501
|
Macoon R, Robey M, Chauhan A. In vitro release of hydrophobic drugs by oleogel rods with biocompatible gelators. Eur J Pharm Sci 2020; 152:105413. [DOI: 10.1016/j.ejps.2020.105413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
|
502
|
Koklesova L, Liskova A, Samec M, Buhrmann C, Samuel SM, Varghese E, Ashrafizadeh M, Najafi M, Shakibaei M, Büsselberg D, Giordano FA, Golubnitschaja O, Kubatka P. Carotenoids in Cancer Apoptosis-The Road from Bench to Bedside and Back. Cancers (Basel) 2020; 12:E2425. [PMID: 32859058 PMCID: PMC7563597 DOI: 10.3390/cancers12092425] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022] Open
Abstract
An incidence and mortality of cancer are rapidly growing worldwide, especially due to heterogeneous character of the disease that is associated with irreversible impairment of cellular homeostasis and function. Targeting apoptosis, one of cancer hallmarks, represents a potent cancer treatment strategy. Carotenoids are phytochemicals represented by carotenes, xanthophylls, and derived compounds such as apocarotenoids that demonstrate a broad spectrum of anti-cancer effects involving pro-apoptotic signaling through extrinsic and intrinsic pathways. As demonstrated in preclinical oncology research, the apoptotic modulation is performed at post-genomic levels. Further, carotenoids demonstrate additive/synergistic action in combination with conventional oncostatic agents. In addition, a sensitization of tumor cells to anti-cancer conventional treatment can be achieved by carotenoids. The disadvantage of anti-cancer application of carotenoids is associated with their low solubility and, therefore, poor bioavailability. However, this deficiency can be improved by using nanotechnological approaches, solid dispersions, microemulsions or biofortification that significantly increase the anti-cancer and pro-apoptotic efficacy of carotenoids. Only limited number of studies dealing with apoptotic potential of carotenoids has been published in clinical sphere. Pro-apoptotic effects of carotenoids should be beneficial for individuals at high risk of cancer development. The article considers the utility of carotenoids in the framework of 3P medicine.
Collapse
Affiliation(s)
- Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (C.B.); (M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, 51368 Tabriz, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, 67146 Kermanshah, Iran;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (C.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
503
|
Lutein-Loaded, Biotin-Decorated Polymeric Nanoparticles Enhance Lutein Uptake in Retinal Cells. Pharmaceutics 2020; 12:pharmaceutics12090798. [PMID: 32847030 PMCID: PMC7558721 DOI: 10.3390/pharmaceutics12090798] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 01/08/2023] Open
Abstract
Age related macular degeneration (AMD) is one of the leading causes of visual loss and is responsible for approximately 9% of global blindness. It is a progressive eye disorder seen in elderly people (>65 years) mainly affecting the macula. Lutein, a carotenoid, is an antioxidant, and has shown neuroprotective properties in the retina. However, lutein has poor bioavailability owing to poor aqueous solubility. Drug delivery to the posterior segment of the eye is challenging due to the blood–retina barrier. Retinal pigment epithelium (RPE) expresses the sodium-dependent multivitamin transporter (SMVT) transport system which selectively uptakes biotin by active transport. In this study, we aimed to enhance lutein uptake into retinal cells using PLGA–PEG–biotin nanoparticles. Lutein loaded polymeric nanoparticles were prepared using O/W solvent-evaporation method. Particle size and zeta potential (ZP) were determined using Malvern Zetasizer. Other characterizations included differential scanning calorimetry, FTIR, and in-vitro release studies. In-vitro uptake and cytotoxicity studies were conducted in ARPE-19 cells using flow cytometry and confocal microscopy. Lutein was successfully encapsulated into PLGA and PLGA–PEG–biotin nanoparticles (<250 nm) with uniform size distribution and high ZP. The entrapment efficiency of lutein was ≈56% and ≈75% for lutein-loaded PLGA and PLGA–PEG–biotin nanoparticles, respectively. FTIR and DSC confirmed encapsulation of lutein into nanoparticles. Cellular uptake studies in ARPE-19 cells confirmed a higher uptake of lutein with PLGA–PEG–biotin nanoparticles compared to PLGA nanoparticles and lutein alone. In vitro cytotoxicity results confirmed that the nanoparticles were safe, effective, and non-toxic. Findings from this study suggest that lutein-loaded PLGA–PEG–biotin nanoparticles can be potentially used for treatment of AMD for higher lutein uptake.
Collapse
|
504
|
Juan A, Cimas FJ, Bravo I, Pandiella A, Ocaña A, Alonso-Moreno C. Antibody Conjugation of Nanoparticles as Therapeutics for Breast Cancer Treatment. Int J Mol Sci 2020; 21:E6018. [PMID: 32825618 PMCID: PMC7504566 DOI: 10.3390/ijms21176018] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the most common invasive tumor in women and the second leading cause of cancer-related death. Nanomedicine raises high expectations for millions of patients as it can provide better, more efficient, and affordable healthcare, and it has the potential to develop novel therapeutics for the treatment of solid tumors. In this regard, targeted therapies can be encapsulated into nanocarriers, and these nanovehicles are guided to the tumors through conjugation with antibodies-the so-called antibody-conjugated nanoparticles (ACNPs). ACNPs can preserve the chemical structure of drugs, deliver them in a controlled manner, and reduce toxicity. As certain breast cancer subtypes and indications have limited therapeutic options, this field provides hope for the future treatment of patients with difficult to treat breast cancers. In this review, we discuss the application of ACNPs for the treatment of this disease. Given the fact that ACNPs have shown clinical activity in this clinical setting, special emphasis on the role of the nanovehicles and their translation to the clinic is placed on the revision.
Collapse
Affiliation(s)
- Alberto Juan
- Oncología Traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
| | - Francisco J. Cimas
- Oncología Traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Centro Regional de Investigaciones Biomédicas, Unidad Oncología Traslacional, 02071 Albacete, Spain
| | - Iván Bravo
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer-CSIC, IBSAL- Salamanca and CIBERONC, 37007 Salamanca, Spain;
| | - Alberto Ocaña
- Oncología Traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Experimental Therapeutics Unit, Hospital clínico San Carlos, IdISSC and CIBERONC, 28040 Madrid, Spain
| | - Carlos Alonso-Moreno
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
- School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
505
|
Electrochemical Synthesis of Polypyrrole and Polypyrrole-Indomethacin Coatings on NiCr Alloys Involving Deep Eutectic Solvents. METALS 2020. [DOI: 10.3390/met10091130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is an increased interest in the use of the deep eutectic solvents (DESs) as electrolytic media for electrochemical synthesis of conducting polymers, which could influence their characteristics. Moreover, the polypyrrole layers represent an attractive route for pharmaceutical drug release. The paper presents several experimental results regarding the electrodeposition of polypyrrole and of polypyrrole-indomethacin coatings on nickel-chromium NiCr alloy substrates widely used in dentistry, involving DES-based electrolytes, namely eutectic mixtures of choline chloride and malonic acid. This type of electrolyte also allowed an enhanced dissolution of indomethacin as compared to aqueous ones. The electropolymerization process has been investigated by cyclic voltammetry and chronoamperometry. The obtained indomethacin containing polymeric coatings have been thoroughly characterized involving scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, contact angle measurements in simulated body fluid (SBF) and indomethacin release studies. Adherent and uniform polypyrrole-indomethacin layers have been obtained on NiCr alloy substrates. The release tests showed that the polypyrrole coatings containing indomethacin may deliver the drug molecules for longer periods of at least 17 days. The maximum released amount was around 99.6% suggesting these layers may act as an active reservoir for indomethacin. Kinetics analysis based on the Korsmeyer–Peppas model suggested the diffusion of the drug out of the polymer layer as the most probable mechanism governing the release.
Collapse
|
506
|
Akhouri V, Kumar A, Kumari M. Antitumour Property of Pterocarpus santalinus Seeds Against DMBA-Induced Breast Cancer in Rats. Breast Cancer (Auckl) 2020; 14:1178223420951193. [PMID: 32913391 PMCID: PMC7444153 DOI: 10.1177/1178223420951193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022] Open
Abstract
Breast cancer has been one of the most common form of malignancy globally among women, for more than a decade. Despite various preventive and treatment measures, it remains associated with high incidence and mortality rate. Pterocarpus santalinus Linn. f. has been extensively used in Indian medicine system Ayurveda, due to its various medicinal properties. However, despite various research works on the anticancer activity of P santalinus, no studies have been reported on animal model. Therefore, this study was aimed to decipher the antitumour activity of ethanolic seeds extract of P santalinus on DMBA (7,12-dimethylbenz(a)-anthracene)-induced breast cancer in rats. Fifty-five-days-old weighed (150 ± 10 g) female Charles Foster rats (12 females) were used for the study. The rats were divided into 3 groups of 4 rats each. 7,12-Dimethylbenz(a)-anthracene (single dose of 20 mg/mL dissolved in olive oil) was induced orally, to develop breast tumour. After the development of breast tumours (about 0.5 cm), the rats were treated with P santalinus ethanolic seeds extract (300 mg/kg body weight/day) orally for 5 weeks and then volume of tumour was measured. Oral administration of P santalinus extract resulted in about 49.5% tumour growth inhibition in the final week of treatment in DMBA + P santalinus group as compared with the DMBA group. Pterocarpus santalinus administration also significantly reduced (P < .0001) the serum malondialdehyde level from 58.81 ± 4.09 nmol/mL in DMBA group to 10.87 ± 1.20 nmol/mL in the DMBA + P santalinus group. Serum tumour necrosis factor-α level reduced significantly (P < .0001) from 80.43 ± 2.45 pg/mL in DMBA group to 28.30 ± 3.24 pg/mL in the DMBA + P santalinus group. The blood serum glucose level also reduced significantly (P < .0001) from 205.9 ± 22.22 mg/dL in DMBA group to 86.44 ± 8.36 in DMBA + P santalinus group. There was significant (P < .0001) improvement in the both the liver and kidney serum biomarkers level after P santalinus administration. The histological study of mammary tissues of rats shows that, in the DMBA group immature fibrocytes are completely replacing the normal adipocytes suggestive of fibroma molle, whereas in the DMBA + P santalinus group mature fibrocytes with multilayer glandular cells were seen denoting fibroadenoma. Thus, the P santalinus ethanolic seed extract possesses antitumorigenic, antioxidant and hypoglycaemic properties as well as hepato-renal protective effect. Hence, it may be concluded that P santalinus has therapeutic role against DMBA-induced breast cancer in rats and has a greater potential to develop as a chemotherapeutic agent in breast cancer treatment.
Collapse
Affiliation(s)
- Vivek Akhouri
- Department of Biotechnology, Anugrah Narayan College, Patna, India
| | - Arun Kumar
- Research Centre, Mahavir Cancer Sansthan & Research Centre, Patna, India
| | - Manorma Kumari
- Department of Biotechnology, Anugrah Narayan College, Patna, India
| |
Collapse
|
507
|
Li RZ, Ding XW, Geetha T, Al-Nakkash L, Broderick TL, Babu JR. Beneficial Effect of Genistein on Diabetes-Induced Brain Damage in the ob/ob Mouse Model. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3325-3336. [PMID: 32884237 PMCID: PMC7443039 DOI: 10.2147/dddt.s249608] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/06/2020] [Indexed: 01/26/2023]
Abstract
Purpose Diabetes mellitus (DM)-induced brain damage is characterized by cellular, molecular and functional changes. The mechanisms include oxidative stress, neuroinflammation, reduction of neurotrophic factors, insulin resistance, excessive amyloid beta (Aβ) deposition and Tau phosphorylation. Both antidiabetic and neuroprotective effects of the phytoestrogen genistein have been reported. However, the beneficial effect of genistein in brain of the ob/ob mouse model of severe obesity and diabetes remains to be determined. Methods In this study, female ob/ob mice and lean control mice were fed with either a standard diet or a diet containing genistein (600mg/kg) for a period of 4 weeks. Body weight was monitored weekly. Blood was collected for the measurement of glucose, insulin and common cytokines. Mice brains were isolated for Western immunoblotting analyses. Results Treatment with genistein reduced weight gain of ob/ob mice and decreased hyperglycemia compared to ob/ob mice fed the standard diet. The main findings show that genistein treatment increased insulin sensitivity and the expression levels of the neurotrophic factors nerve growth factor (NGF) and brain-derived neurotrophic factors (BDNF). In these mice, genistein also reduced Aβ deposition and the level of hyper-phosphorylated Tau protein. Conclusion The results of our study indicate the beneficial effects of genistein in the obese diabetic mouse brain, including improving brain insulin signaling, increasing neurotrophic support, and alleviating Alzheimer’s disease-related pathology.
Collapse
Affiliation(s)
- Rong-Zi Li
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Xiao-Wen Ding
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Layla Al-Nakkash
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Tom L Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
508
|
Chang MC, Kuo YJ, Hung KH, Peng CL, Chen KY, Yeh LK. Liposomal dexamethasone-moxifloxacin nanoparticle combinations with collagen/gelatin/alginate hydrogel for corneal infection treatment and wound healing. ACTA ACUST UNITED AC 2020; 15:055022. [PMID: 32434164 DOI: 10.1088/1748-605x/ab9510] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infectious keratitis is still one of the major causes of visual impairment and blindness, often affecting developing countries. Eye-drop therapy to reduce disease progression is the first line of treatment for infectious keratitis. The current limitations in controlling ophthalmic infections include rapid precorneal drug loss and the inability to provide long-term extraocular drug delivery. The aim of the present study was to develop a novel ophthalmic formulation to treat corneal infection. The formulation was prepared by constructing moxifloxacin (MFX) and dexamethasone (DEX)-loaded nanostructured lipid carriers (Lipo-MFX/DEX) mixed with a collagen/gelatin/alginate (CGA) biodegradable material (CGA-Lipo-MFX/DEX) for prolonged ocular application. The characteristics of the prepared Lipo-MFX/DEX nanoparticles were as follows: average size, 132.1 ± 73.58 nm; zeta potential, -6.27 ± 4.95 mV; entrapment efficiency, 91.5 ± 3.5%; drug content, 18.1 ± 1.7%. Our results indicated that CGA-Lipo-MFX/DEX could release an effective working concentration in 60 min and sustain the drug release for at least 12 h. CGA-Lipo-MFX/DEX did not produce significant toxicities, but it increased cell numbers when co-cultured with ocular epithelial cells. An animal study also confirmed that CGA-Lipo-MFX/DEX could inhibit pathogen microorganism growth and improve corneal wound healing. Our results suggest that CGA-Lipo-MFX/DEX could be a useful anti-inflammatory formulation for ophthalmological disease treatment.
Collapse
Affiliation(s)
- Ming-Cheng Chang
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan
| | | | | | | | | | | |
Collapse
|
509
|
Kwon S, Kim SH, Khang D, Lee JY. Potential Therapeutic Usage of Nanomedicine for Glaucoma Treatment. Int J Nanomedicine 2020; 15:5745-5765. [PMID: 32821099 PMCID: PMC7418176 DOI: 10.2147/ijn.s254792] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
Glaucoma is a group of diseases characterized by progressive degeneration of retinal ganglion cells, leading to irreversible blindness. Currently, intraocular pressure reduction is the only established treatment available for glaucoma. With this treatment, the progression of the disease can only be delayed and there is no recovery. In addition, the commercially available eye drops have the disadvantage of low compliance and short therapeutic time, while glaucoma surgery always has the risk of failure due to wound fibrosis. Nanotechnology can overcome the limitations of the current treatment through the encapsulation and conjugation of drugs used for lowering intraocular pressure and antifibrotic agents using biodegradable or biocompatible nanoparticles for the sustained release of the drugs to protect the damaged ocular cells. Furthermore, using nanotechnology, treatment can be administered in various forms, including eye drops, contact lens, and ocular inserts, according to the convenience of the patients. Despite the promising results of delaying the progression of glaucoma, the regeneration of damaged ocular cells, including trabecular meshwork and retinal ganglion cells, is another critical hurdle to overcome. Bone marrow-derived mesenchymal stem cells and Müller glia cells can secrete neurogenic factors that trigger the regeneration of associated cells, including trabecular meshwork and retinal ganglion cells. In conclusion, this review highlights the potential therapeutic applications of nanotechnology- and stem cell-based methods that can be employed for the protection and regeneration of ocular cells.
Collapse
Affiliation(s)
- Song Kwon
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
| | - Sung Hyun Kim
- Department of Ophthalmology, Gil Medical Center, Gachon University, College of Medicine, Incheon 21565, South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea.,Department of Gachon Advanced Institute for Health Science & Technology (GAIHST), Gachon University, Incheon 21999, South Korea.,Department of Physiology, School of Medicine, Gachon University, Incheon 21999, South Korea
| | - Jong Yeon Lee
- Department of Ophthalmology, Gil Medical Center, Gachon University, College of Medicine, Incheon 21565, South Korea
| |
Collapse
|
510
|
Ilochonwu BC, Urtti A, Hennink WE, Vermonden T. Intravitreal hydrogels for sustained release of therapeutic proteins. J Control Release 2020; 326:419-441. [PMID: 32717302 DOI: 10.1016/j.jconrel.2020.07.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
This review highlights how hydrogel formulations can improve intravitreal protein delivery to the posterior segment of the eye in order to increase therapeutic outcome and patient compliance. Several therapeutic proteins have shown excellent clinical successes for the treatment of various intraocular diseases. However, drug delivery to the posterior segment of the eye faces significant challenges due to multiple physiological barriers preventing drugs from reaching the retina, among which intravitreal protein instability and rapid clearance from the site of injection. Hence, frequent injections are required to maintain therapeutic levels. Moreover, because the world population ages, the number of patients suffering from ocular diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) is increasing and causing increased health care costs. Therefore, there is a growing need for suitable delivery systems able to tackle the current limitations in retinal protein delivery, which also may reduce costs. Hydrogels have shown to be promising delivery systems capable of sustaining release of therapeutic proteins and thus extending their local presence. Here, an extensive overview of preclinically developed intravitreal hydrogels is provided with attention to the rational design of clinically useful intravitreal systems. The currently used polymers, crosslinking mechanisms, in vitro/in vivo models and advancements are discussed together with the limitations and future perspective of these biomaterials.
Collapse
Affiliation(s)
- Blessing C Ilochonwu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
511
|
Müller-Lierheim WGK. Why Chain Length of Hyaluronan in Eye Drops Matters. Diagnostics (Basel) 2020; 10:E511. [PMID: 32717869 PMCID: PMC7459843 DOI: 10.3390/diagnostics10080511] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
The chain length of hyaluronan (HA) determines its physical as well as its physiological properties. Results of clinical research on HA eye drops are not comparable without this parameter. In this article methods for the assessment of the average molecular weight of HA in eye drops and a terminology for molecular weight ranges are proposed. The classification of HA eye drops according to their zero shear viscosity and viscosity at 1000 s-1 shear rate is presented. Based on the gradient of mucin MUC5AC concentration within the mucoaqueous layer of the tear film a hypothesis on the consequences of this gradient on the rheological properties of the tear film is provided. The mucoadhesive properties of HA and their dependence on chain length are explained. The ability of HA to bind to receptors on the ocular epithelial cells, and in particular the potential consequences of the interaction between HA and the receptor HARE, responsible for HA endocytosis by corneal epithelial cells is discussed. The physiological function of HA in the framework of ocular surface homeostasis and wound healing are outlined, and the influence of the chain length of HA on the clinical performance of HA eye drops is illustrated. The use of very high molecular weight HA (hylan A) eye drops as drug vehicle for the next generation of ophthalmic drugs with minimized side effects is proposed and its advantages elucidated. Consequences of the diagnosis and treatment of ocular surface disease are discussed.
Collapse
|
512
|
Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, Singhvi G. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv 2020; 10:27835-27855. [PMID: 35516960 PMCID: PMC9055630 DOI: 10.1039/d0ra04971a] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ocular diseases have a significant effect on vision and quality of life. Drug delivery to ocular tissues is a challenge to formulation scientists. The major barriers to delivering drugs to the anterior and posterior segments include physiological barriers (nasolacrimal drainage, blinking), anatomical barriers (static and dynamic), efflux pumps and metabolic barriers. The static barriers comprise the different layers of the cornea, sclera, and blood-aqueous barriers whereas dynamic barriers involve conjunctival blood flow, lymphatic clearance and tear drainage. The tight junctions of the blood-retinal barrier (BRB) restrict systemically administered drugs from entering the retina. Nanocarriers have been found to be effective at overcoming the issues associated with conventional ophthalmic dosage forms. Various nanocarriers, including nanodispersion systems, nanomicelles, lipidic nanocarriers, polymeric nanoparticles, liposomes, niosomes, and dendrimers, have been investigated for improved permeation and effective targeted drug delivery to various ophthalmic sites. In this review, various nanomedicines and their application for ophthalmic delivery of therapeutics are discussed. Additionally, scale-up and clinical status are also addressed to understand the current scenario for ophthalmic drug delivery.
Collapse
Affiliation(s)
- Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Vamshi Krishna Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Prem Prakash Singh
- Formulation Development, Slayback Pharma India LLP Hyderabad Telangana 500072 India
| | - Sunil Kumar Dubey
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Ranendra N Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
- Birla Institute of Technology & Science (BITS) Pilani, Dubai Campus UAE
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| |
Collapse
|
513
|
Mucoadhesive Nanoparticles for Drug Delivery to the Anterior Eye. NANOMATERIALS 2020; 10:nano10071400. [PMID: 32708500 PMCID: PMC7408143 DOI: 10.3390/nano10071400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 11/30/2022]
Abstract
While the use of topical drops for the delivery of drugs to the anterior of the eye is well accepted, it is far from efficient with as little as 5% of the drug instilled on the eye actually reaching the target tissue. The ability to prolong the residence time on the eye is desirable. Based on the acceptability of 2-hydroxyethyl methacrylate based polymers in contact lens applications, the current work focuses on the development of a poly(2-hydroxyethyl methacrylate (HEMA)) nanoparticle system. The particles were modified to allow for degradation and to permit mucoadhesion. Size and morphological analysis of the final polymer products showed that nano-sized, spherical particles were produced. FTIR spectra demonstrated that the nanoparticles comprised poly(HEMA) and that 3-(acrylamido)phenylboronic acid (3AAPBA), as a mucoadhesive, was successfully incorporated. Degradation of nanoparticles containing N,N′-bis(acryloyl)cystamine (BAC) after incubation with DL-dithiothreitol (DTT) was confirmed by a decrease in turbidity and through transmission electron microscopy (TEM). Nanoparticle mucoadhesion was shown through an in-vitro zeta potential analysis.
Collapse
|
514
|
Popov A. Mucus-Penetrating Particles and the Role of Ocular Mucus as a Barrier to Micro- and Nanosuspensions. J Ocul Pharmacol Ther 2020; 36:366-375. [PMID: 32667250 PMCID: PMC7405105 DOI: 10.1089/jop.2020.0022] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
The ocular surface is naturally covered with a layer of mucus. Along with other functions, this mucus layer serves to trap and eliminate foreign substances, such as allergens, pathogens, and debris. In playing this pivotal role, mucus can also hinder topical delivery of therapeutics to the eye. Recent studies provide evidence that drugs formulated as traditional micro- or nanoparticles are susceptible to entrapment and rapid clearance by ocular mucus. Mucus-penetrating particles (MPPs) is a nanoparticle technology that emerged over the past decade. With a muco-inert surface and a particle size smaller than the mucus mesh size, MPPs can diffuse in ex vivo mucus essentially freely. Preclinical studies have shown that, compared with particles lacking the mucus-penetrating attributes, MPPs can improve the uniformity of drug particle distribution on mucosal surfaces and enhance drug delivery to ocular tissues.
Collapse
Affiliation(s)
- Alexey Popov
- Kala Pharmaceuticals, Inc., Watertown, Massachusetts, USA
| |
Collapse
|
515
|
Zamboulis A, Nanaki S, Michailidou G, Koumentakou I, Lazaridou M, Ainali NM, Xanthopoulou E, Bikiaris DN. Chitosan and its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments. Polymers (Basel) 2020; 12:E1519. [PMID: 32650536 PMCID: PMC7407599 DOI: 10.3390/polym12071519] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Chitosan (CS) is a hemi-synthetic cationic linear polysaccharide produced by the deacetylation of chitin. CS is non-toxic, highly biocompatible, and biodegradable, and it has a low immunogenicity. Additionally, CS has inherent antibacterial properties and a mucoadhesive character and can disrupt epithelial tight junctions, thus acting as a permeability enhancer. As such, CS and its derivatives are well-suited for the challenging field of ocular drug delivery. In the present review article, we will discuss the properties of CS that contribute to its successful application in ocular delivery before reviewing the latest advances in the use of CS for the development of novel ophthalmic delivery systems. Colloidal nanocarriers (nanoparticles, micelles, liposomes) will be presented, followed by CS gels and lenses and ocular inserts. Finally, instances of CS coatings, aiming at conferring mucoadhesiveness to other matrixes, will be presented.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| | | | | | | | | | | | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| |
Collapse
|
516
|
Lanier OL, Christopher KG, Macoon RM, Yu Y, Sekar P, Chauhan A. Commercialization challenges for drug eluting contact lenses. Expert Opin Drug Deliv 2020; 17:1133-1149. [DOI: 10.1080/17425247.2020.1787983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Olivia L. Lanier
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | | | - Russell M. Macoon
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Yifan Yu
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Poorvajan Sekar
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Anuj Chauhan
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| |
Collapse
|
517
|
The prominence of the dosage form design to treat ocular diseases. Int J Pharm 2020; 586:119577. [PMID: 32622806 DOI: 10.1016/j.ijpharm.2020.119577] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
The eye is susceptible to various diseases commonly difficult to treat. To overcome the barriers imposed by this organ for required drugs penetration, technological strategies have been implemented to ocular formulations. Among them are the use of temperature or electric stimuli and the development of nanoparticles. The objective of this review is to present the main barriers to ocular drug delivery and to discuss strategies used in the development of ocular dosage forms, primarily for topical delivery, to increase the local bioavailability of drugs, target their delivery and increase patient compliance. Results obtained in the last years related to the topical administration of liposomes, dendrimers, iontophoresis, among other nanoparticulate systems focused on ophthalmic delivery, will be addressed. Finally, some clinical trials and marketed formulations that use nanotechnology to topically treat eye diseases will be presented.
Collapse
|
518
|
Polat HK, Bozdağ Pehlivan S, Özkul C, Çalamak S, Öztürk N, Aytekin E, Fırat A, Ulubayram K, Kocabeyoğlu S, İrkeç M, Çalış S. Development of besifloxacin HCl loaded nanofibrous ocular inserts for the treatment of bacterial keratitis: In vitro, ex vivo and in vivo evaluation. Int J Pharm 2020; 585:119552. [DOI: 10.1016/j.ijpharm.2020.119552] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 11/29/2022]
|
519
|
Bazán Henostroza MA, Curo Melo KJ, Nishitani Yukuyama M, Löbenberg R, Araci Bou-Chacra N. Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124755] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
520
|
Karava A, Lazaridou M, Nanaki S, Michailidou G, Christodoulou E, Kostoglou M, Iatrou H, Bikiaris DN. Chitosan Derivatives with Mucoadhesive and Antimicrobial Properties for Simultaneous Nanoencapsulation and Extended Ocular Release Formulations of Dexamethasone and Chloramphenicol Drugs. Pharmaceutics 2020; 12:594. [PMID: 32604758 PMCID: PMC7356116 DOI: 10.3390/pharmaceutics12060594] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/31/2023] Open
Abstract
The aim of this work was to evaluate the effectiveness of neat chitosan (CS) and its derivatives with 2-acrylamido-2-methyl-1-propanesulfonic acid (AAMPS) and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (MEDSP) as appropriate nanocarriers for the simultaneous ocular administration of dexamethasone sodium phosphate (DxP) and chloramphenicol (CHL). The derivatives CS-AAMPS and CS-MEDSP have been synthesized by free-radical polymerization and their structure has been proved by Fourier-Transformed Infrared Spectroscopy (FT-IR) spectroscopy. Both derivatives exhibited low cytotoxicity, enhanced mucoadhesive properties and antimicrobial activity against Staphylococcus aureus (S.aureus) and Escherichia coli (E. coli). Encapsulation was performed via ionic crosslinking gelation using sodium tripolyphosphate (TPP) as the crosslinking agent. Dynamic light scattering measurements (DLS) showed that the prepared nanoparticles had bimodal distribution and sizes ranging from 50-200 nm and 300-800 nm. Drugs were encapsulated in their crystalline (CHL) or amorphous (DexSP) form inside nanoparticles and their release rate was dependent on the used polymer. The CHL dissolution rate was substantially enhanced compared to the neat drug and the release time was extended up to 7 days. The release rate of DexSP was much faster than that of CHL and was prolonged up to 3 days. Drug release modeling unveiled that diffusion is the main release mechanism for both drugs. Both prepared derivatives and their drug-loaded nanoparticles could be used for extended and simultaneous ocular release formulations of DexSP and CHL drugs.
Collapse
Affiliation(s)
- Aikaterini Karava
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece;
| | - Maria Lazaridou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Stavroula Nanaki
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Georgia Michailidou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Evi Christodoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Margaritis Kostoglou
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Hermis Iatrou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece;
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| |
Collapse
|
521
|
Vicente-Pascual M, Gómez-Aguado I, Rodríguez-Castejón J, Rodríguez-Gascón A, Muntoni E, Battaglia L, del Pozo-Rodríguez A, Solinís Aspiazu MÁ. Topical Administration of SLN-Based Gene Therapy for the Treatment of Corneal Inflammation by De Novo IL-10 Production. Pharmaceutics 2020; 12:pharmaceutics12060584. [PMID: 32586018 PMCID: PMC7355708 DOI: 10.3390/pharmaceutics12060584] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 01/13/2023] Open
Abstract
One of the main challenges in gene therapy is the issue of delivery, and it is especially relevant for the success of gene therapy in the cornea. In the present work, eye drops containing biocompatible non-viral vectors based on solid lipid nanoparticles (SLNs) as gene delivery systems to induce the expression of interleukin 10 (IL-10) were designed to address the treatment of corneal inflammation. Two kinds of SLNs combined with different ligands (protamine, dextran, or hyaluronic acid (HA)) and formulated with polyvinyl alcohol (PVA) were prepared. SLN-based vectors were characterized in terms of size, adhesiveness, viscosity, and pH, before topical administration to wild type and IL-10 knock out (KO) mice. The formulations showed a homogenous particle size below 400 nm and a positive surface charge to favor bioadhesion; the incorporation of PVA improved the corneal penetration. After three days of treatment by topical instillation, SLN-based vectors mainly transfected corneal epithelial cells, HA-formulations being the most effective ones. IL-10 was capable of reaching even the endothelial layer. Corneal sections showed no histological change and formulations seemed to be well tolerated after repeated topical administration. These promising results highlight the possible contribution of non-viral gene augmentation therapy to the future clinical approach of corneal gene therapy.
Collapse
Affiliation(s)
- Mónica Vicente-Pascual
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
| | - Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
| | - Elisabetta Muntoni
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy; (E.M.); (L.B.)
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy; (E.M.); (L.B.)
| | - Ana del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
- Correspondence: (A.d.P.-R.); (M.Á.S.A.)
| | - María Ángeles Solinís Aspiazu
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
- Correspondence: (A.d.P.-R.); (M.Á.S.A.)
| |
Collapse
|
522
|
Taka E, Karavasili C, Bouropoulos N, Moschakis T, Andreadis DD, Zacharis CK, Fatouros DG. Ocular co-Delivery of Timolol and Brimonidine from a Self-Assembling Peptide Hydrogel for the Treatment of Glaucoma: In Vitro and Ex Vivo Evaluation. Pharmaceuticals (Basel) 2020; 13:E126. [PMID: 32575910 PMCID: PMC7344471 DOI: 10.3390/ph13060126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 02/01/2023] Open
Abstract
Effective pharmacotherapy during glaucoma treatment depends on interventions that reduce intraocular pressure (IOP) and retain the IOP lowering effect for sufficient time so as to reduce dosing frequency and enhance patient adherence. Combination anti-glaucoma therapy and dosage forms that increase precorneal residence time could therefore constitute a promising therapeutic intervention. The in-situ gel forming self-assembling peptide ac-(RADA)4-CONH2 was evaluated as carrier for the ocular co-delivery of timolol maleate (TM) and brimonidine tartrate (BR). The hydrogel's microstructure and mechanical properties were assessed with atomic force microscopy and rheology, respectively. Drug diffusion from the hydrogel was evaluated in vitro in simulated tear fluid and ex vivo across porcine corneas and its effect on the treated corneas was assessed through physicochemical characterization and histological analysis. Results indicated that TM and BR co-delivery affected hydrogel's microstructure resulting in shorter nanofibers and a less rigid hydrogel matrix. Rapid and complete release of both drugs was achieved within 8 h, while a 2.8-fold and 5.4-fold higher corneal permeability was achieved for TM and BR, respectively. No significant alterations were induced in the structural integrity of the corneas treated with the hydrogel formulation, suggesting that self-assembling peptide hydrogels might serve as promising systems for combination anti-glaucoma therapy.
Collapse
Affiliation(s)
- Elissavet Taka
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (E.T.); (D.G.F.)
| | - Christina Karavasili
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (E.T.); (D.G.F.)
| | - Nikolaos Bouropoulos
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, GR-26504 Patras, Greece;
- Department of Materials Science, University of Patras, GR-26504 Patras, Greece
| | - Thomas Moschakis
- Department of Food Science and Technology, School of Agriculture, Aristotle University, GR-54124 Thessaloniki, Greece;
| | - Dimitrios D. Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Constantinos K. Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Dimitrios G. Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (E.T.); (D.G.F.)
| |
Collapse
|
523
|
The allergic eye: recommendations about pharmacotherapy and recent therapeutic agents. Curr Opin Allergy Clin Immunol 2020; 20:414-420. [PMID: 32558665 DOI: 10.1097/aci.0000000000000669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Ocular allergies affect an estimated 40% of the population, 98% of which are because of allergic conjunctivitis. With the current advent of both repurposed drugs for ocular allergies, as well as novel drugs and methods of administration, there is a need for an updated review of current available medications. A clear characterization of each treatment will ultimately allow treating physicians to restore patients' quality of life and decrease burden of disease. RECENT FINDINGS Currently, there are a number of reformulated antihistamines, with cetrizine being the most recent ophthalmic solution available. Nevertheless, there is ongoing research in the field of immunotherapy, steroids, flavonoids, cannabis, and drug-delivery systems. SUMMARY Although dual-activity agents remain the keystone for treatment, newer drugs and drug-delivery systems offer other novel directions for delivering appropriate relief with minimal adverse effects.
Collapse
|
524
|
Marquini GV, Pinheiro FEDS, Vieira AUDC, Pinto RMDC, Uyeda MGBK, Girão MJBC, Sartori MGF. Preoperative Fasting Abbreviation and its Effects on Postoperative Nausea and Vomiting Incidence in Gynecological Surgery Patients. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2020; 42:468-475. [PMID: 32559794 PMCID: PMC10309243 DOI: 10.1055/s-0040-1712994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Objective To investigate the effects of preoperative fasting abbreviation with a carbohydrate and protein-enriched solution, on postoperative nausea and vomiting (PONV) incidence in gynecological surgery patients, a population naturally at risk for such unpleasant episodes.
Methods The present prospective double-blind randomized study was performed at The Hospital Municipal e Maternidade Dr. Odelmo Leão Carneiro (HMMOLC, in the Portuguese acronym), in Uberlândia, state of Minas Gerais, Brazil, in partnership with the Gynecology Department of the Universidade Federal de São Paulo (UNIFESP), approved by the Human Research Ethics Committee of UNIFESP and the board of HMMOLC, and included in the Brazil Platform and in the Brazilian Clinical Trial Registry. After signing the consent form, 80 women, who were submitted to gynecological surgery in the period from January to June 2016, were randomized into 2 groups: control group (n = 42) and juice group (n = 38). They received, respectively, 200 mL of inert solution or liquid enriched with carbohydrate and protein 4 hours presurgery. The incidence, frequency and intensity of PONV were studied using the Visual Analogue Scale (VAS), with statistical analysis performed by the software IBM SPSS Statistics for Windows, Version 20.0 (IBM Corp, Armonk, NY, USA).
Results The incidence of nausea and vomiting was lower than in the literature, to this population, with 18.9% (14/74) for the control group and 10.8% (8/74) for the juice group, respectively, with no statistically significant difference between the groups.
Conclusion The incidence of nausea and vomiting was lower than in the literature, but it cannot be said that this is due to the abbreviation of fasting. It can provide greater comfort, with the possibility of PONV prevention in patients at risk for these episodes.
Collapse
Affiliation(s)
- Gisele Vissoci Marquini
- Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
525
|
Youssef A, Dudhipala N, Majumdar S. Ciprofloxacin Loaded Nanostructured Lipid Carriers Incorporated into In-Situ Gels to Improve Management of Bacterial Endophthalmitis. Pharmaceutics 2020; 12:E572. [PMID: 32575524 PMCID: PMC7356176 DOI: 10.3390/pharmaceutics12060572] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Bacterial endophthalmitis (BE) is a potentially sight-threatening inflammatory reaction of the intraocular fluids or tissues caused by bacteria. Ciprofloxacin (CIP) eye drops are prescribed as first-line therapy in BE. However, frequent administration is necessary due to precorneal loss and poor ocular bioavailability. The objective of the current research was to prepare CIP containing nanostructured lipid carriers (CIP-NLCs) loaded an in situ gel system (CIP-NLC-IG) for topical ocular administration for enhanced and sustained antibacterial activity in BE treatment. CIP-NLCs were prepared by the hot homogenization method and optimized based on physicochemical characteristics and physical stability. The optimized CIP-NLC formulation was converted into CIP-NLC-IG with the addition of gellan gum as a gelling agent. Furthermore, optimized CIP-NLC and CIP-NLC-IG were evaluated for in vitro release and ex vivo transcorneal permeation studies, using commercial CIP ophthalmic solution (CIP-C) as the control. The optimized CIP-NLC formulation showed particle size, polydispersity index, zeta potential, assay and entrapment efficiency of 193.1 ± 5.1 nm, 0.43 ± 0.01, -32.5 ± 1.5 mV, 99.5 ± 5.5 and 96.3 ± 2.5%, respectively. CIP-NLC-IG with 0.2% w/v gellan gum showed optimal viscoelastic characteristics. The in vitro release studies demonstrated sustained release of CIP from CIP-NLC and CIP-NLC-IG formulations over a 24 h period. Transcorneal flux and permeability increased 4 and 3.5-fold, and 2.2 and 1.9-fold from CIP-NLC and CIP-NLC-IG formulations, respectively, when compared to CIP-C. The results demonstrate that CIP-NLC-IG could be considered as an alternate delivery system to prolong the residence time on the ocular surface after topical administration. Thus, the current CIP ophthalmic formulations may exhibit improved ocular bioavailability and prolonged antibacterial activity, which may improve therapeutic outcomes in the treatment of BE.
Collapse
Affiliation(s)
- Ahmed Youssef
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
526
|
Biofabrication of Chitosan-Based Nanomedicines and Its Potential Use for Translational Ophthalmic Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Drug delivery to the anterior and posterior segment of eye remains a challenge. Nanoparticle-mediated drug delivery has indicated some promise. The presented review aims to summarize recent advancements in chitosan-based nanotherapies for ocular drug delivery and the challenges encountered during the process. Significant research using chitosan, a cationic linear polymer, is being conducted for ocular drug delivery. A vast number of publications exploit the mucoadhesive properties of the polymer, which arise due to interactions between the amino acids of chitosan and the sialic acid residues in mucous. The high degree of crosslinking in chitosan nanoparticles facilitates a dramatic increase in ocular drug retention of the desired drug, which subsequently helps in ocular penetration and improving the bioavailability of the drugs. A noted decrease in the initial burst of the drug is the basis for developing sustained drug release formulation using biodegradable and biocompatible chitosan polymer. In vitro as well as in vivo studies have indicated enhancement in the uptake, accumulation, and removal of chitosan nanoparticles from the site of delivery. In summary, chitosan- or modified-chitosan-based nanoparticles are being widely tested as drug carriers for treatment of bacterial and viral infections, glaucoma, age-related macular degeneration, and diabetic retinopathy.
Collapse
|
527
|
Chang MC, Luo TY, Huang CY, Peng CL, Chen KY, Yeh LK. The new ophthalmic formulation for infection control by combining collagen/gelatin/alginate biomaterial with liposomal chloramphenicol. Biomed Phys Eng Express 2020; 6:045017. [DOI: 10.1088/2057-1976/ab97a2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
528
|
Roy G, Galigama RD, Thorat VS, Garg P, Venuganti VVK. Microneedle ocular patch: fabrication, characterization, and ex-vivo evaluation using pilocarpine as model drug. Drug Dev Ind Pharm 2020; 46:1114-1122. [DOI: 10.1080/03639045.2020.1776317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Girdhari Roy
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad, India
| | - Rohini Devi Galigama
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad, India
| | - Veda Suresh Thorat
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad, India
| | - Prashant Garg
- Tej Kohli Cornea Institute, KAR Campus, L. V. Prasad Eye Institute, Hyderabad, India
| | | |
Collapse
|
529
|
El-Adl K, Sakr H, Nasser M, Alswah M, Shoman FMA. 5-(4-Methoxybenzylidene)thiazolidine-2,4-dione-derived VEGFR-2 inhibitors: Design, synthesis, molecular docking, and anticancer evaluations. Arch Pharm (Weinheim) 2020; 353:e2000079. [PMID: 32515896 DOI: 10.1002/ardp.202000079] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
A novel series of 5-(4-methoxybenzylidene)thiazolidine-2,4-dione derivatives, 5a-g and 7a-f, was designed, synthesized, and evaluated for their anticancer activity against HepG2, HCT116, and MCF-7 cells. HepG2 and HCT116 were the most sensitive cell lines to the influence of the new derivatives. In particular, compounds 7f, 7e, 7d, and 7c were found to be the most potent derivatives of all the tested compounds against the HepG2, HCT116, and MCF-7 cancer cell lines. Compound 7f (IC50 = 6.19 ± 0.5, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively) exhibited a higher activity than sorafenib (IC50 = 9.18 ± 0.6, 8.37 ± 0.7, and 5.10 ± 0.4 µM, respectively) against HepG2 and MCF-7, cells but a lower activity against HCT116 cancer cells, respectively. Also, this compound displayed a higher activity than doxorubicin (IC50 = 7.94 ± 0.6, 8.07 ± 0.8, and 6.75 ± 0.4 µM, respectively) against HepG2 and MCF-7 cells, but nearly the same activity against HCT116 cells, respectively. All derivatives, 5a-g and 7a-f, were evaluated for their inhibitory activities against vascular endothelial growth factor receptor-2 (VEGFR-2). Among them, compound 7f was found to be the most potent derivative that inhibited VEGFR-2 at an IC50 value of 0.12 ± 0.02 µM, which is nearly the same as that of sorafenib (IC50 = 0.10 ± 0.02 µM). Compounds 7e, 7d, 7c, and 7b exhibited the highest activity, with IC50 values of 0.13 ± 0.02, 0.14 ± 0.02, 0.14 ± 0.02, and 0.18 ± 0.03 µM, respectively, which are more than the half of that of sorafenib. Furthermore, molecular docking was performed to investigate their binding mode and affinities toward the VEGFR-2 receptor. The data obtained from the docking studies highly correlated with those obtained from the biological screening.
Collapse
Affiliation(s)
- Khaled El-Adl
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Helmy Sakr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed Nasser
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Fatma M A Shoman
- Department of Clinical Pathology, Blood Bank Specialist, Blood Bank Directorate, Ministry of Health, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
530
|
El‐Adl K, El‐Helby AA, Sakr H, El‐Hddad SSA. Design, synthesis, molecular docking, and anticancer evaluations of 1‐benzylquinazoline‐2,4(1
H
,3
H
)‐dione bearing different moieties as VEGFR‐2 inhibitors. Arch Pharm (Weinheim) 2020; 353:e2000068. [DOI: 10.1002/ardp.202000068] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Khaled El‐Adl
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAl‐Azhar University Cairo Egypt
- Department of Pharmaceutical Chemistry, Faculty of PharmacyHeliopolis University for Sustainable Development Cairo Egypt
| | | | - Helmy Sakr
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAl‐Azhar University Cairo Egypt
| | | |
Collapse
|
531
|
Cheng KJ, Hsieh CM, Nepali K, Liou JP. Ocular Disease Therapeutics: Design and Delivery of Drugs for Diseases of the Eye. J Med Chem 2020; 63:10533-10593. [PMID: 32482069 DOI: 10.1021/acs.jmedchem.9b01033] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ocular drug discovery field has evidenced significant advancement in the past decade. The FDA approvals of Rhopressa, Vyzulta, and Roclatan for glaucoma, Brolucizumab for wet age-related macular degeneration (wet AMD), Luxturna for retinitis pigmentosa, Dextenza (0.4 mg dexamethasone intracanalicular insert) for ocular inflammation, ReSure sealant to seal corneal incisions, and Lifitegrast for dry eye represent some of the major developments in the field of ocular therapeutics. A literature survey also indicates that gene therapy, stem cell therapy, and target discovery through genomic research represent significant promise as potential strategies to achieve tissue repair or regeneration and to attain therapeutic benefits in ocular diseases. Overall, the emergence of new technologies coupled with first-in-class entries in ophthalmology are highly anticipated to restructure and boost the future trends in the field of ophthalmic drug discovery. This perspective focuses on various aspects of ocular drug discovery and the recent advances therein. Recent medicinal chemistry campaigns along with a brief overview of the structure-activity relationships of the diverse chemical classes and developments in ocular drug delivery (ODD) are presented.
Collapse
Affiliation(s)
- Kuei-Ju Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan.,Department of Pharmacy, Taipei Municipal Wanfang Hospital, Taipei Medical University, No. 111, Section 3, Xing-Long Road, Taipei 11696, Taiwan
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
532
|
Poly(vinyl alcohol boric acid)-Diclofenac Sodium Salt Drug Delivery Systems: Experimental and Theoretical Studies. J Immunol Res 2020; 2020:3124304. [PMID: 32566687 PMCID: PMC7281821 DOI: 10.1155/2020/3124304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/14/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
The main aim of the paper was to simulate the drug release by a multifractal theoretical model, as a valuable method to assess the drug release mechanism. To do this, drug delivery films were prepared by mixing poly(vinyl alcohol boric acid) (PVAB) and diclofenac (DCF) sodium salt drug in different mass ratios from 90/10 to 70/30, in order to obtain drug delivery systems with different releasing rates. The different drug content of the three systems was confirmed by energy-dispersive spectroscopy (EDAX) analysis, and the encapsulation particularities were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and polarized optical microscopy (POM) techniques. The ability of the PVAB matrix to anchor the DCF was assessed by Fourier transform infrared (FTIR) spectroscopy. The in vitro release of the diclofenac sodium salt from the formulations was investigated in biomimetic conditions (pH = 7.4 and 37°C) by UV-Vis spectroscopy, measuring the absorbance of the drug at 275 nm and fitting the results on a previously drawn calibration curve. An estimation of the drug release kinetics was performed by fitting three traditional mathematical models on experimental release data. Further, the drug delivery was simulated by the fractal theory of motion, in which the release dynamics of the polymer-drug complex system is described through various Riccati-type "regimes." To explain such dynamics involved multifractal self-modulation in the form of period doubling, quasiperiodicity, intermittency, etc., as well as multifractal self-modulation of network type. Standard release dynamics were explained by multifractal behaviors of temporary kink type. The good correlation between the traditional mathematical models and the new proposed theoretical model demonstrated the validity of the multifractal model for the investigation of the drug release.
Collapse
|
533
|
Sustained subconjunctival drug delivery systems: current trends and future perspectives. Int Ophthalmol 2020; 40:2385-2401. [DOI: 10.1007/s10792-020-01391-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
|
534
|
Ferraguti G, Merlino L, Battagliese G, Piccioni MG, Barbaro G, Carito V, Messina MP, Scalese B, Coriale G, Fiore M, Ceccanti M. Fetus morphology changes by second-trimester ultrasound in pregnant women drinking alcohol. Addict Biol 2020; 25:e12724. [PMID: 30811093 DOI: 10.1111/adb.12724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 12/16/2022]
Abstract
Fetal alcohol spectrum disorders (FASDs) are a group of negative conditions occurring in children exposed to alcohol during gestation. The early discovery of FASD is crucial for mother and infant follow-ups. In this study, we investigated in pregnant women the association between urine ethylglucuronide (EtG-a biomarker of alcohol drinking) and indicators of the physical characteristics of FASD by prenatal ultrasound in the second trimester of gestation. We also correlated these data with the AUDIT-C, T-ACE/TACER-3, TWEAK, and food habit diary, screening questionnaires used to disclose alcohol drinking during pregnancy. Forty-four pregnant women were randomly enrolled and examined for ultrasound investigation during the second trimester of gestation. Urine samples were provided by pregnant women immediately after the routine interviews. EtG determinations were performed with a cutoff established at 100 ng/mL, a value indicating occasional alcohol drinking. Fifteen of the enrolled pregnant women overcame the EtG cutoff (34.09%). Analysis of variance (ANOVA) revealed that the fetuses of the positive EtG pregnant women had significantly longer interorbital distance and also significantly increased frontothalamic distance (P's < 0.02). Quite interestingly, no direct correlation was found between EtG data and both food diary and AUDIT-C. However, a significant correlation was observed between urinary EtG and T-ACE (r = 0.375; P = 0.012) and between urinary EtG and TWEAK (r = 0.512; P < 0.001) and a concordance with all questionnaire for EtG values higher than 500 ng/mL. This study provides clinical evidence that the diagnosis of maternal alcohol consumption during pregnancy by urine EtG may disclose FASD-related damage in the fetus.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental MedicineSapienza University Hospital of Rome Rome Italy
| | - Lucia Merlino
- Department of Gynecological‐Obstetric Sciences and Urological SciencesSapienza University Hospital of Rome Rome Italy
| | - Gemma Battagliese
- Centro Riferimento Alcologico Regione LazioSapienza University of Rome Rome Italy
| | - Maria Grazia Piccioni
- Department of Gynecological‐Obstetric Sciences and Urological SciencesSapienza University Hospital of Rome Rome Italy
| | - Greta Barbaro
- Department of Gynecological‐Obstetric Sciences and Urological SciencesSapienza University Hospital of Rome Rome Italy
| | - Valentina Carito
- Institute of Cell Biology and Neurobiology (IBCN)National Research Council (CNR) Rome Italy
| | | | - Bruna Scalese
- Centro Riferimento Alcologico Regione LazioSapienza University of Rome Rome Italy
| | - Giovanna Coriale
- Centro Riferimento Alcologico Regione LazioSapienza University of Rome Rome Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology (IBCN)National Research Council (CNR) Rome Italy
| | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione LazioSapienza University of Rome Rome Italy
| |
Collapse
|
535
|
Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through ocular route. Int J Biol Macromol 2020; 150:559-572. [DOI: 10.1016/j.ijbiomac.2020.02.097] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023]
|
536
|
Kırımlıoğlu GY, Özer S, Büyükköroğlu G, Yazan Y. Moxifloxacin Hydrochloride-Loaded Eudragit® RL 100 and Kollidon® SR Based Nanoparticles: Formulation, In vitro Characterization and Cytotoxicity. Comb Chem High Throughput Screen 2020; 24:328-341. [PMID: 32342810 DOI: 10.2174/1386207323666200428091945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Considering the low ocular bioavailability of conventional formulations used for ocular bacterial infection treatment, there is a need to design efficient novel drug delivery systems that may enhance precorneal retention time and corneal permeability. AIM AND OBJECTIVE The current research focuses on developing nanosized and non-toxic Eudragit® RL 100 and Kollidon® SR nanoparticles loaded with moxifloxacin hydrochloride (MOX) for its prolonged release to be promising for effective ocular delivery. METHODS In this study, MOX incorporation was carried out by spray drying method aiming ocular delivery. In vitro characteristics were evaluated in detail with different methods. RESULTS MOX was successfully incorporated into Eudragit® RL 100 and Kollidon® SR polymeric nanoparticles by a spray-drying process. Particle size, zeta potential, entrapment efficiency, particle morphology, thermal, FTIR, NMR analyses and MOX quantification using HPLC method were carried out to evaluate the nanoparticles prepared. MOX loaded nanoparticles demonstrated nanosized and spherical shape while in vitro release studies demonstrated modified-release pattern, which followed the Korsmeyer-Peppas kinetic model. Following the successful incorporation of MOX into the nanoparticles, the formulation (MOX: Eudragit® RL 100, 1:5) (ERL-MOX 2) was selected for further studies because of its better characteristics like cationic zeta potential, smaller particle size, narrow size distribution and more uniform prolonged release pattern. Moreover, ERLMOX 2 formulation remained stable for 3 months and demonstrated higher cell viability values for MOX. CONCLUSION In vitro characterization analyses showed that non-toxic, nano-sized and cationic ERL-MOX 2 formulation has the potential of enhancing ocular bioavailability.
Collapse
Affiliation(s)
| | - Sinan Özer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Gülay Büyükköroğlu
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Yasemin Yazan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
537
|
Gorantla S, Waghule T, Rapalli VK, Singh PP, Dubey SK, Saha RN, Singhvi G. Advanced Hydrogels Based Drug Delivery Systems for Ophthalmic Delivery. ACTA ACUST UNITED AC 2020; 13:291-300. [DOI: 10.2174/1872211314666200108094851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Hydrogels are aqueous gels composed of cross-linked networks of hydrophilic polymers. Stimuli-responsive based hydrogels have gained focus over the past 20 years for treating ophthalmic diseases. Different stimuli-responsive mechanisms are involved in forming polymer hydrogel networks, including change in temperature, pH, ions, and others including light, thrombin, pressure, antigen, and glucose-responsive. Incorporation of nanocarriers with these smart stimuli-responsive drug delivery systems that can extend the duration of action by increasing ocular bioavailability and reducing the dosing frequency. This review will focus on the hydrogel drug delivery systems highlighting the gelling mechanisms and emerging stimuli-responsive hydrogels from preformed gels, nanogels, and the role of advanced 3D printed hydrogels in vision-threatening diseases like age-related macular degeneration and retinitis pigmentosa. It also provides insight into the limitations of hydrogels along with the safety and biocompatibility of the hydrogel drug delivery systems.
Collapse
Affiliation(s)
- Srividya Gorantla
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, Rajasthan 333031, India
| | - Tejashree Waghule
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vamshi Krishna Rapalli
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, Rajasthan 333031, India
| | - Prem Prakash Singh
- Formulation development, Slayback Pharma India LLP, Hyderabad, Telangana-500072, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, Rajasthan 333031, India
| | - Ranendra Narayan Saha
- Birla Institute of Technology & Science (BITS) - Pilani, Dubai Campus, United Arab Emirates
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
538
|
Kumar A, Naik PK, Pradhan D, Ghosh G, Rath G. Mucoadhesive formulations: innovations, merits, drawbacks, and future outlook. Pharm Dev Technol 2020; 25:797-814. [DOI: 10.1080/10837450.2020.1753771] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amresh Kumar
- Department of Pharmaceutics, I.S.F. College of Pharmacy, Moga, Punjab, India
| | | | - Deepak Pradhan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Ghosh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
539
|
Smith RO, Ninchoji T, Gordon E, André H, Dejana E, Vestweber D, Kvanta A, Claesson-Welsh L. Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin. eLife 2020; 9:54056. [PMID: 32312382 PMCID: PMC7188482 DOI: 10.7554/elife.54056] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/05/2020] [Indexed: 01/01/2023] Open
Abstract
Edema stemming from leaky blood vessels is common in eye diseases such as age-related macular degeneration and diabetic retinopathy. Whereas therapies targeting vascular endothelial growth factor A (VEGFA) can suppress leakage, side-effects include vascular rarefaction and geographic atrophy. By challenging mouse models representing different steps in VEGFA/VEGF receptor 2 (VEGFR2)-induced vascular permeability, we show that targeting signaling downstream of VEGFR2 pY949 limits vascular permeability in retinopathy induced by high oxygen or by laser-wounding. Although suppressed permeability is accompanied by reduced pathological neoangiogenesis in oxygen-induced retinopathy, similarly sized lesions leak less in mutant mice, separating regulation of permeability from angiogenesis. Strikingly, vascular endothelial (VE)-cadherin phosphorylation at the Y685, but not Y658, residue is reduced when VEGFR2 pY949 signaling is impaired. These findings support a mechanism whereby VE-cadherin Y685 phosphorylation is selectively associated with excessive vascular leakage. Therapeutically, targeting VEGFR2-regulated VE-cadherin phosphorylation could suppress edema while leaving other VEGFR2-dependent functions intact. The number of people with impaired vision and blindness is increasing in Western society due to the aging population and the increased prevalence of diabetes. This has led to eye diseases, such as age-related macular degeneration and diabetic retinopathy becoming more common. In both these eye diseases, new blood vessels grow in the retina – the light-sensitive part of the eye – to bring oxygen and nutrients to the tissue. However, these new blood vessels are leaky and allow molecules to leave the bloodstream and enter the retinal tissue. This causes the retina to swell and impair a person’s vision. The leaky blood supply also reduces the amount of oxygen that gets to the tissue, resulting in further damage to the retina. When tissues experience low levels of oxygen, cells start making a protein called vascular endothelial growth factor (or VEGF for short). Whilst this protein is important for helping form new blood vessels, it also makes these vessels leaky. Current treatments for age-related macular degeneration and diabetic retinopathy decrease swelling in the eye by blocking the action of VEGF. However, these treatments also cause existing blood vessels and nerve cells to die, leading to irreversible damage. Now, Smith et al. have set out to find whether the effects of VEGF can be blocked without causing further damage to existing cells. To investigate this possibility, the eyes and retinas of mice were treated with a laser or exposed to changing oxygen levels to create injuries that resembled human age-related macular degeneration and diabetic retinopathy. Each of the tested mice had specific mutations in proteins known to interact with VEGF. Fluorescent particles were injected into the bloodstream of the mice to assess how these different mutations affected blood vessel leakage: if fluorescent particles could no longer be detected outside the blood vessels, this suggested that the mutation had stopped the vessels from leaking. Further experiments showed these specific mutations affected leakage and did not prevent new blood vessels from forming. In the future it will be important to see if drugs, rather than mutations, can also decrease the leakiness of blood vessels in the retina. Such chemical compounds could then be tested in mouse experiments. If successful, these drugs might be used to treat patients with age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Ross O Smith
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory Uppsala University, Uppsala, Sweden
| | - Takeshi Ninchoji
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory Uppsala University, Uppsala, Sweden
| | - Emma Gordon
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory Uppsala University, Uppsala, Sweden
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Elisabetta Dejana
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory Uppsala University, Uppsala, Sweden.,IFOM-IEO Campus Via Adamello, Milan, Italy
| | | | - Anders Kvanta
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory Uppsala University, Uppsala, Sweden
| |
Collapse
|
540
|
Patil A, Lakhani P, Taskar P, Avula B, Majumdar S. Carboxyvinyl Polymer and Guar-Borate Gelling System Containing Natamycin Loaded PEGylated Nanolipid Carriers Exhibit Improved Ocular Pharmacokinetic Parameters. J Ocul Pharmacol Ther 2020; 36:410-420. [PMID: 32315560 DOI: 10.1089/jop.2019.0140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Purpose: Natamycin (NTM) ophthalmic suspension is the only FDA-approved formulation commercially available for treating ocular fungal infections. However, precorneal residence times and losses/drainage remain the foremost challenges associated with current ocular antifungal pharmacotherapy. In our previous investigations, NTM loaded polyethylene glycol nanolipid carriers (NTM-PNLCs) showed enhanced corneal permeation, both in vitro and in vivo. To further improve the corneal retention of NTM-PNLCs, this study aimed to develop a gelling system composed of carboxyvinyl polymer, guar gum, and boric acid in which the NTM-PNLCs were loaded. Methods: A 23 factorial design was employed in formulating and optimizing the gelling system for NTM-PNLCs, where the independent factors were the gelling excipients (guar gum, boric acid, and Carbopol® 940) and dependent variables were gelling time, gel depot collapse time, rheology, firmness, and work of adhesion. Optimized gel was evaluated for transcorneal permeation using rabbit cornea, in vitro; and tear pharmacokinetics and ocular biodistribution in male New Zealand White rabbits, in vivo. Results: Optimized NTM-PNLC-GEL was found to exhibit shear thinning rheology, adequate firmness, and spreadability, and formed a depot that did not collapse immediately. In addition, the in vitro transcorneal evaluation studies indicated that the NTM-PNLC-GEL exhibited a lower/slower flux and rate in comparison to Natacyn® suspension. NTM-PNLC-GEL (0.3%), at a 16-fold lower dose, exhibited mean residence time and elimination half-life comparable to Natacyn (5%), and provided similar in vivo concentrations in the innermost tissues of the eye. Conclusion: The data indicate that the NTM-PNLC-GEL formulation could serve as an alternative during ophthalmic antifungal therapy.
Collapse
Affiliation(s)
- Akash Patil
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Prit Lakhani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Pranjal Taskar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Bharathi Avula
- National Center for Natural Products Research, University of Mississippi, University, Mississippi, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
541
|
Zhang X, Muddana S, Kumar SR, Burton JN, Labroo P, Shea J, Stocking P, Siegl C, Archer B, Agarwal J, Ambati BK. Topical Pergolide Enhance Corneal Nerve Regrowth Following Induced Corneal Abrasion. Invest Ophthalmol Vis Sci 2020; 61:4. [PMID: 31999819 PMCID: PMC7205105 DOI: 10.1167/iovs.61.1.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Neurotrophic keratopathy is a degenerative disease that may be improved by nerve growth factor (NGF). Our aim was to investigate the use of pergolide, a dopamine (D1 and D2) receptor agonist known to increase the synthesis and release of NGF for regeneration of damaged corneal nerve fibers. Methods Pergolide function was evaluated by measuring axon length and NGF levels by enzyme-linked immunosorbent assay in cultured chicken dorsal root ganglion (DRG) cells with serial doses of pergolide (10, 25, 50, 150, and 300 µg/ml) and with different concentrations of a D1 antagonist. Pergolide function was further evaluated by cornea nerve fiber density and wound healing in a cornea scratch mouse model. Results Pergolide increased DRG axon length significantly at a dose between 50 and 300 µg/ml. Different concentrations of D1 antagonist (12, 24, 48, and 96 µg/ml) inhibited DRG axon length growth with pergolide (300 µg/ml). Pergolide (50 µg/ml) upregulated NGF expression in DRG cells at both 24 hours and 48 hours. Pergolide improved cornea nerve fiber density at both 1 week and 2 weeks. Pergolide also improved cornea wound healing. Conclusions We demonstrated that pergolide can act to promote an increase in NGF which promotes corneal nerve regeneration and would therefore improve corneal sensation and visual acuity in eyes with peripheral neurotrophic keratopathy.
Collapse
|
542
|
Haider Shaheen K, Ullah MS, Hussain SA, Furqan A. Intracameral Triamcinolone Acetonide Versus Topical Dexamethasone: A Comparison of Anti-inflammatory Effects After Phacoemulsification. Cureus 2020; 12:e7592. [PMID: 32399326 PMCID: PMC7212759 DOI: 10.7759/cureus.7592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Study objective and design The objective of this study was to determine the effectiveness of triamcinolone acetonide when used as a single dose as compared to the topical use of dexamethasone to control the inflammation after phacoemulsification. The study was a randomized controlled trial conducted in the Department of Ophthalmology at the District Headquarter (DHQ) Teaching Hospital, Dera Ghazi Khan, from March 1, 2018, to August 31, 2019. Materials and methods Eighty patients were included in the study. All patients were assigned to two groups of 40 patients each using the lottery method. Group A patients were treated with a 1-mg intracameral injection of triamcinolone acetonide postoperatively after phacoemulsification. Group B patients were administered 0.1% dexamethasone eye drops with a dosage of one drop every four hours for four weeks. Postoperative follow-up was planned for day one, day seven, and day 28. Results The postoperative inflammation cell values of Group A on day one, day seven, and day 28 were 1.68 ±0.84, 0.22 ±0.15, and 0.12 ±0.23, respectively, while the postoperative inflammation cell values of Group B on day one, day seven, and day 28 were 1.91 ±0.75, 0.28 ±0.15, and 0.09 ±0.20, respectively. The postoperative inflammation flare values of Group A on day one, day seven, and day 28 were 0.31 ±0.37, 0.03 ±0.44, and 0.00 ±0.22, respectively, while the postoperative inflammation flare values of Group B on day one, day seven, and day 28 were 0.25 ±0.26, 0.22 ±0.46, and 0.02 ±0.18, respectively. Conclusion The efficacy of both modes of treatments is comparable; however, triamcinolone acetonide is preferable to dexamethasone, as its intracameral injection generally results in better compliance than multiple dosages of topical eye drops of dexamethasone.
Collapse
Affiliation(s)
| | | | - Syed Ahmer Hussain
- Ophthalmology, District Headquarter Teaching Hospital, Dera Ghazi Khan, PAK
| | - Aamir Furqan
- Anesthesia and Critical Care, Chaudhry Pervaiz Elahi Institute of Cardiology, Multan, PAK
| |
Collapse
|
543
|
Xu X, Feng X, He M, Zhang Z, Wang J, Zhu H, Li T, Wang F, Sun M, Wang Z. The effect of acupuncture on tumor growth and gut microbiota in mice inoculated with osteosarcoma cells. Chin Med 2020; 15:33. [PMID: 32292489 PMCID: PMC7140491 DOI: 10.1186/s13020-020-00315-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer is a complex systemic disease. As a key component of traditional Chinese medicine, acupuncture is a clinically proven medical treatment for many diseases, and it also has preventative effects as it balances the body, allowing it to self-regulate. For cancer patients, acupuncture is widely used as complementary therapy to boost the immune system and reduce the side effects of radiotherapy and chemotherapy. However, few studies have determined how acupuncture against cancer, especially in regulating the intestinal flora of the tumor-burdened mice. METHODS We treated osteosarcoma tumor-burdened mice by using needling on different acupoints and acupoints combination, thereafter determined the effects of acupuncture on tumor growth by using imaging technology in vitro. In addition, intestinal bacteria were analyzed for further understanding the holistic and systemic treatment effects of acupuncture in osteosarcoma tumor-burdened mice. RESULTS Acupuncture treatment can delay tumor growth and changes of intestinal bacteria in osteosarcoma tumor-burdened mice. In detail, the loss of body weight and the development of tumor volume of mice have been postposed by needling specific acupoints. In addition, acupuncture treatment has delayed the changes of the relative abundance of Bacteroidetes, Firmicutes and Candidatus Saccharibacteria at the phylum level. Moreover, the relative abundance of many bacteria (e.g., Catabacter, Acetatifactor and Aestuariispira) has been regulated by using acupuncture treatment, and the trend of structural changes of these bacteria at the genus level has also been postposed compared to that of the tumor-burdened mice model group. CONCLUSION Our results suggest that acupuncture may provide a systemic treatment for cancer. Our findings encourage new and extensive research into the effects of acupuncture on changes of the intestinal microbiome associated with the development of cancer.
Collapse
Affiliation(s)
- Xiaoru Xu
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Xiangru Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022 People’s Republic of China
| | - Min He
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Zepeng Zhang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Jiajia Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Haiyu Zhu
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Tie Li
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Fuchun Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Mengmeng Sun
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
- SKL of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22 Avenida da Universidade, Taipa, Macau China
| | - Zhihong Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| |
Collapse
|
544
|
Therapeutic Effect of Seaweed Derived Xanthophyl Carotenoid on Obesity Management; Overview of the Last Decade. Int J Mol Sci 2020; 21:ijms21072502. [PMID: 32260306 PMCID: PMC7177665 DOI: 10.3390/ijms21072502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Present-day lifestyles associated with high calorie-fat intake and accumulation, as well as energy imbalance, have led to the development of obesity and its comorbidities, which have emerged as some of the major health issues globally. To combat the disease, many studies have reported the anti-obesity effects of natural compounds in foods, with some advantages over chemical treatments. Carotenoids, such as xanthophyll derived from seaweeds, have attracted the attention of researchers due to their notable biological activities, which are associated mainly with their antioxidant properties. Their involvement in oxidative stress modulation, the regulation of major transcription factors and enzymes, and their antagonistic effects on various obesity parameters have been examined in both in vitro and in vivo studies. The present review is a collation of published research over the last decade on the antioxidant properties of seaweed xanthophyll carotenoids, with a focus on fucoxanthin and astaxanthin and their mechanisms of action in obesity prevention and treatment.
Collapse
|
545
|
Andrade RGD, Veloso SRS, Castanheira EMS. Shape Anisotropic Iron Oxide-Based Magnetic Nanoparticles: Synthesis and Biomedical Applications. Int J Mol Sci 2020; 21:E2455. [PMID: 32244817 PMCID: PMC7178053 DOI: 10.3390/ijms21072455] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Research on iron oxide-based magnetic nanoparticles and their clinical use has been, so far, mainly focused on the spherical shape. However, efforts have been made to develop synthetic routes that produce different anisotropic shapes not only in magnetite nanoparticles, but also in other ferrites, as their magnetic behavior and biological activity can be improved by controlling the shape. Ferrite nanoparticles show several properties that arise from finite-size and surface effects, like high magnetization and superparamagnetism, which make them interesting for use in nanomedicine. Herein, we show recent developments on the synthesis of anisotropic ferrite nanoparticles and the importance of shape-dependent properties for biomedical applications, such as magnetic drug delivery, magnetic hyperthermia and magnetic resonance imaging. A brief discussion on toxicity of iron oxide nanoparticles is also included.
Collapse
Affiliation(s)
| | | | - Elisabete M. S. Castanheira
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (R.G.D.A.); (S.R.S.V.)
| |
Collapse
|
546
|
Maulvi FA, Parmar RJ, Desai AR, Desai DM, Shukla MR, Ranch KM, Shah SA, Shah DO. Tailored gatifloxacin Pluronic® F-68-loaded contact lens: Addressing the issue of transmittance and swelling. Int J Pharm 2020; 581:119279. [PMID: 32240806 DOI: 10.1016/j.ijpharm.2020.119279] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022]
Abstract
Loading of gatifloxacin in contact lenses affects critical lens properties (optical and swelling) owing to drug precipitation in the contact lens matrix. The presence of Pluronic® F-68 in the packaging solution creates in-situ micelles in the contact lens to dissolve gatifloxacin precipitates and provide sustained drug release. The micelles further improved the drug uptake from the drug-packaging solution to create an equilibrium of drug between the lens matrix and the packaging solution. In this study, we optimized gatifloxacin-pluronic-loaded contact lenses to achieve the desired optical transmittance, swelling, and gatifloxacin loading capacity as well as sustained drug delivery. Optimization of gatifloxacin-pluronic-loaded contact lens was carried out using a 32 factorial design by tailoring the concentration of Pluronic® F-68 in the packaging solution (X1) and the amount of gatifloxacin in the monomer solution (X2) to achieve the desired lens properties. The optimized batch (X1 = 0.3%w/v and X2 = 0.3%w/v) showed an optical transmittance of 92.84%, swelling of 92.36% and gatifloxacin loading capacity of 92.56 μg. The in vitro flux data of the optimized batch (GT-Pl-CL) showed sustained release up to 72 h, whereas soaked contact lenses (SM-CL) and direct gatifloxacin-loaded contact lenses (DL-CL) showed a sustained release up to 48 h. The in vivo gatifloxacin release data for rabbit tear fluid showed sustained release with a high gatifloxacin level for the GT-Pl-CL lens in comparison to the SM-CL and the eye drop solution. This study demonstrates the application of the 32 full factorial design to optimize gatifloxacin-pluronic-loaded contact lenses to achieve the desired optical transmittance, swelling, and drug loading capacity.
Collapse
Affiliation(s)
- Furqan A Maulvi
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India.
| | - Riya J Parmar
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Ankita R Desai
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Ditixa M Desai
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Manish R Shukla
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India; Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ketan M Ranch
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Shailesh A Shah
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Dinesh O Shah
- Department of Chemical Engineering and Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
547
|
Esteban-Pérez S, Andrés-Guerrero V, López-Cano JJ, Molina-Martínez I, Herrero-Vanrell R, Bravo-Osuna I. Gelatin Nanoparticles-HPMC Hybrid System for Effective Ocular Topical Administration of Antihypertensive Agents. Pharmaceutics 2020; 12:E306. [PMID: 32231033 PMCID: PMC7238113 DOI: 10.3390/pharmaceutics12040306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
The increment in ocular drug bioavailability after topical administration is one of the main challenges in pharmaceutical technology. For several years, different strategies based on nanotechnology, hydrogels or implants have been evaluated. Nowadays, the tolerance of ophthalmic preparations has become a critical issue and it is essential to the use of well tolerated excipients. In the present work, we have explored the potential of gelatin nanoparticles (GNPs) loaded with timolol maleate (TM), a beta-adrenergic blocker widely used in the clinic for glaucoma treatment and a hybrid system of TM-GNPs included in a hydroxypropyl methylcellulose (HPMC) viscous solution. The TM- loaded nanoparticles (mean particle size of 193 ± 20 nm and drug loading of 0.291 ± 0.019 mg TM/mg GNPs) were well tolerated both in vitro (human corneal cells) and in vivo. The in vivo efficacy studies performed in normotensive rabbits demonstrated that these gelatin nanoparticles were able to achieve the same hypotensive effect as a marketed formulation (0.5% TM) containing a 5-fold lower concentration of the drug. When comparing commercial and TM-GNPs formulations with the same TM dose, nanoparticles generated an increased efficacy with a significant (p < 0.05) reduction of intraocular pressure (IOP) (from 21% to 30%) and an augmentation of 1.7-fold in the area under the curve (AUC)(0-12h). On the other hand, the combination of timolol-loaded nanoparticles (TM 0.1%) and the viscous polymer HPMC 0.3%, statistically improved the IOP reduction up to 30% (4.65 mmHg) accompanied by a faster time of maximum effect (tmax = 1 h). Furthermore, the hypotensive effect was extended for four additional hours, reaching a pharmacological activity that lasted 12 h after a single instillation of this combination, and leading to an AUC(0-12h) 2.5-fold higher than the one observed for the marketed formulation. According to the data presented in this work, the use of hybrid systems that combine well tolerated gelatin nanoparticles and a viscous agent could be a promising alternative in the management of high intraocular pressure in glaucoma.
Collapse
Affiliation(s)
- Sergio Esteban-Pérez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - José Javier López-Cano
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - Irene Molina-Martínez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - Rocio Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| |
Collapse
|
548
|
Chau VQ, Hu J, Gong X, Hulleman JD, Ufret-Vincenty RL, Rigo F, Prakash TP, Corey DR, Mootha VV. Delivery of Antisense Oligonucleotides to the Cornea. Nucleic Acid Ther 2020; 30:207-214. [PMID: 32202944 DOI: 10.1089/nat.2019.0838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are synthetic nucleic acids that recognize complementary RNA sequences inside cells and modulate gene expression. In this study, we explore the feasibility of ASO delivery to the cornea. We used quantitative polymerase chain reaction to test the efficacy of a benchmark ASO targeting a noncoding nuclear RNA, Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1), in a human corneal endothelial cell line, ex vivo human corneas, and in vivo in mice. In vivo delivery was via intravitreal or intracameral injections as well as topical administration. The anti-MALAT1 ASO significantly reduced expression of MALAT1 in a corneal endothelial cell line. We achieved a dose-dependent reduction of target gene expression in endothelial tissue from ex vivo human donor corneas. In vivo mouse experiments confirmed MALAT1 reduction in whole corneal tissue via intravitreal and intracameral routes, 82% and 71% knockdown, respectively (P < 0.001). Effects persisted up to at least 21 days, 32% (P < 0.05) and 43% (P < 0.05) knockdown, respectively. We developed protocols for the isolation and analysis of mouse corneal endothelium and observed reduction in MALAT1 expression upon both intravitreal and intracameral administrations, 64% (P < 0.05) and 63% (P < 0.05) knockdown, respectively. These data open the possibility of using ASOs to treat corneal disease.
Collapse
Affiliation(s)
- Viet Q Chau
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jiaxin Hu
- Department of Pharmacology and Biochemistry, and UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xin Gong
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - John D Hulleman
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | - David R Corey
- Department of Pharmacology and Biochemistry, and UT Southwestern Medical Center, Dallas, Texas, USA
| | - V Vinod Mootha
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
549
|
Lynch CR, Kondiah PPD, Choonara YE, du Toit LC, Ally N, Pillay V. Hydrogel Biomaterials for Application in Ocular Drug Delivery. Front Bioeng Biotechnol 2020; 8:228. [PMID: 32266248 PMCID: PMC7099765 DOI: 10.3389/fbioe.2020.00228] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
There are many challenges involved in ocular drug delivery. These are a result of the many tissue barriers and defense mechanisms that are present with the eye; such as the cornea, conjunctiva, the blinking reflex, and nasolacrimal drainage system. This leads to many of the conventional ophthalmic preparations, such as eye drops, having low bioavailability profiles, rapid removal from the administration site, and thus ineffective delivery of drugs. Hydrogels have been investigated as a delivery system which is able to overcome some of these challenges. These have been formulated as standalone systems or with the incorporation of other technologies such as nanoparticles. Hydrogels are able to be formulated in such a way that they are able to change from a liquid to gel as a response to a stimulus; known as "smart" or stimuli-responsive biotechnology platforms. Various different stimuli-responsive hydrogel systems are discussed in this article. Hydrogel drug delivery systems are able to be formulated from both synthetic and natural polymers, known as biopolymers. This review focuses on the formulations which incorporate biopolymers. These polymers have a number of benefits such as the fact that they are biodegradable, biocompatible, and non-cytotoxic. The biocompatibility of the polymers is essential for ocular drug delivery systems because the eye is an extremely sensitive organ which is known as an immune privileged site.
Collapse
Affiliation(s)
- Courtney R. Lynch
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pierre P. D. Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lisa C. du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Naseer Ally
- Division of Ophthalmology, Department of Neurosciences, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
550
|
Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure. Bioprocess Biosyst Eng 2020; 43:1339-1357. [PMID: 32193755 DOI: 10.1007/s00449-020-02330-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/06/2020] [Indexed: 12/26/2022]
Abstract
The development of nanoparticle-based drugs has provided many opportunities to diagnose, treat and cure challenging diseases. Through the manipulation of size, morphology, surface modification, surface characteristics, and materials used, a variety of nanostructures can be developed into smart systems, encasing therapeutic and imaging agents with stealth properties. These nanostructures can deliver drugs to specific tissues or sites and provide controlled release therapy. This targeted and sustained drug delivery decreases the drug-related toxicity and increases the patient's compliance with less frequent dosing. Nanotechnology employing nanostructures as a tool has provided advances in the diagnostic testing of diseases and cure. This technology has proven beneficial in the treatment of cancer, AIDS, and many other diseases. This review article highlights the recent advances in nanostructures and nanotechnology for drug delivery, nanomedicine and cures.
Collapse
|