501
|
Burgos-Blasco B, Güemes-Villahoz N, Santiago JL, Fernandez-Vigo JI, Espino-Paisán L, Sarriá B, García-Feijoo J, Martinez-de-la-Casa JM. Hypercytokinemia in COVID-19: Tear cytokine profile in hospitalized COVID-19 patients. Exp Eye Res 2020; 200:108253. [PMID: 32949577 PMCID: PMC7493729 DOI: 10.1016/j.exer.2020.108253] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/30/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
The aim of this study is to analyze the concentrations of cytokines in tear of hospitalized COVID-19 patients compared to healthy controls. Tear samples were obtained from 41 healthy controls and 62 COVID-19 patients. Twenty-seven cytokines were assessed: interleukin (IL)-1b, IL-1RA, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL9, IL-10, IL-12, IL-13, IL-15, IL-17, eotaxin, fibroblast growth factor basic, granulocyte colony-stimulating factor (G-CSF), granulocyte-monocyte colony-stimulating factor (GM-CSF), interferon (IFN)-γ, interferon gamma-induced protein, monocyte chemo-attractant protein-1, macrophage inflammatory protein (MIP)-1a, MIP-1b, platelet-derived growth factor (PDGF), regulated on activation normal T cell expressed and secreted, tumor necrosis factor-α and vascular endothelial growth factor (VEGF).
In tear samples of COVID-19 patients, an increase in IL-9, IL-15, G-CSF, GM-CSF, IFN-γ, PDGF and VEGF was observed, along with a decrease in eotaxin compared to the control group (p < 0.05). A poor correlation between IL-6 levels in tear and blood was found. IL-1RA and GM-CSF were significantly lower in severe patients and those who needed treatment targeting the immune system (p < 0.05). Tear cytokine levels corroborate the inflammatory nature of SARS-CoV-2.
Collapse
Affiliation(s)
- Barbara Burgos-Blasco
- Ophthalmology Department, Hospital Clínico San Carlos. Madrid, Spain,Corresponding author. Hospital Clinico San Carlos, Ophthalmology Department, Calle del Prof Martín Lagos, s/n, 28040, Madrid, Spain
| | | | | | | | - Laura Espino-Paisán
- Laboratorio de investigación en genética de enfermedades complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC). Madrid, Spain
| | - Beatriz Sarriá
- Department of Metabolism and Nutrition. Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC). Madrid, Spain
| | - Julian García-Feijoo
- Ophthalmology Department. Instituto de investigación sanitaria del Hospital Clínico San Carlos (IdISSC). IIORC. Universidad Complutense. Madrid, Spain
| | - Jose Maria Martinez-de-la-Casa
- Ophthalmology Department. Instituto de investigación sanitaria del Hospital Clínico San Carlos (IdISSC). IIORC. Universidad Complutense. Madrid, Spain
| |
Collapse
|
502
|
Sherwani S, Khan MWA. Cytokine Response in SARS-CoV-2 Infection in the Elderly. J Inflamm Res 2020; 13:737-747. [PMID: 33116752 PMCID: PMC7585778 DOI: 10.2147/jir.s276091] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/29/2020] [Indexed: 01/08/2023] Open
Abstract
The last few months of 2019 witnessed the emergence, rise and rapid spread of a novel coronavirus known as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causing an acute respiratory disease called coronavirus disease 2019 or Covid-19. Severe pathological manifestations of the disease in the infected population with comorbidities are linked to acute respiratory distress syndrome (ARDS), associated with an exaggerated synthesis and expression of cytokines, leading to a systemic inflammatory response also known as a cytokine storm (CS). Elderly patients (>60 years of age) showed more deaths in Covid-19 infection. Age-related immune imbalance increases patient susceptibility to CS. In acute Covid-19 infection, it is difficult to minimize or control the overproduction of cytokines; hence, limited medical treatments are effective. This review aims to provide an overview of the current knowledge of involvement of cytokines in SARS-CoV-2 infection, susceptibility factors for the accompanying cytokine storm in severe Covid-19 cases and possible treatment strategies.
Collapse
Affiliation(s)
- Subuhi Sherwani
- Department of Biology, College of Sciences, University of Ha’il, Ha’il2440, Saudi Arabia
| | - Mohd Wajid Ali Khan
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il2440, Saudi Arabia
| |
Collapse
|
503
|
Abstract
In December 2019, the world observed an unexpected outbreak of an emerging disease named coronavirus (COVID-19) that was first reported in Wuhan city of Hubei province of China. Recent literature has shown the association between COVID-19 infection and derangement in the coagulation profile. In this paper, we are discussing thrombo-genesis, especially the role of the complement system in the immune response against COVID-19 and the pathogenesis associated with tissue inflammation and thrombosis. This role can stipulate a groundwork for further investigation of the pathophysiologic importance of complement in COVID-19, and could propose targets for specific intervention. In addition, we delineated current treatments for thrombosis and the potential therapies by using agents to block the terminal complement pathway. Low molecular weight heparin for all (unless contraindicated) hospitalized COVID-19 patients can be lifesaving. Agents that inhibit the terminal events of the complement cascade might be crucial for ensuring an efficient treatment, decrease clots and permit early discharge in relation to COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed A Hendaus
- Department of Pediatrics, Sidra Medicine and Research Center, Doha, Qatar.,Weill Cornell Medicine, Ar-Rayyan, Qatar
| | | |
Collapse
|
504
|
Mortaz E, Malkmohammad M, Jamaati H, Naghan PA, Hashemian SM, Tabarsi P, Varahram M, Zaheri H, Chousein EGU, Folkerts G, Adcock IM. Silent hypoxia: higher NO in red blood cells of COVID-19 patients. BMC Pulm Med 2020; 20:269. [PMID: 33066765 PMCID: PMC7563910 DOI: 10.1186/s12890-020-01310-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) has spread to almost 100 countries, infected over 31 M patients and resulted in 961 K deaths worldwide as of 21st September 2020. The major clinical feature of severe COVID-19 requiring ventilation is acute respiratory distress syndrome (ARDS) with multi-functional failure as a result of a cytokine storm with increased serum levels of cytokines. The pathogenesis of the respiratory failure in COVID-19 is yet unknown, but diffuse alveolar damage with interstitial thickening leading to compromised gas exchange is a plausible mechanism. Hypoxia is seen in the COVID-19 patients, however, patients present with a distinct phenotype. Intracellular levels of nitric oxide (NO) play an important role in the vasodilation of small vessels. To elucidate the intracellular levels of NO inside of RBCs in COVID-19 patients compared with that of healthy control subjects. Methods We recruited 14 COVID-19 infected cases who had pulmonary involvement of their disease, 4 non-COVID-19 healthy controls (without pulmonary involvement and were not hypoxic) and 2 hypoxic non-COVID-19 patients subjects who presented at the Masih Daneshvari Hospital of Tehran, Iran between March–May 2020. Whole blood samples were harvested from patients and intracellular NO levels in 1 × 106 red blood cells (RBC) was measured by DAF staining using flow cytometry (FACS Calibour, BD, CA, USA). Results The Mean florescent of intensity for NO was significantly enhanced in COVID-19 patients compared with healthy control subjects (P ≤ 0.05). As a further control for whether hypoxia induced this higher intracellular NO, we evaluated the levels of NO inside RBC of hypoxic patients. No significant differences in NO levels were seen between the hypoxic and non-hypoxic control group. Conclusions This pilot study demonstrates increased levels of intracellular NO in RBCs from COVID-19 patients. Future multi-centre studies should examine whether this is seen in a larger number of COVID-19 patients and whether NO therapy may be of use in these severe COVID-19 patients.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Malkmohammad
- Tracheal Disease Research Center, National Research Institute of Tuberculosisand Lung Diseases (NRITLD), Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, National Research Institute ofTuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Adimi Naghan
- Chronic Respiratory Diseases Research Center, National Research Institute ofTuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed MohamadReza Hashemian
- Chronic Respiratory Diseases Research Center, National Research Institute ofTuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Zaheri
- Chronic Respiratory Diseases Research Center, National Research Institute ofTuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Efsun Gonca Uğur Chousein
- University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery, Education and research Hospital, Department of pulmonology, Istanbul, Turkey
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK.,Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
505
|
Guirao JJ, Cabrera CM, Jiménez N, Rincón L, Urra JM. High serum IL-6 values increase the risk of mortality and the severity of pneumonia in patients diagnosed with COVID-19. Mol Immunol 2020; 128:64-68. [PMID: 33075636 PMCID: PMC7556792 DOI: 10.1016/j.molimm.2020.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/28/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023]
Abstract
The clinical presentation of COVID-19 is very heterogeneous, ranging from asymptomatic to severe, which could lead to the need for mechanical ventilation or even death.We analyzed the serum levels of IL-6 in patients with COVID-19 diagnosis and its relationship with the severity of the disease, the need for mechanical ventilation and with patient mortality. We assessed IL-6 in a cohort of 50 patients diagnosed with COVID-19 pneumonia with different degrees of disease severity, and compared it with clinical and laboratory findings. We found higher levels of IL-6 in patients with more severe pneumonia according to CURB-65 scale (p = 0.001), with ICU mechanical ventilation requirements (p = 0.02), and who subsequently died (p = 0.003). Of the clinical and analytical parameters analyzed in the current study, the serum levels of IL-6 was the most effective predictor of disease severity. From the data obtained in ROC curve analysis, we defined a cut-off point for serum IL-6 levels of 35 pg/mL above which both the risk of mortality (OR = 20.00, 95 % CI 4.214-94-912, p = 0.0001) and ICU admission (OR = 12.750, 95 % CI 2,159-75,3,3, p = 0.005) were increased. Starting from blood IL-6 levels 27 out of 50 patients, with high levels and more severe symptoms, were treated with the IL-6 receptor antagonist Tocilizumab. IL-6 serum levels appear to be a useful prognostic biomarker in patients with a diagnosis of COVID-19 pneumonia. A cut-off point of 35 pg/mL could clearly differentiate patients a with more severe disease.
Collapse
Affiliation(s)
- Jose J Guirao
- Immunology, Hospital General Universitario de Ciudad Real, Spain; Análisis Clínicos, Hospital General Universitario de Ciudad Real, Spain
| | - Carmen M Cabrera
- Immunology, Hospital General Universitario de Ciudad Real, Spain; Facultad de Medicina de Ciudad Real, Universidad de Castilla La Mancha, Spain
| | - Natalia Jiménez
- Immunology, Hospital General Universitario de Ciudad Real, Spain; Análisis Clínicos, Hospital General Universitario de Ciudad Real, Spain
| | - Laura Rincón
- Análisis Clínicos, Hospital General Universitario de Ciudad Real, Spain
| | - José M Urra
- Immunology, Hospital General Universitario de Ciudad Real, Spain; Facultad de Medicina de Ciudad Real, Universidad de Castilla La Mancha, Spain.
| |
Collapse
|
506
|
Chiang CC, Korinek M, Cheng WJ, Hwang TL. Targeting Neutrophils to Treat Acute Respiratory Distress Syndrome in Coronavirus Disease. Front Pharmacol 2020; 11:572009. [PMID: 33162887 PMCID: PMC7583590 DOI: 10.3389/fphar.2020.572009] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023] Open
Abstract
This review describes targeting neutrophils as a potential therapeutic strategy for acute respiratory distress syndrome (ARDS) associated with coronavirus disease 2019 (COVID-19), a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Neutrophil counts are significantly elevated in patients with COVID-19 and significantly correlated with disease severity. The neutrophil-to-lymphocyte ratio can serve as a clinical marker for predicting fatal complications related to ARDS in patients with COVID-19. Neutrophil-associated inflammation plays a critical pathogenic role in ARDS. The effector functions of neutrophils, acting as respiratory burst oxidants, granule proteases, and neutrophil extracellular traps, are linked to the pathogenesis of ARDS. Hence, neutrophils can not only be used as pathogenic markers but also as candidate drug targets for COVID-19 associated ARDS.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Jen Cheng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
507
|
Wahab S, Ahmad I, Usmani S, Ahmad MP. Epidemiological Situation and Efficacy of Dexamethasone for the treatment planning of COVID-19: A perspective review. Curr Drug Deliv 2020; 18:546-554. [PMID: 33023445 DOI: 10.2174/1567201817666201006144008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
The current COVID-19 pandemic has prompted the urgent requirement for searching effective treatments since the implications are so huge globally as compared to the earlier pandemics. Momentarily, there has been no effective medicine for SARS-CoV-2 infection, and supportive care tends to be the most effective approach to treat COVID-19 patients. The rapidly growing awareness of SARS-CoV-2 virology offers a large number of possible drug targets. The World Health Organisation (WHO) is steadily updating the treatment protocol for COVID-19 based on the recent clinical trials. In the present review, we have summarised the possible mode of action, clinical evidence, consequences of the dexamethasone as a therapeutic agent against Covid-19. Currently, there are many corticosteroids tested in ongoing randomised trials. Dexamethasone could come as a lifesaving drug. Dexamethasone drug looks useful only in those patients who are already in a critical state. We might allow dexamethasone as a fascinating shot if the long-term health effects of Covid-19 recovered patients safeguard favourable clinical meanings. It is commonly accepted to reinforce approved drugs in the fight against newly emerging diseases such as COVID-19 as these drugs have established pharmacokinetic profiles and protection. The current focus should be on the development of novel proven therapeutics along with vaccines. High-quality, more extensive, rapid and collaborative randomised controlled trials, with more control groups, would be required to include conclusive evidence to ensure and evaluate what works.
Collapse
Affiliation(s)
- Shadma Wahab
- College of Pharmacy, King Khalid University, Abha. Saudi Arabia
| | - Irfan Ahmad
- College of Applied Medical Sciences, King Khalid University, Abha. Saudi Arabia
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow. India
| | - Md Parwez Ahmad
- Department of Pharmacology, School of Medicine, Maldives National University. Maldives
| |
Collapse
|
508
|
Satyam A, Tsokos GC. Curb complement to cure COVID-19. Clin Immunol 2020; 221:108603. [PMID: 33022386 PMCID: PMC7832239 DOI: 10.1016/j.clim.2020.108603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Abhigyan Satyam
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
509
|
Enkhtur A, Yoon JS, Lee CW. Factors increasing the risk of mortality and morbidity due to coronavirus infection in patients with metabolic syndrome. PRECISION AND FUTURE MEDICINE 2020. [DOI: 10.23838/pfm.2020.00121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
510
|
Min YQ, Mo Q, Wang J, Deng F, Wang H, Ning YJ. SARS-CoV-2 nsp1: Bioinformatics, Potential Structural and Functional Features, and Implications for Drug/Vaccine Designs. Front Microbiol 2020; 11:587317. [PMID: 33133055 PMCID: PMC7550470 DOI: 10.3389/fmicb.2020.587317] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
The emerging coronavirus disease (COVID-19) caused by SARS-CoV-2 has led to social and economic disruption globally. It is urgently needed to understand the structure and function of the viral proteins for understanding of the viral infection and pathogenesis and development of prophylaxis and treatment strategies. Coronavirus non-structural protein 1 (nsp1) is a notable virulence factor with versatile roles in virus-host interactions and exhibits unique characteristics on sequence, structure, and function mode. However, the roles and characteristics of SARS-CoV-2 nsp1 are currently unclear. Here, we analyze the nsp1 of SARS-CoV-2 from the following perspectives: (1) bioinformatics analysis reveals that the novel nsp1 is conserved among SARS-CoV-2 strains and shares significant sequence identity with SARS-CoV nsp1; (2) structure modeling shows a 3D α/β-fold of SARS-CoV-2 nsp1 highly similar to that of the SARS-CoV homolog; (3) by detailed, functional review of nsp1 proteins from other coronaviruses (especially SARS-CoV) and comparison of the protein sequence and structure, we further analyzed the potential roles of SARS-CoV-2 nsp1 in manipulating host mRNA translation, antiviral innate immunity and inflammation response and thus likely promoting viral infection and pathogenesis, which are merited to be tested in the future. Finally, we discussed how understanding of the novel nsp1 may provide valuable insights into the designs of drugs and vaccines against the unprecedented coronavirus pandemic.
Collapse
Affiliation(s)
- Yuan-Qin Min
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Qiong Mo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
511
|
Parackova Z, Zentsova I, Bloomfield M, Vrabcova P, Smetanova J, Klocperk A, Mesežnikov G, Casas Mendez LF, Vymazal T, Sediva A. Disharmonic Inflammatory Signatures in COVID-19: Augmented Neutrophils' but Impaired Monocytes' and Dendritic Cells' Responsiveness. Cells 2020; 9:E2206. [PMID: 33003471 PMCID: PMC7600406 DOI: 10.3390/cells9102206] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2 virus, emerged as a pandemic disease posing a severe threat to global health. To date, sporadic studies have demonstrated that innate immune mechanisms, specifically neutrophilia, NETosis, and neutrophil-associated cytokine responses, are involved in COVID-19 pathogenesis; however, our understanding of the exact nature of this aspect of host-pathogen interaction is limited. Here, we present a detailed dissection of the features and functional profiles of neutrophils, dendritic cells, and monocytes in COVID-19. We portray the crucial role of neutrophils as drivers of hyperinflammation associated with COVID-19 disease via the shift towards their immature forms, enhanced degranulation, cytokine production, and augmented interferon responses. We demonstrate the impaired functionality of COVID-19 dendritic cells and monocytes, particularly their low expression of maturation markers, increased PD-L1 levels, and their inability to upregulate phenotype upon stimulation. In summary, our work highlights important data that prompt further research, as therapeutic targeting of neutrophils and their associated products may hold the potential to reduce the severity of COVID-19.
Collapse
Affiliation(s)
- Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic; (I.Z.); (M.B.); (P.V.); (J.S.); (A.K.); (A.S.)
| | - Irena Zentsova
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic; (I.Z.); (M.B.); (P.V.); (J.S.); (A.K.); (A.S.)
| | - Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic; (I.Z.); (M.B.); (P.V.); (J.S.); (A.K.); (A.S.)
- Department of Pediatrics, 1st Faculty of Medicine, Charles University in Prague and Thomayer’s Hospital, 15006 Prague, Czech Republic
| | - Petra Vrabcova
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic; (I.Z.); (M.B.); (P.V.); (J.S.); (A.K.); (A.S.)
| | - Jitka Smetanova
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic; (I.Z.); (M.B.); (P.V.); (J.S.); (A.K.); (A.S.)
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic; (I.Z.); (M.B.); (P.V.); (J.S.); (A.K.); (A.S.)
| | - Grigorij Mesežnikov
- Department of Infectious Diseases, University Hospital in Motol, 15006 Prague, Czech Republic;
| | - Luis Fernando Casas Mendez
- Department of Pneumology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic;
| | - Tomas Vymazal
- Department of Anesthesiology and Intensive Care Medicine, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic;
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic; (I.Z.); (M.B.); (P.V.); (J.S.); (A.K.); (A.S.)
| |
Collapse
|
512
|
Immune dysfunction following COVID-19, especially in severe patients. Sci Rep 2020; 10:15838. [PMID: 32985562 PMCID: PMC7522270 DOI: 10.1038/s41598-020-72718-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) has been spreading worldwide. Severe cases quickly progressed with unfavorable outcomes. We aim to investigate the clinical features of COVID-19 and identify the risk factors associated with its progression. Data of confirmed SARS-CoV-2-infected patients and healthy participants were collected. Thirty-seven healthy people and 79 confirmed patients, which include 48 severe patients and 31 mild patients, were recruited. COVID-19 patients presented with dysregulated immune response (decreased T, B, and NK cells and increased inflammatory cytokines). Also, they were found to have increased levels of white blood cell, neutrophil count, and D-dimer in severe cases. Moreover, lymphocyte, CD4+ T cell, CD8+ T cell, NK cell, and B cell counts were lower in the severe group. Multivariate logistic regression analysis showed that CD4+ cell count, neutrophil-to-lymphocyte ratio (NLR) and D-dimer were risk factors for severe cases. Both CT score and clinical pulmonary infection score (CPIS) were associated with disease severity. The receiver operating characteristic (ROC) curve analysis has shown that all these parameters and scores had quite a high predictive value. Immune dysfunction plays critical roles in disease progression. Early and constant surveillance of complete blood cell count, T lymphocyte subsets, coagulation function, CT scan and CPIS was recommended for early screening of severe cases.
Collapse
|
513
|
Ziaee V, Assari R, Mamishi S, Zeinaloo A, Mohammadpour M, Malekzadeh I. An Algorithmic Approach to Multisystem Inflammatory Syndrome in Children with COVID-19: Tehran Children’s Medical Center Protocol. IRANIAN JOURNAL OF PEDIATRICS 2020; 30. [DOI: 10.5812/ijp.108617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
: COVID-19 as a viral infection is usually asymptomatic in children, but complication of this disease in children is not rare and may be fatal. Hyper inflammation of COVID-19 is a potential fatal in undiagnosed children. It is very similar to Kawasaki disease but with higher mortality and morbidity. Multisystem inflammatory syndrome in children (MIS-C) and multi-organ involvement was reported in hyper inflammation syndrome following COVID19. Herein we report our algorithmic approach to Kawasaki-like syndromes due to COVID-19 in our center. Based-on this approach we had no mortality during the last 5 months.
Collapse
|
514
|
Muhammad Y, Aminu YK, Ahmad AE, Iliya S, Muhd N, Yahaya M, Mustapha AS, Tahiru A, Abdulkadir SS, Ibrahim JS, Ahmad AB, Muhammad IY, Shehu Z, Yakubu A, Muhd BK, Ahmed A, Faruk UA. An elevated 8-isoprostaglandin F2 alpha (8-iso-PGF2α) in COVID-19 subjects co-infected with malaria. Pan Afr Med J 2020; 37:78. [PMID: 33244341 PMCID: PMC7680236 DOI: 10.11604/pamj.2020.37.78.25100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 01/06/2023] Open
Abstract
Introduction the most recently discovered severe acute respiratory syndrome Coronavirus 2 (SARS-COV-2) that causes COVID-19, subjected the entire world in turmoil health-wise and economically. With higher burden of malaria in Nigeria and other sub-Saharan African countries coupled with fragile healthcare system and delivery, these may pose a threat in the diagnosis and management of COVID-19 patients co-infected with malaria. Free radicals have been implicated in the progression and pathogenesis of malaria and COVID-19 through Fenton’s reaction and cytokine storm respectively. Methods the current research comprises of seventy-four (74) participants; 20 apparently healthy controls and 54 COVID-19 patients (34 among which were co-infected with malaria). Serum levels of 8-iso PGF2α and Alphatocopherol were determined among the study participants using ELISA technique and colorimetric assay, respectively. Results results revealed statistically significant elevation of 8-iso PGF2α in COVID-19 patients co-infected with malaria compared to COVID-19 patients only, and this may be due to increase production of free radicals. Furthermore, a significant decrease of Alphatocopherol was observed in COVID-19 co-infected with malaria compared to COVID-19 patients due to increase utilization of antioxidants in counterbalancing the negative effect of free radicals generated. Conclusion conclusively, SARS-COV-2 patients co-infected with malaria might be predisposed to oxidative stress and low Alphatocopherol. The increase in oxidative stress is proportional to malaria parasite density and inversely related to Alphatocopherol levels. This implies that oxidative stress is notably higher and such patients may have a severer form of the COVID-19. Increased 8-iso-PGF2α in co-infection and decreased alphatocopherol levels can reflect the severity and adverse outcomes compared to COVID-19 naïve because of their tremendous involvement in the pathogenesis and progression of diseases.
Collapse
Affiliation(s)
- Yahaya Muhammad
- Department of Chemical Pathology Rasheed Shekoni Teaching Hospital Dutse, Jigawa, Nigeria
| | - Yamuna Kani Aminu
- College of Medicine and Health Sciences, Federal University Dutse, Jigawa, Nigeria
| | | | - Sani Iliya
- Department of Biological Sciences, School of Pure and Applied Sciences, Mount Kenya University Thika, Thika, Kenya
| | - Nuruddeen Muhd
- Medical Laboratory Department, General Hospital Dutse, Kiyawa Road, Jigawa, Nigeria
| | - Mohammed Yahaya
- Department of Chemical Pathology Rasheed Shekoni Teaching Hospital Dutse, Jigawa, Nigeria
| | - Aminu Sale Mustapha
- Department of Hematology, Rasheed Shekoni Teaching Hospital Dutse, Jigawa, Nigeria
| | - Abdulkhabir Tahiru
- Department of Chemical Pathology Rasheed Shekoni Teaching Hospital Dutse, Jigawa, Nigeria
| | | | | | | | | | - Zaharaddeen Shehu
- Department of Science Laboratory Technology, Jigawa State Polytechnic, Jigawa, Nigeria
| | - Abdulrahman Yakubu
- Department of Hematology, Rasheed Shekoni Teaching Hospital Dutse, Jigawa, Nigeria
| | - Bashir Kabir Muhd
- Department of Biotechnology Federal University Dutse, Jigawa, Nigeria
| | - Armaya'u Ahmed
- Department of Chemical pathology Usmanu Danfodiyo University Teaching Hospital Sokoto, Nigeria
| | | |
Collapse
|
515
|
Bennet BM, Wolf J, Laureano R, Sellers RS. Review of Current Vaccine Development Strategies to Prevent Coronavirus Disease 2019 (COVID-19). Toxicol Pathol 2020; 48:800-809. [PMID: 32926660 DOI: 10.1177/0192623320959090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak that started in Wuhan, China, in 2019 resulted in a pandemic not seen for a century, and there is an urgent need to develop safe and efficacious vaccines. The scientific community has made tremendous efforts to understand the disease, and unparalleled efforts are ongoing to develop vaccines and treatments. Toxicologists and pathologists are involved in these efforts to test the efficacy and safety of vaccine candidates. Presently, there are several SARS-CoV-2 vaccines in clinical trials, and the pace of vaccine development has been highly accelerated to meet the urgent need. By 2021, efficacy and safety data from clinical trials are expected, and potentially a vaccine will be available for those most at risk. This review focuses on the ongoing SARS-CoV-2 vaccine development efforts with emphasis on the nonclinical safety assessment and discusses emerging preliminary data from nonclinical and clinical studies. It also provides a brief overview on vaccines for other coronaviruses, since experience gained from these can be useful in the development of SARS-CoV-2 vaccines. This review will also explain why, despite this unprecedented pace of vaccine development, rigorous standards are in place to ensure nonclinical and clinical safety and efficacy. [Box: see text].
Collapse
|
516
|
Abstract
The pandemic of Coronavirus disease 2019 (COVID-19) is rapidly progressing, causing significant morbidity and mortality. Various antiviral drugs, anti-inflammatory drugs and immunomodulators have been tried without substantial clinical benefits. The severe and critical cases of COVID-19 disease are characterised by gut microbiome dysbiosis, immune dysregulation, hyper-inflammation and hypercytokinaemia (cytokine storm). Therefore, the strategies which target these pathophysiological processes may be beneficial. Probiotics are one such strategy that exerts beneficial effects by manipulation of the gut microbiota, suppression of opportunistic pathogens in the gut, decreasing translocation of opportunistic organisms, activation of mucosal immunity and modulation of the innate and adaptive immune response. Probiotics are the potential candidates to be tested in moderate and severe cases of COVID-19 due to several beneficial effects, including easy availability, easy to administer, safe and economical to use.
Collapse
|
517
|
Campana P, Parisi V, Leosco D, Bencivenga D, Della Ragione F, Borriello A. Dendritic Cells and SARS-CoV-2 Infection: Still an Unclarified Connection. Cells 2020; 9:E2046. [PMID: 32911691 PMCID: PMC7564940 DOI: 10.3390/cells9092046] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/19/2023] Open
Abstract
The ongoing pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has so far infected about 2.42 × 107 (as at 27 August 2020) subjects with more than 820,000 deaths. It is the third zoonotic coronavirus-dependent outbreak in the last twenty years and represents a major infective threat for public health worldwide. A main aspect of the infection, in analogy to other viral infections, is the so-called "cytokine storm", an inappropriate molecular response to virus spread which plays major roles in tissue and organ damage. Immunological therapies, including vaccines and humanized monoclonal antibodies, have been proposed as major strategies for prevention and treatment of the disease. Accordingly, a detailed mechanistic knowledge of the molecular events with which the virus infects cells and induces an immunological response appears necessary. In this review, we will report details of the initial process of SARS-CoV-2 cellular entry with major emphasis on the maturation of the spike protein. Then, a particular focus will be devoted to describe the possible mechanisms by which dendritic cells, a major cellular component of innate and adaptive immune responses, may play a role in the spread of the virus in the human body and in the clinical evolution of the disease.
Collapse
Affiliation(s)
- Pasquale Campana
- Department of Translational Medical Sciences, University of Naples ‘Federico II’, Via Sergio Pansini 5, 80131 Naples, Italy; (P.C.); (V.P.); (D.L.)
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples ‘Federico II’, Via Sergio Pansini 5, 80131 Naples, Italy; (P.C.); (V.P.); (D.L.)
| | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples ‘Federico II’, Via Sergio Pansini 5, 80131 Naples, Italy; (P.C.); (V.P.); (D.L.)
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy;
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy;
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy;
| |
Collapse
|
518
|
Elshafei MN, Khalil A, El-Bardissy A, Danjuma M, Ahmed MB, Mohamed MF. The efficacy of colchicine in the management of coronavirus disease 2019: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21911. [PMID: 32899023 PMCID: PMC7478773 DOI: 10.1097/md.0000000000021911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-COV2) infection is a recently emerged viral infection causing predominantly mild upper respiratory symptoms. However, in some instances, it might result in acute respiratory distress syndrome (ARDS) that poses a significant mortality risk. ARDS is postulated to be mediated by a surge of pro-inflammatory cytokines and chemokines, leading to a dysregulated hyper inflammatory response. Colchicine being an anti-inflammatory agent, might mitigate this dysregulated response. Thus, in the absence of therapeutic options available to manage coronavirus disease 2019 (COVID-19), it is imperative to ascertain the effect of colchicine on improving outcomes in COVID-19 patients. METHOD We will perform a systematic review including a search of the following databases: PubMed, EMBASE, MEDLINE, Clinicaltrials.gov, Cochrane library, and google scholar since inception. We will include randomized controlled trials exploring the effect of colchicine on the efficacy and safety outcomes of COVID-19 patients. Subsequently, we will perform a meta-analysis utilizing the random-effects to ascertain the effect of colchicine on reducing COVID-19 related mortality (primary endpoint) and other efficacy and safety outcomes. RESULTS Our review results are anticipated in early 2021 (based on the completion of several ongoing randomized controlled trial). Our review results will be published in a peer-reviewed journal. CONCLUSION This systematic review and meta-analysis, is exploring the effect of colchicine on the efficacy and safety outcomes of COVID-19 patients. If colchicine proved to be effective, it would be a significant milestone in the management of COVID-19, a disease with limited available therapeutic options. PROSPERO REGISTRATION NUMBER CRD42020191086.
Collapse
Affiliation(s)
| | - Ahmed Khalil
- Clinical Pharmacy Department. Hamad General Hospital
| | | | - Mohammed Danjuma
- Internal Medicine Department, Hamad Medical Corporation
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | | |
Collapse
|
519
|
Qun S, Wang Y, Chen J, Huang X, Guo H, Lu Z, Wang J, Zheng C, Ma Y, Zhu Y, Xia D, Wang Y, He H, Wang Y, Fei M, Yin Y, Zheng M, Xu Y, Ge W, Hu F, Zhou J. Neutrophil-to-Lymphocyte Ratios Are Closely Associated With the Severity and Course of Non-mild COVID-19. Front Immunol 2020; 11:2160. [PMID: 32983180 PMCID: PMC7493648 DOI: 10.3389/fimmu.2020.02160] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is spreading worldwide. Measuring the prevention and control of the disease has become a matter requiring urgent focus. Objective Based on coronavirus disease 2019 (COVID-19) clinical data from Wuhan, we conducted an in-depth analysis to clarify some of the pathological mechanisms of the disease and identify simple measures to predict its severity early on. Methods A total of 230 patients with non-mild COVID-19 were recruited, and information on their clinical characteristics, inflammatory cytokines, and T lymphocyte subsets was collected. Risk factors for severity were analyzed by binary logistic regression, and the associations of neutrophil-to-lymphocyte ratios (N/LRs) with illness severity, disease course, CT grading, inflammatory cytokines, and T lymphocyte subsets were evaluated. Results Our results showed that the N/LRs were closely related to interleukin (IL)-6 and IL-10 (P < 0.001, P = 0.024) and to CD3+ and CD8+ T lymphocytes (P < 0.001, P = 0.046). In particular, the N/LRs were positively correlated with the severity and course of the disease (P = 0.021, P < 0.001). Compared to the values at the first test after admission, IL-6 and IL-10 were significantly decreased and increased, respectively, as of the last test before discharge (P = 0.006, P < 0.001). More importantly, through binary logistic regression, we found that male sex, underlying diseases (such as cardiovascular disease), pulse, and N/LRs were all closely related to the severity of the disease (P = 0.004, P = 0.012, P = 0.013, P = 0.028). Conclusions As a quick and convenient marker of inflammation, N/LRs may predict the disease course and severity level of non-mild COVID-19; male sex, cardiovascular disease, and pulse are also risk factors for the severity of non-mild COVID-19.
Collapse
Affiliation(s)
- Sen Qun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yulan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jun Chen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Guo
- Union Hospital Affiliated with Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Lu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinquan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Changcheng Zheng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Ma
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuyou Zhu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Daqing Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yinzhong Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang He
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingming Fei
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yihong Yin
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mao Zheng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yehong Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Ge
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fuyong Hu
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Jian Zhou
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
520
|
Maiti S, Banerjee A, Nazmeen A, Kanwar M, Das S. Active-site Molecular docking of Nigellidine with nucleocapsid- NSP2-MPro of COVID-19 and to human IL1R-IL6R and strong antioxidant role of Nigella-sativa in experimental rats. J Drug Target 2020; 30:511-521. [PMID: 32875925 DOI: 10.1080/1061186x.2020.1817040] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent outbreak of SARS CoV-2 has changed the global scenario of human lives/economy. A significant number of the non-survivors showed cardiac-renal-vasculature dysfunction. A 'cytokine storm' namely, interleukin IL6-IL1 receptors i.e. IL6R-IL1R over-functioning was reported. Here, nigellidine, an indazole-alkaloid and key-component of Nigella Sativa L. (NS) commonly known as black-cumin-seed was analyzed for COVID-19 protein-targeting and IL1R-IL6R inhibition through molecular-docking-study and biochemical-study in experimental-rat to evaluate antioxidative-capacity. The NMR/X-ray-crystallographic/Electron-microscopic structures of COVID-19 Main-protease (6LU7)/Spike-glycoprotein(6vsb)/NSP2(QHD43415_2)/Nucleocapsid(QHD43423), Human IL1R(1itb)-IL6R(1pm9) from PDB were retrieved-analyzed for receptor-ligand interaction. Then those structures were docked with nigellidine using Autodock and Patchdock-server. A brief comparison was made with nigellicine-thymoquinone from N. sativa. Where nigellidine showed highest binding-energy of -6.6 (kcal/mol), ligand-efficiency of -0.3 with COVID19 Nsp2 forming bonds with amino acid CYS240 present in binding-pocket. Nigellidine showed strong interaction with main-protease (BE:-6.38/LE:-0.29). Nigellidine showed affinity to IL1R (-6.23). The NS treated rat showed marked decline in ALP-SGPT-SGOT-malondialdehyde(MDA) than the basal-levels. From the Western-blot and activity-analysis it was observed that Nigellidine (sulfuryl-group-drug) showed no impact on Phenol-catalyzing ASTIV and Steroid-catalyzing estrogen-sulfotransferase expressions and activities in liver-tissue and thus has no influence in sulfation-mediated adverse metabolic-processes. Conclusively, nigellidine has hepato-reno-protective/antioxidant-immunomodulatory/anti-inflammatory activities with inhibit-potentials of COVID-19 proteins. Further validation is necessary.
Collapse
Affiliation(s)
- Smarajit Maiti
- Departmentof Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory Oriental Institute of Science and Technology, Midnapore, India.,Founder and Secretary, Agricure Biotech Research Society, Epidemiology and Human Health Division, Midnapore-721101, India
| | - Amrita Banerjee
- Departmentof Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory Oriental Institute of Science and Technology, Midnapore, India
| | - Aarifa Nazmeen
- Departmentof Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory Oriental Institute of Science and Technology, Midnapore, India
| | - Mehak Kanwar
- Departmentof Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory Oriental Institute of Science and Technology, Midnapore, India
| | - Shilpa Das
- Departmentof Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory Oriental Institute of Science and Technology, Midnapore, India
| |
Collapse
|
521
|
Choi GJ, Kim HM, Kang H. The Potential Role of Dyslipidemia in COVID-19 Severity: an Umbrella Review of Systematic Reviews. J Lipid Atheroscler 2020; 9:435-448. [PMID: 33024735 PMCID: PMC7521969 DOI: 10.12997/jla.2020.9.3.435] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The aim of this study was to analyze the available knowledge about the potential association between dyslipidemia and the severity of coronavirus disease 2019 (COVID-19) as reported in previous published systematic reviews. METHODS In this umbrella review (an overview of systematic reviews), we investigated the association between dyslipidemia and COVID-19 severity. A systematic search was performed of 4 main electronic databases (MEDLINE, Embase, Scopus, and the Cochrane Library databases) from inception until August 2020. We evaluated the methodological quality of the included studies using the A MeaSurement Tool to Assess systematic Reviews (AMSTAR) 2 tool and used the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence for the outcome. In addition, we evaluated the strengths and limitations of the evidence and the methodological quality of the available studies. RESULTS Out of 35 articles identified, 2 systematic reviews were included in the umbrella review. A total of 7,951 COVID-19-positive patients were included. According to the AMSTAR 2 criteria and GRADE system, the quality of the included studies was not high. A history of dyslipidemia is likely to be associated with the severity of COVID-19 infection, but the contrary is the case for cholesterol levels at hospitalization. CONCLUSIONS Although existing research on dyslipidemia and COVID-19 is limited, our findings suggest that dyslipidemia may play a role in the severity of COVID-19 infection. More adequately powered studies are needed. TRIAL REGISTRATION PROSPERO Identifier: CRD42020205979.
Collapse
Affiliation(s)
- Geun Joo Choi
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
- The institute of Evidence based clinical medicine, Chung-Ang University, Seoul, Korea
| | - Hyun Min Kim
- The institute of Evidence based clinical medicine, Chung-Ang University, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyun Kang
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
- The institute of Evidence based clinical medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
522
|
Sardana K, Sinha S, Sachdeva S. Colchicine in Dermatology: Rediscovering an Old Drug with Novel Uses. Indian Dermatol Online J 2020; 11:693-700. [PMID: 33235833 PMCID: PMC7678539 DOI: 10.4103/idoj.idoj_475_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/05/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022] Open
Abstract
Colchicine is an anti-inflammatory agent which has been used for decades in the treatment of gout. The drug has a number of dermatological indications like Psoriasis, Sweet's syndrome, aphthosis, Behcet's disease, erythema nodosum, leukocytoclastic vasculitis and is consistently effective in neutrophilic disorders. Thought it is an affordable with minimal side effects, It has remained underutilized. However, it has novel uses and is being considered in COVID-19 due to its action on IL-1β and IL-6. This article presents a concise and up-to-date review focusing on its mechanisms of action and indications.
Collapse
Affiliation(s)
- Kabir Sardana
- Department of Dermatology, STD and Leprosy, ABVIMS and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Surabhi Sinha
- Department of Dermatology, STD and Leprosy, ABVIMS and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Soumya Sachdeva
- Department of Dermatology, STD and Leprosy, ABVIMS and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
523
|
Hariyanto TI, Kurniawan A. Dyslipidemia is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetes Metab Syndr 2020; 14:1463-1465. [PMID: 32771919 PMCID: PMC7395301 DOI: 10.1016/j.dsx.2020.07.054] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS The number of positive and death cases from coronavirus disease 2019 (COVID-19) is still increasing. The identification of risk factors for severe outcomes is important. Dyslipidemia has been shown as a long-known risk factor for cardiovascular disease. The aim of this study is to analyze the potential association between dyslipidemia and the severity of COVID-19 infection. METHODS We systematically searched the PubMed database using specific keywords related to our aims until July 9th, 2020. All articles published on COVID-19 and dyslipidemia were retrieved. Statistical analysis was done using Review Manager 5.4 software. RESULTS A total of 7 studies with a total of 6922 patients were included in our analysis. Our meta-analysis showed that dyslipidemia is associated with severe COVID-19 infections [RR 1.39 (95% CI 1.03-1.87), p = 0.03, I2 = 57%, random-effect modelling]. CONCLUSION Dyslipidemia increases the risk of the development of severe outcomes from COVID-19 infections. Patients with dyslipidemia should be monitored closely to minimize the risk of COVID-19.
Collapse
Affiliation(s)
- Timotius Ivan Hariyanto
- Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman Street, Karawaci, Tangerang, 15811, Indonesia
| | - Andree Kurniawan
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman Street, Karawaci, Tangerang, 15811, Indonesia.
| |
Collapse
|
524
|
Bohn MK, Hall A, Sepiashvili L, Jung B, Steele S, Adeli K. Pathophysiology of COVID-19: Mechanisms Underlying Disease Severity and Progression. Physiology (Bethesda) 2020; 35:288-301. [PMID: 32783610 PMCID: PMC7426542 DOI: 10.1152/physiol.00019.2020] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The global epidemiology of coronavirus disease 2019 (COVID-19) suggests a wide spectrum of clinical severity, ranging from asymptomatic to fatal. Although the clinical and laboratory characteristics of COVID-19 patients have been well characterized, the pathophysiological mechanisms underlying disease severity and progression remain unclear. This review highlights key mechanisms that have been proposed to contribute to COVID-19 progression from viral entry to multisystem organ failure, as well as the central role of the immune response in successful viral clearance or progression to death.
Collapse
Affiliation(s)
- Mary Kathryn Bohn
- Molecular Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Alexandra Hall
- Molecular Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lusia Sepiashvili
- Molecular Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Jung
- Molecular Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shannon Steele
- Molecular Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
525
|
Palma G, Pasqua T, Silvestri G, Rocca C, Gualtieri P, Barbieri A, De Bartolo A, De Lorenzo A, Angelone T, Avolio E, Botti G. PI3Kδ Inhibition as a Potential Therapeutic Target in COVID-19. Front Immunol 2020; 11:2094. [PMID: 32973818 PMCID: PMC7472874 DOI: 10.3389/fimmu.2020.02094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
The spread of the novel human respiratory coronavirus (SARS-CoV-2) is a global public health emergency. There is no known successful treatment as of this time, and there is a need for medical options to mitigate this current epidemic. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) receptor and is primarily trophic for the lower and upper respiratory tract. A number of current studies on COVID-19 have demonstrated the substantial increase in pro-inflammatory factors in the lungs during infection. The virus is also documented in the central nervous system and, particularly in the brainstem, which plays a key role in respiratory and cardiovascular function. Currently, there are few antiviral approaches, and several alternative drugs are under investigation. Two of these are Idelalisib and Ebastine, already proposed as preventive strategies in airways and allergic diseases. The interesting and evolving potential of phosphoinositide 3-kinase δ (PI3Kδ) inhibitors, together with Ebastine, lies in their ability to suppress the release of pro-inflammatory cytokines, such as IL-1β, IL-8, IL-6, and TNF-α, by T cells. This may represent an optional therapeutic choice for COVID-19 to reduce inflammatory reactions and mortality, enabling patients to recover faster. This concise communication aims to provide new potential therapeutic targets capable of mitigating and alleviating SARS-CoV-2 pandemic infection.
Collapse
Affiliation(s)
- Giuseppe Palma
- SSD Sperimentazione Animale, Istituto Nazionale Tumori Fondazione G. Pascale – IRCSS, Naples, Italy
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Giovannino Silvestri
- Institute of Human Virology, Division of Infectious Agents and Cancer, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Paola Gualtieri
- School of Specialization in Food Science, University of Rome “Tor Vergata”, Rome, Italy
| | - Antonio Barbieri
- SSD Sperimentazione Animale, Istituto Nazionale Tumori Fondazione G. Pascale – IRCSS, Naples, Italy
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
- National Institute for Cardiovascular Research (INRC), Bologna, Italy
| | - Ennio Avolio
- School of Specialization in Food Science, University of Rome “Tor Vergata”, Rome, Italy
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Gerardo Botti
- Scientific Director, Istituto Nazionale Tumori Fondazione G. Pascale – IRCSS, Naples, Italy
| |
Collapse
|
526
|
Soleimanian S, Yaghobi R. Harnessing Memory NK Cell to Protect Against COVID-19. Front Pharmacol 2020; 11:1309. [PMID: 32973527 PMCID: PMC7468462 DOI: 10.3389/fphar.2020.01309] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The worldwide struggle against the coronavirus disease 2019 (COVID-19) as a public health crisis continues to sweep across the globe. Up to now, effective antiviral treatment against COVID-19 is not available. Therefore, throughout virus infections, a thorough clarification of the virus-host immune system interactions will be most probably helpful to encounter these challenges. Emerging evidence suggests that just like SARS and MERS, COVID-19 primarily suppresses the innate immune system, enabling its stable propagation during the early stage of infection. Consequently, proinflammatory cytokines and chemokines have been increasing during infection progression associated with severe lung pathology. It is imperative to consider hyper inflammation in vaccine designing, as vaccine-induced immune responses must have a protective role against infection without leading to immunopathology. Among the front-line responders to viral infections, Natural Killer (NK) cells have immense therapeutic potential, forming a bridge between innate and adaptive responses. A subset of NK cells exhibits putatively increased effector functions against viruses following pathogen-specific and immunization. Memory NK cells have higher cytotoxicity and effector activity, compared with the conventional NK cells. As a pioneering strategy, prompt accumulation and long-term maintenance of these memory NK cells could be an efficacious viral treatment. According to the high prevalence of human cytomegalovirus (HCMV) infection in the world, it remains to be determined whether HCMV adaptive NK cells could play a protective role against this new emerging virus. In addition, the new adaptive-like KIR+NKG2C+ NK cell subset (the adaptive-like lung tissue residue [tr]NK cell) in the context of the respiratory infection at this site could specifically exhibit the expansion upon COVID-19. Another aspect of NK cells we should note, utilizing modified NK cells such as allogeneic off-the-shelf CAR-NK cells as a state-of-the-art strategy for the treatment of COVID-19. In this line, we speculate introducing NKG2C into chimeric antigen receptors in NK cells might be a potential approach in future viral immunotherapy for emerging viruses. In this contribution, we will briefly discuss the current status and future perspective of NK cells, which provide to successfully exploit NK cell-mediated antiviral activity that may offer important new tools in COVID-19 treatment.
Collapse
Affiliation(s)
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
527
|
Lebeau G, Vagner D, Frumence É, Ah-Pine F, Guillot X, Nobécourt E, Raffray L, Gasque P. Deciphering SARS-CoV-2 Virologic and Immunologic Features. Int J Mol Sci 2020; 21:E5932. [PMID: 32824753 PMCID: PMC7460647 DOI: 10.3390/ijms21165932] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 and its associated pathology, COVID-19, have been of particular concerns these last months due to the worldwide burden they represent. The number of cases requiring intensive care being the critical point in this epidemic, a better understanding of the pathophysiology leading to these severe cases is urgently needed. Tissue lesions can be caused by the pathogen or can be driven by an overwhelmed immune response. Focusing on SARS-CoV-2, we and others have observed that this virus can trigger indeed an immune response that can be dysregulated in severe patients and leading to further injury to multiple organs. The purpose of the review is to bring to light the current knowledge about SARS-CoV-2 virologic and immunologic features. Thus, we address virus biology, life cycle, tropism for many organs and how ultimately it will affect several host biological and physiological functions, notably the immune response. Given that therapeutic avenues are now highly warranted, we also discuss the immunotherapies available to manage the infection and the clinical outcomes.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Laboratoire de Biologie, Secteur Laboratoire d’immunologie Clinique et Expérimentale de la Zone de l’océan Indien (LICE-OI), Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| | - Damien Vagner
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Platform CYROI, 2 rue Maxime Rivière, 97491 Sainte Clotilde, La Réunion, France
| | - Étienne Frumence
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Laboratoire de Biologie, Secteur Laboratoire d’immunologie Clinique et Expérimentale de la Zone de l’océan Indien (LICE-OI), Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| | - Franck Ah-Pine
- Service d’anatomo-Pathologie, Centre Hospitalier Universitaire Sud Réunion, 97410 Saint Pierre, France;
| | - Xavier Guillot
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Service de Rhumatologie, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| | - Estelle Nobécourt
- Service d’endocrinologie Diabétologie, Centre Hospitalier Universitaire Sud Réunion, 97410 Saint Pierre, France;
- Université de Formation et de Recherche Santé, Université de la Réunion, 97400 Saint-Denis, France
| | - Loïc Raffray
- Service de Médecine Interne, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Laboratoire de Biologie, Secteur Laboratoire d’immunologie Clinique et Expérimentale de la Zone de l’océan Indien (LICE-OI), Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
528
|
Komiyama M, Hasegawa K. Anticoagulant Therapy for Patients with Coronavirus Disease 2019: Urgent Need for Enhanced Awareness. Eur Cardiol 2020; 15:e58. [PMID: 32944087 PMCID: PMC7479536 DOI: 10.15420/ecr.2020.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic. SARS-CoV-2 binds to the angiotensin-converting enzyme 2 receptor, which is abundantly expressed in vascular endothelial cells and damages these cells. Besides pneumonia-induced respiratory failure, thrombotic cardiovascular complications are increasingly emerging as a major COVID-19 symptom. Multiple retrospective studies have strongly suggested that anticoagulant therapy improves the prognosis of people with COVID-19. However, validation of the safety and effectiveness of anticoagulant therapy for COVID-19 and greater awareness of this clinical therapeutic option are urgently needed.
Collapse
Affiliation(s)
- Maki Komiyama
- Division of Translational Research, National Hospital Organization Kyoto Medical Center Kyoto, Japan
| | - Koji Hasegawa
- Division of Translational Research, National Hospital Organization Kyoto Medical Center Kyoto, Japan
| |
Collapse
|
529
|
Akula SM, Abrams SL, Steelman LS, Candido S, Libra M, Lerpiriyapong K, Cocco L, Ramazzotti G, Ratti S, Follo MY, Martelli AM, Blalock WL, Piazzi M, Montalto G, Cervello M, Notarbartolo M, Basecke J, McCubrey JA. Cancer therapy and treatments during COVID-19 era. Adv Biol Regul 2020; 77:100739. [PMID: 32773105 PMCID: PMC7319627 DOI: 10.1016/j.jbior.2020.100739] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 04/12/2023]
Abstract
The COVID-19 pandemic has put a serious strain on health treatments as well at the economies of many nations. Unfortunately, there is not currently available vaccine for SARS-Cov-2/COVID-19. Various types of patients have delayed treatment or even routine check-ups and we are adapting to a virtual world. In many cases, surgeries are delayed unless they are essential. This is also true with regards to cancer treatments and screening. Interestingly, some existing drugs and nutraceuticals have been screened for their effects on COVID-19. Certain FDA approved drugs, vitamin, natural products and trace minerals may be repurposed to treat or improve the prevention of COVID-19 infections and disease progression. This review article will summarize how the treatments of various cancer patients has changed during the COVID-19 era as well as discuss the promise of some existing drugs and other agents to be repurposed to treat this disease.
Collapse
Affiliation(s)
- Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences-Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences-Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Kvin Lerpiriyapong
- Center of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine and the Hospital for Special Surgery, New York City, NY, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - William L Blalock
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale Delle Ricerche (IGM-CNR), Bologna, Italy; IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Piazzi
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale Delle Ricerche (IGM-CNR), Bologna, Italy; IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Montalto
- Department of Health Promotion, Maternal and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Jorg Basecke
- Sankt-Josefs Hospital, Krankenhausstrasse 13, 49661, Cloppenburg, Germany
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
530
|
Abramson HN. B-Cell Maturation Antigen (BCMA) as a Target for New Drug Development in Relapsed and/or Refractory Multiple Myeloma. Int J Mol Sci 2020; 21:E5192. [PMID: 32707894 PMCID: PMC7432930 DOI: 10.3390/ijms21155192] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
During the past two decades there has been a major shift in the choice of agents to treat multiple myeloma, whether newly diagnosed or in the relapsed/refractory stage. The introduction of new drug classes, such as proteasome inhibitors, immunomodulators, and anti-CD38 and anti-SLAMF7 monoclonal antibodies, coupled with autologous stem cell transplantation, has approximately doubled the disease's five-year survival rate. However, this positive news is tempered by the realization that these measures are not curative and patients eventually relapse and/or become resistant to the drug's effects. Thus, there is a need to discover newer myeloma-driving molecular markers and develop innovative drugs designed to precisely regulate the actions of such putative targets. B cell maturation antigen (BCMA), which is found almost exclusively on the surfaces of malignant plasma cells to the exclusion of other cell types, including their normal counterparts, has emerged as a specific target of interest in this regard. Immunotherapeutic agents have been at the forefront of research designed to block BCMA activity. These agents encompass monoclonal antibodies, such as the drug conjugate belantamab mafodotin; bispecific T-cell engager strategies exemplified by AMG 420; and chimeric antigen receptor (CAR) T-cell therapeutics that include idecabtagene vicleucel (bb2121) and JNJ-68284528.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
531
|
Overmyer KA, Shishkova E, Miller IJ, Balnis J, Bernstein MN, Peters-Clarke TM, Meyer JG, Quan Q, Muehlbauer LK, Trujillo EA, He Y, Chopra A, Chieng HC, Tiwari A, Judson MA, Paulson B, Brademan DR, Zhu Y, Serrano LR, Linke V, Drake LA, Adam AP, Schwartz BS, Singer HA, Swanson S, Mosher DF, Stewart R, Coon JJ, Jaitovich A. Large-scale Multi-omic Analysis of COVID-19 Severity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.07.17.20156513. [PMID: 32743614 PMCID: PMC7388490 DOI: 10.1101/2020.07.17.20156513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We performed RNA-Seq and high-resolution mass spectrometry on 128 blood samples from COVID-19 positive and negative patients with diverse disease severities. Over 17,000 transcripts, proteins, metabolites, and lipids were quantified and associated with clinical outcomes in a curated relational database, uniquely enabling systems analysis and cross-ome correlations to molecules and patient prognoses. We mapped 219 molecular features with high significance to COVID-19 status and severity, many involved in complement activation, dysregulated lipid transport, and neutrophil activation. We identified sets of covarying molecules, e.g., protein gelsolin and metabolite citrate or plasmalogens and apolipoproteins, offering pathophysiological insights and therapeutic suggestions. The observed dysregulation of platelet function, blood coagulation, acute phase response, and endotheliopathy further illuminated the unique COVID-19 phenotype. We present a web-based tool (covid-omics.app) enabling interactive exploration of our compendium and illustrate its utility through a comparative analysis with published data and a machine learning approach for prediction of COVID-19 severity.
Collapse
Affiliation(s)
- Katherine A. Overmyer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Morgridge Institute for Research, Madison, WI 53562, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Ian J. Miller
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | | | - Trenton M. Peters-Clarke
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Jesse G. Meyer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Qiuwen Quan
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Laura K. Muehlbauer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Edna A. Trujillo
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Yuchen He
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Amit Chopra
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Hau C. Chieng
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Anupama Tiwari
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
- Division of Sleep Medicine, Albany Medical Center, Albany, NY, USA
| | - Marc A. Judson
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Brett Paulson
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Dain R. Brademan
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Yunyun Zhu
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Lia R. Serrano
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Vanessa Linke
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Lisa A. Drake
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Alejandro P. Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Department of Ophthalmology, Albany Medical College, Albany, NY, USA
| | | | - Harold A. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Scott Swanson
- Morgridge Institute for Research, Madison, WI 53562, USA
| | - Deane F. Mosher
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53562, USA
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Morgridge Institute for Research, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
532
|
Jain SK, Parsanathan R. Can Vitamin D and L-Cysteine Co-Supplementation Reduce 25(OH)-Vitamin D Deficiency and the Mortality Associated with COVID-19 in African Americans? J Am Coll Nutr 2020; 39:694-699. [PMID: 32659175 DOI: 10.1080/07315724.2020.1789518] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Early reports indicate an association between the severity of the COVID-19 infection and the widespread 25-hydroxy vitamin D deficiency known to exist in populations around the world. Vitamin D deficiency is extremely common among African American (AA) communities, where the COVID-19 infection rate is three-fold higher, and the mortality rate nearly six-fold higher, compared with rates in predominantly white communities. COVID-19 infection primarily affects the lungs and airways. Previous reports have linked 25-hydroxy vitamin D deficiency with subclinical interstitial lung disease. AA are at risk for lower cellular glutathione (GSH) levels, and GSH deficiency epigenetically impairs VD biosynthesis pathway genes. Compared with vitamin D alone, co-supplementation of vitamin D and L-cysteine (a GSH precursor) showed a better efficacy in improving levels of GSH and VD-regulatory genes at the cellular/tissue level, increasing 25(OH) vitamin D levels, and reducing inflammation biomarkers in the blood in mice studies. We propose that randomized clinical trials are needed to examine the potential of co-supplementation with anti-inflammatory antioxidants, vitamin D and L-cysteine in correcting the 25(OH)VD deficiency and preventing the 'cytokine storm,' one of the most severe consequences of infection with COVID-19, thereby preventing the adverse clinical effects of COVID-19 infection in the vulnerable AA population.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Rajesh Parsanathan
- Department of Pediatrics, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
533
|
Stahel PF, Barnum SR. Complement Inhibition in Coronavirus Disease (COVID)-19: A Neglected Therapeutic Option. Front Immunol 2020; 11:1661. [PMID: 32733489 PMCID: PMC7358522 DOI: 10.3389/fimmu.2020.01661] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Philip F Stahel
- Department of Specialty Medicine, College of Osteopathic Medicine, Rocky Vista University, Parker, CO, United States
| | | |
Collapse
|
534
|
Abstract
Recent studies showed that glucocorticoid drugs, which are easily available as pills on pharmacy shelves worldwide, could save lives of COVID-19 patients. With the swiftly increasing infections of the SARS-CoV-2 pandemic at a lethality rate of about 4.7% countless lives may be saved globally.
Collapse
Affiliation(s)
- Chu-Xia Deng
- Editor in Chief, International Journal of Biological Sciences; Chair Professor, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
535
|
van den Berg DF, Te Velde AA. Severe COVID-19: NLRP3 Inflammasome Dysregulated. Front Immunol 2020; 11:1580. [PMID: 32670297 PMCID: PMC7332883 DOI: 10.3389/fimmu.2020.01580] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 might directly activate NLRP3 inflammasome resulting in an endogenous adjuvant activity necessary to mount a proper adaptive immune response against the virus. Heterogeneous response of COVID-19 patients could be attributed to differences in not being able to properly downregulate NLRP3 inflammasome activation. This relates to the fitness of the immune system of the individual challenged by the virus. Patients with a reduced immune fitness can demonstrate a dysregulated NLRP3 inflammasome activity resulting in severe COVID-19 with tissue damage and a cytokine storm. We sketch the outlines of five possible scenarios for COVID-19 in medical practice and provide potential treatment options targeting dysregulated endogenous adjuvant activity in severe COVID-19 patients.
Collapse
Affiliation(s)
- Daan F van den Berg
- Amsterdam UMC, Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, Netherlands
| | - Anje A Te Velde
- Amsterdam UMC, Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, Netherlands
| |
Collapse
|
536
|
Tarasova O, Ivanov S, Filimonov DA, Poroikov V. Data and Text Mining Help Identify Key Proteins Involved in the Molecular Mechanisms Shared by SARS-CoV-2 and HIV-1. Molecules 2020; 25:E2944. [PMID: 32604797 PMCID: PMC7357070 DOI: 10.3390/molecules25122944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Viruses can be spread from one person to another; therefore, they may cause disorders in many people, sometimes leading to epidemics and even pandemics. New, previously unstudied viruses and some specific mutant or recombinant variants of known viruses constantly appear. An example is a variant of coronaviruses (CoV) causing severe acute respiratory syndrome (SARS), named SARS-CoV-2. Some antiviral drugs, such as remdesivir as well as antiretroviral drugs including darunavir, lopinavir, and ritonavir are suggested to be effective in treating disorders caused by SARS-CoV-2. There are data on the utilization of antiretroviral drugs against SARS-CoV-2. Since there are many studies aimed at the identification of the molecular mechanisms of human immunodeficiency virus type 1 (HIV-1) infection and the development of novel therapeutic approaches against HIV-1, we used HIV-1 for our case study to identify possible molecular pathways shared by SARS-CoV-2 and HIV-1. We applied a text and data mining workflow and identified a list of 46 targets, which can be essential for the development of infections caused by SARS-CoV-2 and HIV-1. We show that SARS-CoV-2 and HIV-1 share some molecular pathways involved in inflammation, immune response, cell cycle regulation.
Collapse
Affiliation(s)
- Olga Tarasova
- Department for Bioinformatics, Institute of Biomedical Chemistry, 107076 Moscow, Russia; (S.I.); (D.A.F.); (V.P.)
| | - Sergey Ivanov
- Department for Bioinformatics, Institute of Biomedical Chemistry, 107076 Moscow, Russia; (S.I.); (D.A.F.); (V.P.)
- Department of Bioinformatics of Pirogov Russian National Research Medical University, 107076 Moscow, Russia
| | - Dmitry A. Filimonov
- Department for Bioinformatics, Institute of Biomedical Chemistry, 107076 Moscow, Russia; (S.I.); (D.A.F.); (V.P.)
| | - Vladimir Poroikov
- Department for Bioinformatics, Institute of Biomedical Chemistry, 107076 Moscow, Russia; (S.I.); (D.A.F.); (V.P.)
| |
Collapse
|
537
|
Merit of an Ursodeoxycholic Acid Clinical Trial in COVID-19 Patients. Vaccines (Basel) 2020; 8:vaccines8020320. [PMID: 32575350 PMCID: PMC7350268 DOI: 10.3390/vaccines8020320] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Corona Virus Disease 2019 (COVID-19) has affected over 8 million people worldwide. We underscore the potential benefits of conducting a randomized open-label unblinded clinical trial to evaluate the role of ursodeoxycholic acid (UDCA) in the treatment of COVID-19. Some COVID-19 patients are characterized with cytokine storm syndrome that can cause severe and irreversible damage to organs leading to multi-organ failure and death. Therefore, it is critical to control both programmed cell death (apoptosis) and the hyper-immune inflammatory response in COVID-19 patients to reduce the rising morbidity and mortality. UDCA is an existing drug with proven safety profiles that can reduce inflammation and prevent cell death. National Geographic reported that, "China Promotes Bear Bile as Coronavirus Treatment". Bear bile is rich in UDCA, comprising up to 40-50% of the total bile acid. UDCA is a logical and attainable replacement for bear bile that is available in pill form and merits clinical trial consideration.
Collapse
|
538
|
Martinez-Urbistondo M, Mora-Vargas A, Expósito-Palomo E, Castejón R, Citores MJ, Rosado S, de Mendoza C, Baños I, Fernández-Cruz A, Daimiel L, San-Cristóbal R, Vargas JA, Martinez JA. Inflammatory-Related Clinical and Metabolic Outcomes in COVID-19 Patients. Mediators Inflamm 2020; 2020:2914275. [PMID: 33273888 PMCID: PMC7695993 DOI: 10.1155/2020/2914275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/21/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) infection elicits inflammatory manifestations that relate with a "cytokine storm." OBJECTIVE The aim of this research was to assess the role of circulating interleukin 6 (IL-6) levels and other inflammatory markers in patients with coronavirus disease 2019 (COVID-19) on metabolic functions and accompanying clinical complications. Patients and Methods. A total of 165 patients diagnosed with COVID-19 pneumonia were examined for medical features and inflammatory markers such as blood IL-6, CRP, ferritin, LDH, neutrophil/lymphocyte index (NLI), D-Dimer, and Red Cell Distribution Width (RDW). Regression analyses concerning electronically collected medical data were adjusted by appropriate factors and confounding variables. Results. Plasma IL-6 determinations evidenced a consistent association with hospital stay days, Intensive Care Unit (ICU) admission, and mortality rates. Similar trends were found for other proinflammatory variables, where ferritin and NLI showed a remarkable value as surrogates. Hyperglycaemia and the Charlson Comorbidity Index Score were positively associated with the inflammatory response induced by the SARS-COV-2 infection. An unhealthy lifestyle such as smoking and alcoholic drinks consumption as well as excessive body adiposity influenced inflammatory-related outcomes in the screened patients. CONCLUSION IL-6 together with other inflammatory biomarkers accompanied poor clinical and metabolic outcomes in COVID-19-infected patients. IL-6 may result in a suitable proxy to individually categorise patients in order to manage this infectious pandemic.
Collapse
Affiliation(s)
| | - Alberto Mora-Vargas
- 1Internal Medicine Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Esther Expósito-Palomo
- 1Internal Medicine Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Raquel Castejón
- 1Internal Medicine Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - M. Jesús Citores
- 1Internal Medicine Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Silvia Rosado
- 1Internal Medicine Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Carmen de Mendoza
- 1Internal Medicine Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Isolina Baños
- 1Internal Medicine Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Ana Fernández-Cruz
- 1Internal Medicine Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Lidia Daimiel
- 2Precision Nutrition Program. IMDEAFood. UAM-CSIC. Madrid, Spain
| | | | - Juan Antonio Vargas
- 1Internal Medicine Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - J. Alfredo Martinez
- 2Precision Nutrition Program. IMDEAFood. UAM-CSIC. Madrid, Spain
- 3CIBERobn. Instituto Carlos III. Madrid, Spain
| |
Collapse
|
539
|
Novaes Matias J, Sorrentino dos Santos Campanari G, Achete de Souza G, Marinho Lima V, José Tofano R, Rucco Penteado Detregiachi C, M. Barbalho S. Metabolic syndrome and COVID-19. AIMS BIOENGINEERING 2020. [DOI: 10.3934/bioeng.2020021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
540
|
Hota J. Acute renal complications of Coronavirus Disease-2019: Impact of pathophysiology on management. APOLLO MEDICINE 2020. [DOI: 10.4103/am.am_52_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|