451
|
Wu YP, Siao CJ, Lu W, Sung TC, Frohman MA, Milev P, Bugge TH, Degen JL, Levine JM, Margolis RU, Tsirka SE. The tissue plasminogen activator (tPA)/plasmin extracellular proteolytic system regulates seizure-induced hippocampal mossy fiber outgrowth through a proteoglycan substrate. J Cell Biol 2000; 148:1295-304. [PMID: 10725341 PMCID: PMC2174310 DOI: 10.1083/jcb.148.6.1295] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Short seizure episodes are associated with remodeling of neuronal connections. One region where such reorganization occurs is the hippocampus, and in particular, the mossy fiber pathway. Using genetic and pharmacological approaches, we show here a critical role in vivo for tissue plasminogen activator (tPA), an extracellular protease that converts plasminogen to plasmin, to induce mossy fiber sprouting. We identify DSD-1-PG/phosphacan, an extracellular matrix component associated with neurite reorganization, as a physiological target of plasmin. Mice lacking tPA displayed decreased mossy fiber outgrowth and an aberrant band at the border of the supragranular region of the dentate gyrus that coincides with the deposition of unprocessed DSD-1-PG/phosphacan and excessive Timm-positive, mossy fiber termini. Plasminogen-deficient mice also exhibit the laminar band and DSD- 1-PG/phosphacan deposition, but mossy fiber outgrowth through the supragranular region is normal. These results demonstrate that tPA functions acutely, both through and independently of plasmin, to mediate mossy fiber reorganization.
Collapse
Affiliation(s)
- Yan Ping Wu
- Department of Psychiatry, University Medical Center at Stony Brook, Stony Brook, New York 11794-8651
| | - Chia-Jen Siao
- Department of Psychiatry, University Medical Center at Stony Brook, Stony Brook, New York 11794-8651
- Department of Pharmacological Sciences, University Medical Center at Stony Brook, Stony Brook, New York 11794-8651
| | - Weiquan Lu
- Department of Psychiatry, University Medical Center at Stony Brook, Stony Brook, New York 11794-8651
- Department of Pharmacological Sciences, University Medical Center at Stony Brook, Stony Brook, New York 11794-8651
| | - Tsung-Chang Sung
- Department of Pharmacological Sciences, University Medical Center at Stony Brook, Stony Brook, New York 11794-8651
| | - Michael A. Frohman
- Department of Pharmacological Sciences, University Medical Center at Stony Brook, Stony Brook, New York 11794-8651
| | - Peter Milev
- Department of Pharmacology, New York University Medical Center, New York, New York 10016
| | - Thomas H. Bugge
- Division of Developmental Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229
| | - Jay L. Degen
- Division of Developmental Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229
| | - Joel M. Levine
- Department of Neurobiology and Behavior, University Medical Center at Stony Brook, Stony Brook, New York 11794-8651
| | - Richard U. Margolis
- Department of Pharmacology, New York University Medical Center, New York, New York 10016
| | - Stella E. Tsirka
- Department of Psychiatry, University Medical Center at Stony Brook, Stony Brook, New York 11794-8651
- Department of Pharmacological Sciences, University Medical Center at Stony Brook, Stony Brook, New York 11794-8651
| |
Collapse
|
452
|
Barbarosie M, Louvel J, Kurcewicz I, Avoli M. CA3-released entorhinal seizures disclose dentate gyrus epileptogenicity and unmask a temporoammonic pathway. J Neurophysiol 2000; 83:1115-24. [PMID: 10712442 DOI: 10.1152/jn.2000.83.3.1115] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have investigated the propagation of epileptiform discharges induced by 4-aminopyridine (4-AP, 50 microM) in adult mouse hippocampus-entorhinal cortex slices, before and after Schaffer collateral cut. 4-AP application induced 1) ictal epileptiform activity that disappeared over time and 2) interictal epileptiform discharges, which continued throughout the experiment. Using simultaneous field potential and [K(+)](o) recordings, we found that entorhinal and dentate ictal epileptiform discharges were accompanied by comparable elevations in [K(+)](o) (up to 12 mM from a baseline value of 3.2 mM), whereas smaller rises in [K(+)](o) (up to 6 mM) were associated with ictal activity in CA3. Cutting the Schaffer collaterals disclosed the occurrence of ictal discharges that were associated with larger rises in [K(+)](o) as compared with the intact slice. Further lesion of the perforant path blocked ictal activity and the associated [K(+)](o) increases in the dentate gyrus, indicating synaptic propagation to this area. Time delay measurements demonstrated that ictal epileptiform activity in the intact hippocampal-entorhinal cortex slice propagated via the trisynaptic path. However, after Schaffer collateral cut, ictal discharges continued to occur in CA1 and subiculum and spread to these areas directly from the entorhinal cortex. Thus our data indicate that the increased epileptogenicity of the dentate gyrus (a prominent feature of temporal lobe epilepsy as well), may depend on perforant path propagation of entorhinal ictal discharges, irrespective of mossy fiber reorganization. Moreover, hippocampal neuronal damage that is acutely mimicked in our model by Schaffer collateral cut, may contribute to "short-circuit" propagation of activity by pathways that are masked when the hippocampus is intact.
Collapse
Affiliation(s)
- M Barbarosie
- Departments of Neurology and Neurosurgery, and Physiology, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | |
Collapse
|
453
|
Vida I, Frotscher M. A hippocampal interneuron associated with the mossy fiber system. Proc Natl Acad Sci U S A 2000; 97:1275-80. [PMID: 10655521 PMCID: PMC15594 DOI: 10.1073/pnas.97.3.1275] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Network properties of the hippocampus emerge from the interaction of principal cells and a heterogeneous population of interneurons expressing gamma-aminobutyric acid (GABA). To understand these interactions, the synaptic connections of different types of interneurons need to be elucidated. Here we describe a type of inhibitory interneuron of the hippocampal CA3 region that has an axon coaligned with the mossy fibers. Whole-cell patch-clamp recordings, in combination with intracellular biocytin filling, were made from nonpyramidal cells of the stratum lucidum under visual control. Mossy fiber-associated (MFA) interneurons generated brief action potentials followed by a prominent after-hyperpolarization. Subsequent visualization revealed an extensive axonal arbor which was preferentially located in the stratum lucidum of CA3 and often invaded the hilus. The dendrites of MFA interneurons were mainly located in the strata radiatum and oriens, suggesting that these cells are primarily activated by associational and commissural fibers. Electron microscopic analysis showed that axon terminals of MFA interneurons established symmetric synaptic contacts predominantly on proximal apical dendritic shafts, and to a lesser degree, on somata of pyramidal cells. Synaptic contacts were also found on GABAergic interneurons of the CA3 region and putative mossy cells of the hilus. Inhibitory postsynaptic currents (IPSCs) elicited by MFA interneurons in simultaneously recorded pyramidal cells had fast kinetics (half duration, 3.6 ms) and were blocked by the GABA(A) receptor antagonist bicuculline. Thus, MFA interneurons are GABAergic cells in a position to selectively suppress the mossy fiber input, an important requirement for the recall of memory traces from the CA3 network.
Collapse
Affiliation(s)
- I Vida
- Anatomisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | |
Collapse
|
454
|
Lynch M, Sutula T. Recurrent excitatory connectivity in the dentate gyrus of kindled and kainic acid-treated rats. J Neurophysiol 2000; 83:693-704. [PMID: 10669485 DOI: 10.1152/jn.2000.83.2.693] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Repeated seizures induce mossy fiber axon sprouting, which reorganizes synaptic connectivity in the dentate gyrus. To examine the possibility that sprouted mossy fiber axons may form recurrent excitatory circuits, connectivity between granule cells in the dentate gyrus was examined in transverse hippocampal slices from normal rats and epileptic rats that experienced seizures induced by kindling and kainic acid. The experiments were designed to functionally assess seizure-induced development of recurrent circuitry by exploiting information available about the time course of seizure-induced synaptic reorganization in the kindling model and detailed anatomic characterization of sprouted fibers in the kainic acid model. When recurrent inhibitory circuits were blocked by the GABA(A) receptor antagonist bicuculline, focal application of glutamate microdrops at locations in the granule cell layer remote from the recorded granule cell evoked trains of excitatory postsynaptic potentials (EPSPs) and population burst discharges in epileptic rats, which were never observed in slices from normal rats. The EPSPs and burst discharges were blocked by bath application of 1 microM tetrodotoxin and were therefore dependent on network-driven synaptic events. Excitatory connections were detected between blades of the dentate gyrus in hippocampal slices from rats that experienced kainic acid-induced status epilepticus. Trains of EPSPs and burst discharges were also evoked in granule cells from kindled rats obtained after > or = 1 wk of kindled seizures, but were not evoked in slices examined 24 h after a single afterdischarge, before the development of sprouting. Excitatory connectivity between blades of the dentate gyrus was also assessed in slices deafferented by transection of the perforant path, and bathed in artificial cerebrospinal fluid (ACSF) containing bicuculline to block GABA(A) receptor-dependent recurrent inhibitory circuits and 10 mM [Ca(2+)](o) to suppress polysynaptic activity. Low-intensity electrical stimulation of the infrapyramidal blade under these conditions failed to evoke a response in suprapyramidal granule cells from normal rats (n = 15), but in slices from epileptic rats evoked an EPSP at a short latency (2.59 +/- 0.36 ms) in 5 of 18 suprapyramidal granule cells. The results are consistent with formation of monosynaptic excitatory connections between blades of the dentate gyrus. Recurrent excitatory circuits developed in the dentate gyrus of epileptic rats in a time course that corresponded to the development of mossy fiber sprouting and demonstrated patterns of functional connectivity corresponding to anatomic features of the sprouted mossy fiber pathway.
Collapse
Affiliation(s)
- M Lynch
- Departments of Neurology and Anatomy and The Neuroscience Training Program, University of Wisconsin, Madison, 53792, USA
| | | |
Collapse
|
455
|
Crowder KM, Gunther JM, Jones TA, Hale BD, Zhang HZ, Peterson MR, Scheller RH, Chavkin C, Bajjalieh SM. Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc Natl Acad Sci U S A 1999; 96:15268-73. [PMID: 10611374 PMCID: PMC24809 DOI: 10.1073/pnas.96.26.15268] [Citation(s) in RCA: 312] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic vesicle protein 2 (SV2) is a membrane glycoprotein common to all synaptic and endocrine vesicles. Unlike many proteins involved in synaptic exocytosis, SV2 has no homolog in yeast, indicating that it performs a function unique to secretion in higher eukaryotes. Although the structure and protein interactions of SV2 suggest multiple possible functions, its role in synaptic events remains unknown. To explore the function of SV2 in an in vivo context, we generated mice that do not express the primary SV2 isoform, SV2A, by using targeted gene disruption. Animals homozygous for the SV2A gene disruption appear normal at birth. However, they fail to grow, experience severe seizures, and die within 3 weeks, suggesting multiple neural and endocrine deficits. Electrophysiological studies of spontaneous inhibitory neurotransmission in the CA3 region of the hippocampus revealed that loss of SV2A leads to a reduction in action potential-dependent gamma-aminobutyric acid (GABA)ergic neurotransmission. In contrast, action potential-independent neurotransmission was normal. Analyses of synapse ultrastructure suggest that altered neurotransmission is not caused by changes in synapse density or morphology. These findings demonstrate that SV2A is an essential protein and implicate it in the control of exocytosis.
Collapse
Affiliation(s)
- K M Crowder
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
456
|
Abstract
Place cells were recorded simultaneously from identified locations along the longitudinal axis of the CA3 and CA1 subregions of hippocampus with a sixteen site electrode array while rats performed a simple pellet chasing task (Deadwyler et al., J Neurosci 1996;16:354-372; Hampson et al., Hippocampus 1996;6:281-293). Cells in CA3 or CA1, separated by 100-300 microm (two electrode locations), exhibited high cross-correlations with respect to place field firing in a given location in the chamber. This pattern of co-activity changed abruptly to low cross-correlations when the longitudinal distance between recording sites increased to 400-1,000 microm. Surprisingly, cells located 1,200-1,400 microm apart again exhibited similar place fields, suggesting a repeating pattern of place field representation within hippocampus. These features were used to construct a model of hippocampal place cell activation using known anatomic connections and projections between CA3 as well as CA1 pyramidal cells. The model provides a topographic representation in hippocampus of the animals' movements around the chamber as different place cells become activated. The model utilizes key landmarks (i.e., corners and walls) to define the animals' movement trajectories through successive place fields and to construct corresponding patterns of place cell firing in hippocampus. This is accomplished via a topological transformation of the chamber's key landmarks projected onto the anatomy of the CA3 and CA1 subregions. The primary feature of the model is that it can, within limited capacity, accurately encode where the animal has been, rather than where it is going. The model, therefore, appears to be more appropriate for memory required to return to particular locations than for initial guidance into those locations.
Collapse
Affiliation(s)
- S A Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157-1800, USA.
| | | |
Collapse
|
457
|
Makiura Y, Suzuki F, Chevalier E, Onténiente B. Excitatory granule cells of the dentate gyrus exhibit a double inhibitory neurochemical content after intrahippocampal administration of kainate in adult mice. Exp Neurol 1999; 159:73-83. [PMID: 10486176 DOI: 10.1006/exnr.1999.7138] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that, in the adult mouse, injection of kainate/AMPA receptors agonists into the dorsal hippocampus induces major structural modifications of the dentate gyrus granule cells. Such changes are mediated by the brain-derived neurotrophic factor (BDNF). Considering previous involvements of BDNF in activity-linked regulations of hippocampal neuronal phenotype, changes of neurochemical contents were further investigated. It is shown that excitatory granule cells rapidly acquire a strong immunoreactivity for the inhibitory neurotransmitters GABA and neuropeptide-Y, with different patterns for both molecules. GABA immunoreactivity appeared first in mossy fibers, before extending to cell bodies and dendrites. Analysis of glutamic acid decarboxylase revealed slight increases in mossy fibers and no somatic labeling. In contrast to GABA, neuropeptide-Y labeling was observed first in granule cell soma and then in mossy fibers, with a centrifugal gradient. All labelings were transient, but slight amounts of GABA and NPY were kept in some cell bodies for at least 6 months. Confocal microscope analysis of double GABA/NPY labelings revealed colocalization of both mediators in the same neurons. The specificity of kainate-linked changes was suggested by lack of immunoreactivity for somatostatin. These results show that the capacities of mature granule cells to adapt environmental modifications can concern neurochemical contents, by synthesis and/or uptake of specific molecules. The fact that adaptive changes are rapid and transient suggests a direct response to kainate, in order to limit its potentially deleterious effects. Colocalization of GABA and neuropeptide-Y indicates that the dentate gyrus granule cells can use several pathways to this aim.
Collapse
Affiliation(s)
- Y Makiura
- Faculté de Médecine, INSERM U421/IM3, 8 rue du Général Sarrail, Créteil Cedex, F-94010, France
| | | | | | | |
Collapse
|
458
|
Schoen SW, Ebert U, Löscher W. 5'-Nucleotidase activity of mossy fibers in the dentate gyrus of normal and epileptic rats. Neuroscience 1999; 93:519-26. [PMID: 10465435 DOI: 10.1016/s0306-4522(99)00135-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sprouting of mossy fibers in the hippocampus of rats that underwent limbic epileptogenesis by amygdala kindling or kainate injection was studied at the light microscopic and ultrastructural levels by cytochemical demonstration of the enzyme 5'-nucleotidase. This adenosine-producing ectoenzyme has previously been shown to characterize malleable terminals during brain development and lesion-induced synaptogenesis, but to be otherwise associated with glial membranes. At the light microscopic level, kainate-treated but not control or kindled rats showed 5'-nucleotidase activity in the CA3 region and in the inner molecular layer of the dentate gyrus. At the ultrastructural level, in control animals, the synapses of the molecular and granular layers were enzyme negative. Only some mossy fiber boutons of the dentate hilus exhibited 5'-nucleotidase activity. In epileptic rats, synaptic labeling within the hilus appeared more intense. Moreover, 5'-nucleotidase-containing terminals within the inner molecular layer, presumably ectopic mossy fiber boutons, were found in both kindled and kainate-treated rats. It is concluded that, in both the normal and epileptic hippocampus, 5'-nucleotidase is associated with axons capable of a plastic sprouting response. The synaptic enzyme may attenuate the glutamatergic transmission of mossy fibers, in particular of the aberrant mossy fibers in epileptic rats, by producing the inhibitory neuromodulator adenosine. Alternatively, 5'-nucleotidase may influence synapse formation by its putative non-enzymatic, adhesive functions.
Collapse
Affiliation(s)
- S W Schoen
- Department of Neurology, Aachen University Medical School, Germany
| | | | | |
Collapse
|
459
|
Seki T, Arai Y. Different polysialic acid-neural cell adhesion molecule expression patterns in distinct types of mossy fiber boutons in the adult hippocampus. J Comp Neurol 1999; 410:115-25. [PMID: 10397399 DOI: 10.1002/(sici)1096-9861(19990719)410:1<115::aid-cne10>3.0.co;2-c] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dentate granule cells continue to be generated in the adult hippocampus, and the newly generated granule cells express the highly polysialylated neural cell adhesion molecule (PSA-NCAM), which has been shown to be important in neural development and plasticity. In the present study, the PSA-NCAM expression pattern in morphologically distinct types of mossy fiber boutons in adult rats was examined by immunoelectron and confocal laser scanning microscopy. Although many unmyelinated axons within the mossy fiber bundles expressed PSA-NCAM, most of the mature type of mossy fiber boutons were negative for polysialic acid (PSA) but positive for NCAM peptides, suggesting that NCAM is less polysialylated in the mature mossy fiber boutons. On the other hand, PSA was expressed by small round varicosities, irregularly shaped boutons, and the presumptive immature type of mossy fiber boutons. The PSA-positive small boutons were found to make synaptic contacts with CA3 pyramidal cells and nonpyramidal cells. The PSA-expressing presumptive immature boutons contained fewer clear synaptic vesicles and mitochondria, and, in some instances, they were invaginated by the PSA-positive, finger-like dendritic outgrowths arising from the dendritic shafts of the pyramidal cells, which are known to develop into a mossy fiber bouton-thorny excrescence complex. These findings indicate that distinct types of the mossy fiber boutons possess different PSA expression patterns in the adult hippocampus, and they also imply that PSA expression allows the mossy fibers to have the ability to regulate the bouton formation and remodeling that accompany synapse formation at the contact sites with pyramidal cells and nonpyramidal cells.
Collapse
Affiliation(s)
- T Seki
- Department of Anatomy, Juntendo University, School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
460
|
Kocsis B, Bragin A, Buzsáki G. Interdependence of multiple theta generators in the hippocampus: a partial coherence analysis. J Neurosci 1999; 19:6200-12. [PMID: 10407056 PMCID: PMC6783086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/1999] [Revised: 04/05/1999] [Accepted: 05/06/1999] [Indexed: 02/13/2023] Open
Abstract
The extracellularly recorded theta oscillation reflects a dynamic interaction of various synaptic and cellular mechanisms. Because the spatially overlapping dipoles responsible for the generation of theta field oscillation may represent different mechanisms, their separation might provide clues with regard to their origin and significance. We used a novel approach, partial coherence analysis, to reveal the various components of the theta rhythm and the relationship among its generators. Hippocampal field activity was recorded by a 16-site silicon probe in the CA1-dentate gyrus axis of the awake rat. Field patterns, recorded from various intrahippocampal or entorhinal cortex sites, were used to remove activity caused by a common source by the partialization procedure. The findings revealed highly coherent coupling between theta signals recorded (1) from the hippocampal fissure and stratum (str.) oriens of the CA1 region and (2) between CA1 stratum radiatum and the dentate molecular layer. The results of partial coherence analysis indicated that rhythmic input from the entorhinal cortex explained theta coherence between signals recorded from the hippocampal fissure and str. oriens but not the coherence between signals derived from str. radiatum and the dentate molecular layer. After bilateral lesions of the entorhinal cortex, all signals recorded from both below and above the CA1 hippocampal pyramidal cell layer became highly coherent. These observations indicate the presence of two, relatively independent, theta generators in the hippocampus, which are mediated by the entorhinal cortex and the CA3-mossy cell recurrent circuitry, respectively. The CA3-mossy cell theta generator is partially suppressed by the dentate gyrus interneuronal output in the intact brain. We suggest that timing of the action potentials of pyramidal cells during the theta cycle is determined by the cooperation between the active CA3 neurons and the entorhinal input.
Collapse
Affiliation(s)
- B Kocsis
- Laboratory of Neurophysiology, Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
461
|
Pierce JP, Kurucz OS, Milner TA. Morphometry of a peptidergic transmitter system: dynorphin B-like immunoreactivity in the rat hippocampal mossy fiber pathway before and after seizures. Hippocampus 1999; 9:255-76. [PMID: 10401641 DOI: 10.1002/(sici)1098-1063(1999)9:3<255::aid-hipo6>3.0.co;2-s] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While the morphometry of classical transmitter systems has been extensively studied, relatively little quantitative information is available on the subcellular distribution of peptidergic dense core vesicles (DCVs) within axonal arbors and terminals, and how distribution patterns change in response to neural activity. This study used correlated quantitative light and electron microscopic immunohistochemistry to examine dynorphin B-like immunoreactivity (dyn B-LI) in the rat hippocampal mossy fiber pathway before and after seizures. Forty-eight hours after seizures induced by two pentylenetetrazol injections, light microscopic dyn B-LI was decreased dorsally and increased ventrally. Ultrastructural examination indicated that, in the hilus of the dentate gyrus, these alterations resulted from changes that were almost entirely restricted to the profiles of the large mossy-like terminals formed by mossy fiber collaterals (which primarily contact spines), compared to the profiles of the smaller, less-convoluted terminals found on the same collaterals (which primarily contact aspiny dendritic shafts). Dorsally, mossy terminal profile labeled DCV (/DCV) density dropped substantially, while ventrally, both mossy terminal profile perimeter and /DCV density increased. In all terminal profile examined, /DCVs also were closely associated with the plasma membrane. Following seizures, there was a reorientation of /DCVs along the inner surface of mossy terminal profile membranes, in relation to the types of profiles adjacent to the membrane: in both the dorsal and ventral hilus, significantly fewer /DCVs were observed at sites apposed to dendrites, and significantly more were observed at sites apposed to spines. Thus, after seizures, changes specific to: (1) the dorsoventral level of the hippocampal formation, (2) the type of terminal, and (3) the type of profile in apposition to the portion of the terminal membrane examined were all observed. An explanation of these complex, interdependent alterations will probably require evoking multiple interrelated mechanisms, including selective prodynorphin synthesis, transport, and release.
Collapse
Affiliation(s)
- J P Pierce
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | |
Collapse
|
462
|
Arabadzisz D, Freund TF. Changes in excitatory and inhibitory circuits of the rat hippocampus 12-14 months after complete forebrain ischemia. Neuroscience 1999; 92:27-45. [PMID: 10392828 DOI: 10.1016/s0306-4522(98)00736-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Changes in interneuron distribution and excitatory connectivity have been investigated in animals which had survived 12-14 months after complete forebrain ischemia, induced by four-vessel occlusion. Anterograde tracing with Phaseolus vulgaris leucoagglutinin revealed massive Schaffer collateral input even to those regions of the CA1 subfield where hardly any surviving pyramidal cells were found. Boutons of these Schaffer collaterals formed conventional synaptic contacts on dendritic spines and shafts, many of which likely belong to interneurons. Mossy fibres survived the ischemic challenge, however, large mossy terminals showed altered morphology, namely, the number of filopodiae on these terminals decreased significantly. The entorhinal input to the hippocampus did not show any morphological alterations. The distribution of interneurons was investigated by neurochemical markers known to label functionally distinct GABAergic cell populations. In the hilus, spiny interneurons showed a profound decrease in number. This phenomenon was not as obvious in CA3, but the spiny metabotropic glutamate receptor 1alpha-positive non-pyramidal cells, some of which contain calretinin or substance P receptor, disappeared from stratum lucidum of this area. In the CA1 region, somatostatin immunoreactivity disappeared from stratum oriens/lacunosum-moleculare-associated cells, while in metabotropic glutamate receptor 1alpha-stained sections these cells seemed unaffected in number. Other interneurons did not show an obvious decrease in number. In stratum radiatum of the CA1 subfield, some interneuron types had altered morphology: the substance P receptor-positive dendrites lost their characteristic radial orientation, and the metabotropic glutamate receptor 1alpha-expressing cells became extremely spiny. The loss of inhibitory interneurons at the first two stages of the trisynaptic loop coupled with a well-preserved excitatory connectivity among the subfields suggests that hyperexcitability in the surviving dentate gyrus and CA3 may persist even a year after the ischemic impact. The dorsal CA1 region is lost; nevertheless hyperactivity, if it occurs, may have a route to leave the hippocampus via the longitudinally extensive axon collaterals of CA3 pyramidal cells, which may activate the subiculum and entorhinal cortex with a relay in the surviving ventral hippocampal CA1 region.
Collapse
Affiliation(s)
- D Arabadzisz
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest
| | | |
Collapse
|
463
|
Yeckel MF, Kapur A, Johnston D. Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nat Neurosci 1999; 2:625-33. [PMID: 10404192 PMCID: PMC2951317 DOI: 10.1038/10180] [Citation(s) in RCA: 266] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated long-term potentiation (LTP) at mossy fiber synapses on CA3 pyramidal neurons in the hippocampus. Using Ca2+ imaging techniques, we show here that when postsynaptic Ca2+ was sufficiently buffered so that [Ca2+]i did not rise during synaptic stimulation, the induction of mossy fiber LTP was prevented. In addition, induction of mossy fiber LTP was suppressed by postsynaptic injection of a peptide inhibitor of cAMP-dependent protein kinase. Finally, when ionotropic glutamate receptors were blocked, LTP depended on the postsynaptic release of Ca2+ from internal stores triggered by activation of metabotropic glutamate receptors. These results support the conclusion that mossy fiber LTP and LTP at other hippocampal synapses share a common induction mechanism involving an initial rise in postsynaptic [Ca2+].
Collapse
Affiliation(s)
- M F Yeckel
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
464
|
Racine RJ, Steingart M, McIntyre DC. Development of kindling-prone and kindling-resistant rats: selective breeding and electrophysiological studies. Epilepsy Res 1999; 35:183-95. [PMID: 10413314 DOI: 10.1016/s0920-1211(99)00013-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Because of the growing need for an animal model of complex partial seizures based on a genetic predisposition, we combined the kindling model of epilepsy with selective-breeding procedures to develop two new lines (or strains) of rats that are kindling-prone or kindling-resistant. The selection of these strains was based on their rates of amygdala kindling. From a parent population of Long Evans hooded and Wistar rats, the males and females that showed the fastest and slowest amygdala kindling rates were selected and bred. Similar selection procedures continued through F11, although there was little or no overlap in the distribution of kindling rates for the two new strains (FAST and SLOW) by F6. Examination of both local and propagating seizure profiles of the new strains from F6 to F10 revealed that the FAST and SLOW rats had similar amygdala afterdischarge (AD) thresholds and associated AD durations. Also, the convulsion profiles of the stage-5 responses were similar, although the severity was greater in the FAST rats. Clearly the selection was not based on local mechanisms controlling the threshold for amygdala AD evocation, but rather for the spread of AD from the focus and the recruitment of other structures, ultimately triggering convulsive seizures. Although evoked potentials and potentiation effects were similar between the strains, the SLOW rats showed a greater paired-pulse depression, raising the possibility that they differ in inhibitory mechanisms. The specificity of strain differences for the amygdala and its associated networks is described in our accompanying paper (McIntyre et al., 1999. FAST and SLOW amygdala kindling rat strains: Comparison of amygdala, hippocampal, piriform and perirhinal cortex kindling. Epilepsy Res. 35, 197-209). These strains should provide many clues to the dispositional differences between individuals for the development of epilepsy originating in temporal lobe structures.
Collapse
Affiliation(s)
- R J Racine
- Department of Psychology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
465
|
O'Brien RJ, Xu D, Petralia RS, Steward O, Huganir RL, Worley P. Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 1999; 23:309-23. [PMID: 10399937 DOI: 10.1016/s0896-6273(00)80782-5] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Narp (neuronal activity-regulated pentraxin) is a secreted immediate-early gene (IEG) regulated by synaptic activity in brain. In this study, we demonstrate that Narp possesses several properties that make it likely to play a key role in excitatory synaptogenesis. Narp is shown to be selectively enriched at excitatory synapses on neurons from both the hippocampus and spinal cord. Overexpression of recombinant Narp increases the number of excitatory but not inhibitory synapses in cultured spinal neurons. In transfected HEK 293T cells, Narp interacts with itself, forming large surface clusters that coaggregate AMPA receptor subunits. Moreover, Narp-expressing HEK 293T cells can induce the aggregation of neuronal AMPA receptors. These studies support a model in which Narp functions as an extracellular aggregating factor for AMPA receptors.
Collapse
Affiliation(s)
- R J O'Brien
- Howard Hughes Medical Institute, and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
466
|
McBain CJ, Freund TF, Mody I. Glutamatergic synapses onto hippocampal interneurons: precision timing without lasting plasticity. Trends Neurosci 1999; 22:228-35. [PMID: 10322496 DOI: 10.1016/s0166-2236(98)01347-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the hippocampal formation GABAergic inhibitory interneurons have a major role in the synchronization of neuronal activity and are involved in the generation of large-scale network oscillations. Thus, interneurons function as a 'clock' that dictates when principal cells fire during suprathreshold excitatory drive. Interneurons receive strong excitatory innervation from glutamatergic neurons and it has been much debated whether these synapses show mechanisms of long-term plasticity similar to those found at principal-cell synapses. Recent findings support the lack of conventional forms of LTP and LTD in most interneurons, partly owing to the distinct anatomical and neurochemical features of interneuronal excitatory synapses. The uncommon properties of excitatory synapses on interneurons might be required for their functioning as accurate and reliable neuronal oscillators.
Collapse
Affiliation(s)
- C J McBain
- Laboratory of Cellular and Molecular Neurophysiology, NICHD, Bethesda, MD 20892-4495, USA
| | | | | |
Collapse
|
467
|
Bolea S, Avignone E, Berretta N, Sanchez-Andres JV, Cherubini E. Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal rat hippocampal slices. J Neurophysiol 1999; 81:2095-102. [PMID: 10322051 DOI: 10.1152/jn.1999.81.5.2095] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal rat hippocampal slices. Giant depolarizing potentials (GDPs) are generated by the interplay of the depolarizing action of GABA and glutamate. In this study, single and dual whole cell recordings (in current-clamp configuration) were performed from CA3 pyramidal cells in hippocampal slices obtained from postnatal (P) days P1- to P6-old rats to evaluate the role of ionotropic glutamate receptors in GDP generation. Superfusion of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10-40 microM) completely blocked GDPs. However, in the presence of CNQX, it was still possible to re-induce the appearance of GDPs with GABA (20 microM) or (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxadepropionate (AMPA) (5 microM). This effect was prevented by the more potent and selective AMPA receptor antagonist GYKI 53655 (50-100 microM). In the presence of GYKI 53655, both kainic or domoic acid (0.1-1 microM) were unable to induce GDPs. In contrast, bath application of D-(-)-2-amino-5-phosphonopentanoic acid (50 microM) or (+)-3-(2carboxy-piperazin-4-yl)-propyl-L-phosphonic acid (20 microM) produced only a 37 +/- 9% (SE) and 36 +/- 11% reduction in GDPs frequency, respectively. Cyclothiazide, a selective blocker of AMPA receptor desensitization, increased GDP frequency by 76 +/- 14%. Experiments were also performed with an intracellular solution containing KF to block GABAA receptor-mediated responses. In these conditions, a glutamatergic component of GDP was revealed. GDPs could still be recorded synchronous with those detected simultaneously with KCl-filled electrodes, although their amplitude was smaller. Similar results were found in pair recordings obtained from minislices containing only a small portion of the CA3 area. These data suggest that GDP generation requires activation of AMPA receptors by local release of glutamate from recurrent collaterals.
Collapse
Affiliation(s)
- S Bolea
- Departamento de Fisiologia, Instituto de Bioingenieria, Universidad Miguel Hernandez, Campus de San Juan, 03550 San Juan, Alicante, Spain
| | | | | | | | | |
Collapse
|
468
|
Zhang N, Houser CR. Ultrastructural localization of dynorphin in the dentate gyrus in human temporal lobe epilepsy: A study of reorganized mossy fiber synapses. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990322)405:4<472::aid-cne3>3.0.co;2-p] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
469
|
Holmes GL, Sarkisian M, Ben-Ari Y, Chevassus-Au-Louis N. Mossy fiber sprouting after recurrent seizures during early development in rats. J Comp Neurol 1999; 404:537-53. [PMID: 9987996 DOI: 10.1002/(sici)1096-9861(19990222)404:4<537::aid-cne9>3.0.co;2-#] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In some children, epilepsy is a catastrophic condition, leading to significant intellectual and behavioral impairment, but little is known about the consequences of recurrent seizures during development. In the present study, we evaluated the effects of 15 daily pentylenetetrazol-induced convulsions in immature rats beginning at postnatal day (P) 1, 10, or 60. In addition, we subjected another group of P10 rats to twice daily seizures for 15 days. Both supragranular and terminal sprouting in the CA3 hippocampal subfield was assessed in Timm-stained sections by using a rating scale and density measurements. Prominent sprouting was seen in the CA3 stratum pyramidale layer in all rats having 15 daily seizures, regardless of the age when seizures began. Based on Timm staining in control P10, P20, and P30 rats, the terminal sprouting in CA3 appears to be new growth of axons and synapses as opposed to a failure of normal regression of synapses. In addition to CA3 terminal sprouting, rats having twice daily seizures had sprouting noted in the dentate supragranular layer, predominately in the inferior blade of the dentate, and had a decreased seizure threshold when compared with controls. Cell counting of dentate granule cells, CA3, CA1, and hilar neurons, with unbiased stereological methods demonstrated no differences from controls in rats with daily seizures beginning at P1 or P10, whereas adult rats with daily seizures had a significant decrease in CA1 neurons. Rats that received twice daily seizures on P10-P25 had an increase in dentate granule cells. This study demonstrates that, like the mature brain, immature animals have neuronal reorganization after recurrent seizures, with mossy fiber sprouting in both the CA3 subfield and supragranular region. In the immature brain, repetitive seizures also result in granule cell neurogenesis without loss of principal neurons. Although the relationship between these morphological changes after seizures during development and subsequent cognitive impairment is not yet clear, our findings indicate that during development recurrent seizures can result in significant alterations in cell number and axonal growth.
Collapse
Affiliation(s)
- G L Holmes
- Department of Neurology, Harvard Medical School, Children's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
470
|
Vogt KE, Nicoll RA. Glutamate and gamma-aminobutyric acid mediate a heterosynaptic depression at mossy fiber synapses in the hippocampus. Proc Natl Acad Sci U S A 1999; 96:1118-22. [PMID: 9927703 PMCID: PMC15360 DOI: 10.1073/pnas.96.3.1118] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mossy fiber synapses form the major excitatory input into the autoassociative network of pyramidal cells in the CA3 area of the hippocampus. Here we demonstrate that at the mossy fiber synapses, glutamate and gamma-aminobutyric acid (GABA) act as autaptic and heterosynaptic presynaptic inhibitory transmitters through metabotropic glutamate receptors (mGluRs) and GABAB receptors, respectively. Both GABAB receptors and mGluRs are activated through spillover from adjacent synapses. We demonstrate that glutamate spillover caused by brief tetanic activation of mossy fiber terminals remains intact at physiological temperatures. The activation of GABAB receptors increased the threshold for mossy fiber long-term potentiation (LTP), whereas activation of mGluRs did not have such an effect. We speculate that this heterosynaptic depression provides the mossy fiber synapses with a mechanism to efficiently shape input patterns into CA3, increasing the sparseness of the mossy fiber signal and enhancing the capacity and performance of the CA3 associative network. The increase in LTP threshold through activation of presynaptic inhibitory receptors imparts a piesynoptic associative nature to mossy fiber LTP.
Collapse
Affiliation(s)
- K E Vogt
- Departments of Cellular and Molecular Pharmacology and Physiology, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
471
|
Buckmaster PS, Dudek FE. In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. J Neurophysiol 1999; 81:712-21. [PMID: 10036272 DOI: 10.1152/jn.1999.81.2.712] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vivo intracellular recording and labeling in kainate-induced epileptic rats was used to address questions about granule cell axon reorganization in temporal lobe epilepsy. Individually labeled granule cells were reconstructed three dimensionally and in their entirety. Compared with controls, granule cells in epileptic rats had longer average axon length per cell; the difference was significant in all strata of the dentate gyrus including the hilus. In epileptic rats, at least one-third of the granule cells extended an aberrant axon collateral into the molecular layer. Axon projections into the molecular layer had an average summed length of 1 mm per cell and spanned 600 microm of the septotemporal axis of the hippocampus-a distance within the normal span of granule cell axon collaterals. These findings in vivo confirm results from previous in vitro studies. Surprisingly, 12% of the granule cells in epileptic rats, and none in controls, extended a basal dendrite into the hilus, providing another route for recurrent excitation. Consistent with recurrent excitation, many granule cells (56%) in epileptic rats displayed a long-latency depolarization superimposed on a normal inhibitory postsynaptic potential. These findings demonstrate changes, occurring at the single-cell level after an epileptogenic hippocampal injury, that could result in novel, local, recurrent circuits.
Collapse
Affiliation(s)
- P S Buckmaster
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California 94305-5410, USA
| | | |
Collapse
|
472
|
Katona I, Acsády L, Freund TF. Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus. Neuroscience 1999; 88:37-55. [PMID: 10051188 DOI: 10.1016/s0306-4522(98)00302-9] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two characteristic interneuron types in the hippocampus, the so-called hilar perforant path-associated cells in the dentate gyrus and stratum oriens/lacunosum-moleculare neurons in the CA3 and CA1 regions, were suggested to be involved in feedback circuits. In the present study, interneurons identical to these cell populations were visualized by somatostatin-immunostaining, then reconstructed, and processed for double-immunostaining and electron microscopy to establish their postsynaptic target selectivity. A combination of somatostatin-immunostaining with immunostaining for GABA or other interneuron markers revealed a quasi-random termination pattern. The vast majority of postsynaptic targets were GABA-negative dendritic shafts and spines of principal cells (76%), whereas other target elements contained GABA (8%). All of the examined neurochemically defined interneuron types (parvalbumin-, calretinin-, vasoactive intestinal polypeptide-, cholecystokinin-, substance P receptor-immunoreactive neurons) received innervation from somatostatin-positive boutons. Recent anatomical and electrophysiological data showed that the main excitatory inputs of somatostatin-positive interneurons originate from local principal cells. The present data revealed a massive GABAergic innervation of distal dendrites of local principal cells by these feedback driven neurons, which are proposed to control the efficacy and plasticity of entorhinal synaptic input as a function of local principal cell activity and synchrony.
Collapse
Affiliation(s)
- I Katona
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest
| | | | | |
Collapse
|
473
|
Affiliation(s)
- G L Holmes
- Center for Research in Pediatric Epilepsy, Children's Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
474
|
Tóth K, McBain CJ. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons. Nat Neurosci 1998; 1:572-8. [PMID: 10196564 DOI: 10.1038/2807] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Using the polyamine toxin philanthotoxin, which selectively blocks calcium-permeable AMPA receptors, we show that synaptic transmission onto single hippocampal interneurons occurs by afferent-specific activation of philanthotoxin-sensitive and -insensitive AMPA receptors. Calcium-permeable AMPA receptors are found exclusively at synapses from mossy fibers. In contrast, synaptic responses evoked by stimulation of CA3 pyramidal neurons are mediated by calcium-impermeable AMPA receptors. Both pathways converge onto single interneurons and can be discriminated with Group II mGluR agonists. Thus, single interneurons target AMPA receptors of different subunit composition to specific postsynaptic sites, providing a mechanism to increase the synapse-specific computational properties of hippocampal interneurons.
Collapse
Affiliation(s)
- K Tóth
- Laboratory of Cellular and Molecular Neurophysiology, NICHD, Bethesda, Maryland 20892-4495, USA
| | | |
Collapse
|
475
|
Urban NN, Barrionuevo G. Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons. Proc Natl Acad Sci U S A 1998; 95:11450-5. [PMID: 9736757 PMCID: PMC21663 DOI: 10.1073/pnas.95.19.11450] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The manner in which the thousands of synaptic inputs received by a pyramidal neuron are summed is critical both to our understanding of the computations that may be performed by single neurons and of the codes used by neurons to transmit information. Recent work on pyramidal cell dendrites has shown that subthreshold synaptic inputs are modulated by voltage-dependent channels, raising the possibility that summation of synaptic responses is influenced by the active properties of dendrites. Here, we use somatic and dendritic whole-cell recordings to show that pyramidal cells in hippocampal area CA3 sum distal and proximal excitatory postsynaptic potentials sublinearly and actively, that the degree of nonlinearity depends on the magnitude and timing of the excitatory postsynaptic potentials, and that blockade of transient potassium channels linearizes summation. Nonlinear summation of synaptic inputs could have important implications for the computations performed by single neurons and also for the role of the mossy fiber and perforant path inputs to hippocampal area CA3.
Collapse
Affiliation(s)
- N N Urban
- Department of Neuroscience, University of Pittsburgh and Center for the Neural Basis of Cognition, Pittsburgh, PA 15260, USA
| | | |
Collapse
|