intracellular Ca(2+) mobilization induced by bradykinin (40%) and 2-methylthio ATP (62%) but not Ca(2+) mobilization induced by ATP. CONCLUSIONS AND IMPLICATIONS We have confirmed that melatonin inhibited NO production both in vivo and in vitro. In addition, the melatonin effect was selective for some G protein-coupled receptors and most probably reflects an inhibition of Ca(2+) mobilization from intracellular stores.
Collapse
Affiliation(s)
- C L M Silva
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
| | - E K Tamura
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
| | - S M D Macedo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo São Paulo, Brazil
| | - E Cecon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
| | - L Bueno-Alves
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
| | - S H P Farsky
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo São Paulo, Brazil
| | - Z S Ferreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
| | - R P Markus
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
- Author for correspondence:
| |
Collapse
|
457
|
Garry A, Fromy B, Blondeau N, Henrion D, Brau F, Gounon P, Guy N, Heurteaux C, Lazdunski M, Saumet JL. Altered acetylcholine, bradykinin and cutaneous pressure-induced vasodilation in mice lacking the TREK1 potassium channel: the endothelial link. EMBO Rep 2007; 8:354-9. [PMID: 17347672 PMCID: PMC1852759 DOI: 10.1038/sj.embor.7400916] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 12/14/2006] [Accepted: 01/11/2007] [Indexed: 11/08/2022] Open
Abstract
The TWIK related K+ channel TREK1 is an important member of the class of two-pore-domain K+ channels. It is a background K+ channel and is regulated by hormones, neurotransmitters, intracellular pH and mechanical stretch. This work shows that TREK1 is present both in mesenteric resistance arteries and in skin microvessels. It is particularly well expressed in endothelial cells. Deletion of TREK1 in mice leads to an important alteration in vasodilation of mesenteric arteries induced by acetylcholine and bradykinin. Iontophoretic delivery of acetylcholine and bradykinin in the skin of TREK1+/+ and TREK1-/- mice also shows the important role of TREK1 in cutaneous endothelium-dependent vasodilation. The vasodilator response to local pressure application is also markedly decreased in TREK1-/- mice, mimicking the decreased response to pressure observed in diabetes. Deletion of TREK1 is associated with a marked alteration in the efficacy of the G-protein-coupled receptor-associated cascade producing NO that leads to major endothelial dysfunction.
Collapse
Affiliation(s)
- Ambroise Garry
- Biologie Neuro-vasculaire Intégrée, UMR CNRS 6214—INSERM 771, Faculté de Médecine Angers, 49045 Angers, France
| | - Bérengère Fromy
- Biologie Neuro-vasculaire Intégrée, UMR CNRS 6214—INSERM 771, Faculté de Médecine Angers, 49045 Angers, France
| | - Nicolas Blondeau
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS, Institut Paul Hamel, Université de Nice-Sophia Antipolis, 660, Route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Daniel Henrion
- Biologie Neuro-vasculaire Intégrée, UMR CNRS 6214—INSERM 771, Faculté de Médecine Angers, 49045 Angers, France
| | - Frédéric Brau
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS, Institut Paul Hamel, Université de Nice-Sophia Antipolis, 660, Route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Pierre Gounon
- Centre Commun de Microscopie Appliquée, Université de Nice-Sophia Antipolis, 28 avenue de Valrose, 06108 Nice Cedex 2, France
| | - Nicolas Guy
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS, Institut Paul Hamel, Université de Nice-Sophia Antipolis, 660, Route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Catherine Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS, Institut Paul Hamel, Université de Nice-Sophia Antipolis, 660, Route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Michel Lazdunski
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS, Institut Paul Hamel, Université de Nice-Sophia Antipolis, 660, Route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
- Tel: +33 493 957701; Fax: +33 493 957704; E-mail:
| | - Jean Louis Saumet
- Biologie Neuro-vasculaire Intégrée, UMR CNRS 6214—INSERM 771, Faculté de Médecine Angers, 49045 Angers, France
| |
Collapse
|
458
|
Abstract
Admission hyperglycemia complicates approximately one-third of acute ischemic strokes and is associated with a worse clinical outcome. Both human and animal studies have showed that hyperglycemia is particularly detrimental in ischemia/reperfusion. Decreased reperfusion blood flow has been observed after middle cerebral artery occlusion in acutely hyperglycemic animals, suggesting the vasculature as an important site of hyperglycemic reperfusion injury. This paper reviews biochemical and molecular pathways in the vasculature that are rapidly affected by hyperglycemia and concludes that these changes result in a pro-vasoconstrictive, pro-thrombotic and pro-inflammatory phenotype that renders the vasculature vulnerable to reperfusion injury. Understanding these pathways should lead to the development of rational therapies that reduce hyperglycemic reperfusion injury and thus improve outcome in this large subset of acute ischemic stroke patients.
Collapse
Affiliation(s)
- Sharyl R Martini
- Department of Neurology, Baylor College of Medicine and the Michael E DeBakey Veterans Affairs Medical Center Stroke Program, Houston, TX 77030, USA
| | | |
Collapse
|
459
|
Rask-Madsen C, King GL. Mechanisms of Disease: endothelial dysfunction in insulin resistance and diabetes. ACTA ACUST UNITED AC 2007; 3:46-56. [PMID: 17179929 DOI: 10.1038/ncpendmet0366] [Citation(s) in RCA: 340] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 08/21/2006] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction is one manifestation of the many changes induced in the arterial wall by the metabolic abnormalities accompanying diabetes and insulin resistance. In type 1 diabetes, endothelial dysfunction is most consistently found in advanced stages of the disease. In other patients, it is associated with nondiabetic insulin resistance and probably precedes type 2 diabetes. In obesity and insulin resistance, increased secretion of proinflammatory cytokines and decreased secretion of adiponectin from adipose tissue, increased circulating levels of free fatty acids, and postprandial hyperglycemia can all alter gene expression and cell signaling in vascular endothelium, cause vascular insulin resistance, and change the release of endothelium-derived factors. In diabetes, sustained hyperglycemia causes increased intracellular concentrations of glucose metabolites in endothelial cells. These changes cause mitochondrial dysfunction, increased oxidative stress, and activation of protein kinase C. Dysfunctional endothelium displays activation of vascular NADPH oxidase, uncoupling of endothelial nitric oxide synthase, increased expression of endothelin 1, a changed balance between the production of vasodilator and vasoconstrictor prostanoids, and induction of adhesion molecules. This review describes how these and other changes influence endothelium-dependent vasodilation in patients with insulin resistance and diabetes. The clinical utility of endothelial function testing and future therapeutic targets is also discussed.
Collapse
|
460
|
Cauwels A, Brouckaert P. Survival of TNF toxicity: dependence on caspases and NO. Arch Biochem Biophys 2007; 462:132-9. [PMID: 17321482 DOI: 10.1016/j.abb.2007.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
Tumor necrosis factor (TNF) is an endogenous pro-inflammatory cytokine, implicated in pathologies such as rheumatoid arthritis and septic shock. It was originally discovered as a factor with extraordinary antitumor activity, but its shock-inducing properties still prevent its systemic use in cancer. Clinical trials revealed hypotension as the major dose-limiting factor of TNF toxicity. When administered to mice, TNF provokes a lethal shock syndrome, where cardiovascular collapse is centrally orchestrated by nitric oxide (NO). Nevertheless, NO synthase (NOS) inhibition in animal models and septic shock patients could not improve and even aggravated outcome, suggesting a bivalent role for NO. Lymphocyte and enterocyte apoptosis has been described in septic, endotoxemic, or TNF-treated animals, as well as in septic patients. In this review, we describe our recent studies on the role of NO and caspases in TNF-induced shock in mice. In summary, we have found that both NO and caspases may exert unexpected and dual functions during TNF shock. Whereas excessive NO production provokes lethal hypotension, it also has an important anti-oxidant function, protecting organs from oxidative stress and lipid peroxidation. In addition, our results also indicate that caspases may exert an important endogenous negative feedback on oxidative stress as well.
Collapse
Affiliation(s)
- Anje Cauwels
- Department for Molecular Biomedical Research, VIB, B-9052 Ghent, Belgium.
| | | |
Collapse
|
461
|
A cell-based nitric oxide reporter assay useful for the identification and characterization of modulators of the nitric oxide/guanosine 3',5'-cyclic monophosphate pathway. Anal Biochem 2007; 363:219-27. [PMID: 17336915 DOI: 10.1016/j.ab.2007.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/31/2007] [Accepted: 02/01/2007] [Indexed: 11/23/2022]
Abstract
Nitric oxide (NO) plays an important role in protection against the onset and progression of various cardiovascular disorders. Therefore, the NO/guanosine 3',5'-cyclic monophosphate (cGMP) pathway has gained considerable attention and has become a target for new drug development. We have established a rapid, homogeneous, cell-based, and highly sensitive reporter assay for NO generated by endothelial nitric oxide synthase (eNOS). In a coculture system, NO production is indirectly monitored in living cells via soluble guanylyl cyclase (sGC) activation and calcium influx mediated by the olfactory cyclic nucleotide-gated (CNG) cation channel CNGA2, acting as the intracellular cGMP sensor. Using this NO reporter assay, we performed a fully automated high-throughput screening campaign for stimulators of NO synthesis. The coculture system reflects most aspects of the natural NO/cGMP pathway, namely, Ca(2+)-dependent and Ca(2+)-independent regulation of eNOS activity by G protein-coupled receptor agonists, oxidative stress, phosphorylation, and cofactor availability as well as NO-mediated stimulation of cGMP synthesis by sGC activation. The NO reporter assay allows the real-time detection of NO synthesis within living cells and makes it possible to identify and characterize activators and inhibitors of enzymes involved in the NO/cGMP signaling pathway.
Collapse
|
462
|
Förstermann U. Janus-faced role of endothelial NO synthase in vascular disease: uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal. Biol Chem 2007; 387:1521-33. [PMID: 17132097 DOI: 10.1515/bc.2006.190] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial NO synthase (eNOS) is the predominant enzyme responsible for vascular NO synthesis. A functional eNOS transfers electrons from NADPH to its heme center, where L-arginine is oxidized to L-citrulline and NO. Common conditions predisposing to atherosclerosis, such as hypertension, hypercholesterolemia, diabetes mellitus and smoking, are associated with enhanced production of reactive oxygen species (ROS) and reduced amounts of bioactive NO in the vessel wall. NADPH oxidases represent major sources of ROS in cardiovascular pathophysiology. NADPH oxidase-derived superoxide avidly interacts with eNOS-derived NO to form peroxynitrite (ONOO(-)), which oxidizes the essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH(4)). As a consequence, oxygen reduction uncouples from NO synthesis, thereby rendering NOS to a superoxide-producing pro-atherosclerotic enzyme. Supplementation with BH(4) corrects eNOS dysfunction in several animal models and in patients. Administration of high local doses of the antioxidant L-ascorbic acid (vitamin C) improves endothelial function, whereas large-scale clinical trials do not support a strong role for oral vitamin C and/or E in reducing cardiovascular disease. Statins, angiotensin-converting enzyme inhibitors and AT1 receptor blockers have the potential of reducing vascular oxidative stress. Finally, novel approaches are being tested to block pathways leading to oxidative stress (e.g. protein kinase C) or to upregulate antioxidant enzymes.
Collapse
Affiliation(s)
- Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University, D-55101 Mainz, Germany.
| |
Collapse
|
463
|
Andreozzi F, Laratta E, Procopio C, Hribal ML, Sciacqua A, Perticone M, Miele C, Perticone F, Sesti G. Interleukin-6 impairs the insulin signaling pathway, promoting production of nitric oxide in human umbilical vein endothelial cells. Mol Cell Biol 2007; 27:2372-83. [PMID: 17242212 PMCID: PMC1820492 DOI: 10.1128/mcb.01340-06] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interleukin 6 (IL-6) is an independent predictor of type 2 diabetes and cardiovascular disease and is correlated with insulin resistance. Insulin stimulates nitric oxide (NO) production through the IRS-1/PI3-kinase/Akt/eNOS pathway (where IRS-1 is insulin receptor substrate 1, PI3-kinase is phosphatidylinositol 3-kinase, and eNOS is endothelial NO synthase). We asked if IL-6 affects insulin vasodilator action both in human umbilical vein endothelial cells (HUVEC) and in the aortas of C57BL/6J mice and whether this inhibitory effect was caused by increased Ser phosphorylation of IRS-1. We observed that IL-6 increased IRS-1 phosphorylation at Ser(312) and Ser(616); these effects were paralleled by increased Jun N-terminal protein kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and reversed by JNK and ERK1/2 inhibition. In addition, IL-6 treatment resulted in impaired IRS-1 phosphorylation at Tyr(612), a site essential for engaging PI3-kinase. Furthermore, IL-6 treatment reduced insulin-stimulated phosphorylation of eNOS at the stimulatory Ser(1177) site and impaired insulin-stimulated eNOS dephosphorylation at the inhibitory Thr(495) site. Insulin-stimulated eNOS activation and NO production were also inhibited by IL-6; these effects were reversed by inhibition of JNK and ERK1/2. Treatment of C57BL/6J mice with IL-6 resulted in impaired insulin-dependent activation of the Akt/eNOS pathway in the aorta as a result of JNK and ERK1/2 activation. Our data suggest that IL-6 impairs the vasodilator effects of insulin that are mediated by the IRS-1/PI3-kinase/Akt/eNOS pathway through activation of JNK and ERK1/2.
Collapse
Affiliation(s)
- Francesco Andreozzi
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
464
|
Ferreira HC, Serra CP, Lemos VS, Braga FC, Cortes SF. Nitric oxide-dependent vasodilatation by ethanolic extract of Hancornia speciosa via phosphatidyl-inositol 3-kinase. JOURNAL OF ETHNOPHARMACOLOGY 2007; 109:161-4. [PMID: 16890389 DOI: 10.1016/j.jep.2006.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 03/16/2006] [Accepted: 06/23/2006] [Indexed: 05/11/2023]
Abstract
The vasodilator effect of the ethanolic extract of leaves from Hancornia speciosa Gomes (HSE) was studied in rat aortic rings. HSE produced a concentration-dependent vasodilatation (pIC(50)=5.6+/-0.1), which was completely abolished in endothelium-denuded vessels. The endothelium-dependent vasodilatation induced by HSE was abolished by l-NAME (100 microM), a nitric oxide (NO) synthase inhibitor, but not atropine (1 microM; pIC(50)=5.6+/-0.2), a muscarinic receptor antagonist, nor indomethacin (10 microM; pIC(50)=5.4+/-0.2), a cyclooxygenase inhibitor. The concentration-response curve of HSE was significantly shifted to the left by superoxide dismutase (SOD; 300U/mL). In addition, while SOD displaced the 3-morpholino-sidnonimine (SIN-1; P<0.05) concentration-effect curve to the left, HSE (50 microg/mL) had no effect. Finally, wortmannin (0.3 microM), an inhibitor of phosphatidyl-inositol 3-kinase (PI3K), dramatically reduced the vasodilator effect of HSE. Together, these findings lead us to conclude that HSE induces a NO- and endothelium-dependent vasodilatation in rat aortic preparations, likely by a mechanism dependent on the activation of PI3K.
Collapse
Affiliation(s)
- Herick C Ferreira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901 Belo Horizonte, Brazil
| | | | | | | | | |
Collapse
|
465
|
|
466
|
Yu J, Eto M, Akishita M, Kaneko A, Ouchi Y, Okabe T. Signaling pathway of nitric oxide production induced by ginsenoside Rb1 in human aortic endothelial cells: a possible involvement of androgen receptor. Biochem Biophys Res Commun 2006; 353:764-9. [PMID: 17196933 DOI: 10.1016/j.bbrc.2006.12.119] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 12/10/2006] [Indexed: 10/23/2022]
Abstract
Ginsenosides have been shown to stimulate nitric oxide (NO) production in aortic endothelial cells. However, the signaling pathways involved have not been well studied in human aortic endothelial cells. The present study was designed to examine whether purified ginsenoside Rb1, a major active component of ginseng could actually induce NO production and to clarify the signaling pathway in human aortic endothelial cells. NO production was rapidly increased by Rb1. The rapid increase in NO production was abrogated by treatment with nitric oxide synthetase inhibitor, L-NAME. Rb1 stimulated rapid phosphorylation of Akt (Ser473), ERK1/2 (Thr202/Thr204) and eNOS (Ser1177). Rapid phosphorylation of eNOS (Ser1177) was prevented by SH-5, an Akt inhibitor or wortmannin, PI3-kinase inhibitor and partially attenuated by PD98059, an upstream inhibitor for ERK1/2. Interestingly, NO production and eNOS phosphorylation at Ser1177 by Rb1 were abolished by androgen receptor antagonist, nilutamide. The results suggest that PI3kinase/Akt and MEK/ERK pathways and androgen receptor are involved in the regulation of acute eNOS activation by Rb1 in human aortic endothelial cells.
Collapse
Affiliation(s)
- Jing Yu
- Department of Integrated Traditional Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
467
|
Dumont O, Loufrani L, Henrion D. Key role of the NO-pathway and matrix metalloprotease-9 in high blood flow-induced remodeling of rat resistance arteries. Arterioscler Thromb Vasc Biol 2006; 27:317-24. [PMID: 17158349 PMCID: PMC2234579 DOI: 10.1161/01.atv.0000254684.80662.44] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Blood flow is altered in metabolic and ischemic diseases with dramatic consequences. Resistance arteries structure and function remodel in response to chronic blood flow changes through a mechanism remaining mainly unknown. We hypothesized that the NO pathway and matrix metalloproteases (MMPs) activation might play a role in flow (shear stress)-induced microvascular remodeling. METHODS AND RESULTS Mesenteric resistance arteries were ligated to alter blood flow in vivo for 4 or 14 days: arteries were submitted to high (HF), low (LF), or normal flow (NF). Rats were treated with L-NAME, the angiotensin converting enzyme inhibitor perindopril or the MMPs inhibitor doxycycline. After 14 days, outward hypertrophic remodeling occurred in HF arteries in association with eNOS overexpression. MMP9 activity increased in the early phase (day 4). HF-remodeling was prevented by L-NAME, eNOS gene knockout, and doxycycline. L-NAME prevented eNOS overexpression and MMPs activation whereas doxycycline only prevented MMPs activation. In LF arteries diameter reduction was associated with a decreased eNOS expression without change in MMPs expression and activation. LF-remodeling was reduced by perindopril. CONCLUSIONS In resistance arteries, high flow induced diameter enlargement and wall hypertrophy associated with the sequential activation of eNOS and MMP9.
Collapse
|
468
|
Suzuki H, Eguchi K, Ohtsu H, Higuchi S, Dhobale S, Frank GD, Motley ED, Eguchi S. Activation of endothelial nitric oxide synthase by the angiotensin II type 1 receptor. Endocrinology 2006; 147:5914-20. [PMID: 16980435 DOI: 10.1210/en.2006-0834] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Enhanced angiotensin II (AngII) action has been implicated in endothelial dysfunction that is characterized as decreased nitric oxide availability. Although endothelial cells have been reported to express AngII type 1 (AT1) receptors, the exact role of AT1 in regulating endothelial NO synthase (eNOS) activity remains unclear. We investigated the possible regulation of eNOS through AT1 in bovine aortic endothelial cells (BAECs) and its functional significance in rat aortic vascular smooth muscle cells (VSMCs). In BAECs infected with adenovirus encoding AT1 and in VSMCs infected with adenovirus encoding eNOS, AngII rapidly stimulated phosphorylation of eNOS at Ser1179. This was accompanied with increased cGMP production. These effects were blocked by an AT1 antagonist. The cGMP production was abolished by a NOS inhibitor as well. To explore the importance of eNOS phosphorylation, VSMCs were also infected with adenovirus encoding S1179A-eNOS. AngII did not stimulate cGMP production in VSMCs expressing S1179A. However, S1179A was able to enhance basal NO production as confirmed with cGMP production and enhanced vasodilator-stimulated phosphoprotein phosphorylation. Interestingly, S1179A prevented the hypertrophic response similar to wild type in VSMCs. From these data, we conclude that the AngII/AT1 system positively couples to eNOS via Ser1179 phosphorylation in ECs and VSMCs if eNOS and AT1 coexist. However, basal level NO production may be sufficient for prevention of AngII-induced hypertrophy by eNOS expression. These data demonstrate a novel molecular mechanism of eNOS regulation and function and thus provide useful information for eNOS gene therapy under endothelial dysfunction.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
469
|
Patel B, Sharifi M, Milward AD, Oberprieler NG, Gibbins JM, Parkin S, Naseem KM. Platelet nitric oxide synthase is activated by tyrosine dephosphorylation: possible role for SHP-1 phosphatase. J Thromb Haemost 2006; 4:2423-32. [PMID: 16898954 DOI: 10.1111/j.1538-7836.2006.02160.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Endothelial nitric oxide synthase (eNOS) activity in endothelial cells is regulated by post-translational phosphorylation of critical serine, threonine and tyrosine residues in response to a variety of stimuli. However, the post-translational regulation of eNOS in platelets is poorly defined. OBJECTIVES We investigated the role of tyrosine phosphorylation in the regulation of platelet eNOS activity. METHODS Tyrosine phosphorylation of eNOS and interaction with the tyrosine phosphatase SHP-1 were investigated by coimmunoprecipitation and immunoblotting. An in vitro immunoassay was used to determine eNOS activity together with the contribution of protein tyrosine phosphorylation. RESULTS We found platelet eNOS was tyrosine phosphorylated under basal conditions. Thrombin induced a dose- and time-dependent increase in eNOS activity without altering overall level of tyrosine phosphorylation, although we did observe evidence of minor tyrosine dephosphorylation. In vitro tyrosine dephosphorylation of platelet eNOS using a recombinant protein tyrosine phosphatase enhanced thrombin-induced activity compared to thrombin alone, but had no effect on endothelial eNOS activity either at basal or after stimulation with bradykinin. Having shown that dephosphorylation could modulate platelet eNOS activity we examined the role of potential protein phosphatases important for platelet eNOS activity. We found SHP-1 protein tyrosine phosphatase, co-associated with platelet eNOS in resting platelets, but does not associate with eNOS in endothelial cells. Stimulation of platelets with thrombin increased SHP-1 association with eNOS, while inhibition of SHP-1 abolished the ability of thrombin to induce elevated eNOS activity. CONCLUSIONS Our data suggest a novel role for tyrosine dephosphorylation in platelet eNOS activation, which may be mediated by SHP-1.
Collapse
Affiliation(s)
- B Patel
- Medical Biosciences, University of Bradford, Bradford, UK
| | | | | | | | | | | | | |
Collapse
|
470
|
Smith AR, Visioli F, Frei B, Hagen TM. Age-related changes in endothelial nitric oxide synthase phosphorylation and nitric oxide dependent vasodilation: evidence for a novel mechanism involving sphingomyelinase and ceramide-activated phosphatase 2A. Aging Cell 2006; 5:391-400. [PMID: 16930126 DOI: 10.1111/j.1474-9726.2006.00232.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aging is the single most important risk factor for cardiovascular diseases (CVD), which are the leading cause of morbidity and mortality in the elderly. The underlying etiologies that elevate CVD risk are unknown, but increased vessel rigidity appears to be a major hallmark of cardiovascular aging. We hypothesized that post-translational signaling pathways become disrupted with age and adversely affect endothelial nitric oxide synthase (eNOS) activity and endothelial-derived nitric oxide (NO) production. Using arterial vessels and isolated endothelia from old (33-month) vs. young (3-month) F344XBrN rats, we show a loss of vasomotor function with age that is attributable to a decline in eNOS activity and NO bioavailability. An altered eNOS phosphorylation pattern consistent with its inactivation was observed: phosphorylation at the inhibitory threonine 494 site increased while phosphorylation at the activating serine 1176 site declined by 50%. Loss of phosphorylation on serine 1176 was related to higher ceramide-activated protein phosphatase 2 A activity, which was driven by a 125% increase in ceramide in aged endothelia. Elevated ceramide levels were attributable to chronic activation of neutral sphingomyelinases without a concomitant increase in ceramidase activity. This imbalance may stem from an observed 33% decline in endothelial glutathione (GSH) levels, a loss known to differentially induce neutral sphingomyelinases. Pretreating aged vessel rings with the neutral sphingomyelinase inhibitor, GW4869, significantly reversed the age-dependent loss of vasomotor function. Taken together, these results suggest a novel mechanism that at least partly explains the persistent loss of eNOS activity and endothelial-derived NO availability in aging conduit arteries.
Collapse
Affiliation(s)
- Anthony R Smith
- Linus Pauling Institute and Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
471
|
Stahmann N, Woods A, Carling D, Heller R. Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase beta. Mol Cell Biol 2006; 26:5933-45. [PMID: 16880506 PMCID: PMC1592798 DOI: 10.1128/mcb.00383-06] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a sensor of cellular energy state in response to metabolic stress and other regulatory signals. AMPK is controlled by upstream kinases which have recently been identified as LKB1 or Ca2+/calmodulin-dependent protein kinase kinase beta (CaMKKbeta). Our study of human endothelial cells shows that AMPK is activated by thrombin through a Ca2+-dependent mechanism involving the thrombin receptor protease-activated receptor 1 and Gq-protein-mediated phospholipase C activation. Inhibition of CaMKK with STO-609 or downregulation of CaMKKbeta using RNA interference decreased thrombin-induced AMPK activation significantly, indicating that CaMKKbeta was the responsible AMPK kinase. In contrast, downregulation of LKB1 did not affect thrombin-induced AMPK activation but abolished phosphorylation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleoside. Thrombin stimulation led to phosphorylation of acetyl coenzyme A carboxylase (ACC) and endothelial nitric oxide synthase (eNOS), two downstream targets of AMPK. Inhibition or downregulation of CaMKKbeta or AMPK abolished phosphorylation of ACC in response to thrombin but had no effect on eNOS phosphorylation, indicating that thrombin-stimulated phosphorylation of eNOS is not mediated by AMPK. Our results underline the role of Ca2+ as a regulator of AMPK activation in response to a physiologic stimulation. We also demonstrate that endothelial cells possess two pathways to activate AMPK, one Ca2+/CaMKKbeta dependent and one AMP/LKB1 dependent.
Collapse
Affiliation(s)
- Nadine Stahmann
- Institute of Molecular Cell Biology, Friedrich Schiller University of Jena, Nonnenplan 2, 07743 Jena, Germany
| | | | | | | |
Collapse
|
472
|
Begnami MD, Montagnini AL, Vettore AL, Nonogaki S, Brait M, Simoes-Sato AY, Seixas AQA, Soares FA. Differential expression of apoptosis related proteins and nitric oxide synthases in Epstein Barr associated gastric carcinomas. World J Gastroenterol 2006; 12:4959-65. [PMID: 16937490 PMCID: PMC4087397 DOI: 10.3748/wjg.v12.i31.4959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the incidence of Epstein Barr virus associated gastric carcinoma (GC) in Brazil and compare the expressions of apoptosis related proteins and nitric oxide synthases between EBV positive and negative gastric carcinoma.
METHODS: In situ hybridization of EBV-encoded small RNA-1 (EBER-1) and PCR was performed to identify the presence of EBV in GCs. Immunohistochemistry was used to identify expressions of bcl-2, bcl-xl, bak, bax, p53, NOS-1, NOS-2, and NOS-3 proteins in 25 EBV positive GCs and in 103 EBV negative GCS.
RESULTS: 12% of the cases of GC (25/208) showed EBER-1 and EBNA-1 expression. The cases were preferentially of diffuse type with intense lymphoid infiltrate in the stroma. EBV associated GCs showed higher expression of bcl-2 protein and lower expression of bak protein than in EBV negative GCs. Indeed, expressions of NOS-1 and NOS-3 were frequently observed in EBV associated GCs.
CONCLUSION: Our data suggest that EBV infection may protect tumor cells from apoptosis, giving them the capacity for permanent cell cycling and proliferation. In addition, EBV positive GCs show high expression of constitutive NOS that could influence tumor progression and aggressiveness.
Collapse
Affiliation(s)
- Maria D Begnami
- Department of Pathology, Hospital do Câncer A C Camargo, São Paulo, SP 01519010, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
473
|
Gonon AT, Bulhak A, Labruto F, Sjöquist PO, Pernow J. Cardioprotection mediated by rosiglitazone, a peroxisome proliferator-activated receptor gamma ligand, in relation to nitric oxide. Basic Res Cardiol 2006; 102:80-9. [PMID: 16900441 DOI: 10.1007/s00395-006-0613-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 06/23/2006] [Accepted: 07/20/2006] [Indexed: 11/24/2022]
Abstract
UNLABELLED Activation of peroxisome proliferator-activated receptor (PPAR) gamma protects from myocardial ischemia/reperfusion injury. The aim of the study was to investigate whether the cardioprotective effect of PPARgamma is related to nitric oxide (NO). METHODS Wild type (WT) and endothelial NO synthase (eNOS) knockout (KO) mice received 3 mg/kg of the PPARgamma agonist rosiglitazone or vehicle (n = 6-9 in each group) i. p. 45 min before anesthesia. The hearts were isolated, perfused in a Langendorff mode and subjected to global ischemia and 30 min reperfusion. The hearts of another two groups of WT mice received the NOS inhibitor L-NNA (100 micromol/l) or vehicle in addition to pre-treatment with vehicle or rosiglitazone. RESULTS In the WT heart, rosiglitazone increased the recovery of left ventricular function and coronary flow following ischemia in comparison with the vehicle group.L-NNA did not affect recovery per se but significantly blunted the improvement in the recovery of left ventricular function induced by rosiglitazone. In the KO group rosiglitazone suppressed the recovery of myocardial function following ischemia. Expression of eNOS was not affected, but phosphorylated eNOS was significantly increased by rosiglitazone in the WT hearts (P < 0.05). CONCLUSION These results suggest that the cardioprotective effect of the PPARgamma agonist rosiglitazone is mediated via NO by phosphorylation of eNOS.
Collapse
Affiliation(s)
- Adrian T Gonon
- Dept. of Cardiology, Karolinska University Hospital, Solna, 17176, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
474
|
Cauwels A, Janssen B, Buys E, Sips P, Brouckaert P. Anaphylactic shock depends on PI3K and eNOS-derived NO. J Clin Invest 2006; 116:2244-51. [PMID: 16886062 PMCID: PMC1523420 DOI: 10.1172/jci25426] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 05/02/2006] [Indexed: 11/17/2022] Open
Abstract
Anaphylactic shock is a sudden, life-threatening allergic reaction associated with severe hypotension. Platelet-activating factor (PAF) is implicated in the cardiovascular dysfunctions occurring in various shock syndromes, including anaphylaxis. Excessive production of the vasodilator NO causes inflammatory hypotension and shock, and it is generally accepted that transcriptionally regulated inducible iNOS is responsible for this. Nevertheless, the contribution of NO to PAF-induced shock or anaphylactic shock is still ambiguous. We studied PAF and anaphylactic shock in conscious mice. Surprisingly, hyperacute PAF shock depended entirely on NO, produced not by inducible iNOS, but by constitutive eNOS, rapidly activated via the PI3K pathway. Soluble guanylate cyclase (sGC) is generally regarded as the principal vasorelaxing mediator of NO. Nevertheless, although methylene blue partially prevented PAF shock, neither 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ) nor sGCalpha1 deficiency did. Also, in 2 different models of active systemic anaphylaxis, inhibition of NOS, PI3K, or Akt or eNOS deficiency provided complete protection. In contrast to the unsubstantiated paradigm that only excessive iNOS-derived NO underlies cardiovascular collapse in shock, our data strongly support the unexpected concept that eNOS-derived NO is the principal vasodilator in anaphylactic shock and define eNOS and/or PI3K or Akt as new potential targets for treating anaphylaxis.
Collapse
Affiliation(s)
- Anje Cauwels
- Molecular Pathophysiology and Experimental Therapy Unit, Department for Molecular Biomedical Research, Ghent University, Belgium, and Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, USA.
| | | | | | | | | |
Collapse
|
475
|
Abstract
In the kidney nitric oxide (NO) has numerous important functions including the regulation of renal haemodynamics, maintenance of medullary perfusion, mediation of pressure-natriuresis, blunting of tubuloglomerular feedback, inhibition of tubular sodium reabsorption and modulation of renal sympathetic neural activity. The net effect of NO in the kidney is to promote natriuresis and diuresis. Significantly, deficient renal NO synthesis has been implicated in the pathogenesis of hypertension. All three isoforms of nitric oxide synthase (NOS), namely neuronal NOS (nNOS or NOS1), inducible NOS (iNOS or NOS2) and endothelial NOS (eNOS or NOS3) are reported to contribute to NO synthesis in the kidney. The regulation of NO synthesis in the kidney by NOSs is complex and incompletely understood. Historically, many studies of NOS regulation in the kidney have emphasized the role of variations in gene transcription and translation. It is increasingly appreciated, however, that the constitutive NOS isoforms (nNOS and eNOS) are also subject to rapid regulation by post-translational mechanisms such as Ca(2+) flux, serine/threonine phosphorylation and protein-protein interactions. Recent studies have emphasized the role of post-translational regulation of nNOS and eNOS in the regulation of NO synthesis in the kidney. In particular, a role for phosphorylation of nNOS and eNOS at both activating and inhibitory sites is emerging in the regulation of NO synthesis in the kidney. This review summarizes the roles of NO in renal physiology and discusses recent advances in the regulation of eNOS and nNOS in the kidney by post-translational mechanisms such as serine/threonine phosphorylation.
Collapse
Affiliation(s)
- P F Mount
- The Austin Research Institute, Austin Hospital, Victoria, Australia.
| | | |
Collapse
|
476
|
Duerrschmidt N, Stielow C, Muller G, Pagano PJ, Morawietz H. NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells. J Physiol 2006; 576:557-67. [PMID: 16873416 PMCID: PMC1890367 DOI: 10.1113/jphysiol.2006.111070] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes have been identified as major sources of superoxide anion (.O(2)(-)) formation. In this study, we analysed the effect of laminar shear stress on .O(2)(-) formation by cytochrome c reduction assay and on NAD(P)H oxidase subunit expression by standard calibrated competitive reverse transcription-polymerase chain reaction and Western blot in human endothelial cells. Primary cultures of human umbilical vein endothelial cells were exposed to laminar shear stress in a cone-and-plate viscometer for up to 24 h. Short-term application of shear stress transiently induced .O(2)(-) formation. This was inhibited by NAD(P)H oxidase inhibitor gp91ds-tat, but NAD(P)H oxidase subunit expression was unchanged. Long-term arterial laminar shear stress (30 dyne cm(-2), 24 h) down-regulated .O(2)(-) formation, and mRNA and protein expression of NAD(P)H oxidase subunits Nox2/gp91(phox) and p47(phox). In parallel, endothelial NO formation and eNOS, but not Cu/Zn SOD, protein expression was increased. Down-regulation of .O(2)(-) formation, gp91(phox) and p47(phox) expression by long-term laminar shear stress was blocked by l-NAME. NO donor DETA-NO down-regulates .O(2)(-) formation, gp91(phox) and p47(phox) expression in static cultures. In conclusion, our data suggest a transient activation of .O(2)(-) formation by short-term shear stress, followed by a down-regulation of endothelial NAD(P)H oxidase in response to long-term laminar shear stress. NO-mediated down-regulation by shear stress preferentially affects the gp91(phox)/p47(phox)-containing NAD(P)H oxidase complex. This mechanism might contribute to the regulation of endothelial NO/.O(2)(-) balance and the vasoprotective potential of physiological levels of laminar shear stress.
Collapse
Affiliation(s)
- Nicole Duerrschmidt
- University of Technology Dresden, Medical Faculty Carl Gustav Carus, Department of Vascular Endothelium and Microcirculation, Fetscherstr. 74, D-01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
477
|
Milkiewicz M, Kelland C, Colgan S, Haas TL. Nitric oxide and p38 MAP kinase mediate shear stress-dependent inhibition of MMP-2 production in microvascular endothelial cells. J Cell Physiol 2006; 208:229-37. [PMID: 16575906 DOI: 10.1002/jcp.20658] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic exposure of the skeletal muscle microcirculation to elevated shear stress-induces angiogenesis. Previous studies observed that shear stress-induced capillary growth involves luminal sprouting, or internal division, of the capillaries, which is characterized by a minimal proliferative response and the retention of an intact basement membrane. Matrix metalloproteinases (MMPs) are associated with the process of abluminal sprouting angiogenesis, but may not be required for the process of luminal division during capillary growth. We analyzed the production of MMP-2, using both the in vivo model of prazosin-induced angiogenesis in rat skeletal muscle, and cultured microvascular endothelial cells exposed to laminar shear stress. We found that MMP-2 was not elevated in capillaries of shear stress-stimulated skeletal muscle, despite a significant increase in capillary number in response to a shear stress stimulus. In cultured microvascular endothelial cells, MMP-2 mRNA and protein levels were attenuated significantly in response to shear stress exposure. This effect on MMP-2 was reversed by nitric oxide (NO) synthase inhibition using LNNA. In contrast, exposure of static cultures of endothelial cells to NO donors significantly reduced MMP-2 production. Shear stress exposure and NO donors both modified phosphorylation levels of several members of the MAPK family. Treatment of shear stress-exposed cells with the p38 MAPK inhibitor, SB203580, abolished the shear stress-mediated reduction in MMP-2 mRNA. Thus, our data provide strong evidence that elevated shear stress inhibits MMP-2 production in microvascular endothelial cells, an effect that is mediated by signal pathways involving both production of NO and activation of p38 MAPK.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Endothelial Cells/physiology
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Enzyme Inhibitors/pharmacology
- Hemodynamics/drug effects
- Hemodynamics/physiology
- Imidazoles/pharmacology
- Male
- Matrix Metalloproteinase 2/analysis
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Neovascularization, Physiologic/drug effects
- Nitric Acid/metabolism
- Nitric Oxide Donors/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitroarginine/pharmacology
- Phosphorylation
- Prazosin/pharmacology
- Pyridines/pharmacology
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Stress, Mechanical
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/physiology
Collapse
Affiliation(s)
- Malgorzata Milkiewicz
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
478
|
Ladage D, Brixius K, Hoyer H, Steingen C, Wesseling A, Malan D, Bloch W, Schwinger RHG. MECHANISMS UNDERLYING NEBIVOLOL-INDUCED ENDOTHELIAL NITRIC OXIDE SYNTHASE ACTIVATION IN HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS. Clin Exp Pharmacol Physiol 2006; 33:720-4. [PMID: 16895546 DOI: 10.1111/j.1440-1681.2006.04424.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Nebivolol (NEB) has been shown to be a selective blocker of beta1-adrenoceptors with additional vasodilating properties that are mediated, at least in part, by an endothelial-dependent liberation of nitric oxide (NO). In the present study, we investigated the underlying mechanisms of NEB-induced vasodilation. 2. Immunohistochemical staining of endothelial nitric oxide synthase (eNOS) was performed in the absence and presence of NEB in human umbilical vein endothelial cells (HUVEC). In addition, we measured the release of nitric oxide (NO) using diaminofluorescein. Metoprolol (MET) was used for comparison. 3. Nebivolol, but not MET (each at 10 micromol/L), caused a time-dependent increase in NO release from HUVEC, as demonstrated by an increase in DAF fluorescence at 0 versus 10 min (+234 +/- 7 and 55 +/- 22% basal, respectively). Blockade of beta3-adrenoceptors by SR 59230A (1 micromol/L) partially reduced the NEB-induced increase in DAF fluorescence. Complete inhibition of NEB-induced NO liberation was achieved by the simultaneous blockade of beta3-adrenoceptors and oestrogen receptors (with 1 micromol/L ICI 182,780). 4. Application of NEB significantly increased eNOS translocation and serine 1177 phosphorylation of eNOS. However, NEB did not alter eNOS-phosphorylation at threonine 495 and at serine 114. 5. In conclusion, the endothelium-dependent NO liberation induced by NEB is due to stimulation of beta3-adrenoceptors and oestrogen receptors and coincides with eNOS translocation and a phosphorylation at eNOS-serine 1177. These characteristics of NEB may be beneficial not only when treating patients suffering from cardiovascular disease, but may also prevent further deterioration of endothelial dysfunction.
Collapse
Affiliation(s)
- Dennis Ladage
- Laboratory of Muscle Research and Molecular Cardiology, Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
479
|
Boo YC, Kim HJ, Song H, Fulton D, Sessa W, Jo H. Coordinated regulation of endothelial nitric oxide synthase activity by phosphorylation and subcellular localization. Free Radic Biol Med 2006; 41:144-53. [PMID: 16781462 DOI: 10.1016/j.freeradbiomed.2006.03.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 03/30/2006] [Indexed: 11/29/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) is regulated by multiple mechanisms including Ca(2+)/calmodulin binding, protein-protein interactions, phosphorylation, and subcellular locations. Emerging evidence suggests that these seemingly independent mechanisms may be closely correlated. In the present study, the interplay between membrane targeting and phosphorylation of eNOS was investigated by using various mutants designed to target specific subcellular locations or to mimic different phospho states. Phospho-mimicking mutations of wild-type eNOS at S635 and S1179 synergistically activated the enzyme. The targeted eNOS mutants to plasma membrane and Golgi complex exhibited higher NO production activities than that of a myristoylation-deficient cytosolic mutant. Phospho-mimicking mutations at S635 and S1179 rescued the activity of the cytosolic mutant and increased those of the plasma membrane- and Golgi-targeted mutants. In contrast, phospho-deficient mutations at these sites led to inactivation of eNOS. Unlike the other targeted mutants, the cytosolic eNOS mutant was unresponsive to cAMP, indicating that membrane association and phosphorylation are required for eNOS activation. These findings suggest that the coordinated interplay between phosphorylation and subcellular localization of eNOS plays an important role in regulating NO production in endothelial cells.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, Kyungpook National University School of Medicine, 101 Dongindong-2-ga, Junggu, Daegu 700-422, Republic of Korea
| | | | | | | | | | | |
Collapse
|
480
|
Chvanov M, Petersen OH, Tepikin A. Free radicals and the pancreatic acinar cells: role in physiology and pathology. Philos Trans R Soc Lond B Biol Sci 2006; 360:2273-84. [PMID: 16321797 PMCID: PMC1569596 DOI: 10.1098/rstb.2005.1757] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS) play an important role in signal transduction and cell injury processes. Nitric oxide synthase (NOS)-the key enzyme producing nitric oxide (NO)-is found in neuronal structures, vascular endothelium and, possibly, in acinar and ductal epithelial cells in the pancreas. NO is known to regulate cell homeostasis, and its effects on the acinar cells are reviewed here. ROS are implicated in the early events within the acinar cells, leading to the development of acute pancreatitis. The available data on ROS/RNS involvement in the apoptotic and necrotic death of pancreatic acinar cells will be discussed.
Collapse
Affiliation(s)
- M Chvanov
- The University of Liverpool The Physiological Laboratory Crown Street, Liverpool L69 3BX, UK.
| | | | | |
Collapse
|
481
|
Milward AD, Riba R, Patel B, Oberprieler NG, Naseem KM. Sodium orthovanadate induced tyrosine phosphorylation of platelet nitric oxide synthase negatively regulates enzyme activity. Biochim Biophys Acta Gen Subj 2006; 1760:1411-7. [PMID: 16875784 DOI: 10.1016/j.bbagen.2006.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 06/05/2006] [Accepted: 06/07/2006] [Indexed: 11/22/2022]
Abstract
The post-translational regulation of platelet nitric oxide synthase (NOS) activity is poorly understood. In the present study we examined how tyrosine phosphorylation of NOS, induced by the tyrosine phosphatase inhibitor sodium orthovanadate (VO4), influenced enzyme activity. Platelet NOS was basally tyrosine phosphorylated, but incubation with VO4 (100-1000 microM) led to a concentration-dependent increase in tyrosine phosphorylation of the enzyme with maximal effects observed at 500 microM. Importantly, we observed no change in serine(1179) or threonine(497) phosphorylation. The increased tyrosine phosphorylation was associated with reduced NOS activity and NO bioavailability, as evidenced by measurement of [(3)H]-L-citrulline and cGMP respectively. The signalling events underlying the effects of VO4 were studied using specific inhibitors to kinases that are known to influence NOS activity. Preincubation of platelets with the Src kinase inhibitor PP2 (20 microM) blocked VO4-induced tyrosine phosphorylation of NOS and abolished the effects of VO4 on cGMP formation. The PKC inhibitor Ro-31-8220 (10 microM) had no effect on VO4-induced tyrosine phosphorylation, but did have a modest but significant effect on cGMP formation. In contrast, the PI-3-kinase inhibitor wortmannin (100 nM) had no effect on either tyrosine phosphorylation or cGMP formation. Our data indicate that tyrosine phosphorylation may act to repress NOS activity. Furthermore, VO4 induces a Src-dependent, and to a lesser degree PKC-dependent, inhibition of platelet NOS.
Collapse
Affiliation(s)
- Andrew D Milward
- Department of Medical Biosciences, University of Bradford, Great Horton Road, Bradford, UK
| | | | | | | | | |
Collapse
|
482
|
Wessells H, Teal TH, Engel K, Sullivan CJ, Gallis B, Tran KB, Chitaley K. Fluid shear stress-induced nitric oxide production in human cavernosal endothelial cells: inhibition by hyperglycaemia. BJU Int 2006; 97:1047-52. [PMID: 16643490 DOI: 10.1111/j.1464-410x.2006.06059.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate whether fluid shear stress (FSS) induces endothelial nitric oxide synthase (eNOS) activity and NO production in isolated human corpus cavernosal endothelial cells (HCCECs), and whether this response is altered during hyperglycaemia in vitro, as haemodynamic signalling during penile erection induces eNOS-mediated NO production in vivo. MATERIALS AND METHODS ECs were cultured from HCC and characterized by the uptake of acetylated low-density lipoprotein and the expression of von Willebrand factor, VE-cadherin, CD31 and eNOS. HCCECs were exposed to FSS (1.2 Pa (12 dynes/cm2), 5 min) using a cone-and-plate viscometer in the presence or absence of high glucose (30 mm, 48 h). The phosphorylation of ser1177 on eNOS and total eNOS protein expression after FSS was examined by Western blot. NO in the conditioned media was assessed by measuring nitrate and nitrite levels. RESULTS Compared to static conditions, FSS induced a significant increase in the phosphorylation of eNOS on ser1177 in HCCECs, and the release of NO to the conditioned media. Treatment of HCCECs with high glucose levels did not alter the ratio FSS-induced phosphorylated eNOS/total eNOS, but did result in the down-regulation of total eNOS and significantly attenuated FSS-induced NO release. CONCLUSION These in vitro data suggest that FSS contributes to eNOS activation and NO release in HCCECs, and supports in vivo reports suggesting a role for haemodynamic signalling in the erectile response. Treatment with high glucose levels prevented FSS-induced NO release, suggesting a mechanism that may contribute to decreased erectile function associated with diabetes.
Collapse
Affiliation(s)
- Hunter Wessells
- Department of Urology, University of Washington School of Medicine and Harborview Medical Center, Seattle, WA 98104-2499, USA.
| | | | | | | | | | | | | |
Collapse
|
483
|
Krotova K, Hu H, Xia SL, Belayev L, Patel JM, Block ER, Zharikov S. Peptides modified by myristoylation activate eNOS in endothelial cells through Akt phosphorylation. Br J Pharmacol 2006; 148:732-40. [PMID: 16715118 PMCID: PMC1751869 DOI: 10.1038/sj.bjp.0706777] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Myristoylated pseudosubstrate of PKCzeta (mPS) - a synthetic myristoylated peptide with a sequence (13 amino acids) mimicking the endogenous PKCzeta pseudosubstrate region -- is considered a selective cell-permeable inhibitor of PKCzeta. We present strong evidence that in endothelial cells the action of mPS is not limited to inhibition of PKC activity and that myristoylation of certain peptides can activate eNOS (endothelial nitric oxide synthase) through Akt phosphorylation. 2. mPS at micromolar concentrations (1-10 microM) induced profound phosphorylation of eNOS, Akt, ERK 1/2, and p38 MAPK in cultured pulmonary artery endothelial cells (PAEC). The same changes were observed after treatment of PAEC with a myristoylated scrambled version of mPS (mScr), whereas a cell-permeable version of PKCzeta pseudosubstrate fused to the HIV-TAT membrane-translocating peptide did not induce analogous changes, suggesting that myristoylation confers new properties on the peptides consisting of activation of different signaling pathways in endothelial cells. 3. In addition to mPS and mScr, a number of other myristoylated peptides induced phosphorylation of eNOS suggesting that myristoylation of peptides can activate eNOS by mechanisms unrelated to inhibition of PKC. All active myristoylated peptides contained basic amino acids motif and were longer than six amino acids. 4. Activation of eNOS by myristoylated peptides was dependent on the PI3K/Akt pathway and the rise of intracellular calcium and was associated with an elevation of cGMP levels in PAEC and with relaxation of precontracted isolated pulmonary artery segments. 5. Myristoylated peptides can be considered a new class of activators of NO production in endothelial cells and that using mPS as a specific inhibitor of PKC should be done with caution, especially in endothelial cells.
Collapse
Affiliation(s)
- Karina Krotova
- Department of Medicine, University of Florida, VA Medical Center, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
484
|
Abstract
Unlike other types of cancer, tumors of the breast are greatly influenced by steroid hormones. The effect of estrogen and progesterone depends on the presence of their specific receptors and these constitute important parameters in determining the aggressiveness of the tumor, the feasibility of certain therapies and the prediction of relapse. The molecular mechanisms of steroid hormone action have not been fully elucidated but recent findings implicate the nitric oxide (NO) pathway in some of these effects. Both hormones can regulate the nitric oxide synthases (NOS) and, in turn, the NO produced has profound consequences on tumor cell homeostasis. On one hand, estrogen increases the activity of endothelial NOS (eNOS or NOSIII), while progesterone activates inducible NOS (iNOS or NOSII) expression. The data presented suggest that the low levels of NO produced by NOSIII mediate the proliferative effect of estrogen. On the other hand, the increase in apoptosis in response to progesterone could implicate the high levels of NO produced by induction of NOSII expression. Understanding of the mechanisms and interactions of steroid hormones with the NO pathway could lead to the development of new approaches and strategies for the effective treatment of breast cancer.
Collapse
Affiliation(s)
- Alena Pance
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
485
|
Parathath SR, Parathath S, Tsirka SE. Nitric oxide mediates neurodegeneration and breakdown of the blood-brain barrier in tPA-dependent excitotoxic injury in mice. J Cell Sci 2006; 119:339-49. [PMID: 16410551 DOI: 10.1242/jcs.02734] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stroke and many neurodegenerative diseases culminate in neuronal death through a mechanism known as excitotoxicity. Excitotoxicity proceeds through a complex signaling pathway that includes the participation of the serine protease tissue plasminogen activator (tPA). tPA mediates neurotoxic effects on resident central nervous system cells as well alters blood-brain barrier (BBB) permeability, which further promotes neurodegeneration. Another signaling molecule that promotes neurodegeneration and BBB dysfunction is nitric oxide (NO), although its precise role in pathological progression remains unclear. We examine here the potentially interrelated roles of tPA, NO and peroxynitrite (ONOO-), which is the toxic metabolite of NO, in BBB breakdown and neurodegeneration following intrahippocampal injection of the glutamate analog kainite (KA). We find that NO and ONOO- production are linked to tPA-mediated excitotoxic injury, and demonstrate that NO provision suffices to restore the toxic effects of KA in tPA-deficient mice that are normally resistant to excitotoxicity. NO also promotes BBB breakdown and excitotoxicity. Interestingly, BBB breakdown in itself does not suffice to elicit neurodegeneration; a subsequent ONOO(-)-mediated event is required. In conclusion, NO and ONOO- function as downstream effectors of tPA-mediated excitotoxicity.
Collapse
Affiliation(s)
- Susana R Parathath
- Program in Molecular and Cellular Biology, Department of Pharmacological Sciences, University Medical Center at Stony Brook, Stony Brook, NY 11794-8651, USA
| | | | | |
Collapse
|
486
|
Abstract
Endothelial dysfunction not only precedes the development of significant coronary artery stenosis, it has also been identified as a general phenomenon predicting future cardiovascular events in patients who are at risk. As regular physical activity as a part of a multifactorial intervention has been shown to affect symptoms beneficially, increase myocardial perfusion and--most importantly--reduce mortality in patients with coronary heart disease or myocardial infarction, this review will elucidate potential mechanisms responsible for the improvement in survival as a result of regular physical activity. The importance of exercise training-mediated regression of coronary stenosis, collateral formation, correction of endothelial dysfunction including the adaptation at the molecular level, as well as vasculogenesis will be discussed as possible underlying key players, and their potential contribution to the training-induced survival benefit in patients with coronary heart disease will be critically evaluated.
Collapse
Affiliation(s)
- Sandra Erbs
- Department of Cardiology, University of Leipzig, Heart Center, Leipzig, Germany
| | | | | |
Collapse
|
487
|
Oberleithner H, Riethmüller C, Ludwig T, Shahin V, Stock C, Schwab A, Hausberg M, Kusche K, Schillers H. Differential action of steroid hormones on human endothelium. J Cell Sci 2006; 119:1926-32. [PMID: 16636077 DOI: 10.1242/jcs.02886] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The action of glucocorticoids on vascular permeability is well established. However, little is known about the action of mineralocorticoids on the structure and function of blood vessels. As endothelial cells are targets for both glucocorticoids and mineralocorticoids, we exposed human umbilical vein endothelial cells to both types of steroids. Aldosterone (mineralocorticoid) and dexamethasone (glucocorticoid) were applied for 3 days in culture before measurements of transendothelial ion and macromolecule permeability, apical cell surface and cell stiffness were taken. Transendothelial ion permeability was measured with electrical cell impedance sensing, macromolecule permeability with fluorescence-labeled dextran and apical cell membrane surface by three-dimensional AFM imaging. Cell stiffness was measured using the AFM scanning tip as a mechanical nanosensor. We found that aldosterone increased both apical cell surface and apical cell stiffness significantly, while transendothelial permeability remained unaffected. By contrast, dexamethasone significantly decreased ion and macromolecule permeability, while apical cell surface and cell stiffness did not change. Specific receptor antagonists for dexamethasone (RU486) and aldosterone (spironolactone) prevented the observed responses. We conclude that glucocorticoids strengthen cell-to-cell contacts (`peripheral action'), whereas mineralocorticoids enlarge and stiffen cells (`central action'). This could explain the dexamethasone-mediated retention of fluid in the vascular system, and endothelial dysfunction in states of hyperaldosteronism.
Collapse
Affiliation(s)
- Hans Oberleithner
- Institute of Physiology II, University Münster, 48149 Münster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
488
|
Linke A, Erbs S, Hambrecht R. Exercise and the coronary circulation-alterations and adaptations in coronary artery disease. Prog Cardiovasc Dis 2006; 48:270-84. [PMID: 16517248 DOI: 10.1016/j.pcad.2005.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coronary vasorelaxation depends on nitric oxide (NO) bioavailability, which is a function of endothelial nitric oxide synthase-derived NO production and NO inactivation by reactive oxygen species. This fine-tuned balance is disrupted in coronary artery disease (CAD). The impairment of NO production in conjunction with excessive oxidative stress promotes the loss of endothelial cells by apoptosis, leads to a further aggravation of endothelial dysfunction and triggers myocardial ischemia in CAD. In healthy individuals, increased release of NO from the vasculature in response to exercise training results from changes in endothelial nitric oxide synthase expression, phosphorylation, and conformation. However, exercise training has assumed a role in cardiac rehabilitation of patients with CAD, as well, because it reduces mortality and increases myocardial perfusion. This has been largely attributed to exercise training-mediated correction of coronary endothelial dysfunction in CAD. Indeed, regular physical activity restores the balance between NO production and NO inactivation by reactive oxygen species in CAD, thereby enhancing the vasodilatory capacity in different vascular beds. Because endothelial dysfunction has been identified as a predictor of cardiovascular events, the partial reversal of endothelial dysfunction secondary to exercise training might be the most likely mechanism responsible for the exercise training-induced reduction in cardiovascular morbidity and mortality in patients with CAD.
Collapse
Affiliation(s)
- Axel Linke
- Department of Cardiology, University of Leipzig-Heart Center, Leipzig, Germany
| | | | | |
Collapse
|
489
|
Abstract
Rho-associated kinases (ROCKs), the immediate downstream targets of RhoA, are ubiquitously expressed serine-threonine protein kinases that are involved in diverse cellular functions, including smooth muscle contraction, actin cytoskeleton organization, cell adhesion and motility, and gene expression. Recent studies have shown that ROCKs may play a pivotal role in cardiovascular diseases such as vasospastic angina, ischemic stroke, and heart failure. Indeed, inhibition of ROCKs by statins or other selective inhibitors leads to the upregulation and activation of endothelial nitric oxide synthase (eNOS) and reduction of vascular inflammation and atherosclerosis. Thus inhibition of ROCKs may contribute to some of the cholesterol-independent beneficial effects of statin therapy. Currently, two ROCK isoforms have been identified, ROCK1 and ROCK2. Because ROCK inhibitors are nonselective with respect to ROCK1 and ROCK2 and also, in some cases, may be nonspecific with respect to other ROCK-related kinases such as myristolated alanine-rich C kinase substrate (MARCKS), protein kinase A, and protein kinase C, the precise role of ROCKs in cardiovascular disease remains unknown. However, with the recent development of ROCK1- and ROCK2-knockout mice, further dissection of ROCK signaling pathways is now possible. Herein we review what is known about the physiological role of ROCKs in the cardiovascular system and speculate about how inhibition of ROCKs could provide cardiovascular benefits.
Collapse
Affiliation(s)
- Kensuke Noma
- Brigham and Women's Hospital, 65 Landsdowne St., Rm. 275, Cambridge, MA, USA
| | | | | |
Collapse
|
490
|
Kuhlmann CRW, Trümper JRFC, Tillmanns H, Alexander Schaefer C, Erdogan A. Nicotine inhibits large conductance Ca(2+)-activated K(+) channels and the NO/-cGMP signaling pathway in cultured human endothelial cells. SCAND CARDIOVASC J 2006; 39:348-52. [PMID: 16352487 DOI: 10.1080/14017430500200465] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The effects of nicotine on endothelium-dependent vasorelaxation mediated by nitric oxide (NO) are controversial. Since endothelial NO synthesis has been shown to depend on the activity of large conductance Ca(2 + )-activated K(+) channels (BK(Ca)), the present study investigated whether nicotine alters BK(Ca) single channel activity induced by the K(+) channel opener NS1619, and to examine a possible interaction with the endothelial NO generation. DESIGN The patch-clamp technique was used to examine the BK(Ca) activity. NO production was measured indirectly using a [(3)H]-cGMP-radioimmunoassay. All experiments were performed using cultured endothelial cells derived from human umbilical cord veins. RESULTS The BK(Ca) opener NS1619 (10 micromol/l) significantly increased the BK(Ca) open-state probability (NPo) from 0.011+/-0.007 (control) to 0.052+/-0.019. Co-perfusion with nicotine (1 micromol/l) significantly decreased NS1619 induced NPo (n = 14, p < 0.05). Intracellular cGMP levels were significantly increased, if cells were stimulated with NS1619 (+ 225%; n = 10, p < 0.05), which was blocked by Nicotine (1 micromol/l). CONCLUSIONS The results of the present study demonstrate that BK(Ca) activation by NS1619 plays an important role in the regulation of the NO-/cGMP-signaling-pathway. Endothelial dysfunction caused by nicotine may be connected with a decrease in BK(Ca)-activity.
Collapse
|
491
|
Murakami H, Murakami R, Kambe F, Cao X, Takahashi R, Asai T, Hirai T, Numaguchi Y, Okumura K, Seo H, Murohara T. Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC. Biochem Biophys Res Commun 2006; 341:973-8. [PMID: 16442496 DOI: 10.1016/j.bbrc.2006.01.052] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 01/13/2006] [Indexed: 11/28/2022]
Abstract
Fenofibrate improves endothelial function by lipid-lowering and anti-inflammatory effects. Additionally, fenofibrate has been demonstrated to upregulate endothelial nitric oxide synthase (eNOS). AMP-activated protein kinase (AMPK) has been reported to phosphorylate eNOS at Ser-1177 and stimulate vascular endothelium-derived nitric oxide (NO) production. We report here that fenofibrate activates AMPK and increases eNOS phosphorylation and NO production in human umbilical vein endothelial cells (HUVEC). Incubation of HUVEC with fenofibrate increased the phosphorylation of AMPK and acetyl-CoA carboxylase. Fenofibrate simultaneously increased eNOS phosphorylation and NO production. Inhibitors of protein kinase A and phosphatidylinositol 3-kinase failed to suppress the fenofibrate-induced eNOS phosphorylation. Neither bezafibrate nor WY-14643 activated AMPK in HUVEC. Furthermore, fenofibrate activated AMPK without requiring any transcriptional activities. These results indicate that fenofibrate stimulates eNOS phosphorylation and NO production through AMPK activation, which is suggested to be a novel characteristic of this agonist and unrelated to its effects on peroxisome proliferator-activated receptor alpha.
Collapse
Affiliation(s)
- Hisashi Murakami
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
492
|
Naruse K, Rask-Madsen C, Takahara N, Ha SW, Suzuma K, Way KJ, Jacobs JRC, Clermont AC, Ueki K, Ohshiro Y, Zhang J, Goldfine AB, King GL. Activation of vascular protein kinase C-beta inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes 2006; 55:691-8. [PMID: 16505232 DOI: 10.2337/diabetes.55.03.06.db05-0771] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of protein kinase C (PKC) in vascular tissue is associated with endothelial dysfunction and insulin resistance. However, the effect of vascular PKC activation on insulin-stimulated endothelial nitric oxide (NO) synthase (eNOS) regulation has not been characterized in obesity-associated insulin resistance. Diacylglycerol (DAG) concentration and PKC activity were increased in the aorta of Zucker fatty compared with Zucker lean rats. Insulin-stimulated increases in Akt phosphorylation and cGMP concentration (a measure of NO bioavailability) after euglycemic-hyperinsulinemic clamp were blunted in the aorta of fatty compared with lean rats but were partly normalized after 2 weeks of treatment with the PKCbeta inhibitor ruboxistaurin (LY333531). In endothelial cell culture, overexpression of PKCbeta1 and -beta2, but not PKCalpha, -delta, or -zeta, decreased insulin-stimulated Akt phosphorylation and eNOS expression. Overexpression of PKCbeta1 and -beta2, but not PKCalpha or -delta, also decreased Akt phosphorylation stimulated by vascular endothelial growth factor (VEGF). In microvessels isolated from transgenic mice overexpressing PKCbeta2 only in vascular cells, Akt phosphorylation stimulated by insulin was decreased compared with wild-type mice. Thus, activation of PKCbeta in endothelial cells and vascular tissue inhibits Akt activation by insulin and VEGF, inhibits Akt-dependent eNOS regulation by insulin, and causes endothelial dysfunction in obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Keiko Naruse
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
493
|
Takeda H, Komori K, Nishikimi N, Nimura Y, Sokabe M, Naruse K. Bi-phasic activation of eNOS in response to uni-axial cyclic stretch is mediated by differential mechanisms in BAECs. Life Sci 2006; 79:233-9. [PMID: 16458937 DOI: 10.1016/j.lfs.2005.12.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2005] [Revised: 12/07/2005] [Accepted: 12/27/2005] [Indexed: 11/26/2022]
Abstract
We investigated the signaling mechanism of stretch-induced NO (Nitric oxide) production in bovine arterial endothelial cells (BAECs). BAECs cultured on an elastic silicone chamber coated with fibronectin were subjected to uni-axial cyclic stretch (1 Hz, 20% in length) and the amount of produced NO was measured by a cGMP assay. NO production increased in a bi-phasic manner and peaked at 5 min and 20 min after stretch onset. Correspondingly, the activities of endothelial nitric oxide synthase (eNOS) and Akt/PKB (measured by phosphorylation at serine 1,177 and serine 473, respectively), showed two peaks over time. Application of Gd(3+), a potent SA channel blocker, and depletion of external Ca(2+) exclusively inhibited the first peaks of eNOS and Akt activity, but exerted little effect on the second peak. On the other hand, the PI3K inhibitors, Wortmannin, LY294002, almost completely inhibited the second peak but not the first. These results suggest that up-regulation of eNOS in response to cyclic stretch was mediated by two distinct pathways, [Ca(2+)](i) increases via the SA channel in an early phase (partially Akt/PKB), and PI3K-Akt/PKB pathways in a late phase.
Collapse
Affiliation(s)
- Hideo Takeda
- Division of Vascular Surgery, Department of Surgery, Nagoya 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
494
|
Williams JL, Cartland D, Hussain A, Egginton S. A differential role for nitric oxide in two forms of physiological angiogenesis in mouse. J Physiol 2006; 570:445-54. [PMID: 16293647 PMCID: PMC1479877 DOI: 10.1113/jphysiol.2005.095596] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/29/2005] [Accepted: 11/10/2005] [Indexed: 11/08/2022] Open
Abstract
NO plays a role in a variety of in vitro models of angiogenesis, although confounding effects of NO on non-endothelial tissues make its role during in vivo angiogenesis unclear. We therefore examined the effects of NO on two physiological models of angiogenesis in mouse skeletal muscle: (1) administration of prazosin (50 mg l-1) thereby increasing blood flow; and (2) muscle overload from surgical ablation of a functional synergist. These models induce angiogenesis via longitudinal splitting and capillary sprouting, respectively. Administration of NG-nitro-L-arginine (L-NNA) abolished the increase in capillary to fibre ratio (C:F) in response to prazosin administration, along with the increases in luminal filopodia and large endothelial vacuoles. L-NNA prevented luminal filopodia and vacuolisation in response to extirpation, but had no effect on abluminal sprouting, and little effect on C:F. Comparison of mice lacking endothelial (eNOS-/-) and neuronal NO synthase (nNOS-/-) showed that longitudinal splitting is eNOS-dependent, and Western blotting demonstrated an increase in eNOS but not inducible NOS (iNOS) expression. These data show that there are two pathways of physiological angiogenesis in skeletal muscle characterised by longitudinal splitting and capillary sprouting, respectively. NO generated by eNOS plays an essential role in splitting but not in sprouting angiogenesis, which has important implications for angiogenic therapies that target NO.
Collapse
Affiliation(s)
- James L Williams
- Angiogenesis Research Group, Centre for Cardiovascular Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
495
|
Gan Y, Shen YH, Utama B, Wang J, Coselli J, Wang XL. Dual effects of histone deacetylase inhibition by trichostatin A on endothelial nitric oxide synthase expression in endothelial cells. Biochem Biophys Res Commun 2006; 340:29-34. [PMID: 16338217 DOI: 10.1016/j.bbrc.2005.11.151] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 11/22/2005] [Indexed: 10/25/2022]
Abstract
Inhibition of histone deacetylases by trichostatin A (TSA) has pleiotropic effects on gene expression. We demonstrated that at low dose (0.1 microg) TSA increased the eNOS mRNA levels, which was followed by a time- and dose-dependent down-regulation. Cycloheximide, a protein synthesis inhibitor, completely abolished TSA-induced decrease in eNOS expression, indicating that new protein synthesis is required for the inhibiting effect. Mevastatin--an inhibitor HMG-CoA reductase and geranylgeranylation reaction dose-dependently antagonized TSA-induced reduction. This mevastatin-mediated antagonism was completely abolished by geranylgeranylpyrophosphate, suggesting that geranylgeranyl modification is needed to activate the eNOS mRNA destabilizing factor--a mechanism responsible for statin-mediated eNOS upregulation.
Collapse
Affiliation(s)
- Yehua Gan
- Laboratory of Molecular Biology and Center for TMJ Disorders, Peking University School of Stomatology, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
496
|
Rosanio S, Ye Y, Atar S, Rahman AM, Freeberg SY, Huang MH, Uretsky BF, Birnbaum Y. Enhanced Cardioprotection Against Ischemia-Reperfusion Injury with Combining Sildenafil with Low-Dose Atorvastatin. Cardiovasc Drugs Ther 2006; 20:27-36. [PMID: 16435070 DOI: 10.1007/s10557-005-5203-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Both ATV and SL reduce myocardial infarct size (IS) by enhancing expression and activity of NOS isoforms. We investigated whether atorvastatin (ATV) and sildenafil (SL) have synergistic effects on myocardial infarct size (IS) reduction and enhancing nitric oxide synthase (NOS) expression. METHOD Rats were randomized to nine groups: ATV-1 (1 mg/kg/d); ATV-10 (10 mg/kg/d); SL-0.7 (0.7 mg/kg); SL-1 (1 mg/kg); ATV-1 + SL-0.7; water alone (controls); 1400W (iNOS inhibitor; 1 mg/kg); ATV-10 + 1400W; and ATV-1 + SL-0.7 + 1400W. ATV was administered orally for 3 days. SL was administered intraperitoneally 18 h before surgery and 1400W intravenously 15 min before surgery. Rats either underwent 30 min ischemia-4 h reperfusion or the hearts were explanted for immunoblotting and enzyme activity tests without being exposed to ischemia. RESULTS IS (% risk area, mean +/- SEM) was smaller in the ATV-10 (13 +/- 1%), SL-1 (11 +/- 2%), SL-0.7 (18 +/- 2%) and ATV-1 + SL-0.7 (9 +/- 1%) groups as compared with controls (34 +/- 3%; P < 0.001), whereas ATV-1 had no effect (29 +/- 2%). ATV-1 + SL-0.7 (9 +/- 1%) reduced IS more than SL-0.7 alone (p = 0.012). 1400W abrogated the protective effect of ATV-10 (35 +/- 3%) and ATV-1 + SL-0.7 (34 +/- 1%). SL-0.7 and ATV-10 increased phosphorylated endothelial (P-eNOS; 210 +/- 2.5% and 220 +/- 8%) and inducible (iNOS; 151 +/- 1% and 154 +/- 1%) NOS expression, whereas ATV-1 did not. These changes were significantly enhanced by ATV-1 + SL-0.7 (P-eNOS, 256 +/- 2%, iNOS 195 +/- 1%). SL-1 increased P-eNOS (311 +/- 22%) and iNOS (185 +/- 1%) concentrations. CONCLUSIONS Combining low-dose ATV with SL augments the IS limiting effects through enhanced P-eNOS and iNOS expression.
Collapse
Affiliation(s)
- Salvatore Rosanio
- The Department of Internal Medicine, Division of Cardiology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
497
|
Rezende BA, Lemos VS, Cortes SF. Activation of nitric oxide modulator effect by isometric contraction in rat resistance arteries. J Cardiovasc Pharmacol 2006; 47:51-4. [PMID: 16424785 DOI: 10.1097/01.fjc.0000194032.20380.c0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The participation of nitric oxide (NO) as a modulator of the isometric contraction, as well as the underlying mechanism, was investigated in rat small mesenteric arteries. In the presence of a functional endothelium, L-NAME and L-NA similarly increased the contractions induced by phenylephrine, dependently on the level of contraction. However, no effect was observed in the absence of a functional endothelium. In the presence of selective inhibitors of protein kinase C (PKC) and phosphatidyl-inositol 3-kinase (PI3K), calphostin-C and wortmannin, respectively, the effect of L-NAME was not modified. The same observation was done in the presence of the tyrosine kinase inhibitors, genistein and tyrphostin A-23. However, in the presence of a Ca2+-independent tyrosine kinase inhibitor, erbstatin-A, and on the presence of a non-selective kinase inhibitor, staurosporine, a strong reduction was observed. Our results suggest that protein kinases are involved in the activation of nitric oxide modulator effect on isometric contractions in resistance arteries.
Collapse
Affiliation(s)
- Bruno A Rezende
- Depto. de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil
| | | | | |
Collapse
|
498
|
Frossard JL, Quadri R, Hadengue A, Morel P, Pastor CM. Endothelial nitric oxide synthase regulation is altered in pancreas from cirrhotic rats. World J Gastroenterol 2006; 12:228-33. [PMID: 16482622 PMCID: PMC4066031 DOI: 10.3748/wjg.v12.i2.228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether biliary cirrhosis could induce pancreatic dysfunction such as modifications in endothelial nitric oxide synthase(eNOS) expression and whether the regulation of eNOS could be altered by the regulatory proteins caveolin and heat shock protein 90 (Hsp90), as well as by the modifications of calmodulin binding to eNOS.
METHODS: Immunoprecipitations and Western blotting analysis were performed in pancreas isolated from sham and cirrhotic rats.
RESULTS: Pancreatic injury was minor in cirrhotic rats but eNOS expression importantly decreased with the length (and the severity) of the disease. Because co-immunoprecipitation of eNOS with both Hsp90 and caveolin similarly decreased in cirrhotic rats, eNOS activity was not modified by this mechanism. In contrast, cirrhosis decreased the calmodulin binding to eNOS with a concomitant decrease in eNOS activity.
CONCLUSION: In biliary cirrhosis, pancreatic injury is minor but the pancreatic nitric oxide (NO) production is significantly decreased by two mechanisms: a decreased expression of the enzyme and a decreased binding of calmodulin to eNOS.
Collapse
Affiliation(s)
- Jean-Louis Frossard
- Division de Gastroenterologie, Hôpitaux Universitaires de GenevePhilippe Morel, Departement de Chirurgie, Hopitaux Universitaires de Geneve, Switzerland
| | | | | | | | | |
Collapse
|
499
|
Kamoun WS, Karaa A, Kresge N, Merkel SM, Korneszczuk K, Clemens MG. LPS inhibits endothelin-1-induced endothelial NOS activation in hepatic sinusoidal cells through a negative feedback involving caveolin-1. Hepatology 2006; 43:182-90. [PMID: 16374854 DOI: 10.1002/hep.20940] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During endotoxemia, liver microcirculation disruption is characterized by a hypersensitivity to the constrictor effects of endothelin 1 (ET-1). The shift of ET-1-mediated effects toward vasoconstriction may result from depressed ET-1-mediated vasodilation through decreased ET-1-induced nitric oxide (NO) production. We have previously shown that lipopolysaccharide (LPS) pretreatment abrogates ET-1-induced endothelial nitric oxide synthase (eNOS) translocation, but its effects on eNOS activation are yet to be determined. Our aim was to assess the effects of LPS on ET-1-mediated eNOS activation in hepatic sinusoidal endothelial cells (SECs) and to investigate the molecular mechanisms involved. SECs were treated with LPS (100 ng/mL) for 6 hours followed by 30 minutes ET-1 (10 nmol/L) stimulation. LPS significantly inhibited ET-1-mediated eNOS activation. This inhibition was associated with upregulation of Caveolin-1 (CAV-1) and a shift in ET-1-mediated eNOS phosphorylation from an activation (Ser1177) to an inhibition (Thr495). LPS treatment has been shown to induce ET-1 expression and secretion from endothelial cells. We therefore investigated the role of endogenous ET-1 in the inhibition of ET-1 activation of eNOS after LPS. Antagonizing ET-1 effects and blocking its activation in LPS pretreated SECs decreased the LPS-induced overexpression of CAV-1 as well as the inhibition of ET-1-induced NOS activity. Furthermore, 6 hours of ET-1 treatment exerted the same effects on eNOS activity, phosphorylation, and CAV-1 expression as LPS treatment. In conclusion, LPS-induced suppression of ET-1-mediated eNOS activation is ET-1 dependent and suggest a pivotal role of CAV-1 in eNOS induction inhibition under stress.
Collapse
Affiliation(s)
- Walid S Kamoun
- Department of Biology, University of North Carolina, Charlotte, NC 28223, USA
| | | | | | | | | | | |
Collapse
|
500
|
Farías M, San Martín R, Puebla C, Pearson JD, Casado JF, Pastor-Anglada M, Casanello P, Sobrevia L. Nitric oxide reduces adenosine transporter ENT1 gene (SLC29A1) promoter activity in human fetal endothelium from gestational diabetes. J Cell Physiol 2006; 208:451-60. [PMID: 16688763 DOI: 10.1002/jcp.20680] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human umbilical vein endothelial cells (HUVEC) from gestational diabetes exhibit reduced adenosine uptake and increased nitric oxide (NO) synthesis. Adenosine transport via human equilibrative nucleoside transporters 1 (hENT1) is reduced by NO by unknown mechanisms in HUVEC. We examined whether gestational diabetes-reduced adenosine transport results from lower hENT1 gene (SLC29A1) expression. HUVEC from gestational diabetes exhibit reduced SLC29A1 promoter activity when transfected with pGL3-hENT1(-2154) compared with pGL3-hENT1(-1114) constructs, an effect blocked by N(G)-nitro-L-arginine methyl ester (L-NAME, NOS inhibitor), but unaltered by S-nitroso-N-acetyl-L,D-penicillamine (SNAP, NO donor). In cells from gestational diabetes transfected with pGL3-hENT1(-2154), L-NAME increased, but SNAP did not alter promoter activity and hENT1 expression. However, in cells from normal pregnancies L-NAME increased, but SNAP reduced promoter activity and hENT1 expression. Adenovirus-silenced eNOS expression increased hENT1 expression and activity in cells from normal or gestational diabetic pregnancies. Thus, reduced adenosine transport may result from downregulation of SLC29A1 expression by NO in HUVEC from gestational diabetes. These findings explain the accumulation of extracellular adenosine detected in cultures of HUVEC from gestational diabetes. In addition, fetal endothelial dysfunction could be involved in the abnormal fetal development and growth seen in gestational diabetes.
Collapse
Affiliation(s)
- Marcelo Farías
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics and Gynaecology, Medical Research Centre (CIM), School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|