501
|
Chen L, Boyes J, Yung WH, Bolam JP. Subcellular localization of GABAB receptor subunits in rat globus pallidus. J Comp Neurol 2004; 474:340-52. [PMID: 15174078 DOI: 10.1002/cne.20143] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The inhibitory amino acid gamma-aminobutyric acid (GABA) is the major neurotransmitter in the globus pallidus. Although electrophysiological studies have indicated that functional GABA(B) receptors exist in rat globus pallidus, the subcellular localization of GABA(B) receptor subunits and their spatial relationship to glutamatergic and GABAergic synapses are unknown. Here, we use pre-embedding immunogold labeling to study the subcellular localization of GABA(B) receptor subunits, GABA(B1) and GABA(B2), in globus pallidus neurons and identified populations of afferent terminals. Immunolabeling for GABA(B1) and GABA(B2) was observed throughout the globus pallidus, with GABA(B1) more strongly expressed in perikarya and GABA(B2) mainly expressed in the neuropil. Electron microscopic analysis revealed that the majority of GABA(B1) labeling was localized within the cytoplasm, whereas most of GABA(B2) labeling was associated with the plasma membrane. At the subcellular level, both the GABA(B1) and GABA(B2) immunogold labeling was localized at pre- and postsynaptic sites. At asymmetric, putative excitatory, synapses, GABA(B1) and GABA(B2) immunogold labeling was found at perisynaptic sites of both pre- and postsynaptic specializations. Double immunolabeling, using the vesicular glutamate transporter 2 (VGLUT2), revealed the glutamatergic nature of most immunogold-labeled asymmetric synapses. At symmetric, putative GABAergic, synapses, including those formed by anterogradely labeled striatopallidal terminals, GABA(B1) and GABA(B2) immunogold labeling was found in the main body of both pre- and postsynaptic specializations. These results demonstrate the existence of presynaptic GABA(B) auto- and heteroreceptors and postsynaptic GABA(B) receptors, which may be involved in modulating synaptic transmission in the globus pallidus.
Collapse
Affiliation(s)
- Lei Chen
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford OX1 3TH, United Kingdom
| | | | | | | |
Collapse
|
502
|
Abstract
The extracellular calcium-sensing receptor (CaR) originally cloned from bovine parathyroid gland is a G protein-coupled receptor. The physiological relevance of the cloned CaR for sensing and regulating the extracellular calcium concentration has been established by identifying hyper- and hypocalcemic disorders resulting from inactivating and activating mutations, respectively, in the CaR. The cloned CaR has been stably or transiently expressed in human embryonic kidney cells and significant progress has been made in elucidating its regulation and activation process using physiological, biochemical and molecular biological methods. A large collection of naturally occurring CaR mutations offers a valuable resource for studies aimed at understanding the structure-function relationships of the receptor, including functional importance of CaR dimerization. In turn, characterization of these naturally occurring mutations has clarified the pathogenesis of clinical conditions involving abnormalities in the CaR, such as familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism.
Collapse
Affiliation(s)
- Mei Bai
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, 221 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
503
|
Magnaghi V, Ballabio M, Cavarretta ITR, Froestl W, Lambert JJ, Zucchi I, Melcangi RC. GABAB receptors in Schwann cells influence proliferation and myelin protein expression. Eur J Neurosci 2004; 19:2641-9. [PMID: 15147298 DOI: 10.1111/j.0953-816x.2004.03368.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The location and the role of gamma-aminobutyric acid type B (GABA(B)) receptors in the central nervous system have recently received considerable attention, whilst relatively little is known regarding the peripheral nervous system. In this regard, here we demonstrate for the first time that GABA(B) receptor isoforms [i.e. GABA(B(1)) and GABA(B(2))] are specifically localized in the rat Schwann cell population of the sciatic nerve. Using the selective GABA(B) agonist [i.e. (-)-baclofen] and the antagonists (i.e. CGP 62349, CGP 56999 A, CGP 55845 A), such receptors are shown to be functionally active and negatively coupled to the adenylate cyclase system. Furthermore, exposure of cultured Schwann cells to (-)-baclofen inhibits their proliferation and reduces the synthesis of specific myelin proteins (i.e. glycoprotein Po, peripheral myelin protein 22, myelin-associated glycoprotein, connexin 32), providing evidence for a physiological role of GABA(B) receptors in the glial cells of the peripheral nervous system.
Collapse
Affiliation(s)
- Valerio Magnaghi
- Department of Endocrinology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
504
|
Luján R, Shigemoto R, Kulik A, Juiz JM. Localization of the GABAB receptor 1a/b subunit relative to glutamatergic synapses in the dorsal cochlear nucleus of the rat. J Comp Neurol 2004; 475:36-46. [PMID: 15176083 DOI: 10.1002/cne.20160] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic gamma-aminobutyric acid receptors (GABA(B)) are involved in pre- and postsynaptic inhibitory effects upon auditory neurons and have been implicated in different aspects of acoustic information processing. To understand better the mechanisms by which GABA(B) receptors mediate their inhibitory effects, we used pre-embedding immunocytochemical techniques combined with quantification of immunogold particles to reveal the precise subcellular distribution of the GABA(B1) subunit in the rat dorsal cochlear nucleus. At the light microscopic level, GABA(B1) was detected in all divisions of the cochlear complex. The most intense immunoreactivity for GABA(B1) was found in the dorsal cochlear nucleus, whereas immunoreactivity in the anteroventral and posteroventral cochlear nuclei was very low. In the dorsal cochlear nucleus, a punctate labeling was observed in the superficial (molecular and fusiform cell) layers. At the electron microscopic level, GABA(B1) was found at both post- and presynaptic locations. Postsynaptically, GABA(B1) was localized mainly in the dendritic spines of presumed fusiform cells. Quantitative immunogold immunocytochemistry revealed that the highest concentration of GABA(B1) in the plasma membrane was in dendritic spines, followed by dendritic shafts and somata. Thus, the most intense immunoreactivity for GABA(B1) was observed in dendritic spines with a high density of immunogold particles at extrasynaptic sites, peaking around 300 nm from glutamatergic synapses. This is in contrast to GABAergic synapses, in which GABA(B1) was only occasionally found. Presynaptically, receptor immunoreactivity was detected primarily in axospinous endings, probably from granule cells, in both the active zone and extrasynaptic sites. The localization of GABA(B1) relative to synaptic sites in the DCN suggests a role for the receptor in the regulation of dendritic excitability and excitatory inputs.
Collapse
Affiliation(s)
- Rafael Luján
- Facultad de Medicina-Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Campus Biosanitario, 02006 Albacete, Spain
| | | | | | | |
Collapse
|
505
|
Binet V, Brajon C, Le Corre L, Acher F, Pin JP, Prézeau L. The heptahelical domain of GABA(B2) is activated directly by CGP7930, a positive allosteric modulator of the GABA(B) receptor. J Biol Chem 2004; 279:29085-91. [PMID: 15126507 PMCID: PMC2557059 DOI: 10.1074/jbc.m400930200] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma-aminobutyric acid, type B (GABA(B)) receptor is well recognized as being composed of two subunits, GABA(B1) and GABA(B2). Both subunits share structural homology with other class-III G-protein-coupled receptors. They are composed of two main domains: a heptahelical domain (HD) typical of all G-protein-coupled receptors and a large extracellular domain (ECD). Although GABA(B1) binds GABA, GABA(B2) is required for GABA(B1) to reach the cell surface. However, it is still not demonstrated whether the association of these two subunits is always required for function in the brain. Indeed, GABA(B2) plays a major role in the coupling of the heteromer to G-proteins, such that it is possible that GABA(B2) can transmit a signal in the absence of GABA(B1). Today only ligands interacting with GABA(B1) ECD have been identified. Thus, the compounds acting exclusively on the GABA(B2) subunit will be helpful in analyzing the specific role of this subunit in the brain. Here, we explored the mechanism of action of CGP7930, a compound described as a positive allosteric regulator of the GABA(B) receptor. We showed that it activates the wild type GABA(B) receptor but with a low efficacy. The GABA(B2) HD is necessary for this effect, although one cannot exclude that CGP7930 could also bind to GABA(B1). Of interest, CGP7930 could activate GABA(B2) expressed alone and is the first described agonist of GABA(B2). Finally, we show that CGP7930 retains its agonist activity on a GABA(B2) subunit deleted of its ECD. This demonstrates that the HD of GABA(B2) behaves similar to a rhodopsin-like receptor, because it can reach the cell surface alone, can couple to G-protein, and be activated by agonists. These data open new strategies for studying the mechanism of activation of GABA(B) receptor and examine any possible role of homomeric GABA(B2) receptors.
Collapse
Affiliation(s)
- Virginie Binet
- LGF, Laboratoire de génomique fonctionnelle
CNRS : UPR2580141, Rue de la Cardonille
34094 MONTPELLIER CEDEX 5,FR
| | - Carole Brajon
- LGF, Laboratoire de génomique fonctionnelle
CNRS : UPR2580141, Rue de la Cardonille
34094 MONTPELLIER CEDEX 5,FR
| | - Laurent Le Corre
- CBPT, Chimie et biochimie pharmacologiques et toxicologiques
CNRS : UMR8601CNRS : IFR95Université Paris Descartes - Paris V45 Rue des Saints-Pères
75270 PARIS CEDEX 06,FR
| | - Francine Acher
- CBPT, Chimie et biochimie pharmacologiques et toxicologiques
CNRS : UMR8601CNRS : IFR95Université Paris Descartes - Paris V45 Rue des Saints-Pères
75270 PARIS CEDEX 06,FR
| | - Jean-Philippe Pin
- LGF, Laboratoire de génomique fonctionnelle
CNRS : UPR2580141, Rue de la Cardonille
34094 MONTPELLIER CEDEX 5,FR
| | - Laurent Prézeau
- LGF, Laboratoire de génomique fonctionnelle
CNRS : UPR2580141, Rue de la Cardonille
34094 MONTPELLIER CEDEX 5,FR
| |
Collapse
|
506
|
Grant M, Patel RC, Kumar U. The role of subtype-specific ligand binding and the C-tail domain in dimer formation of human somatostatin receptors. J Biol Chem 2004; 279:38636-43. [PMID: 15247250 DOI: 10.1074/jbc.m406276200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) represent the largest and most diverse family of cell surface receptors. Several GPCRs have been documented to dimerize with resulting changes in pharmacology. We have previously reported by means of photobleaching fluorescence resonance energy transfer (pbFRET) microscopy and fluorescence correlation spectroscopic (FCS) analysis in live cells, that human somatostatin receptor (hSSTR) 5 could both homodimerize and heterodimerize with hSSTR1 in the presence of the agonist SST-14. In contrast, hSSTR1 remained monomeric when expressed alone regardless of agonist exposure in live cells. In an effort to elucidate the role of ligand and receptor subtypes in heterodimerization, we have employed both pb-FRET microscopy and Western blot on cells stably co-expressing hSSTR1 and hSSTR5 treated with subtype-specific agonists. Here we provide evidence that activation of hSSTR5 but not hSSTR1 is necessary for heterodimeric assembly. This property was also reflected in signaling as shown by increases in adenylyl cyclase coupling efficiencies. Furthermore, receptor C-tail chimeras allowed for the identification of the C-tail as a determinant for dimerization. Finally, we demonstrate that heterodimerization is subtype-selective involving ligand-induced conformational changes in hSSTR5 but not hSSTR1 and could be attributed to molecular events occurring at the C-tail. Understanding the mechanisms by which GPCRs dimerize holds promise for improvements in drug design and efficacy.
Collapse
Affiliation(s)
- Michael Grant
- Fraser Laboratories For Diabetes Research, Royal Victoria Hospital, Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | |
Collapse
|
507
|
Kuwajima M, Hall RA, Aiba A, Smith Y. Subcellular and subsynaptic localization of group I metabotropic glutamate receptors in the monkey subthalamic nucleus. J Comp Neurol 2004; 474:589-602. [PMID: 15174075 DOI: 10.1002/cne.20158] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Both subtypes of group I metabotropic glutamate receptor, mGluR1 and mGluR5, are expressed postsynaptically in neurons of the subthalamic nucleus (STN), and their activation induces different physiological responses. To test whether these effects could be explained by a differential localization of the two group I mGluRs, we analyzed the subcellular and subsynaptic distribution of mGluR1a and mGluR5 in the monkey STN. Double-immunofluorescence and light microscopic analyses revealed that both group I mGluR subtypes were strongly coexpressed in the neuropil and neuronal perikarya. Astrocytic perikarya exhibited intense mGluR1a, but no detectable mGluR5, immunoreactivity. At the electron microscopic level, immunoperoxidase labeling for both mGluR1a and mGluR5 was localized mainly in dendrites. A significant proportion of the total pool of mGluR1a-immunoreactive elements was accounted for by glial cell processes, whereas glial cell labeling was much less frequently encountered in sections immunostained for mGluR5. Preembedding immunogold labeling in STN dendrites revealed that 60-70% of the gold labeling for both mGluR subtypes was intracellular, whereas 30-40% was apposed to the plasma membrane. Of the plasma membrane-apposed particles, more than 90% were extrasynaptic; fewer than 10% were associated with symmetric or asymmetric synapses. Most of the synapse-associated labeling was found at the edges of both asymmetric and symmetric postsynaptic specializations. Some extrasynaptic gold particles were aggregated on parts of the plasma membrane tightly apposed by glial processes. These findings demonstrate that mGluR1a and mGluR5 exhibit a similar pattern of subsynaptic localization in monkey STN neurons, with both receptor subtypes exhibiting substantial extrasynaptic and perisynaptic localization.
Collapse
Affiliation(s)
- Masaaki Kuwajima
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
508
|
Cleator JH, Ravenell R, Kurtz DT, Hildebrandt JD. A dominant negative Galphas mutant that prevents thyroid-stimulating hormone receptor activation of cAMP production and inositol 1,4,5-trisphosphate turnover: competition by different G proteins for activation by a common receptor. J Biol Chem 2004; 279:36601-7. [PMID: 15234971 DOI: 10.1074/jbc.m406232200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A Ser to Asn mutation at position 54 of the alpha subunit of G(s) (designated N54-alpha(s)) was characterized after transient expression of it with various components of the receptor-adenylyl cyclase pathway in COS-1, COS-7, and HEK 293 cells. Previous studies of the N54-alpha(s) mutant revealed that it has a conditional dominant negative phenotype that prevents hormone-stimulated increases in cAMP without interfering with the regulation of basal cAMP levels (Cleator, J. H., Mehta, N. D., Kurtz, D. K., Hildebrandt, J. D. (1999) FEBS Lett. 243, 205-208). Experiments reported here were conducted to localize the mechanism of the dominant negative effect of the mutant. Competition studies conducted with activated alpha(s)* (Q212L) showed that the N54 mutant did not work down-stream by blocking the interaction of endogenous alpha(s) with adenylyl cyclase. The co-expression of wild type or N54-alpha(s) along with the thyroid-stimulating hormone (TSH) receptor and adenylyl cyclase isotypes differing with respect to betagamma stimulation (AC II or AC III) revealed that the phenotype of the mutant is not dependent upon the presence of adenylyl cyclase isoforms regulated by betagamma. These studies ruled out a downstream site of action of the mutant. To investigate an upstream site of action, N54-alpha(s) was co-expressed with either the TSH receptor that activates both alpha(s) and alpha(q) or with the alpha(1B)-adrenergic receptor that activates only alpha(q). N54-alpha(s) failed to inhibit alpha(1B)-adrenergic receptor stimulation of inositol 1,4,5-trisphosphate production but did inhibit TSH stimulation of inositol 1,4,5-trisphosphate. These results show that G(s) and G(q) compete for activation by the TSH receptor. They also indicate that the N54 protein has a dominant negative phenotype by blocking upstream receptor interactions with normal G proteins. This phenotype is different from that seen in analogous mutants of other G protein alpha subunits and suggests that either regulation or protein-protein interactions differ among G protein alpha subunits.
Collapse
Affiliation(s)
- John H Cleator
- Department of Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
509
|
Kang YK, Yoon T, Lee K, Kim HJ. Homo- or hetero-dimerization of muscarinic receptor subtypes is not mediated by direct protein-protein interaction through intracellular and extracellular regions. Arch Pharm Res 2004; 26:846-54. [PMID: 14609134 DOI: 10.1007/bf02980031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The oligomerization of G-proteincoupled receptors (GPCRs) has been shown to occur by various mechanisms, such as via disulfide covalent linkages, noncovalent (ionic, hydrophobic) interactions of the N-terminal, and/or transmembrane and/or intracellular domains. Interactions between GPCRs could involve an association between identical proteins (homomers) or non-identical proteins (heteromers), or between two monomers (to form dimers) or multiple monomers (to form oligomers). It is believed that muscarinic receptors may also be arranged into dimeric or oigomeric complexes, but no systematic experimental evidence exists concerning the direct physical interaction between receptor proteins as its mechanism. We undertook this study to determine whether muscarinic receptors form homomers or a heteromers by direct protein-protein interaction within the same or within different subtypes using a yeast two-hybrid system. Intracellular loops (i1, i2 and i3) and the C-terminal cytoplasmic tails (C) of human muscarinic (Hm) receptor subtypes, Hm1, Hm2 and Hm3, were cloned into the vectors (pB42AD and pLexA) of a two-hybrid system and examined for heteromeric or homodimeric interactions between the cytoplasmic domains. No physical interaction was observed between the intracellular domains of any of the Hm/Hm receptor sets tested. The results of our study suggest that the Hm1, Hm2 and Hm3 receptors do not form dimers or oligomers by interacting directly through either the hydrophilic intracellular domains or the C-terminal tail domains. To further investigate extracellular domain interactions, the N-terminus (N) and extracellular loops (o1 and o2) were also cloned into the two-hybrid vectors. Interactions of Hm2N with Hm2N, Hm2o1, Hm2o2, Hm3N, Hm3o1 or Hm3o2 were examined. The N-terminal domain of Hm2 was found to have no direct interaction with any extracellular domain. From our results, we excluded the possibility of a direct interaction between the muscarinic receptor subtypes (Hm1, Hm2 and Hm3) as a mechanism for homo- or hetero-meric dimerization/oligomerization. On the other hand, it remains a possibility that interaction may occur indirectly or require proper conformation or subunit formation or hydrophobic region involvement.
Collapse
Affiliation(s)
- Yun-Kyung Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Center for Cell Signaling Research, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | |
Collapse
|
510
|
Li S, Park MS, Kim MO. Prenatal alteration and distribution of the GABA(B1) and GABA(B2) receptor subunit mRNAs during rat central nervous system development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 150:141-50. [PMID: 15158077 DOI: 10.1016/j.devbrainres.2004.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/17/2004] [Indexed: 10/26/2022]
Abstract
The prenatal developmental expression changes and distribution of the gamma-aminobutyric acid (GABA)(B1) and GABA(B2) receptor subunit were investigated using in situ hybridization and RNase protection assay (RPA). We defined a different expression pattern of GABA(B1) subunit mRNA to that of GABA(B2) subunit. GABA(B1) subunit mRNA signals were moderately expressed in the cerebral cortex neuroepithelium of discrete brain regions on gestational day (GD) 11.5 and 12.5 and were highly expressed in the brain and spinal cord on GD 13.5 and 15.5. However, GABA(B2) subunit mRNAs were not detected on GD 11.5 and 12.5 and were first weakly detected on GD 13.5. On GD 15.5, 17.5, and 19.5, these subunit mRNAs were found in the retina, hippocampus, cerebral cortex, spinal cord, and cerebellum area. On GD 19.5 and 21.5, these subunits mRNA signals increased in the cerebral cortex, hippocampus, thalamus, and cerebellum, but decreased in the spinal cord, spinal ganglion, and midbrain, reaching similar levels to that of the adult brain. On GD 21.5, these subunit mRNAs were similarly expressed in almost all brain areas with a higher expression level of GABA(B1) subunit mRNA than GABA(B2) subunit mRNA. Our results found that GABA(B1) and GABA(B2) subunit mRNAs showed different expression patterns, with the GABA(B1) subunit expressed earlier and higher. We suggest that GABA(B1) and GABA(B2) subunits might have a role in the fetal brain during the gestational period for pre- and post-synaptogenesis, proliferation, differentiation, and neuronal maturation, and GABA(B1) subunit may be more important than GABA(B2) subunit during rat prenatal development.
Collapse
Affiliation(s)
- Shupeng Li
- Division of Life Science, College of Natural Sciences and Applied Life Science (Brain Korea 21), Gyeongsang National University, Chinju 660-701, South Korea
| | | | | |
Collapse
|
511
|
Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K. The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett 2004; 564:281-288. [PMID: 15111110 PMCID: PMC1393389 DOI: 10.1016/s0014-5793(04)00194-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Accepted: 02/03/2004] [Indexed: 10/26/2022]
Abstract
The higher-order structure of G protein-coupled receptors (GPCRs) in membranes may involve dimerization and formation of even larger oligomeric complexes. Here, we have investigated the organization of the prototypical GPCR rhodopsin in its native membrane by electron and atomic force microscopy (AFM). Disc membranes from mice were isolated and observed by AFM at room temperature. In all experimental conditions, rhodopsin forms structural dimers organized in paracrystalline arrays. A semi-empirical molecular model for the rhodopsin paracrystal is presented validating our previously reported results. Finally, we compare our model with other currently available models describing the supramolecular structure of GPCRs in the membrane.
Collapse
Affiliation(s)
- Dimitrios Fotiadis
- M.E. Müller Institute for Microscopy, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Yan Liang
- Department of Ophthalmology, University of Washington, Box 356485, Seattle, WA 98195-6485, USA
| | - Slawomir Filipek
- International Institute of Molecular and Cell Biology, PL-02109 Warsaw, Poland
| | - David A Saperstein
- Department of Ophthalmology, University of Washington, Box 356485, Seattle, WA 98195-6485, USA
| | - Andreas Engel
- M.E. Müller Institute for Microscopy, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Krzysztof Palczewski
- Department of Ophthalmology, University of Washington, Box 356485, Seattle, WA 98195-6485, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
512
|
Abstract
G protein-coupled receptors (GPCRs) modulate diverse physiological and behavioral signaling pathways by virtue of changes in receptor activation and inactivation states. Functional changes in receptor properties include dynamic interactions with regulatory molecules and trafficking to various cellular compartments at various stages of the life cycle of a GPCR. This review focuses on trafficking of GPCRs to the cell surface, stabilization there, and agonist-regulated turnover. GPCR interactions with a variety of newly revealed partners also are reviewed with the intention of provoking further analysis of the relevance of these interactions in GPCR trafficking, signaling, or both. The disease consequences of mislocalization of GPCRs also are described.
Collapse
Affiliation(s)
- Christopher M Tan
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
513
|
Duvernay MT, Zhou F, Wu G. A conserved motif for the transport of G protein-coupled receptors from the endoplasmic reticulum to the cell surface. J Biol Chem 2004; 279:30741-50. [PMID: 15123661 DOI: 10.1074/jbc.m313881200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural determinants for the export trafficking of G protein-coupled receptors are poorly defined. In this report, we determined the role of carboxyl termini (CTs) of alpha2B-adrenergic receptor (AR) and angiotensin II type 1A receptor (AT1R) in their transport from the endoplasmic reticulum (ER) to the cell surface. The alpha2B-AR and AT1R mutants lacking the CTs were completely unable to transport to the cell surface and were trapped in the ER. Alanine-scanning mutagenesis revealed that residues Phe436 and Ile433-Leu444 in the CT were required for alpha2B-AR export. Insertion or deletion between Phe436 and Ile443-Leu444 as well as Ile443-Leu444 mutation to FF severely disrupted alpha2B-AR transport, indicating there is a defined spatial requirement, which is essential for their function as a single motif regulating receptor transport from the ER. Furthermore, the carboxyl-terminally truncated as well as Phe436 and Ile443-Leu444 mutants were unable to bind ligand and the alpha2B-AR CT conferred its transport properties to the AT1R mutant without the CT in a Phe436-Ile443-Leu444-dependent manner. These data suggest that the Phe436 and Ile443-Leu444 may be involved in both proper folding and export from the ER of the receptor. Similarly, residues Phe309 and Leu316-Leu317 in the CT were identified as essential for AT1R export. The sequence F(X)6LL (where X can be any residue, and L is leucine or isoleucine) is highly conserved in the membrane-proximal CTs of many G protein-coupled receptors and may function as a common motif mediating receptor transport from the ER to the cell surface.
Collapse
MESH Headings
- Alanine/chemistry
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Cell Line
- Cell Membrane/metabolism
- Dose-Response Relationship, Drug
- Endoplasmic Reticulum/metabolism
- Flow Cytometry
- Humans
- Immunoblotting
- Isoleucine/chemistry
- Leucine/chemistry
- Ligands
- Microscopy, Fluorescence
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Phenylalanine/chemistry
- Plasmids/metabolism
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Protein Transport
- Rats
- Receptor, Angiotensin, Type 1/chemistry
- Receptors, Adrenergic, alpha-2/chemistry
- Receptors, G-Protein-Coupled/chemistry
- Sequence Homology, Amino Acid
- Transfection
Collapse
Affiliation(s)
- Matthew T Duvernay
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
514
|
Kang DS, Ryberg K, Mörgelin M, Leeb-Lundberg LMF. Spontaneous Formation of a Proteolytic B1 and B2 Bradykinin Receptor Complex with Enhanced Signaling Capacity. J Biol Chem 2004; 279:22102-7. [PMID: 15033977 DOI: 10.1074/jbc.m402572200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
B1 bradykinin receptor (B1R) induction is critical in the adaptation of the kinin-mediated inflammatory response from a B2 bradykinin receptor (B2R) subtype to a B1R subtype that occurs during chronic insult. Here, we show that B1R spontaneously forms a proteolytic plasma membrane complex with B2R along with increased receptor signaling capacity. Co-expression of hemagglutinin-tagged B2R with FLAG-tagged B1R in HEK293 cells resulted in degradation of B2R as determined by the diminution of the intact 65-kDa B2R species and the appearance of proteolytic B2R products at 30-40 kDa and by the reduction in B2R bradykinin binding sites. On the other hand, the 35-kDa B1R remained intact. Receptor co-expression also led to an increase in constitutive and agonist-stimulated receptor signaling. Selective immunoprecipitation with epitope-specific antibodies revealed a spontaneously formed heterologous receptor complex, which was composed of the intact 35-kDa B1R and the B2R degradation products. Cellular fractionation, cell surface biotinylation, and immunoelectron microscopy showed that B2R.B1R complexes were present on the cell surface. This is the first evidence that a heterologous G protein-coupled receptor complex in the plasma membrane is linked to proteolytic degradation of a participating receptor, and this mechanism may contribute to the adaptation of the kinin response from a B2 type to a B1 type during chronic insult.
Collapse
Affiliation(s)
- Dong Soo Kang
- Department of Physiological Sciences, Lund University, Lund SE-22184, Sweden
| | | | | | | |
Collapse
|
515
|
Francesconi A, Duvoisin RM. Divalent cations modulate the activity of metabotropic glutamate receptors. J Neurosci Res 2004; 75:472-9. [PMID: 14743430 DOI: 10.1002/jnr.10853] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) and calcium receptors (CaR) are closely related G protein-coupled receptors (GPCRs). The similar structural and functional properties of mGluRs and CaRs include conserved amino acid residues involved in glutamate binding in mGluRs and Ca2+ binding in the CaR. Furthermore, recent findings have demonstrated that mGluRs can respond to high extracellular Ca2+ (Ca2+(o)) whereas CaR activity is potentiated by L-amino acids. We show that both mGluR1 and mGluR2 are activated by Ca2+(o) in the absence of glutamate in the extracellular media. This activation by Ca2+(o) is antagonized by Mg2+(o). Unlike the CaR, in which the intracellular carboxyl tail has been reported to be involved in Ca2+(o)-dependent activity, the carboxyl tail of mGluRs does not seem to play a role in mediating Ca2+(o) actions. On the other hand, we find that preservation of disulfide bonds in the N-terminal extracellular domain of mGluRs is essential for stimulation by Ca2+(o) as well as glutamate. Because the mGluR1 EC50 for Ca2+(o) is within the physiologic range of Ca2+ in the synaptic cleft, mGluR function is likely regulated by changes in divalent cations caused by synaptic activity under normal or pathologic conditions.
Collapse
Affiliation(s)
- Anna Francesconi
- Margaret M. Dyson Vision Research Institute, Department of Ophthalmology, Weill Medical College of Cornell University, New York, New York, USA.
| | | |
Collapse
|
516
|
Bailey SJ, Dhillon A, Woodhall GL, Jones RSG. Lamina-specific differences in GABA(B) autoreceptor-mediated regulation of spontaneous GABA release in rat entorhinal cortex. Neuropharmacology 2004; 46:31-42. [PMID: 14654095 DOI: 10.1016/j.neuropharm.2003.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Spontaneous synaptic inhibition plays an important role in regulating the excitability of cortical networks. Here we have investigated the role of GABA(B) autoreceptors in regulating spontaneous GABA release in the entorhinal cortex (EC), a region associated with temporal lobe epilepsies. We have previously shown that the level of spontaneous inhibition in superficial layers of the EC is much greater than that seen in deeper layers. In the present study, using intracellular and whole cell patch clamp recordings in rat EC slices, we have demonstrated that evoked GABA responses are controlled by feedback inhibition via GABA(B) autoreceptors. Furthermore, recordings of spontaneous, activity-independent inhibitory postsynaptic currents in layer II and layer V neurones showed that the GABA(B) receptor agonist, baclofen, reduced the frequency of GABA-mediated currents indicating the presence of presynaptic GABA(B) receptors in both layers. Application of the antagonist, CGP55845, blocked the effects of baclofen and also increased the frequency of GABA-mediated events above baseline, but the latter effect was restricted to layer V. This demonstrates that GABA(B) autoreceptors are tonically activated by synaptically released GABA in layer V, and this may partly explain the lower level of spontaneous GABA release in the deep layer.
Collapse
Affiliation(s)
- Sarah J Bailey
- Department of Physiology and MRC Synaptic Plasticity Centre, School of Medical Sciences, University of Bristol, University Walk, BS8 1TD, Bristol, UK.
| | | | | | | |
Collapse
|
517
|
Balasubramanian S, Teissére JA, Raju DV, Hall RA. Hetero-oligomerization between GABAA and GABAB Receptors Regulates GABAB Receptor Trafficking. J Biol Chem 2004; 279:18840-50. [PMID: 14966130 DOI: 10.1074/jbc.m313470200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neurotransmitter gamma-aminobutyric acid (GABA) mediates inhibitory signaling in the brain via stimulation of both GABA(A) receptors (GABA(A)R), which are chloride-permeant ion channels, and GABA(B) receptors (GABA(B)R), which signal through coupling to G proteins. Here we report physical interactions between these two different classes of GABA receptor. Association of the GABA(B) receptor 1 (GABA(B)R1) with the GABA(A) receptor gamma2S subunit robustly promotes cell surface expression of GABA(B)R1 in the absence of GABA(B)R2, a closely related GABA(B) receptor that is usually required for efficient trafficking of GABA(B)R1 to the cell surface. The GABA(B)R1/gamma2S complex is not detectably functional when expressed alone, as assessed in both ERK activation assays and physiological analyses in oocytes. However, the gamma2S subunit associates not only with GABA(B)R1 alone but also with the functional GABA(B)R1/GABA(B)R2 heterodimer to markedly enhance GABA(B) receptor internalization in response to agonist stimulation. These findings reveal that the GABA(B)R1/gamma2S interaction results in the regulation of multiple aspects of GABA(B) receptor trafficking, allowing for cross-talk between these two distinct classes of GABA receptor.
Collapse
|
518
|
Hwang IK, Park SK, An SJ, Yoo KY, Kim DS, Jung JY, Won MH, Choi SY, Kwon OS, Kang TC. GABAA, not GABAB, receptor shows subunit- and spatial-specific alterations in the hippocampus of seizure prone gerbils. Brain Res 2004; 1003:98-107. [PMID: 15019568 DOI: 10.1016/j.brainres.2003.12.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2003] [Indexed: 11/16/2022]
Abstract
In the present study, we investigated site-specific expressions of GABA(A) and GABA(B) receptor subunits in the seizure-sensitive (SS) and seizure-resistant (SR) gerbil hippocampus to elucidate the function of the gamma-aminobutyric acid (GABA) receptor in seizure activity in this animal. There were no differences of the immunoreactivities of GABA(B) receptor and some GABA(A) receptor subunits (alpha3, alpha4, pan beta and delta) in the hippocampus between SR and SS gerbils. The alpha1 subunit expression was mainly detected in interneurons of stratum radiatum and hilar region of dentate gyrus in the SR gerbil. However, in SS gerbil, interneurons were nearly devoid of alpha1 subunit immunoreactivity and mainly detected in the molecular layer of dentate gyrus. In SR gerbil, alpha2 subunit immunoreactivity was detected in Ammon's horn, particularly in the CA2 region. In SS gerbil, granule cell layer of the dentate gyrus in SS gerbil showed strong alpha2 subunit immunoreactivity. The distribution of alpha5 and gamma2 subunit immunoreactivity in the hippocampus was similarly detected in SR and SS gerbil. However, alpha5 immunodensity of SR gerbil was slightly lower than that of SS gerbil in CA1 region and was slightly strong than that of SS gerbil in subiculum. These differences in distribution of GABA(A) receptor, not GABA(B) receptor, in the SR and SS gerbil hippocampus may indicate that abnormal hyperactive neuronal discharges are occurred in SS gerbil, which presumably result in spontaneous and repetitive seizure activity in this animal.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Kangwon-Do, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
519
|
Chinault SL, Overton MC, Blumer KJ. Subunits of a Yeast Oligomeric G Protein-coupled Receptor Are Activated Independently by Agonist but Function in Concert to Activate G Protein Heterotrimers. J Biol Chem 2004; 279:16091-100. [PMID: 14764600 DOI: 10.1074/jbc.m311099200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors (GPCRs) form dimeric or oligomeric complexes in vivo. However, the function of oligomerization in receptor-mediated G protein activation is unclear. Previous studies of the yeast alpha-factor receptor (STE2 gene product) have indicated that oligomerization promotes signaling. Here we have addressed the mechanism by which oligomerization facilitates G protein signaling by examining the ability of ligand binding- and G protein coupling-defective alpha-factor receptors to form complexes in vivo and to correct their signaling defects when co-expressed (trans complementation). Newly and previously identified receptor mutants indicated that ligand binding involves the exofacial end of transmembrane domain (TM) 4, whereas G protein coupling involves ic1, ic3, the C-terminal tail, and the intracellular ends of TM2 and TM3. Mutant receptors bearing substitutions in these domains formed homo-oligomeric or hetero-oligomeric complexes in vivo, as indicated by results of fluorescence resonance energy transfer experiments. Co-expression of ligand binding- and G protein coupling-defective mutant receptors did not significantly improve signaling. In contrast, co-expression of ic1 and ic3 mutations in trans but not in cis significantly increased signaling efficiency. Therefore, we suggest that subunits of the alpha-factor receptor: 1) are activated independently rather than cooperatively by agonist, and 2) function in a concerted fashion to promote G protein activation, possibly by contacting different subunits or regions of the G protein heterotrimer.
Collapse
Affiliation(s)
- Sharon L Chinault
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
520
|
Ritter B, Zschüntsch J, Kvachnina E, Zhang W, Ponimaskin EG. The GABA(B) receptor subunits R1 and R2 interact differentially with the activation transcription factor ATF4 in mouse brain during the postnatal development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 149:73-7. [PMID: 15013631 DOI: 10.1016/j.devbrainres.2003.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2003] [Indexed: 11/30/2022]
Abstract
Gamma-aminobutyric acid type B receptors (GABA(B)R) belong to the family of G-protein-coupled receptors that mediate synaptic actions by modulation of different ion channels. Here, we demonstrate that the receptor subunits GABA(B)R1 and GABA(B)R2 interact directly with the soluble activating transcription factor 4 (ATF4) in different regions of the neonatal mouse brain. We found that about 5-12% of expressed ATF4 protein is involved in the complex formation with GABA(B) receptors. Confocal fluorescence microscopy showed that GABA(B)R and ATF4 are co-localized in several well-defined spots in neurons and in glial cells. Co-immunoprecipitation analysis also reveals that the interaction efficiency between GABA(B) receptors and ATF4 in the mouse brain markedly changed during postnatal development, and such changes in interaction were dependent on the GABA(B) receptor subtype.
Collapse
Affiliation(s)
- Barbara Ritter
- Abteilung Neuro-und Sinnesphysiologie, Physiologisches Institut, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
521
|
Waldvogel HJ, Billinton A, White JH, Emson PC, Faull RLM. Comparative cellular distribution of GABAA and GABAB receptors in the human basal ganglia: immunohistochemical colocalization of the alpha 1 subunit of the GABAA receptor, and the GABABR1 and GABABR2 receptor subunits. J Comp Neurol 2004; 470:339-56. [PMID: 14961561 DOI: 10.1002/cne.20005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The GABA(B) receptor is a G-protein linked metabotropic receptor that is comprised of two major subunits, GABA(B)R1 and GABA(B)R2. In this study, the cellular distribution of the GABA(B)R1 and GABA(B)R2 subunits was investigated in the normal human basal ganglia using single and double immunohistochemical labeling techniques on fixed human brain tissue. The results showed that the GABA(B) receptor subunits GABA(B)R1 and GABA(B)R2 were both found on the same neurons and followed the same distribution patterns. In the striatum, these subunits were found on the five major types of interneurons based on morphology and neurochemical labeling (types 1, 2, 3, 5, 6) and showed weak labeling on the projection neurons (type 4). In the globus pallidus, intense GABA(B)R1 and GABA(B)R2 subunit labeling was found in large pallidal neurons, and in the substantia nigra, both pars compacta and pars reticulata neurons were labeled for both receptor subunits. Studies investigating the colocalization of the GABA(A) alpha(1) subunit and GABA(B) receptor subunits showed that the GABA(A) receptor alpha(1) subunit and the GABA(B)R1 subunit were found together on GABAergic striatal interneurons (type 1 parvalbumin, type 2 calretinin, and type 3 GAD neurons) and on neurons in the globus pallidus and substantia nigra pars reticulata. GABA(B)R1 and GABA(B)R2 were found on substantia nigra pars compacta neurons but the GABA(A) receptor alpha(1) subunit was absent from these neurons. The results of this study provide the morphological basis for GABAergic transmission within the human basal ganglia and provides evidence that GABA acts through both GABA(A) and GABA(B) receptors. That is, GABA acts through GABA(B) receptors, which are located on most of the cell types of the striatum, globus pallidus, and substantia nigra. GABA also acts through GABA(A) receptors containing the alpha(1) subunit on specific striatal GABAergic interneurons and on output neurons of the globus pallidus and substantia nigra pars reticulata.
Collapse
Affiliation(s)
- Henry J Waldvogel
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
522
|
Boyes J, Bolam JP. The subcellular localization of GABA(B) receptor subunits in the rat substantia nigra. Eur J Neurosci 2004; 18:3279-93. [PMID: 14686901 DOI: 10.1111/j.1460-9568.2003.03076.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibitory effects of GABA within the substantia nigra (SN) are mediated in part by metabotropic GABA(B) receptors. To better understand the mechanisms underlying these effects, we have examined the subcellular localization of the GABA(B) receptor subunits, GABA(B1) and GABA(B2), in SN neurons and afferents using pre-embedding immunocytochemistry combined with anterograde or retrograde labelling. In both the SN pars compacta (SNc) and pars reticulata (SNr), GABA(B1) and GABA(B2) showed overlapping, but distinct, patterns of immunolabelling. GABA(B1) was more strongly expressed by putative dopaminergic neurons in the SNc than by SNr projection neurons, whereas GABA(B2) was mainly expressed in the neuropil of both regions. Immunogold labelling for GABA(B1) and GABA(B2) was localized in presynaptic and postsynaptic elements throughout the SN. The majority of labelling was intracellular or was associated with extrasynaptic sites on the plasma membrane. In addition, labelling for both subunits was found on the presynaptic and postsynaptic membranes at symmetric, putative GABAergic synapses, including those formed by anterogradely labelled striatonigral and pallidonigral terminals. Labelling was also observed on the presynaptic membrane and at the edge of the postsynaptic density at asymmetric, putative excitatory synapses. Double immunolabelling, using the vesicular glutamate transporter 2, revealed the glutamatergic nature of many of the immunogold-labelled asymmetric synapses. The widespread distribution of GABA(B) subunits in the SNc and SNr suggests that GABA(B)-mediated effects in these regions are likely to be more complex than previously described, involving presynaptic autoreceptors and heteroreceptors, and postsynaptic receptors on different populations of SN neurons.
Collapse
Affiliation(s)
- Justin Boyes
- MRC Anatomical Neuropharmacology Unit, University of Oxford, Oxford OX1 3TH, UK
| | | |
Collapse
|
523
|
Carim-Todd L, Escarceller M, Estivill X, Sumoy L. LRRN6A/LERN1 (leucine-rich repeat neuronal protein 1), a novel gene with enriched expression in limbic system and neocortex. Eur J Neurosci 2004; 18:3167-82. [PMID: 14686891 DOI: 10.1111/j.1460-9568.2003.03003.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human chromosome 15q24-q26 is a very complex genomic region containing several blocks of segmental duplications to which susceptibility to anxiety disorders has been mapped (Gratacos et al., 2001, Cell, 106, 367-379; Pujana et al., 2001, Genome Res., 11, 98-111). Through an in silico gene content analysis of the 15q24-q26 region we have identifie1d a novel gene, LRRN6A (leucine-rich repeat neuronal 6A), and confirmed its location to the centromeric end of this complex region. LRRN6A encodes a transmembrane leucine-rich repeat protein, LERN1 (leucine-rich repeat neuronal protein 1), with similarity to proteins involved in axonal guidance and migration, nervous system development and regeneration processes. The identification of homologous genes to LRRN6A on chromosomes 9 and 19 and the orthologous genes in the mouse genome and other organisms suggests that LERN proteins constitute a novel subfamily of LRR (leucine-rich repeat)-containing proteins. The LRRN6A expression pattern is specific to the central nervous system, highly and broadly expressed during early stages of development and gradually restricted to forebrain structures as development proceeds. Expression level in adulthood is lower in general but remains stable and significantly enriched in the limbic system and cerebral cortex. Taken together, the confirmation of LRRN6A's expression profile, its predicted protein structure and its similarity to nervous system-expressed LRR proteins with essential roles in nervous system development and maintenance suggest that LRRN6A is a novel gene of relevance in the molecular and cellular neurobiology of vertebrates.
Collapse
Affiliation(s)
- Laura Carim-Todd
- Programme of Bioinformatics and Genomics, Centre de Regulació Genòmica (CRG), Passeig Marítim 37-49, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
524
|
Sands SA, McCarson KE, Enna SJ. Relationship between the antinociceptive response to desipramine and changes in GABAB receptor function and subunit expression in the dorsal horn of the rat spinal cord. Biochem Pharmacol 2004; 67:743-9. [PMID: 14757174 DOI: 10.1016/j.bcp.2003.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although tricyclic antidepressants are among the drugs of choice for the treatment of neuropathic pain, their mechanism of action in this regard remains unknown. Because previous reports suggest these agents may influence gamma-aminobutyric acid (GABA) neurotransmission, and GABAB receptors are known to participate in the transmission of pain impulses, the present experiments were undertaken to examine whether the administration of desipramine alters GABAB receptor subunit expression and function in the dorsal horn of the rat spinal cord. For the study, rats were injected (i.p.) once daily with desipramine (15 mg/kg) for 7 consecutive days, during which their thermal withdrawal threshold was monitored, and after which GABAB receptor function, and the levels of GABAB receptor subunit mRNA, were quantified in the spinal cord dorsal horn. The results indicate that 4-7 days of continuous administration of desipramine are necessary to observe a significant increase in the thermal pain threshold. Moreover, it was found that 7 days of treatment with desipramine enhances GABAB receptor function, as measured by baclofen-stimulated [35S]GTPgammaS binding, and increases mRNA expression for the GABAB(1a) and GABAB(2), but not GABAB(1b), subunits. These findings suggest the antinociceptive effect of desipramine is accompanied by a change in spinal cord GABAB receptor sensitivity that could be an important component in the analgesic response to this agent.
Collapse
Affiliation(s)
- Scott A Sands
- Department Pharmacology, Toxicology and Therapeutics, Kansas University School of Medicine, 3901 Rainbow Blvd., Mail Code 1018, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
525
|
Kniazeff J, Saintot PP, Goudet C, Liu J, Charnet A, Guillon G, Pin JP. Locking the dimeric GABA(B) G-protein-coupled receptor in its active state. J Neurosci 2004; 24:370-7. [PMID: 14724235 PMCID: PMC6729975 DOI: 10.1523/jneurosci.3141-03.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) play a major role in cell-cell communication in the CNS. These proteins oscillate between various inactive and active conformations, the latter being stabilized by agonists. Although mutations can lead to constitutive activity, most of these destabilize inactive conformations, and none lock the receptor in an active state. Moreover, GPCRs are known to form dimers, but the role of each protomer in the activation process remains unclear. Here, we show that the heterodimeric GPCR for the main inhibitory neurotransmitter, the GABA(B) receptor, can be locked in its active state by introducing two cysteines expected to form a disulphide bridge to maintain the binding domain of the GABA(B1) subunit in a closed form. This constitutively active receptor cannot be inhibited by antagonists, but its normal functioning, activation by agonists, and inhibition by antagonists can be restored after reduction with dithiothreitol. These data show that the closed state of the binding domain of GABA(B1) is sufficient to turn ON this heterodimeric receptor and illustrate for the first time that a GPCR can be locked in an active conformation.
Collapse
Affiliation(s)
- Julie Kniazeff
- Laboratory for Functional Genomic, Department of Molecular Pharmacology, Centre National de la Recherche Scientifique Unité Propre de Recherche-2580, Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
526
|
Abstract
The completion of the human genome sequencing project has identified approximately 720 genes that belong to the G-protein coupled receptor (GPCR) superfamily. Approximately half of these genes are thought to encode sensory receptors. Of the remaining 360 receptors, the natural ligand has been identified for approximately 210 receptors, leaving 150 so-called orphan GPCRs with no known ligand or function. The identification of ligands active at orphan GPCRs has been achieved through the development of a number of experimental approaches, including the screening of putative small molecule and peptide ligands, reverse pharmacology, and the use of bioinformatics to predict candidate ligands. In this review, we discuss the methodologies developed for the identification of ligands at orphan GPCRs and include examples of their successful application.
Collapse
Affiliation(s)
- Alan Wise
- 7TMR Systems Research Europe, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom.
| | | | | |
Collapse
|
527
|
Abstract
Recently, many G-protein-coupled receptors (GPCRs) have been demonstrated to form constitutive dimers consisting of identical or distinct monomeric subunits. The discovery of GPCR dimerization has revealed a new level of molecular cross-talk between signalling molecules and may define a general mechanism that modulates the function of GPCRs under both physiological and pathological conditions. The heterodimerization between distinct GPCRs could be responsible for the generation of pharmacologically defined receptors for which no gene has been identified so far. Elucidating the role of dimerization in the activation processes of GPCRs will lead us to develop novel pharmaceutical agents that allosterically promote activation or inhibition of GPCR signalling.
Collapse
Affiliation(s)
- Mei Bai
- Endocrine-Hypertension Division and Membrane Biology Program, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
528
|
Liu J, Maurel D, Etzol S, Brabet I, Ansanay H, Pin JP, Rondard P. Molecular determinants involved in the allosteric control of agonist affinity in the GABAB receptor by the GABAB2 subunit. J Biol Chem 2004; 279:15824-30. [PMID: 14736871 DOI: 10.1074/jbc.m313639200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gamma-aminobutyric acid type B (GABAB) receptor is an allosteric complex made of two subunits, GABAB1 (GB1) and GABAB2 (GB2). Both subunits are composed of an extracellular Venus flytrap domain (VFT) and a heptahelical domain (HD). GB1 binds GABA, and GB2 plays a major role in G-protein activation as well as in the high agonist affinity state of GB1. How agonist affinity in GB1 is regulated in the receptor remains unknown. Here, we demonstrate that GB2 VFT is a major molecular determinant involved in this control. We show that isolated versions of GB1 and GB2 VFTs in the absence of the HD and C-terminal tail can form hetero-oligomers as shown by time-resolved fluorescence resonance energy transfer (based on HTRF technology). GB2 VFT and its association with GB1 VFT controlled agonist affinity in GB1 in two ways. First, GB2 VFT exerted a direct action on GB1 VFT, as it slightly increased agonist affinity in isolated GB1 VFT. Second and most importantly, GB2 VFT prevented inhibitory interaction between the two main domains (VFT and HD) of GB1. According to this model, we propose that GB1 HD prevents the possible natural closure of GB1 VFT. In contrast, GB2 VFT facilitates this closure. Finally, such inhibitory contacts between HD and VFT in GB1 could be similar to those important to maintain the inactive state of the receptor.
Collapse
Affiliation(s)
- Jianfeng Liu
- Department of Molecular Pharmacology, Laboratory of Functional Genomics, CNRS UPR2580, 141, rue de la Cardonille, F-34094 Montpellier, Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
529
|
Couve A, Restituito S, Brandon JM, Charles KJ, Bawagan H, Freeman KB, Pangalos MN, Calver AR, Moss SJ. Marlin-1, a novel RNA-binding protein associates with GABA receptors. J Biol Chem 2004; 279:13934-43. [PMID: 14718537 DOI: 10.1074/jbc.m311737200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Whereas heterodimerization between GABA(B) receptor GABA(B)R1 and GABA(B)R2 subunits is essential for functional expression, how neurons coordinate the assembly of these critical receptors remains to be established. Here we have identified Marlin-1, a novel GABA(B) receptor-binding protein that associates specifically with the GABA(B)R1 subunit in yeast, tissue culture cells, and neurons. Marlin-1 is expressed in the brain and exhibits a granular distribution in cultured hippocampal neurons. Marlin-1 binds different RNA species including the 3'-untranslated regions of both the GABA(B)R1 and GABA(B)R2 mRNAs in vitro and also associates with RNA in cultured neurons. Inhibition of Marlin-1 expression via small RNA interference technology results in enhanced intracellular levels of the GABA(B)R2 receptor subunit without affecting the level of GABA(B)R1. Together our results suggest that Marlin-1 functions to regulate the cellular levels of GABA(B) R2 subunits, which may have significant effects on the production of functional GABA(B) receptor heterodimers. Therefore, our observations provide an added level of regulation for the control of GABA(B) receptor expression and for the efficacy of inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Andrés Couve
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
530
|
Fairfax BP, Pitcher JA, Scott MGH, Calver AR, Pangalos MN, Moss SJ, Couve A. Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability. J Biol Chem 2004; 279:12565-73. [PMID: 14707142 DOI: 10.1074/jbc.m311389200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. The dynamic control of the cell surface stability of GABA(B) receptors is likely to be of fundamental importance in the modulation of receptor signaling. Presently, however, this process is poorly understood. Here we demonstrate that GABA(B) receptors are remarkably stable at the plasma membrane showing little basal endocytosis in cultured cortical and hippocampal neurons. In addition, we show that exposure to baclofen, a well characterized GABA(B) receptor agonist, fails to enhance GABA(B) receptor endocytosis. Lack of receptor internalization in neurons correlates with an absence of agonist-induced phosphorylation and lack of arrestin recruitment in heterologous systems. We also demonstrate that chronic exposure to baclofen selectively promotes endocytosis-independent GABA(B) receptor degradation. The effect of baclofen can be attenuated by activation of cAMP-dependent protein kinase or co-stimulation of beta-adrenergic receptors. Furthermore, we show that increased degradation rates are correlated with reduced receptor phosphorylation at serine 892 in GABA(B)R2. Our results support a model in which GABA(B)R2 phosphorylation specifically stabilizes surface GABA(B) receptors in neurons. We propose that signaling pathways that regulate cAMP levels in neurons may have profound effects on the tonic synaptic inhibition by modulating the availability of GABA(B) receptors.
Collapse
Affiliation(s)
- Benjamin P Fairfax
- Medical Research Council Laboratory of Molecular Cell Biology and Department of Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
531
|
Martin SC, Steiger JL, Gravielle MC, Lyons HR, Russek SJ, Farb DH. Differential expression of ?-aminobutyric acid type B receptor subunit mRNAs in the developing nervous system and receptor coupling to adenylyl cyclase in embryonic neurons. J Comp Neurol 2004; 473:16-29. [PMID: 15067715 DOI: 10.1002/cne.20094] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
gamma-Aminobutyric acid type B receptors (GABA(B)Rs) mediate both slow inhibitory synaptic activity in the adult nervous system and motility signals for migrating embryonic cortical cells. Previous papers have described the expression of GABA(B)Rs in the adult brain, but the expression and functional significance of these gene products in the embryo are largely unknown. Here we examine GABA(B)R expression from rat embryonic day 10 (E10) to E18 compared with adult and ask whether embryonic cortical neurons contain functional GABA(B)R. GABA(B)R1 transcript levels greatly exceed GABA(B)R2 levels in the developing neural tube at E11, and olfactory bulb and striatum at E17 but equalize in most regions of adult nervous tissue, except for the glomerular and granule cell layers of the main olfactory bulb and the striatum. Consistent with expression differences, the binding affinity of GABA for GABA(B)Rs is significantly lower in adult striatum compared with cerebellum. Multiple lines of evidence from in situ hybridization, RNase protection, and real-time PCR demonstrate that GABA(B)R1a, GABA(B)R1b, GABA(B)R1h (a subunit subtype, lacking a sushi domain, that we have identified in embryonic rat brain), GABA(B)R2, and GABA(B)L transcript levels are not coordinately regulated. Despite the functional requirement for a heterodimer of GABA(B)R subunits, the expression of each subunit mRNA is under independent control during embryonic development, and, by E18, GABA(B)Rs are negatively coupled to adenylyl cyclase in neocortical neurons. The presence of embryonic GABA(B)R transcripts and protein and functional receptor coupling indicates potentially important roles for GABA(B)Rs in modulation of synaptic transmission in the developing embryonic nervous system.
Collapse
Affiliation(s)
- Stella C Martin
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA
| | | | | | | | | | | |
Collapse
|
532
|
López-Bendito G, Shigemoto R, Kulik A, Vida I, Fairén A, Luján R. Distribution of metabotropic GABA receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus during prenatal and postnatal development. Hippocampus 2004; 14:836-48. [PMID: 15382254 DOI: 10.1002/hipo.10221] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic gamma-aminobutyric acid receptors (GABAB) play modulatory roles in central synaptic transmission and are involved in controlling neuronal migration during development. We used immunohistochemical methods to elucidate the expression pattern as well as the cellular and the precise subcellular localization of the GABA(B1a/b) and GABAB2 subunits in the rat hippocampus during prenatal and postnatal development. At the light microscopic level, both GABA(B1a/b) and GABAB2 were expressed in the hippocampal primordium from embryonic day E14. During postnatal development, immunoreactivity for GABA(B1a/b) and GABAB2 was distributed mainly in pyramidal cells, with discrete GABA(B1a/b)-immunopositive cell bodies of interneurons present throughout the hippocampus. Using double immunofluorescence, we demonstrated that during the second week of postnatal development, GABA(B1a/b) but not GABAB2 was expressed in glial cells throughout the hippocampal formation. At the electron microscopic level, GABA(B1a/b) and GABAB2 showed a similar distribution pattern during postnatal development. Thus, at all ages the two receptor subunits were located postsynaptically in dendritic spines and shafts at extrasynaptic and perisynaptic sites in both pyramidal and nonpyramidal cells. We further demonstrated that the two subunits were localized presynaptically along the extrasynaptic plasma membrane of axon terminals and along the presynaptic active zone in both asymmetrical and, to a lesser extent, symmetrical synapses. These results suggest that GABAB receptors are widely expressed in the hippocampus throughout development and that GABA(B1a/b) and GABAB2 form both pre- and postsynaptic receptors.
Collapse
Affiliation(s)
- Guillermina López-Bendito
- Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | | | | | | | | | | |
Collapse
|
533
|
Subcellular localization of metabotropic GABA(B) receptor subunits GABA(B1a/b) and GABA(B2) in the rat hippocampus. J Neurosci 2003. [PMID: 14657159 DOI: 10.1523/jneurosci.23-35-11026.2003] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metabotropic GABA(B) receptors mediate slow inhibitory effects presynaptically and postsynaptically. Using preembedding immunohistochemical methods combined with quantitative analysis of GABA(B) receptor subunit immunoreactivity, this study provides a detailed description of the cellular and subcellular localization of GABA(B1a/b) and GABA(B2) in the rat hippocampus. At the light microscopic level, an overlapping distribution of GABA(B1a/b) and GABA(B2) was revealed in the dendritic layers of the hippocampus. In addition, expression of the GABA(B1a/b) subunit was found in somata of CA1 pyramidal cells and of a subset of GABAergic interneurons. At the electron microscopic level, immunoreactivity for both subunits was observed on presynaptic and, more abundantly, on postsynaptic elements. Presynaptically, subunits were mainly detected in the extrasynaptic membrane and occasionally over the presynaptic membrane specialization of putative glutamatergic and, to a lesser extent, GABAergic axon terminals. Postsynaptically, the majority of GABA(B) receptor subunits were localized to the extrasynaptic plasma membrane of spines and dendritic shafts of principal cells and shafts of interneuron dendrites. Quantitative analysis revealed enrichment of GABA(B1a/b) around putative glutamatergic synapses on spines and an even distribution on dendritic shafts of pyramidal cells contacted by GABAergic boutons. The association of GABA(B) receptors with glutamatergic synapses at both presynaptic and postsynaptic sides indicates their intimate involvement in the modulation of glutamatergic neurotransmission. The dominant extrasynaptic localization of GABA(B) receptor subunits suggests that their activation is dependent on spillover of GABA requiring simultaneous activity of populations of GABAergic cells as it occurs during population oscillations or epileptic seizures.
Collapse
|
534
|
Brown JT, Gill CH, Farmer CE, Lanneau C, Randall AD, Pangalos MN, Collingridge GL, Davies CH. Mechanisms contributing to the exacerbated epileptiform activity in hippocampal slices of GABAB1 receptor subunit knockout mice. Epilepsy Res 2003; 57:121-36. [PMID: 15013053 DOI: 10.1016/j.eplepsyres.2003.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 10/16/2003] [Accepted: 10/19/2003] [Indexed: 10/26/2022]
Abstract
The recently developed GABAB1 receptor subunit knockout (GABAB1 -/-) mouse displays complete loss of GABAB receptor function and develops complex generalized epilepsies including absence type, audiogenic as well as spontaneous generalized seizures with electrographic spike-wave discharge signatures. To gain insight into the cellular mechanisms contributing to the generation and maintenance of this epileptic phenotype we have compared epileptiform activity induced in hippocampal slices obtained from GABAB1 -/- and wild type (GABAB1 +/+) littermates. Deletion of the GABAB1 receptor subunit had no effect on a range of passive membrane properties of CA3 pyramidale neurones, non-synaptic epileptiform field bursting and spreading depression recorded in 6mM K+/Ca2+-free medium, and inter-ictal synaptically-induced epileptiform activity induced by 100 microM 4-aminopyridine (4-AP). In contrast, synaptic epileptiform activity induced by 10 microM bicuculline, removal of extracellular Mg2+ or addition of 10 microM oxotremorine was enhanced in GABAB1 -/- slices. Acute blockade of GABAB receptors using a selective antagonist only partly mimicked these effects. It is suggested that the exaggerated in vitro epileptiform activity is caused by both acute and chronic consequences of the loss of GABAB receptor function in vivo. Specifically, enhancement of N-methyl-d-aspartate (NMDA) receptor triggered synaptic processes, arising from the loss of the GABAB receptor-mediated inhibitory postsynaptic potential (IPSP, together with a possible promotion of depolarising IPSPs due to the removal of GABAB autoreceptor function) is likely to underlie these effects.
Collapse
Affiliation(s)
- Jon T Brown
- Neurology CEDD, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.
| | | | | | | | | | | | | | | |
Collapse
|
535
|
Abstract
Protein-protein interactions are fundamental processes for many biological systems including those involving the superfamily of G-protein coupled receptors (GPCRs). A growing body of biochemical and functional evidence supports the existence of GPCR-GPCR homo- and hetero-oligomers. In particular, hetero-oligomers can display pharmacological and functional properties distinct from those of the homodimer or oligomer thus adding another level of complexity to how GPCRs are activated, signal and traffick in the cell. Dimerization may also play a role in influencing the activity of agonists and antagonists. We are only beginning to unravel how and why such complexes are formed, the functional implications of which will have an enormous impact on GPCR biology. Future research that studies GPCRs as dimeric or oligomeric complexes will enhance not only our understanding of GPCRs in cellular function but will also be critical for novel drug design and improved treatment of the vast array of GPCR-related conditions.
Collapse
Affiliation(s)
- Karen M Kroeger
- Western Australian Institute for Medical Research, Centre for Medical Research, University of Western Australia, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, 6009, Perth, WA, Australia
| | | | | |
Collapse
|
536
|
Berglund MM, Schober DA, Esterman MA, Gehlert DR. Neuropeptide Y Y4 receptor homodimers dissociate upon agonist stimulation. J Pharmacol Exp Ther 2003; 307:1120-6. [PMID: 14551289 DOI: 10.1124/jpet.103.055673] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pancreatic polypeptide-fold family of peptides consists of three 36-amino acid peptides, namely neuropeptide Y (NPY), peptide YY, and pancreatic polypeptide (PP). These peptides regulate important functions, including food intake, circadian rhythms, mood, blood pressure, intestinal secretion, and gut motility, through four receptors: Y1, Y2, Y4, and Y5. Additional receptor subtypes have been proposed based on pharmacology observed in native tissues. Recent studies with other G-protein-coupled receptors have shown that homo- and heterodimerization may be important in determining receptor function and pharmacology. In the present study, the recently cloned rhesus (rh) Y4 receptor was evaluated using radioligand binding, and the pharmacological profile was found to be very similar to the human Y4 receptor. To study homo- and heterodimerization involving the Y4 receptor using bioluminescence resonance energy transfer 2 (BRET(2)), the carboxy termini of the rhesus Y1, Y2, Y4, and Y5 receptors were fused to Renilla luciferase, and rhY4 was also fused to green fluorescent protein. Dimerization was also studied using Western blot analysis. Using both BRET(2) and Western analysis, we found that the rhY4 receptor is present at the cell surface as a homodimer. Furthermore, agonist stimulation using the Y4-selective agonists PP and 1229U91 can dissociate these dimers in a concentration-dependent manner. In contrast, rhY4 did not heterodimerize with other members of the NPY receptor family or with human opioid delta and mu receptors. Therefore, homodimerization is an important component in the regulation of the Y4 receptor.
Collapse
Affiliation(s)
- Magnus M Berglund
- Eli Lilly and Company, Lilly Research Laboratories, LCC, Indianapolis, IN 46285, USA
| | | | | | | |
Collapse
|
537
|
Janovick JA, Ulloa-Aguirre A, Conn PM. Evolved regulation of gonadotropin-releasing hormone receptor cell surface expression. Endocrine 2003; 22:317-27. [PMID: 14709805 DOI: 10.1385/endo:22:3:317] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Accepted: 10/28/2003] [Indexed: 01/21/2023]
Abstract
Dominant negative effects of mutant gonadotropin-releasing hormone (GnRH) receptors (GnRHR; isolated from patients with idiopathic hypogonadotropic hypogonadism) on plasma membrane expression (PME) and function of the wt GnRHR were examined. In addition, we assessed the effect of mutants on wt GnRHR with receptor modifications that, by themselves, diminished PME. Among such mechanisms that restrict PME of GnRHR in primates are: (a) addition of the primate-specific K191 and (b) deletion of the carboxyl tail ("Ctail") found in pre-mammalian species (fish, birds) of GnRHR. We prepared rat (r) and human (h) GnRHR plasmids (88% homologous), each with or without the K191; chimeras were then made with C-tail or each of four truncated fragments (selected to isolate consensus sites for palmitoylation or phosphorylation) of the 51-amino-acid Ser-rich piscine GnRHR C-tail and then expressed in COS-7 cells. The data suggest that the dominant negative effect of the mutants on the hGnRHR requires intrinsic low PME that co-evolved with the dominant-negative effect. The data further reveal that additional modifications must have occurred in primates that are important for both the diminution of the PME and the development of the dominant negative effect of the mutants.
Collapse
Affiliation(s)
- Jo Ann Janovick
- Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
538
|
Charles KJ, Calver AR, Jourdain S, Pangalos MN. Distribution of a GABAB-like receptor protein in the rat central nervous system. Brain Res 2003; 989:135-46. [PMID: 14556935 DOI: 10.1016/s0006-8993(03)03163-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using a homology-based bioinformatics approach we have identified the human and rodent orthologues of a novel putative seven transmembrane G protein coupled receptor, termed GABA(BL). The amino acid sequence homology of these cDNAs compared to GABA(B1) and GABA(B2) led us to postulate that GABA(BL) may be a putative novel GABA(B) receptor subunit. We have developed a rabbit polyclonal antisera specific to the GABA(BL) protein and assessed the distribution of GABA(BL) in the rat CNS by immunohistochemistry. Protein expression was particularly dense in regions previously shown to contain known GABA(B) receptor subunits. Dense immunoreactivity was observed in the cortex, major subfields of the hippocampus and the dentate gyrus. GABA(BL) labelling was very conspicuous in the cerebellum, both in the granule cell layer and in Purkinje cells, and was also observed in the substantia gelatinosa and ventral horn motor neurons of the spinal cord. GABA(BL) immunoreactivity was also noted in a subset of parvalbumin positive hippocampal interneurons. Our data suggest a widespread distribution of GABA(BL) throughout the rat CNS.
Collapse
Affiliation(s)
- K J Charles
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park North, Third Avenue, Essex, CM19 5AW, Harlow, UK.
| | | | | | | |
Collapse
|
539
|
Carrillo JJ, Pediani J, Milligan G. Dimers of class A G protein-coupled receptors function via agonist-mediated trans-activation of associated G proteins. J Biol Chem 2003; 278:42578-87. [PMID: 12920117 DOI: 10.1074/jbc.m306165200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The histamine H1 receptor and the alpha1b-adrenoreceptor are G protein-coupled receptors that elevate intracellular [Ca2+] via activation of Gq/G11. Assessed by co-immunoprecipitation and time-resolved fluorescence resonance energy transfer they both exist as homo-dimers. The addition of the G protein G11alpha to the C terminus of these receptors did not prevent dimerization. Agonists produced a large stimulation of guanosine 5'-3-O-([35S]thio)triphosphate ([35S]GTPgammaS) binding to receptor-G protein fusions containing wild type forms of both polypeptides. For both receptors this was abolished by incorporation of G208AG11alpha into the fusions. Mutation of a highly conserved leucine in intracellular loop 2 of each receptor also eliminated agonist function but not binding. Co-expression of the two non-functional but complementary fusion constructs reconstituted agonist-mediated binding of [35S]GTPgammaS in membranes of HEK293 cells and elevation of [Ca2+]i in mouse embryo fibroblasts lacking both Gq and G11. Co-expression of the histamine H1 receptor- and the alpha1b-adrenoreceptor-G11alpha fusions allowed detection of functional hetero-dimeric complexes, whereas co-expression of histamine H1 receptor-G11alpha with increasing amounts of L151Dalpha1b-adrenoreceptor resulted in decreasing levels of histamine-stimulated [35S]GTPgammaS binding. Co-expression of the alpha1b-adrenoreceptor with a fusion protein incorporating the N-terminal domain and transmembrane helix 1 of the alpha1b-adrenoreceptor and G11alpha did not result in agonist activation of the G protein but did indicate a role for transmembrane helix 1 in dimerization. These data demonstrate that dimers of these class A receptors function via trans-activation of associated G proteins.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Cell Line
- Dimerization
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Proteins/biosynthesis
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Guanosine Triphosphate/metabolism
- Humans
- Mice
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/physiology
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Receptors, Histamine H1
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Juan J Carrillo
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | | | | |
Collapse
|
540
|
Trettel F, Di Bartolomeo S, Lauro C, Catalano M, Ciotti MT, Limatola C. Ligand-independent CXCR2 dimerization. J Biol Chem 2003; 278:40980-8. [PMID: 12888558 DOI: 10.1074/jbc.m306815200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homo- and hetero-oligomerization have been reported for several G protein-coupled receptors (GPCRs). The CXCR2 is a GPCR that is activated, among the others, by the chemokines CXCL8 (interleukin-8) and CXCL2 (growth-related gene product beta) to induce cell chemotaxis. We have investigated the oligomerization of CXCR2 receptors expressed in human embryonic kidney cells and generated a series of truncated mutants to determine whether they could negatively regulate the wild-type (wt) receptor functions. CXCR2 receptor oligomerization was also studied by coimmunoprecipitation of green fluorescent protein- and V5-tagged CXCR2. Truncated CXCR2 receptors retained their ability to form oligomers only if the region between the amino acids Ala-106 and Lys-163 was present. In contrast, all of the deletion mutants analyzed were able to form heterodimers with the wt CXCR2 receptor, albeit with different efficiency, competing for wt/wt dimer formation. The truncated CXCR2 mutants were not functional and, when coexpressed with wt CXCR2, interfered with receptor functions, impairing cell signaling and chemotaxis. When CXCR2 was expressed with the AMPA-type glutamate receptor GluR1, CXCR2 dimerization was again impaired in a dose-dependent way, and receptor functions were prejudiced. In contrast, CXCR1, a chemokine receptor that shares many similarities with CXCR2, did not dimerize alone or with CXCR2 and when coexpressed with CXCR2 did not impair receptor signaling and chemotaxis. The formation of CXCR2 dimers was also confirmed in cerebellar neuron cells. Taken together, we conclude from these studies that CXCR2 functions as a dimer and that truncated receptors negatively modulate receptor activities competing for the formation of wt/wt dimers.
Collapse
Affiliation(s)
- Flavia Trettel
- Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma La Sapienza, Piazzale Aldo Moro 5, Rome 00185
| | | | | | | | | | | |
Collapse
|
541
|
Pfeiffer M, Kirscht S, Stumm R, Koch T, Wu D, Laugsch M, Schröder H, Höllt V, Schulz S. Heterodimerization of substance P and mu-opioid receptors regulates receptor trafficking and resensitization. J Biol Chem 2003; 278:51630-7. [PMID: 14532289 DOI: 10.1074/jbc.m307095200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The micro-opioid receptor (MOR1) and the substance P receptor (NK1) coexist and functionally interact in nociceptive brain regions; however, a molecular basis for this interaction has not been established. Using coimmunoprecipitation and bioluminescence resonance energy transfer (BRET), we show that MOR1 and NK1 can form heterodimers in HEK 293 cells coexpressing the two receptors. Although NK1-MOR1 heterodimerization did not substantially change the ligand binding and signaling properties of these receptors, it dramatically altered their internalization and resensitization profile. Exposure of the NK1-MOR1 heterodimer to the MOR1-selective ligand [D-Ala2,Me-Phe4,Gly5-ol]enkephalin (DAMGO) promoted cross-phosphorylation and cointernalization of the NK1 receptor. Conversely, exposure of the NK1-MOR1 heterodimer to the NK1-selective ligand substance P (SP) promoted cross-phosphorylation and cointernalization of the MOR1 receptor. In cells expressing MOR1 alone, beta-arrestin directs the receptors to clathrin-coated pits, but does not internalize with the receptor. In cells expressing NK1 alone, beta-arrestin internalizes with the receptor into endosomes. Interestingly, in cells coexpressing MOR1 and NK1 both DAMGO and SP induced the recruitment of beta-arrestin to the plasma membrane and cointernalization of NK1-MOR1 heterodimers with beta-arrestin into the same endosomal compartment. Consequently, resensitization of MOR1-dependent receptor functions was severely delayed in coexpressing cells as compared with cells expressing MOR1 alone. Together, our findings indicate that MOR1 by virtue of its physical interaction with NK1 is sequestered via an endocytotic pathway with delayed recycling and resensitization kinetics.
Collapse
Affiliation(s)
- Manuela Pfeiffer
- Department of Pharmacology and Toxicology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
542
|
He X, Zhang Y, Yan Y, Li Y, Koide SS. Identification of GABABR2 in rat testis and sperm. J Reprod Dev 2003; 49:397-402. [PMID: 14967916 DOI: 10.1262/jrd.49.397] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GABA is capable of mimicking and potentiating the action of progesterone in initiating the acrosome reaction (AR) of mammalian sperm. The GABA-initiated AR is mediated by GABA(A)R; whereas GABA(B)R1 protein found in rat testis and sperm tends to modify this process. Moreover, the occurrence of GABA(B)R2, a subunit essential for the formation of a functionally active GABA (B)R, in rat testis and sperm has not been established. In the present study, rat testis and sperm were analyzed for the presence of GABA(B)R2 transcript and protein by RT-PCR, Northern blot, Western blot and an indirect immunofluorescence technique. Northern blot shows that the transcript of testis GABA(B)R2 is shorter (~3.0 Kb) than that of the brain (~5.6 Kb). The full length testis GABA(B)R2 cDNA was prepared by RACE-PCR and found to be shorter by 2.2 Kb in the segment at the extreme terminus of 3'UTR of rat brain GABA(B)R2 but, the sequences corresponding to the open reading frame and 5'-UTR of rat testis GABA(B)R2 were found to be identical to those of rat brain. GABA(B)R2 protein isolated from rat epididymal sperm was slighter larger than those of rat testis and brain. It was principally localized in the acrosome region of the head of rat sperm by an indirect immunofluorescence technique. The present results establish that GABA(B)R2 protein is produced in rat testis and sperm and may play a role in GABA triggering of AR.
Collapse
Affiliation(s)
- Xiaobing He
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200-031, P.R. China
| | | | | | | | | |
Collapse
|
543
|
Jensen K, Chiu CS, Sokolova I, Lester HA, Mody I. GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. J Neurophysiol 2003; 90:2690-701. [PMID: 12815026 DOI: 10.1152/jn.00240.2003] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After its release from interneurons in the CNS, the major inhibitory neurotransmitter GABA is taken up by GABA transporters (GATs). The predominant neuronal GABA transporter GAT1 is localized in GABAergic axons and nerve terminals, where it is thought to influence GABAergic synaptic transmission, but the details of this regulation are unclear. To address this issue, we have generated a strain of GAT1-deficient mice. We observed a large increase in a tonic postsynaptic hippocampal GABAA receptor-mediated conductance. There was little or no change in the waveform or amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) or miniature IPSCs. In contrast, the frequency of quantal GABA release was one-third of wild type (WT), although the densities of GABAA receptors, GABAB receptors, glutamic acid decarboxylase 65 kDa, and vesicular GAT were unaltered. The GAT1-deficient mice lacked a presynaptic GABAB receptor tone, present in WT mice, which reduces the frequency of spontaneous IPSCs. We conclude that GAT1 deficiency leads to enhanced extracellular GABA levels resulting in an overactivation of GABAA receptors responsible for a postsynaptic tonic conductance. Chronically elevated GABA levels also downregulate phasic GABA release and reduce presynaptic signaling via GABAB receptors thus causing an enhanced tonic and a diminished phasic inhibition.
Collapse
Affiliation(s)
- Kimmo Jensen
- Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
544
|
Panek I, Meisner S, Torkkeli PH. Distribution and function of GABAB receptors in spider peripheral mechanosensilla. J Neurophysiol 2003; 90:2571-80. [PMID: 12801903 DOI: 10.1152/jn.00321.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanosensilla in spider exoskeleton are innervated by bipolar neurons with their cell bodies close to the cuticle and dendrites attached to it. Numerous efferent fibers synapse with peripheral parts of the mechanosensory neurons, with glial cells surrounding the neurons, and with each other. Most of these efferent fibers are immunoreactive to gamma-aminobutyric acid (GABA), and the sensory neurons respond to agonists of ionotropic GABA receptors with a rapid and complete inhibition. In contrast, little is known about metabotropic GABAB receptors that may mediate long-term effects. We investigated the distribution of GABAB receptors on spider leg mechanosensilla using specific antibodies against 2 proteins needed to form functional receptors and an antibody that labels the synaptic vesicles on presynaptic sites. Both anti-GABAB receptor antibodies labeled the distal parts of the sensory cell bodies and dendrites but anti-GABABR1 immunoreactivity was also found in the axons and proximal parts of the cell bodies and some glial cells. The fine efferent fibers that branch on top of the sensory neurons did not show GABAB receptor immunoreactivity but were densely labeled with anti-synapsin and indicated synaptic vesicles on presynaptic locations to the GABAB receptors. Intracellular recordings from sensory neurons innervating the slit sensilla of the spider legs revealed that application of GABAB receptor agonists attenuated voltage-activated Ca2+ current and enhanced voltage-activated outward K+ current, providing 2 possible mechanisms for controlling the neurons' excitability. These findings support the hypothesis that GABAB receptors are present in the spider mechanosensilla where their activation may modulate information transmission.
Collapse
Affiliation(s)
- Izabela Panek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | |
Collapse
|
545
|
Abstract
GABA(B) receptor subunits are widely expressed on neurons throughout the CNS, at both pre- and postsynaptic sites, where they mediate the late, slow component of the inhibitory response to the major inhibitory neurotransmitter GABA. The existence of functional GABA(B) receptors on nonneuronal cells has been reported previously, although the molecular composition of these receptors has not yet been described. Here we demonstrate for the first time, using immunohistochemistry the expression of GABA(B1a), GABA(B1b), and GABA(B2) on nonneuronal cells of the rat CNS. All three principle GABA(B) receptor subunits were expressed on these cells irrespective of whether they had been cultured or found within brain tissue sections. At the ultrastructural level GABA(B) receptor subunits were expressed on astrocytic processes surrounding both symmetrical and assymetrical synapses in the CA1 subregion of the hippocampus. In addition, GABA(B1a), GABA(B1b), and GABA(B2) receptor subunits were expressed on activated microglia in culture but were not found on myelin forming oligodendrocytes in the white matter of rat spinal cord. Together these data demonstrate that the obligate subunits of functional GABA(B) receptors are expressed in astrocytes and microglia in the rat CNS.
Collapse
Affiliation(s)
- K J Charles
- Neurology and Gastroenterology Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex, UK.
| | | | | | | |
Collapse
|
546
|
Werry TD, Wilkinson GF, Willars GB. Mechanisms of cross-talk between G-protein-coupled receptors resulting in enhanced release of intracellular Ca2+. Biochem J 2003; 374:281-96. [PMID: 12790797 PMCID: PMC1223610 DOI: 10.1042/bj20030312] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Revised: 06/03/2003] [Accepted: 06/05/2003] [Indexed: 12/21/2022]
Abstract
Alteration in [Ca(2+)](i) (the intracellular concentration of Ca(2+)) is a key regulator of many cellular processes. To allow precise regulation of [Ca(2+)](i) and a diversity of signalling by this ion, cells possess many mechanisms by which they are able to control [Ca(2+)](i) both globally and at the subcellular level. Among these are many members of the superfamily of GPCRs (G-protein-coupled receptors), which are characterized by the presence of seven transmembrane domains. Typically, those receptors able to activate PLC (phospholipase C) enzymes cause release of Ca(2+) from intracellular stores and influence Ca(2+) entry across the plasma membrane. It has been well documented that Ca(2+) signalling by one type of GPCR can be influenced by stimulation of a different type of GPCR. Indeed, many studies have demonstrated heterologous desensitization between two different PLC-coupled GPCRs. This is not surprising, given our current understanding of negative-feedback regulation and the likely shared components of the signalling pathway. However, there are also many documented examples of interactions between GPCRs, often coupling preferentially to different signalling pathways, which result in a potentiation of Ca(2+) signalling. Such interactions have important implications for both the control of cell function and the interpretation of in vitro cell-based assays. However, there is currently no single mechanism that adequately accounts for all examples of this type of cross-talk. Indeed, many studies either have not addressed this issue or have been unable to determine the mechanism(s) involved. This review seeks to explore a range of possible mechanisms to convey their potential diversity and to provide a basis for further experimental investigation.
Collapse
Affiliation(s)
- Tim D Werry
- Department of Cell Physiology and Pharmacology, Medical Sciences Building, University of Leicester, UK
| | | | | |
Collapse
|
547
|
Agnati LF, Ferré S, Lluis C, Franco R, Fuxe K. Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol Rev 2003; 55:509-50. [PMID: 12869660 DOI: 10.1124/pr.55.3.2] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The molecular basis for the known intramembrane receptor/receptor interactions among G protein-coupled receptors was postulated to be heteromerization based on receptor subtype-specific interactions between different types of receptor homomers. The discovery of GABAB heterodimers started this field rapidly followed by the discovery of heteromerization among isoreceptors of several G protein-coupled receptors such as delta/kappa opioid receptors. Heteromerization was also discovered among distinct types of G protein-coupled receptors with the initial demonstration of somatostatin SSTR5/dopamine D2 and adenosine A1/dopamine D1 heteromeric receptor complexes. The functional meaning of these heteromeric complexes is to achieve direct or indirect (via adapter proteins) intramembrane receptor/receptor interactions in the complex. G protein-coupled receptors also form heteromeric complexes involving direct interactions with ion channel receptors, the best example being the GABAA/dopamine D5 receptor heteromerization, as well as with receptor tyrosine kinases and with receptor activity modulating proteins. As an example, adenosine, dopamine, and glutamate metabotropic receptor/receptor interactions in the striatopallidal GABA neurons are discussed as well as their relevance for Parkinson's disease, schizophrenia, and drug dependence. The heterodimer is only one type of heteromeric complex, and the evidence is equally compatible with the existence of higher order heteromeric complexes, where also adapter proteins such as homer proteins and scaffolding proteins can exist. These complexes may assist in the process of linking G protein-coupled receptors and ion channel receptors together in a receptor mosaic that may have special integrative value and may constitute the molecular basis for some forms of learning and memory.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
548
|
Kohno T, Matsuyuki H, Inagaki Y, Igarashi Y. Sphingosine 1-phosphate promotes cell migration through the activation of Cdc42 in Edg-6/S1P4-expressing cells. Genes Cells 2003; 8:685-97. [PMID: 12875654 DOI: 10.1046/j.1365-2443.2003.00667.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Sphingosine 1-phosphate (Sph-1-P) is a bioactive lipid mediator released from activated platelets, which regulates diverse signal transduction pathways via cell surface receptors. Recent studies have revealed that the seven-transmembrane-spanning receptors, Edg-1, Edg-3, Edg-5, Edg-6 and Edg-8 are specific Sph-1-P receptors. Northern blot analysis has demonstrated that Edg-6 is expressed in lymphocyte-containing tissues such as spleen and lung. Little is known about the molecular mechanisms of Edg-6 functions, probably because of the difficulties in expressing Edg-6 on the cell surface. RESULTS Here, our studies revealed that N-terminal FLAG-tagged Edg-6 or Edg-6-GFP fusion protein was expressed in the endoplasmic reticulum, but was not expressed on the cell surface. On the other hand, C-terminally tagged Edg-6 or both N-terminally and C-terminally tagged Edg-6 was able to localize to the cell surface. Using these cells, we found that Sph-1-P induced cell migration through cell surface-expressed Edg-6 in a pertussis toxin-sensitive manner. This motility was mediated through the activation of a member of the Rho family of small GTPases, Cdc42. CONCLUSION These results support a role for Sph-1-P signalling via Edg-6 in the pathways involved in cell motility.
Collapse
Affiliation(s)
- Takayuki Kohno
- Department of Biomembrane and Biofunctional Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Nishi 6, Kita 12, Kita-ku, Sapporo 060-0812 Japan
| | | | | | | |
Collapse
|
549
|
Bissantz C. Conformational Changes of G Protein‐Coupled Receptors During Their Activation by Agonist Binding. J Recept Signal Transduct Res 2003; 23:123-53. [PMID: 14626443 DOI: 10.1081/rrs-120025192] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The superfamily of G protein-coupled receptors (GPCRs) is the largest and most diverse group of transmembrane proteins involved in signal transduction. Many of the over 1000 human GPCRs represent important pharmaceutical targets. However, despite high interest in this receptor family, no high-resolution structure of a human GPCR has been resolved yet. This is mainly due to difficulties in obtaining large quantities of pure and active protein. Until now, only a high-resolution x-ray structure of an inactive state of bovine rhodopsin is available. Since no structure of an active state has been solved, information of the GPCR activation process can be gained only by biophysical techniques. In this review, we first describe what is known about the ground state of GPCRs to then address questions about the nature of the conformational changes taking place during receptor activation and the mechanism controlling the transition from the resting to the active state. Finally, we will also address the question to what extent information about the three-dimensional GPCR structure can be included into pharmaceutical drug design programs.
Collapse
Affiliation(s)
- Caterina Bissantz
- Molecular Structure and Design, Pharmaceuticals Division, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
550
|
Seck T, Baron R, Horne WC. The alternatively spliced deltae13 transcript of the rabbit calcitonin receptor dimerizes with the C1a isoform and inhibits its surface expression. J Biol Chem 2003; 278:23085-93. [PMID: 12686555 DOI: 10.1074/jbc.m211280200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous alternatively spliced transcripts are generated from the gene for the G protein-coupled calcitonin receptor, and some of the splice variants show differences in receptor-mediated signaling events. This study showed that the deltae13 splice variant of the rabbit calcitonin receptor is expressed together with the more common C1a in osteoclast-like cells. Since other G protein-coupled receptors form homo- or heterodimers, we examined whether heterodimerization of the calcitonin receptor splice variants occurs and, if so, whether it affects the function of the receptor. Homodimers of both isoforms and deltae13/C1a heterodimers were detected by co-immunoprecipitation and fluorescence resonance energy transfer analysis. In contrast to the C1a isoform, the deltae13 isoform was not efficiently transported to the cell surface. When co-expressed with the C1a splice variant, the deltae13 isoform colocalized with the C1a isoform within the cell but not at the cell surface. Furthermore, the overexpression of the deltae13 variant led to a significant reduction of the C1a surface expression and consequently a reduction of the cAMP response and Erk phosphorylation after ligand stimulation. We therefore suggest that the deltae13 variant of the rabbit calcitonin receptor acts to regulate the surface expression of the C1a isoform.
Collapse
Affiliation(s)
- Thomas Seck
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | |
Collapse
|