501
|
Tawbi H, To TM, Bartley K, Sadetsky N, Burton E, Haydu L, McKenna E. Treatment patterns and clinical outcomes for patients with melanoma and central nervous system metastases: A real-world study. Cancer Med 2021; 11:139-150. [PMID: 34874127 PMCID: PMC8704162 DOI: 10.1002/cam4.4438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Patients with melanoma and central nervous system (CNS) metastases have poor survival outcomes. We investigated real‐world treatment patterns and overall survival (OS) of patients with melanoma and CNS metastases. Methods A retrospective analysis utilizing a nationwide de‐identified electronic health record‐derived database was undertaken in patients diagnosed with advanced melanoma between January 2011 and September 2018. Patients with any visit ≤90 days of metastatic diagnosis and with confirmed CNS metastases were included. Results Of 3473 patients diagnosed with advanced melanoma, 791 patients with confirmed CNS metastases were identified and included in this analysis. Synchronous CNS metastasis (≤30 days of metastatic diagnosis) was associated with longer median OS than metachronous CNS metastasis (>30 days after metastatic diagnosis, 0.58 vs 0.42 years). Stereotactic radiosurgery (SRS) was the most common treatment (40.5%) alone or in combination with other local or systemic therapies, being more frequent in patients diagnosed in 2015+ versus 2011–2014 (44.1% vs 35.5%, respectively). The most common systemic treatment was immune checkpoint inhibitors (ICIs; 30.5%), predominantly anti‐cytotoxic T‐lymphocyte antigen 4 (CTLA‐4) alone (2011–2014) and anti‐programmed death‐1 alone or in combination with anti–CTLA‐4 (2015+). Median OS was longest in SRS‐treated patients (1.17 years) regardless of number of CNS metastases. Median OS for SRS‐treated patients increased from 0.83 years (2011–2014) to 1.75 years (2015+). In multivariable analysis, the effect of SRS remained significant after adjustment for sex, race, intracranial and extracranial disease burden, and timing of CNS metastases. Interaction testing to examine potential synergy between SRS/whole‐brain radiation therapy and ICIs found no significant interaction. Conclusions Despite advances in treatment, patients with melanoma and CNS metastases have poor survival outcomes. Prevalence of SRS increased over time and was associated with improved outcomes.
Collapse
Affiliation(s)
- Hussein Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tu My To
- Genentech, Inc., South San Francisco, California, USA
| | - Karen Bartley
- Genentech, Inc., South San Francisco, California, USA
| | | | - Elizabeth Burton
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lauren Haydu
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
502
|
Saberian C, Sperduto P, Davies MA. Targeted therapy strategies for melanoma brain metastasis. Neurooncol Adv 2021; 3:v75-v85. [PMID: 34859235 PMCID: PMC8633745 DOI: 10.1093/noajnl/vdab131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Melanoma is the most aggressive of the common forms of skin cancer. Metastasis to the central nervous system is one of the most common and deadly complications of this disease. Historically, melanoma patients with brain metastases had a median survival of less than 6 months. However, outcomes of melanoma patients have markedly improved over the last decade due to new therapeutic approaches, including immune and targeted therapies. Targeted therapies leverage the high rate of driver mutations in this disease, which result in the activation of multiple key signaling pathways. The RAS-RAF-MEK-ERK pathway is activated in the majority of cutaneous melanomas, most commonly by point mutations in the Braf serine-threonine kinase. While most early targeted therapy studies excluded melanoma patients with brain metastases, subsequent studies have shown that BRAF inhibitors, now generally given concurrently with MEK inhibitors, achieve high rates of tumor response and disease control in Braf-mutant melanoma brain metastases (MBMs). Unfortunately, the duration of these responses is generally relatively short- and shorter than is observed in extracranial metastases. This review will summarize current data regarding the safety and efficacy of targeted therapies for MBMs and discuss rational combinatorial strategies that may improve outcomes further.
Collapse
Affiliation(s)
- Chantal Saberian
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul Sperduto
- Minneapolis Radiation Oncology, Minneapolis, Minnesota, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
503
|
Oxidative Stress-Related Mechanisms in Melanoma and in the Acquired Resistance to Targeted Therapies. Antioxidants (Basel) 2021; 10:antiox10121942. [PMID: 34943045 PMCID: PMC8750393 DOI: 10.3390/antiox10121942] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a highly aggressive cancer with the poorest prognosis, representing the deadliest form of skin cancer. Activating mutations in BRAF are the most frequent genetic alterations, present in approximately 50% of all melanoma cases. The use of specific inhibitors towards mutant BRAF variants and MEK, a downstream signaling target of BRAF in the MAPK pathway, has significantly improved progression-free and overall survival in advanced melanoma patients carrying BRAF mutations. Nevertheless, despite these improvements, resistance still develops within the first year of therapy in around 50% of patients, which is a significant problem in managing BRAF-mutated advanced melanoma. Understanding these mechanisms is one of the mainstreams of the research on BRAFi/MEKi acquired resistance. Both genetic and epigenetic mechanisms have been described. Moreover, in recent years, oxidative stress has emerged as another major force involved in all the phases of melanoma development, from initiation to progression until the onsets of the metastatic phenotype and chemoresistance, and has thus become a target for therapy. In the present review, we discuss the current knowledge on oxidative stress and its signaling in melanoma, as well as the oxidative stress-related mechanisms in the acquired resistance to targeted therapies.
Collapse
|
504
|
Chhabra G, Ahmad N. BRAF Inhibitors in Melanoma Management: When Friends Become Foes. J Invest Dermatol 2021; 142:1256-1259. [PMID: 34872726 PMCID: PMC9199497 DOI: 10.1016/j.jid.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022]
Abstract
The BRAF inhibitor (BRAFi) vemurafenib improves survival of patients with melanoma with BRAFV600E mutations. However, effects of sustained BRAFis on BRAFi-resistant melanomas with dual mutations in BRAF and NRAS are not well characterized. Jandova and Wondrak (2021) report that vemurafenib selectively enhances expression of genes involved in the epithelial-to-mesenchymal transition in BRAFV600E/NRASQ61K melanoma cells, paradoxically promoting tumor growth and metastasis in mice. This preclinical study provides compelling reasons to be cautious in the use of BRAFis in patients with NRAS-driven melanoma.
Collapse
Affiliation(s)
- Gagan Chhabra
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA; William S. Middleton VA Medical Center, Madison, Wisconsin, USA.
| |
Collapse
|
505
|
Karki NR, Patel H, Gupta L, Karim NA. Encorafenib/binimetinib induced severe liver injury in a melanoma patient: Case report and review of literature. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2021. [DOI: 10.1016/j.cpccr.2021.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
506
|
Scolyer RA, Atkinson V, Gyorki DE, Lambie D, O'Toole S, Saw RP, Amanuel B, Angel CM, Button-Sloan AE, Carlino MS, Ch'ng S, Colebatch AJ, Daneshvar D, Pires da Silva I, Dawson T, Ferguson PM, Foster-Smith E, Fox SB, Gill AJ, Gupta R, Henderson MA, Hong AM, Howle JR, Jackett LA, James C, Lee CS, Lochhead A, Loh D, McArthur GA, McLean CA, Menzies AM, Nieweg OE, O'Brien BH, Pennington TE, Potter AJ, Prakash S, Rawson RV, Read RL, Rtshiladze MA, Shannon KF, Smithers BM, Spillane AJ, Stretch JR, Thompson JF, Tucker P, Varey AH, Vilain RE, Wood BA, Long GV. BRAF mutation testing for patients diagnosed with stage III or stage IV melanoma: practical guidance for the Australian setting. Pathology 2021; 54:6-19. [DOI: 10.1016/j.pathol.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 01/19/2023]
|
507
|
Wen PY, Stein A, van den Bent M, De Greve J, Wick A, de Vos FYFL, von Bubnoff N, van Linde ME, Lai A, Prager GW, Campone M, Fasolo A, Lopez-Martin JA, Kim TM, Mason WP, Hofheinz RD, Blay JY, Cho DC, Gazzah A, Pouessel D, Yachnin J, Boran A, Burgess P, Ilankumaran P, Gasal E, Subbiah V. Dabrafenib plus trametinib in patients with BRAF V600E-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol 2021; 23:53-64. [PMID: 34838156 DOI: 10.1016/s1470-2045(21)00578-7] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Effective treatments are needed to improve outcomes for high-grade glioma and low-grade glioma. The activity and safety of dabrafenib plus trametinib were evaluated in adult patients with recurrent or progressive BRAFV600E mutation-positive high-grade glioma and low-grade glioma. METHODS This study is part of an ongoing open-label, single-arm, phase 2 Rare Oncology Agnostic Research (ROAR) basket trial at 27 community and academic cancer centres in 13 countries (Austria, Belgium, Canada, France, Germany, Italy, Japan, the Netherlands, Norway, South Korea, Spain, Sweden, and the USA). The study enrolled patients aged 18 years or older with an Eastern Cooperative Oncology Group performance status of 0, 1, or 2. Patients with BRAFV600E mutation-positive high-grade glioma and low-grade glioma received dabrafenib 150 mg twice daily plus trametinib 2 mg once daily orally until unacceptable toxicity, disease progression, or death. In the high-grade glioma cohort, patients were required to have measurable disease at baseline using the Response Assessment in Neuro-Oncology high-grade glioma response criteria and have been treated previously with radiotherapy and first-line chemotherapy or concurrent chemoradiotherapy. Patients with low-grade glioma were required to have measurable non-enhancing disease (except pilocytic astrocytoma) at baseline using the Response Assessment in Neuro-Oncology low-grade glioma criteria. The primary endpoint, in the evaluable intention-to-treat population, was investigator-assessed objective response rate (complete response plus partial response for high-grade glioma and complete response plus partial response plus minor response for low-grade glioma). This trial is ongoing, but is closed for enrolment, NCT02034110. FINDINGS Between April 17, 2014, and July 25, 2018, 45 patients (31 with glioblastoma) were enrolled into the high-grade glioma cohort and 13 patients were enrolled into the low-grade glioma cohort. The results presented here are based on interim analysis 16 (data cutoff Sept 14, 2020). In the high-grade glioma cohort, median follow-up was 12·7 months (IQR 5·4-32·3) and 15 (33%; 95% CI 20-49) of 45 patients had an objective response by investigator assessment, including three complete responses and 12 partial responses. In the low-grade glioma cohort, median follow-up was 32·2 months (IQR 25·1-47·8). Nine (69%; 95% CI 39-91) of 13 patients had an objective response by investigator assessment, including one complete response, six partial responses, and two minor responses. Grade 3 or worse adverse events were reported in 31 (53%) patients, the most common being fatigue (five [9%]), decreased neutrophil count (five [9%]), headache (three [5%]), and neutropenia (three [5%]). INTERPRETATION Dabrafenib plus trametinib showed clinically meaningful activity in patients with BRAFV600E mutation-positive recurrent or refractory high-grade glioma and low-grade glioma, with a safety profile consistent with that in other indications. BRAFV600E testing could potentially be adopted in clinical practice for patients with glioma. FUNDING Novartis.
Collapse
Affiliation(s)
- Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Alexander Stein
- Department of Internal Medicine II (Oncology Center), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin van den Bent
- Brain Tumor Center and Department of Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jacques De Greve
- University Hospital Vrije Universiteit Brussel, Brussels, Belgium
| | - Antje Wick
- Department of Neurology, University of Heidelberg, National Center for Tumor Diseases, Heidelberg, Germany
| | - Filip Y F L de Vos
- Department of Medical Oncology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Nikolas von Bubnoff
- University Medical Center Freiburg, Freiburg, Germany; Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Myra E van Linde
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gerald W Prager
- Department of Medicine I, AKH Wien, Medical University of Vienna, Vienna, Austria
| | - Mario Campone
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Angelica Fasolo
- Department of Medical Oncology, Ospedale San Raffaele IRCCS, Milan, Italy
| | | | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Warren P Mason
- University Health Network, University of Toronto, Toronto, ON, Canada
| | | | - Jean-Yves Blay
- Center Leon Berard & University Claude Bernard Lyon I, Lyon, France
| | - Daniel C Cho
- New York Medical College, Valhalla, New York, NY, USA
| | - Anas Gazzah
- Gustave Roussy Cancer Institute, Villejuif, France
| | - Damien Pouessel
- Department of Medical Oncology & Clinical Research Unit, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Jeffrey Yachnin
- Karolinska University Hospital, Theme Cancer, Center for Clinical Cancer Studies, Solna, Sweden
| | - Aislyn Boran
- Global Drug Development, Oncology Development Unit, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Paul Burgess
- Global Drug Development, Oncology Development Unit, Novartis Pharma AG, Basel, Switzerland
| | - Palanichamy Ilankumaran
- Global Drug Development, Oncology Development Unit, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Eduard Gasal
- Global Drug Development, Oncology Development Unit, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
508
|
Kimura T, Takahama T, Wakasa T, Adachi S, Akashi Y, Tamura T, Yane K. Role of debulking surgery in combination with immune therapy: A successfully treated case of locally advanced mucosal melanoma. Mol Clin Oncol 2021; 16:2. [PMID: 34824842 DOI: 10.3892/mco.2021.2435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/23/2021] [Indexed: 11/05/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have markedly changed the treatment landscape for melanoma; however, their efficacy and applications are currently limited and medical requirements remain unmet. The present case study reports on a 85-year-old female patient who visited our outpatient clinic with a 1-month history of a buccal mucosa mass and was diagnosed with locally advanced mucosal melanoma of the head and neck. The patient's tumor progressed right after the administration of nivolumab, compromising oral intake. Palliative debulking surgery was performed. Subsequently, the other part of the melanoma on the hard palate slightly decreased in size without forming new lesions for more than one year after surgery. The present case exemplifies that tumor volume reduction surgery may increase the response to ICI and may prolong the duration of response. This combination therapy may be more effective in patients whose tumors increase in size after administration of ICIs or whose tumor is already large at the beginning of treatment. The combination of ICIs and debulking surgery may become an important treatment option in the future for locally advanced mucosal melanoma.
Collapse
Affiliation(s)
- Takahiro Kimura
- Department of Otorhinolaryngology, Kindai University Nara Hospital, Ikoma, Nara 630-0293, Japan
| | - Takayuki Takahama
- Department of Medical Oncology, Kindai University Nara Hospital, Ikoma, Nara 630-0293, Japan
| | - Tomoko Wakasa
- Department of Diagnostic Pathology, Kindai University Nara Hospital, Ikoma, Nara 630-0293, Japan
| | - Shiori Adachi
- Department of Otorhinolaryngology, Kindai University Nara Hospital, Ikoma, Nara 630-0293, Japan
| | - Yusaku Akashi
- Department of Medical Oncology, Kindai University Nara Hospital, Ikoma, Nara 630-0293, Japan
| | - Takao Tamura
- Department of Medical Oncology, Kindai University Nara Hospital, Ikoma, Nara 630-0293, Japan
| | - Katsunari Yane
- Department of Otorhinolaryngology, Kindai University Nara Hospital, Ikoma, Nara 630-0293, Japan
| |
Collapse
|
509
|
Bédouelle E, Nguyen JM, Varey E, Khammari A, Dreno B. Should Targeted Therapy Be Continued in BRAF-Mutant Melanoma Patients after Complete Remission? Dermatology 2021; 238:517-526. [PMID: 34818219 DOI: 10.1159/000518718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/03/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Targeted therapy is used to treat patients with a BRAF-mutated metastatic melanoma and is continued until disease progression or severe toxicity. No robust data on the management of patients achieving a complete remission (CR) are available. MAIN OBJECTIVE To determine the relapse rate in the first year after targeted therapy discontinuation in patients in CR. SECONDARY OBJECTIVES To determine the relapse rates throughout the follow-up and to identify prognostic factors for relapse at 1 year. METHODS A retrospective, monocentric observational study was conducted in patients with advanced melanoma included in the RIC-Mel database who discontinued targeted therapy after achieving a CR confirmed by CT scan and PET/CT scan. RESULTS Twenty-nine patients were included. Seventeen (58.6%) patients were treated with BRAF inhibitor (BRAFi) alone and 12 (41.4%) with a BRAFi combined with a MEK inhibitor (BRAFi + MEKi). The median treatment duration was 9.7 months. The relapse rates after discontinuation were 69% at 12 months (BRAFi: 70.6%; BRAFi + MEKi: 66.7%) and 76% at 36 months (BRAFi: 76.5%; BRAFi + MEKi: 75%). A non-significant trend towards a higher risk of relapse was found in women (p = 0.1; RR 3.36; 95% CI 0.77-17.07), in patients with an LDH level greater than the upper limits of normal (p = 0.58; RR 2.43; 95% CI 0.10-56.71), and when more than two metastatic sites were involved (p = 0.19; RR 4.6; 95% CI 0.46-46.51). After relapse, targeted therapy was resumed in 17 patients (7 with BRAFi; 10 with BRAFi + MEKi) with a response rate of 53%. CONCLUSIONS This real-life study provided long-term data in patients who discontinued targeted therapy after CR. Most patients experienced a relapse in the first year after targeted therapy discontinuation, of whom 50% were in the first 3 months. After targeted therapy resumption, 53% of relapsing patients achieved an objective response. Patients should be followed during the first year after treatment discontinuation. In addition, patients with less than 3 metastatic sites, a baseline LDH level with normal ranges, men, and patients responding rapidly to treatment would be more likely to maintain a CR after treatment discontinuation.
Collapse
Affiliation(s)
- Eve Bédouelle
- Department of Dermatology, CHU Nantes, CIC 1413, CRCINA Inserm U 1232, Nantes University, Nantes, France
| | | | - Emilie Varey
- Department of Dermatology, CHU Nantes, CIC 1413, CRCINA Inserm U 1232, Nantes University, Nantes, France
| | - Amir Khammari
- Department of Dermatology, CHU Nantes, CIC 1413, CRCINA Inserm U 1232, Nantes University, Nantes, France
| | - Brigitte Dreno
- Department of Dermatology, CHU Nantes, CIC 1413, CRCINA Inserm U 1232, Nantes University, Nantes, France
| |
Collapse
|
510
|
Ganguly S, Ghosh J, Mishra D, Biswas G, Dabkara D, Roy S, Biswas B. Early Experience with Dabrafenib–Trametinib Combination in Patients with BRAF-Mutated Malignant Melanoma—A Single-Center Experience. South Asian J Cancer 2021; 10:187-189. [PMID: 34938683 PMCID: PMC8687866 DOI: 10.1055/s-0041-1736032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Abstract
Background Combination of dabrafenib–trametinib is one of the standard treatments in patients with BRAF-mutated advanced malignant melanoma (MM). Real-world data on the usage of this combination is scarce, especially from India. Here, we are reporting our early experience with the usage of this combination therapy.
Materials and Methods This is a single institutional data assessment of patients with BRAF-mutated MM registered and treated with BRAF–MEK inhibitors in our hospital. Clinico-pathological features and treatment details were reviewed for all patients.
Results A total of seven patients with BRAF-mutated MM treated with this combination therapy with a median age of 66.5 years (range: 49–72 years) and a male:female ratio of 3:4. Six (85.7%) patients had metastatic disease at presentation. In total, 80% of our patient population had two or less than two sites of metastasis at presentation. The initial response rate of the study population was 71%. The drug was well tolerated with fever being the most common side effect which was seen in two (28.5%) of the patients.
Conclusion Combination of dabrafenib–trametinib is effective in patients with BRAF-mutated MM with good tolerability. Further studies are required to look for improvement in outcome in this group of patients.
Collapse
Affiliation(s)
- Sandip Ganguly
- Department of Medical Oncology, Tata Medical Center, Kolkata, West Bengal, India
| | - Joydeep Ghosh
- Department of Medical Oncology, Tata Medical Center, Kolkata, West Bengal, India
| | - Deepak Mishra
- Department of Molecular Pathology, Tata Medical Center, Kolkata, West Bengal, India
| | - Gautam Biswas
- Department of Plastic Surgery, Tata Medical Center, Kolkata, West Bengal, India
| | - Deepak Dabkara
- Department of Medical Oncology, Tata Medical Center, Kolkata, West Bengal, India
| | - Somanth Roy
- Department of Medical Oncology, Tata Medical Center, Kolkata, West Bengal, India
| | - Bivas Biswas
- Department of Medical Oncology, Tata Medical Center, Kolkata, West Bengal, India
| |
Collapse
|
511
|
Zeng H, Liu F, Zhou H, Zeng C. Individualized Treatment Strategy for Cutaneous Melanoma: Where Are We Now and Where Are We Going? Front Oncol 2021; 11:775100. [PMID: 34804979 PMCID: PMC8599821 DOI: 10.3389/fonc.2021.775100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 01/14/2023] Open
Abstract
In the past several decades, innovative research in cancer biology and immunology has contributed to novel therapeutics, such as targeted therapy and immunotherapy, which have transformed the management of patients with melanoma. Despite the remarkable therapeutic outcomes of targeted treatments targeting MAPK signaling and immunotherapy that suppresses immune checkpoints, some individuals acquire therapeutic resistance and disease recurrence. This review summarizes the current understanding of melanoma genetic variations and discusses individualized melanoma therapy options, particularly for advanced or metastatic melanoma, as well as potential drug resistance mechanisms. A deeper understanding of individualized treatment will assist in improving clinical outcomes for patients with cutaneous melanoma.
Collapse
Affiliation(s)
- Huihua Zeng
- Department of General Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Fen Liu
- Department of Chinese Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Hairong Zhou
- Department of General Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
512
|
Tjokrowidjaja A, Browne L, Soudy H. External validation of the American Joint Committee on Cancer melanoma staging system eighth edition using the surveillance, epidemiology, and end results program. Asia Pac J Clin Oncol 2021; 18:e280-e288. [PMID: 34811927 DOI: 10.1111/ajco.13689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022]
Abstract
AIM The American Joint Committee on Cancer (AJCC) melanoma staging system eighth edition (AJCC-8) was recently released to provide accurate staging reflecting advances in the treatment of melanoma. Using population registry data, this study independently validates and compares the prognostic performance of AJCC-8 to the seventh edition (AJCC-7). METHODS We extracted patient-, tumor-related, and survival data from the SEER-18 registry between 2010 and 2015. To assess overall survival (OS) and cancer-specific survival (CSS) for AJCC-7 and AJCC-8, we performed Kaplan-Meier analysis and computed cumulative hazard functions using Nelson-Aalen function. RESULTS Of 126,408 individuals, 59,989 (47%) and 60,411 (48%) had available data for pathological and clinical-stage OS analysis, respectively. The 3-year OS for AJCC-7 among pathologically staged patients was: stage IA 97%, stage IB 95%, stage IIA 87%, stage IIB 76%, stage IIC 57%, stage IIIA 86%, stage IIIB 69%, stage IIIC 50%, and stage IV 24%. The 3-year OS for AJCC-8 patients was similar but was 56% for stage IIIC and 30% for stage IIID. Stage IV individuals with an elevated LDH had worse OS and CSS at all measured time-points up to 60 months compared to those with a normal LDH. CONCLUSION The discriminatory ability of AJCC-8 and AJCC-7 appear comparable. Changes in AJCC-8 identified stage IIID as a poor prognostic subgroup among stage III patients and elevated LDH in stage IV. However, patients with advanced T-stage, node-negative tumors experienced worse survival compared to those with earlier T-stage, node-positive tumors, and the results of ongoing trials should inform adjuvant therapy in this subset of patients.
Collapse
Affiliation(s)
- Angelina Tjokrowidjaja
- Department of Medical Oncology, St. George Hospital, Kogarah, New South Wales, Australia.,Department of Medical Oncology, Sutherland Hospital, Kogarah, New South Wales, Australia.,National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Lois Browne
- Department of Radiation Oncology, St. George Hospital, Kogarah, New South Wales, Australia
| | - Hussein Soudy
- Department of Medical Oncology, St. George Hospital, Kogarah, New South Wales, Australia.,Department of Medical Oncology, Sutherland Hospital, Kogarah, New South Wales, Australia.,School of Medicine, University of New South Wales, Kensington, New South Wales, Australia.,Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
513
|
Khaddour K, Maahs L, Avila-Rodriguez AM, Maamar Y, Samaan S, Ansstas G. Melanoma Targeted Therapies beyond BRAF-Mutant Melanoma: Potential Druggable Mutations and Novel Treatment Approaches. Cancers (Basel) 2021; 13:5847. [PMID: 34831002 PMCID: PMC8616477 DOI: 10.3390/cancers13225847] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022] Open
Abstract
Melanomas exhibit the highest rate of somatic mutations among all different types of cancers (with the exception of BCC and SCC). The accumulation of a multimode of mutations in the driver oncogenes are responsible for the proliferative, invasive, and aggressive nature of melanomas. High-resolution and high-throughput technology has led to the identification of distinct mutational signatures and their downstream alterations in several key pathways that contribute to melanomagenesis. This has enabled the development of individualized treatments by targeting specific molecular alterations that are vital for cancer cell survival, which has resulted in improved outcomes in several cancers, including melanomas. To date, BRAF and MEK inhibitors remain the only approved targeted therapy with a high level of evidence in BRAFV600E/K mutant melanomas. The lack of approved precision drugs in melanomas, relative to other cancers, despite harboring one of the highest rates of somatic mutations, advocates for further research to unveil effective therapeutics. In this review, we will discuss potential druggable mutations and the ongoing research of novel individualized treatment approaches targeting non-BRAF mutations in melanomas.
Collapse
Affiliation(s)
- Karam Khaddour
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.M.); (A.M.A.-R.)
| | - Lucas Maahs
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.M.); (A.M.A.-R.)
| | - Ana Maria Avila-Rodriguez
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.M.); (A.M.A.-R.)
| | - Yazan Maamar
- Division of Hematology and Oncology, Department of Medicine, University of Tishreen Lattakia, Lattakia 2217, Syria;
| | - Sami Samaan
- Department of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - George Ansstas
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| |
Collapse
|
514
|
Vale L, Kunonga P, Coughlan D, Kontogiannis V, Astin M, Beyer F, Richmond C, Wilson D, Bajwa D, Javanbakht M, Bryant A, Akor W, Craig D, Lovat P, Labus M, Nasr B, Cunliffe T, Hinde H, Shawgi M, Saleh D, Royle P, Steward P, Lucas R, Ellis R. Optimal surveillance strategies for patients with stage 1 cutaneous melanoma post primary tumour excision: three systematic reviews and an economic model. Health Technol Assess 2021; 25:1-178. [PMID: 34792018 DOI: 10.3310/hta25640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Malignant melanoma is the fifth most common cancer in the UK, with rates continuing to rise, resulting in considerable burden to patients and the NHS. OBJECTIVES The objectives were to evaluate the effectiveness and cost-effectiveness of current and alternative follow-up strategies for stage IA and IB melanoma. REVIEW METHODS Three systematic reviews were conducted. (1) The effectiveness of surveillance strategies. Outcomes were detection of new primaries, recurrences, metastases and survival. Risk of bias was assessed using the Cochrane Collaboration's Risk-of-Bias 2.0 tool. (2) Prediction models to stratify by risk of recurrence, metastases and survival. Model performance was assessed by study-reported measures of discrimination (e.g. D-statistic, Harrel's c-statistic), calibration (e.g. the Hosmer-Lemeshow 'goodness-of-fit' test) or overall performance (e.g. Brier score, R 2). Risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). (3) Diagnostic test accuracy of fine-needle biopsy and ultrasonography. Outcomes were detection of new primaries, recurrences, metastases and overall survival. Risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Review data and data from elsewhere were used to model the cost-effectiveness of alternative surveillance strategies and the value of further research. RESULTS (1) The surveillance review included one randomised controlled trial. There was no evidence of a difference in new primary or recurrence detected (risk ratio 0.75, 95% confidence interval 0.43 to 1.31). Risk of bias was considered to be of some concern. Certainty of the evidence was low. (2) Eleven risk prediction models were identified. Discrimination measures were reported for six models, with the area under the operating curve ranging from 0.59 to 0.88. Three models reported calibration measures, with coefficients of ≥ 0.88. Overall performance was reported by two models. In one, the Brier score was slightly better than the American Joint Committee on Cancer scheme score. The other reported an R 2 of 0.47 (95% confidence interval 0.45 to 0.49). All studies were judged to have a high risk of bias. (3) The diagnostic test accuracy review identified two studies. One study considered fine-needle biopsy and the other considered ultrasonography. The sensitivity and specificity for fine-needle biopsy were 0.94 (95% confidence interval 0.90 to 0.97) and 0.95 (95% confidence interval 0.90 to 0.97), respectively. For ultrasonography, sensitivity and specificity were 1.00 (95% confidence interval 0.03 to 1.00) and 0.99 (95% confidence interval 0.96 to 0.99), respectively. For the reference standards and flow and timing domains, the risk of bias was rated as being high for both studies. The cost-effectiveness results suggest that, over a lifetime, less intensive surveillance than recommended by the National Institute for Health and Care Excellence might be worthwhile. There was considerable uncertainty. Improving the diagnostic performance of cancer nurse specialists and introducing a risk prediction tool could be promising. Further research on transition probabilities between different stages of melanoma and on improving diagnostic accuracy would be of most value. LIMITATIONS Overall, few data of limited quality were available, and these related to earlier versions of the American Joint Committee on Cancer staging. Consequently, there was considerable uncertainty in the economic evaluation. CONCLUSIONS Despite adoption of rigorous methods, too few data are available to justify changes to the National Institute for Health and Care Excellence recommendations on surveillance. However, alternative strategies warrant further research, specifically on improving estimates of incidence, progression of recurrent disease; diagnostic accuracy and health-related quality of life; developing and evaluating risk stratification tools; and understanding patient preferences. STUDY REGISTRATION This study is registered as PROSPERO CRD42018086784. FUNDING This project was funded by the National Institute for Health Research Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol 25, No. 64. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Luke Vale
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Patience Kunonga
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Diarmuid Coughlan
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | | | - Margaret Astin
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Fiona Beyer
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine Richmond
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Dor Wilson
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Dalvir Bajwa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mehdi Javanbakht
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Bryant
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Wanwuri Akor
- Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Dawn Craig
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Penny Lovat
- Institute of Translation and Clinical Studies, Newcastle University, Newcastle upon Tyne, UK
| | - Marie Labus
- Business Development and Enterprise, Newcastle University, Newcastle upon Tyne, UK
| | - Batoul Nasr
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Timothy Cunliffe
- Dermatology Department, James Cook University Hospital, Middlesbrough, UK
| | - Helena Hinde
- Dermatology Department, James Cook University Hospital, Middlesbrough, UK
| | - Mohamed Shawgi
- Radiology Department, James Cook University Hospital, Middlesbrough, UK
| | - Daniel Saleh
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Princess Alexandra Hospital Southside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Pam Royle
- Patient representative, ITV Tyne Tees, Gateshead, UK
| | - Paul Steward
- Patient representative, Dermatology Department, James Cook University Hospital, Middlesbrough, UK
| | - Rachel Lucas
- Patient representative, Dermatology Department, James Cook University Hospital, Middlesbrough, UK
| | - Robert Ellis
- Institute of Translation and Clinical Studies, Newcastle University, Newcastle upon Tyne, UK.,South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| |
Collapse
|
515
|
Dabrafenib inhibits ABCG2 and cytochrome P450 isoenzymes; potential implications for combination anticancer therapy. Toxicol Appl Pharmacol 2021; 434:115797. [PMID: 34780725 DOI: 10.1016/j.taap.2021.115797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022]
Abstract
Dabrafenib is a BRAF inhibitor used in combination treatment of malignant melanoma and non-small cell lung carcinoma. In this study, we aimed to characterize its interactions with cytochrome P450 (CYP) isoenzymes and ATP-binding cassette (ABC) efflux transporters that have critical impact on the pharmacokinetics of drugs and play a role in drug resistance development. Using accumulation assays, we showed that dabrafenib inhibited ABCG2 and, less potently, ABCB1 transporter. We also confirmed dabrafenib as a CYP2C8, CYP2C9, CYP3A4, and CYP3A5 inhibitor. Importantly, inhibition of ABCG2 and CYP3A4 by dabrafenib led to the potentiation of cytotoxic effects of mitoxantrone and docetaxel toward respective resistant cell lines in drug combination studies. On the contrary, the synergistic effect was not consistently observed in ABCB1-expressing models. We further demonstrated that mRNA levels of ABCB1, ABCG2, ABCC1, and CYP3A4 were increased after 24 h and 48 h exposure to dabrafenib. Overall, our data confirm dabrafenib as a drug frequently and potently interacting with ABC transporters and CYP isoenzymes. This feature should be addressed with caution when administering dabrafenib to patients with polypharmacy but also could be utilized advantageously when designing new dabrafenib-containing drug combinations to improve the therapeutic outcome in drug-resistant cancer.
Collapse
|
516
|
Canale M, Monti M, Rapposelli IG, Ulivi P, Sullo FG, Bartolini G, Tiberi E, Frassineti GL. Molecular Targets and Emerging Therapies for Advanced Gallbladder Cancer. Cancers (Basel) 2021; 13:5671. [PMID: 34830826 PMCID: PMC8616432 DOI: 10.3390/cancers13225671] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Biliary tract cancers (BTCs), for their low incidence, have been often considered together. Gallbladder cancer (GBC) is the most common biliary tract malignancy, characterized by late diagnosis and poor prognosis, and although it is considered a rare tumor in western countries, other areas of the world show considerable incidence rates. In 2010, results from the large phase III ABC-02 clinical trial on GBC identified the gemcitabine and cisplatin combination as the most effective first-line regimen for both GBC and other BTCs. Since then, various systemic therapies have proven active in BTCs in both first- and second-line settings. Molecular profiling has highlighted important genetic differences between GBC and other BTCs, opening new ways for targeted therapy in advanced disease where standard chemotherapies show marginal benefit. Genome-wide data analysis have shown that GBC molecular landscape offer possible strategies for precision medicine approaches, and a better molecular understanding of the GBC is needed to better stratify patients for treatment. In this review, we discuss the molecular targetable agents for GBC, including the results that emerged by clinical trials exploring new treatment strategies.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (P.U.)
| | - Manlio Monti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (F.G.S.); (G.B.); (E.T.); (G.L.F.)
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (F.G.S.); (G.B.); (E.T.); (G.L.F.)
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (P.U.)
| | - Francesco Giulio Sullo
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (F.G.S.); (G.B.); (E.T.); (G.L.F.)
| | - Giulia Bartolini
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (F.G.S.); (G.B.); (E.T.); (G.L.F.)
| | - Elisa Tiberi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (F.G.S.); (G.B.); (E.T.); (G.L.F.)
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (F.G.S.); (G.B.); (E.T.); (G.L.F.)
| |
Collapse
|
517
|
Thai AA, Lim AM, Solomon BJ, Rischin D. Biology and Treatment Advances in Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:5645. [PMID: 34830796 PMCID: PMC8615870 DOI: 10.3390/cancers13225645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the second most common skin cancer diagnosed worldwide. CSCC is generally localized and managed with local therapies such as excision and/or radiotherapy. For patients with unresectable or metastatic disease, recent improvements in our understanding of the underlying biology have led to significant advancements in treatment approaches-including the use of immune checkpoint inhibition (ICI)-which have resulted in substantial gains in response and survival compared to traditional cytotoxic approaches. However, there is a lack of understanding of the biology underpinning CSCC in immunocompromised patients, in whom the risk of developing CSCC is hundreds of times higher compared to immunocompetent patients. Furthermore, current ICI approaches are associated with significant risk of graft rejection in organ transplant recipients who make up a significant proportion of immunocompromised patients. Ongoing scientific and clinical research efforts are needed in order to maintain momentum to increase our understanding and refine our therapeutic approaches for patients with CSCC.
Collapse
Affiliation(s)
- Alesha A. Thai
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St., Parkville, Melbourne, VIC 3000, Australia; (A.M.L.); (B.J.S.); (D.R.)
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Annette M. Lim
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St., Parkville, Melbourne, VIC 3000, Australia; (A.M.L.); (B.J.S.); (D.R.)
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Benjamin J. Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St., Parkville, Melbourne, VIC 3000, Australia; (A.M.L.); (B.J.S.); (D.R.)
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Danny Rischin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St., Parkville, Melbourne, VIC 3000, Australia; (A.M.L.); (B.J.S.); (D.R.)
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
518
|
Chen Y, Zhang Y, Chen S, Liu W, Lin Y, Zhang H, Yu F. NSAIDs Sensitize Melanoma Cells to MEK Inhibition and Inhibit Metastasis and Relapse by Inducing Degradation of AXL. Pigment Cell Melanoma Res 2021; 35:238-251. [PMID: 34748282 DOI: 10.1111/pcmr.13021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/12/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022]
Abstract
Melanoma is highly heterogeneous with diverse genomic alterations and partial therapeutic responses. Emergence of drug-resistant tumor cell clones accompanied with high AXL expression level is one of the major challenges for anti-tumor clinical care. Recent studies have demonstrated that high AXL expression in melanoma cells mediated drug-resistance, epithelial-mesenchymal transition (EMT) and elevated survival of cancer stem cells (CSCs). Given that we have identified several non-steroidal anti-inflammatory drugs (NSAIDs) including Aspirin potently induce the degradation of AXL, we questioned whether NSAIDs could counteract the AXL-mediated neoplastic phenotypes. Here we found NSAIDs downregulate PKA activity via the PGE2 /EP2/cAMP/PKA signaling pathway and interrupt the PKA-dependent interaction between CDC37 and HSP90, resulting in an incorrect AXL protein folding and finally AXL degradation through the ubiquitination-proteasome system (UPS) pathway. Furthermore, NSAIDs not only sensitized the MEK inhibitor treatment, but also reduced EMT and relapse mediate by AXL in tumor tissue. Our findings suggest that the combination of inhibitors and NSAIDs, especially Aspirin, could be a simple but efficient modality to treat melanoma in which AXL is a key factor for drug-resistance, metastasis, and relapse.
Collapse
Affiliation(s)
- Yingshi Chen
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yiwen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Siqi Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Weiwei Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yingtong Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Hui Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Fei Yu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
519
|
Eggen AC, Wind TT, Bosma I, Kramer MCA, van Laar PJ, van der Weide HL, Hospers GAP, Jalving M. Value of screening and follow-up brain MRI scans in patients with metastatic melanoma. Cancer Med 2021; 10:8395-8404. [PMID: 34741440 PMCID: PMC8633235 DOI: 10.1002/cam4.4342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/09/2021] [Accepted: 09/26/2021] [Indexed: 11/19/2022] Open
Abstract
Background Novel treatments make long‐term survival possible for subsets of patients with melanoma brain metastases. Brain magnetic resonance imaging (MRI) may aid in early detection of brain metastases and inform treatment decisions. This study aimed to determine the impact of screening MRI scans in patients with metastatic melanoma and follow‐up MRI scans in patients with melanoma brain metastases. Methods This retrospective cohort study included patients diagnosed with metastatic melanoma or melanoma brain metastases between June 2015 and January 2018. The impact of screening MRI scans was evaluated in the first 2 years after metastatic melanoma diagnosis. The impact of follow‐up MRI scans was examined in the first year after brain metastases diagnosis. The number of MRI scans, scan indications, scan outcomes, and changes in treatment strategy were analyzed. Results In total, 116 patients had no brain metastases at the time of the metastatic melanoma diagnosis. Twenty‐eight of these patients (24%) were subsequently diagnosed with brain metastases. Screening MRI scans detected the brain metastases in 11/28 patients (39%), of which 8 were asymptomatic at diagnosis. In the 96 patients with melanoma brain metastases, treatment strategy changed after 75/168 follow‐up MRI scans (45%). In patients treated with immune checkpoint inhibitors, the number of treatment changes after follow‐up MRI scans was lower when patients had been treated longer. Conclusion(s) Screening MRI scans aid in early detection of melanoma brain metastases, and follow‐up MRI scans inform treatment strategy. In patients with brain metastases responding to immune checkpoint inhibitors, treatment changes were less frequently observed after follow‐up MRI scans. These results can inform the development of brain imaging protocols for patients with immune checkpoint inhibitor sensitive tumors.
Collapse
Affiliation(s)
- Annemarie C Eggen
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Thijs T Wind
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ingeborg Bosma
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Miranda C A Kramer
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Jan van Laar
- Department of Radiology, Ziekenhuisgroep Twente, Almelo, and Hengelo, Almelo, The Netherlands.,Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hiska L van der Weide
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Geke A P Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mathilde Jalving
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
520
|
Scarpato L, Festino L, Vanella V, Madonna G, Mastroianni M, Palla M, Ascierto PA. Dermatologic adverse events associated with targeted therapies for melanoma. Expert Opin Drug Saf 2021; 21:385-395. [PMID: 34595993 DOI: 10.1080/14740338.2022.1986000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The development of new targeted therapies has considerably changed the therapeutic paradigm of melanoma, significantly increasing overall survival (OS) and progression-free survival (PFS). However, skin-related adverse sequelae might occur and impact on patients' quality of life. AREAS COVERED In this article we will cover the most important dermatological toxicities related to BRAF and MEK-inhibitors, along with updated management strategies. EXPERT OPINION BRAF inhibitors have represented a revolution in the treatment of melanoma. They have improved the outcome of the disease and therefore represent an important option in the management and care of patients with advanced melanoma. Skin toxicity (especially the onset of squamous skin carcinomas) has been considered a major cutaneous side effect and, although the addition of MEK inhibitors in combination has significantly reduced the incidence of skin sequelae, serious skin adverse events might develop anyway and impact significantly on patients'quality of life and on national health system budget. The introduction of BRAF and MEK inhibitors as a new effective adjuvant treatment option for stage III and ulcerated melanoma has proved a significant impact on the risk of recurrence, and may have interesting developments in the near future as a further therapeutic tool.
Collapse
Affiliation(s)
- Luigi Scarpato
- Department of Skin Cancers, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Lucia Festino
- Department of Skin Cancers, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Vito Vanella
- Department of Skin Cancers, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Gabriele Madonna
- Department of Skin Cancers, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Massimo Mastroianni
- Department of Otolaryngology Surgery and Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Marco Palla
- Department of Skin Cancers, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Paolo Antonio Ascierto
- Department of Skin Cancers, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| |
Collapse
|
521
|
Aglietta M, Chiarion-Sileni V, Fava P, Guidoboni M, Depenni R, Minisini A, Consoli F, Ascierto P, Rinaldi G, Banzi M, Marconcini R, Gueli R, Ferraresi V, Tucci M, Tonini G, Lo Re G, Guida M, Del Vecchio M, Marcon IG, Queirolo P. Retrospective Chart Review of Dabrafenib Plus Trametinib in Patients with Metastatic BRAF V600-Mutant Melanoma Treated in the Individual Patient Program (DESCRIBE Italy). Target Oncol 2021; 16:789-799. [PMID: 34755244 PMCID: PMC8613139 DOI: 10.1007/s11523-021-00850-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Real-world data on extended follow-up of patients with BRAF V600-mutant metastatic melanoma are limited. We investigated dabrafenib plus trametinib (dab + tram) outside of a clinical trial setting (Individual Patient Program; DESCRIBE Italy). OBJECTIVE To describe the baseline features, treatment patterns, efficacy, and safety outcomes in patients with BRAF V600-mutant unresectable or metastatic melanoma who had received dab + tram as part of the Managed Access Program (MAP) in Italy. PATIENTS AND METHODS An observational, retrospective chart review was conducted in Italian patients with BRAF V600-mutant unresectable stage III/IV melanoma receiving dab + tram as part of the MAP. Baseline features, treatment patterns, efficacy, and safety outcomes were evaluated. RESULTS Overall, 499 patients were included in this analysis. BRAF V600E mutation was seen in 81.4% of patients. Overall response rate achieved in 243 of the 390 evaluable patients was 62.3% (95% CI 57.5-67.1). Median progression-free survival (PFS) was 9.3 months (95% CI 8.6-10.6). Subgroup analyses revealed that patients with normal lactate dehydrogenase (LDH) and ≤ three metastatic sites without brain metastases at baseline had better outcomes. With normal LDH at baseline, median PFS for patients with one or two metastatic sites other than cerebral was 18 months. No new safety signals were observed. Treatment was permanently discontinued because of treatment-emergent adverse events (TEAEs) in 9.2% of patients, and pyrexia (27.3%) was the most common TEAE, with a lower incidence than that in the phase 3 studies of dab + tram. CONCLUSION Treatment of BRAF V600E-mutant metastatic melanoma with dab + tram in the real-world setting was effective and safe, including the unselected population with several patients having a high tumor burden - concordant with the results of the pivotal phase 3 studies of dab + tram.
Collapse
Affiliation(s)
- Massimo Aglietta
- Department of Oncology, University of Torino, Turin, Italy.
- Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| | - Vanna Chiarion-Sileni
- Department of Clinical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Paolo Fava
- Dermatologic Clinic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Massimo Guidoboni
- Immunotherapy-Cell Therapy and Biobank, IRCCS-IRST, Meldola (FC), Italy
| | - Roberta Depenni
- Department of Oncology and Hematology, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Minisini
- Department of Oncology, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | | | - Paolo Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | | | - Maria Banzi
- Oncology Unit, Presidio Ospedaliero Arcispedale Santa Maria Nuova AUSL di Reggio Emilia-IRCCS, Reggio Emilia, Italy
| | - Riccardo Marconcini
- Presidio Ospedaliero S. Chiara-Az. Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Rossana Gueli
- Medical Oncology, ASST Sette Laghi, Circolo Hospital and Macchi Foundation, Varese, Italy
| | - Virginia Ferraresi
- Sarcomas and Rare Tumors Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, "Aldo Moro", Bari, Italy
| | - Giuseppe Tonini
- Department of Medical Oncology, University Campus Bio-Medico, Rome, Italy
| | - Giovanni Lo Re
- Oncologia Medica e dei Tumori Immunocorrelati, CRO Aviano IRCCS, Aviano, Italy
| | - Michele Guida
- Rare Tumors and Melanoma Unit, IRCCS Istituto dei Tumori "Giovanni Paolo II", Bari, Italy
| | - Michele Del Vecchio
- Unit of Melanoma Medical Oncology, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Paola Queirolo
- Oncology Division, Policlinico San Martino IRCCS, Genoa, Italy
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
522
|
Ma EZ, Hoegler KM, Zhou AE. Bioinformatic and Machine Learning Applications in Melanoma Risk Assessment and Prognosis: A Literature Review. Genes (Basel) 2021; 12:1751. [PMID: 34828357 PMCID: PMC8621295 DOI: 10.3390/genes12111751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
Over 100,000 people are diagnosed with cutaneous melanoma each year in the United States. Despite recent advancements in metastatic melanoma treatment, such as immunotherapy, there are still over 7000 melanoma-related deaths each year. Melanoma is a highly heterogenous disease, and many underlying genetic drivers have been identified since the introduction of next-generation sequencing. Despite clinical staging guidelines, the prognosis of metastatic melanoma is variable and difficult to predict. Bioinformatic and machine learning analyses relying on genetic, clinical, and histopathologic inputs have been increasingly used to risk stratify melanoma patients with high accuracy. This literature review summarizes the key genetic drivers of melanoma and recent applications of bioinformatic and machine learning models in the risk stratification of melanoma patients. A robustly validated risk stratification tool can potentially guide the physician management of melanoma patients and ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Albert E. Zhou
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD 21230, USA; (E.Z.M.); (K.M.H.)
| |
Collapse
|
523
|
Long GV, Arance A, Mortier L, Lorigan P, Blank C, Mohr P, Schachter J, Grob JJ, Lotem M, Middleton MR, Neyns B, Steven N, Ribas A, Walpole E, Carlino MS, Lebbe C, Sznol M, Jensen E, Leiby MA, Ibrahim N, Robert C. Antitumor activity of ipilimumab or BRAF ± MEK inhibition after pembrolizumab treatment in patients with advanced melanoma: analysis from KEYNOTE-006. Ann Oncol 2021; 33:204-215. [PMID: 34710571 DOI: 10.1016/j.annonc.2021.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Antitumor activity of ipilimumab or BRAF ± MEK inhibitors (BRAFi ± MEKi) following pembrolizumab administration in melanoma is poorly characterized. PATIENTS AND METHODS In the phase III KEYNOTE-006 study, patients with unresectable stage III/IV melanoma received pembrolizumab (10 mg/kg) once every 2 or 3 weeks (Q3W) or ipilimumab (3 mg/kg) Q3W. The current post hoc analysis evaluates outcomes with ipilimumab or BRAFi ± MEKi as first subsequent systemic therapy after pembrolizumab administration and includes patients who completed or discontinued pembrolizumab after one or more dose. Pembrolizumab arms were pooled. RESULTS At data cut-off (4 December 2017), median follow-up was 46.9 months. Of 555 pembrolizumab-treated patients, first subsequent therapy was ipilimumab for 103 (18.6%) and BRAFi ± MEKi for 59 (10.6%) [33 received BRAFi + MEKi, 26 BRAFi alone; 37 (62.7%) were BRAFi ± MEKi naïve]. In the subsequent ipilimumab group, ORR with previous pembrolizumab was 17.5% [1 complete response (CR); 17 partial response (PR)]; 79.6% had discontinued pembrolizumab due to progressive disease (PD); median overall survival (OS) was 21.5 months. ORR with subsequent ipilimumab was 15.5%; 11/16 responses (8 CRs; 3 PRs) were ongoing. ORR with subsequent ipilimumab was 9.7% for patients with PD as best response to pembrolizumab. Median OS from ipilimumab initiation was 9.8 months. In the subsequent BRAFi ± MEKi group, ORR with previous pembrolizumab was 13.5% (8 PR); 76.3% had discontinued pembrolizumab due to PD; median OS was 17.9 months. ORR with subsequent BRAFi ± MEKi was 30.5%, 7/18 responses (4 CR, 3 PR) were ongoing. Median OS from BRAFi ± MEKi initiation was 12.9 months. ORR for BRAFi ± MEKi-naïve patients who received subsequent BRAFi ± MEKi was 43.2%; 6/16 were ongoing (3 CR, 3 PR). CONCLUSIONS Ipilimumab and BRAFi ± MEKi have antitumor activity as first subsequent therapy after pembrolizumab in patients with advanced melanoma.
Collapse
Affiliation(s)
- G V Long
- Melanoma Institute Australia, The University of Sydney, Mater Hospital, Sydney, Australia; Faculty of Medicine & Health, The University of Sydney, Sydney, Australia; Charles Perkins Centre, The University of Sydney, Sydney, Australia; Royal North Shore Hospital, Sydney, Australia.
| | - A Arance
- Hospital Clinic de Barcelona, Barcelona, Spain
| | - L Mortier
- Université Lille, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - P Lorigan
- Division of Cancer Sciences, University of Manchester, Manchester; Christie NHS Foundation Trust, Manchester, UK
| | - C Blank
- Netherlands Cancer Institute, Amsterdam, Netherlands
| | - P Mohr
- Elbe-Klinikum Buxtehude, Buxtehude, Germany
| | - J Schachter
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center at Tel Hashomer, Ramat Gan, Israel
| | - J-J Grob
- Aix Marseille University, Hôpital de la Timone, Marseille, France
| | - M Lotem
- Sharett Institute of Oncology, Hadassah Hebrew Medical Center, Jerusalem, Israel
| | - M R Middleton
- The Churchill Hospital and The University of Oxford, Oxford, UK
| | - B Neyns
- Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - N Steven
- Queen Elizabeth Hospital, Birmingham, UK
| | - A Ribas
- David Geffen School of Medicine, University of California, Los Angeles, USA
| | - E Walpole
- Princess Alexandra Hospital, Brisbane, Australia; University of Queensland, Brisbane, Australia
| | - M S Carlino
- Melanoma Institute Australia, The University of Sydney, Mater Hospital, Sydney, Australia; Westmead and Blacktown Hospitals, Melanoma Institute Australia, Sydney, Australia; University of Sydney, Sydney, Australia
| | - C Lebbe
- Université de Paris, AP-HP Dermatology and CIC, INSERM U976, Saint Louis Hospital, Paris, France
| | - M Sznol
- Yale Cancer Center, New Haven, USA
| | - E Jensen
- Merck & Co., Inc., Kenilworth, USA
| | | | | | - C Robert
- Department of Oncology, Service of Dermatology, Gustave Roussy, Villejuif, France; Paris-Saclay University, Orsay, France
| |
Collapse
|
524
|
Gil-Rojas Y, Lasalvia P, Hernández F, Castañeda-Cardona C, Castrillón-Correa J, Herrera D, Rosselli D. Cost-Effectiveness of the Dabrafenib Schedule in Combination With Trametinib Compared With Other Targeted Therapies, Immunotherapy, and Dacarbazine for the Treatment of Unresectable or Metastatic Melanoma With BRAFV600 Mutation in Colombia. Value Health Reg Issues 2021; 26:182-190. [PMID: 34673349 DOI: 10.1016/j.vhri.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Advanced melanoma accounts for 4% of malignant skin tumors, and approximately 80% of deaths are attributed to it. The most frequent mutation of the RAF gene is BRAFV600, which has been associated with a worse prognosis. The objective of the research was to evaluate the cost-effectiveness of the combined regimen of dabrafenib plus trametinib (D + T) compared with other targeted therapies, immunotherapy, and dacarbazine for the treatment of unresectable/metastatic melanoma with BRAFV600 mutation from the perspective of the Colombian health system. METHODS A partitioned survival model with 3 states (progression-free survival, progression, and death) was used to evaluate the cost-effectiveness for a time horizon of 20 years. Owing to the perspective of the analysis, only direct medical costs were taken into account. The efficacy of the evaluated treatment and the comparators were measured in terms of overall survival and progression-free survival. All costs were expressed in Colombian pesos as of 2018, and outcomes and costs were discounted at 5% annually. Two analysis scenarios were considered, one in which only monitoring and follow-up costs were included in the progression phase and another in which costs of acquisition of possible treatment sequences were also included. RESULTS In the first scenario (without postprogression medication costs), the combined D + T regimen was a dominant alternative to vemurafenib + cobimetinib but was not a cost-effective option compared with vemurafenib, nivolumab, ipilimumab, nivolumab + ipilimumab, pembrolizumab, and dacarbazine. In the second scenario (with drug costs in postprogression), D + T was dominant compared with vemurafenib + cobimetinib and cost-effective compared with nivolumab and pembrolizumab. Compared with other schemes, the incremental cost-effectiveness ratio was above the threshold of 3 gross domestic product per capita. Probabilistic sensitivity analyses showed that a willingness-to-pay threshold of Col$56 484 300 (US$19 108) per quality-adjusted life-year would not be reached at the current price of schema in Colombia. CONCLUSIONS The combined scheme could be a cost-effective and even a cost-saving alternative to vemurafenib + cobimetinib, nivolumab, and pembrolizumab if the costs associated with the use of other medications are taken into account after progression to the first line of treatment. Compared with the other comparators, it produces a greater number of quality-adjusted life-years, but the incremental cost-effectiveness ratio is above that of the willingness to pay.
Collapse
Affiliation(s)
- Yaneth Gil-Rojas
- Department of Economic Studies, Neuroeconomix, Bogotá, Colombia.
| | | | | | | | | | | | - Diego Rosselli
- Faculty of Medicine, Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Hospital San Ignacio, Bogotá, Colombia
| |
Collapse
|
525
|
RICTOR Affects Melanoma Tumorigenesis and Its Resistance to Targeted Therapy. Biomedicines 2021; 9:biomedicines9101498. [PMID: 34680615 PMCID: PMC8533235 DOI: 10.3390/biomedicines9101498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
The network defined by phosphatidylinositol-3-kinase (PI3K), AKT, and mammalian target of rapamycin (mTOR) plays a major role in melanoma oncogenesis and has been implicated in BRAF inhibitor resistance. The central role of RICTOR (rapamycin-insensitive companion of mTOR) in this pathway has only recently begun to be unraveled. In the present study, we assessed the role of mTORC2/RICTOR in BRAF-mutated melanomas and their resistance to BRAF inhibition. We showed that RICTOR was significantly overexpressed in melanoma and associated with bad prognoses. RICTOR overexpression stimulated melanoma-initiating cells (MICs) with ‘stemness’ properties. We also showed that RICTOR contributed to melanoma resistance to BRAF inhibitors and rendered the cells very sensitive to mTORC2 inhibition. We highlighted a connection between mTORC2/RICTOR and STAT3 in resistant cells and revealed an interaction between RAS and RICTOR in resistant melanoma, which, when disrupted, impeded the proliferation of resistant cells. Therefore, as a key signaling node, RICTOR contributes to BRAF-dependent melanoma development and resistance to therapy and, as such, is a valuable therapeutic target in melanoma.
Collapse
|
526
|
Hasanov M, Milton DR, Sharfman WH, Taback B, Cranmer LD, Daniels GA, Flaherty L, Hallmeyer S, Milhem M, Feun L, Hauke R, Doolittle G, Gregory N, Patel S. An Open-Label, Randomized, Multi-Center Study Comparing the Sequence of High Dose Aldesleukin (Interleukin-2) and Ipilimumab (Yervoy) in Patients with Metastatic Melanoma. Oncoimmunology 2021; 10:1984059. [PMID: 34650833 PMCID: PMC8510610 DOI: 10.1080/2162402x.2021.1984059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Combination immunotherapy with sequential administration may enhance metastatic melanoma (MM) patients with long-term disease control. High Dose Aldesleukin/Recombinant Interleukin-2 (HD rIL-2) and ipilimumab (IPI) offer complementary mechanisms against MM. This phase IV study assessed the sequenced use of HD rIL-2 and IPI in MM patients. Eligible Stage IV MM patients were randomized to treatment with either two courses of HD rIL-2(600,000 IU/kg) followed by four doses of IPI 3 mg/kg or vice-versa. The primary objective was to compare one-year overall survival (OS) with historical control (46%, Hodi et al., NEJM 2010). Secondary objectives were 1-year progression-free survival (PFS), objective response rate (ORR), and adverse events (AEs) profile. Evaluable Population (EP) included patients who received at least 50% of planned treatment with each drug. Thirteen and 16 patients were randomized to receive HD rIL-2 first, and IPI first, respectively. One-year OS rate was 75% for intention to treat population. Eighteen patients were included in EP, 8 in HD rIL-2, 10 in IPI first arm. In EP, 1-year OS, PFS and ORR rates were 87%, 68%, and 50%, respectively. The frequency of AEs was similar in both arms with 13 patients experiencing Grade 3 or higher AEs, 3 resulting in the end of study participation. There was one HD rIL-2-related death, from cerebral hemorrhage due to thrombocytopenia. In this study with small sample size, HD rIL-2 and IPI were safe to administer sequentially in MM patients and showed more than additive effects. 1-year OS was superior to that of IPI alone from historical studies.
Collapse
Affiliation(s)
- Merve Hasanov
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas Md Anderson Cancer Center, Houston, USA
| | - Denái R Milton
- Department of Biostatistics, The University of Texas Md Anderson Cancer Center, Houston, USA
| | - William H Sharfman
- Department of Medical Oncology and Dermatology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Lutherville, USA
| | - Bret Taback
- Department of Surgery, Division of Breast Surgery, New York-Presbyterian/Columbia University Medical Center, New York, USA
| | - Lee D Cranmer
- University of Arizona Cancer Center, Tucson, Az, Usa. Present Affiliation and Contact: Division of Medical Oncology, Department of Medicine, University of Washington Medical Center, and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Gregory A Daniels
- Division of Hematology-Oncology, University of California San Diego, La Jolla, USA
| | - Lawrence Flaherty
- Department of Hematology-Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, USA
| | - Sigrun Hallmeyer
- Department of Hematology-Oncology, Advocate Medical Group, Park Ridge, USA
| | - Mohammed Milhem
- Section of Oncology, Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, USA
| | - Lynn Feun
- Department of Medical Oncology, University of Miami Health System, Miami, USA
| | | | - Gary Doolittle
- Division of Medical Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, USA
| | | | - Sapna Patel
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas Md Anderson Cancer Center, Houston, USA
| |
Collapse
|
527
|
Parris JL, Barnoud T, Leu JIJ, Leung JC, Ma W, Kirven NA, Poli ANR, Kossenkov AV, Liu Q, Salvino JM, George DL, Weeraratna AT, Chen Q, Murphy ME. HSP70 inhibition blocks adaptive resistance and synergizes with MEK inhibition for the treatment of NRAS-mutant melanoma. CANCER RESEARCH COMMUNICATIONS 2021; 1:17-29. [PMID: 35187538 PMCID: PMC8849551 DOI: 10.1158/2767-9764.crc-21-0033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NRAS-mutant melanoma is currently a challenge to treat. This is due to an absence of inhibitors directed against mutant NRAS, along with adaptive and acquired resistance of this tumor type to inhibitors in the MAPK pathway. Inhibitors to MEK (mitogen-activated protein kinase kinase) have shown some promise for NRAS-mutant melanoma. In this work we explored the use of MEK inhibitors for NRAS-mutant melanoma. At the same time we investigated the impact of the brain microenvironment, specifically astrocytes, on the response of a melanoma brain metastatic cell line to MEK inhibition. These parallel avenues led to the surprising finding that astrocytes enhance the sensitivity of melanoma tumors to MEK inhibitors (MEKi). We show that MEKi cause an upregulation of the transcription factor ID3, which confers resistance. This upregulation of ID3 is blocked by conditioned media from astrocytes. We show that silencing ID3 enhances the sensitivity of melanoma to MEK inhibitors, thus mimicking the effect of the brain microenvironment. Moreover, we report that ID3 is a client protein of the chaperone HSP70, and that HSP70 inhibition causes ID3 to misfold and accumulate in a detergent-insoluble fraction in cells. We show that HSP70 inhibitors synergize with MEK inhibitors against NRAS-mutant melanoma, and that this combination significantly enhances the survival of mice in two different models of NRAS-mutant melanoma. These studies highlight ID3 as a mediator of adaptive resistance, and support the combined use of MEK and HSP70 inhibitors for the therapy of NRAS-mutant melanoma. SIGNIFICANCE MEK inhibitors are currently used for NRAS-mutant melanoma, but have shown modest efficacy as single agents. This research shows a synergistic effect of combining HSP70 inhibitors with MEK inhibitors for the treatment of NRAS mutant melanoma.
Collapse
Affiliation(s)
- Joshua L.D. Parris
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Graduate Group in Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Thibaut Barnoud
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Julia I.-Ju Leu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jessica C. Leung
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Weili Ma
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nicole A. Kirven
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Adi Naryana Reddy Poli
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Andrew V. Kossenkov
- Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joseph M. Salvino
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Donna L. George
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ashani T. Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Qing Chen
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Maureen E. Murphy
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Corresponding Author: Maureen Murphy, The Wistar Institute, 3601 Spruce Street, Room 356, Philadelphia, PA 19104. Phone: 215-495-6870; E-mail:
| |
Collapse
|
528
|
van Breeschoten J, van den Eertwegh AJM, de Wreede LC, Hilarius DL, van Zwet EW, Haanen JB, Blank CU, Aarts MJB, van den Berkmortel FWPJ, de Groot JWB, Hospers GAP, Kapiteijn E, Piersma D, van Rijn RS, Stevense-den Boer MAM, van der Veldt AAM, Vreugdenhil G, Boers-Sonderen MJ, Suijkerbuijk KPM, Wouters MWJM. Hospital Variation in Cancer Treatments and Survival OutComes of Advanced Melanoma Patients: Nationwide Quality Assurance in The Netherlands. Cancers (Basel) 2021; 13:5077. [PMID: 34680228 PMCID: PMC8533953 DOI: 10.3390/cancers13205077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To assure a high quality of care for patients treated in Dutch melanoma centers, hospital variation in treatment patterns and outcomes is evaluated in the Dutch Melanoma Treatment Registry. The aim of this study was to assess center variation in treatments and 2-year survival probabilities of patients diagnosed between 2013 and 2017 in the Netherlands. METHODS We selected patients diagnosed between 2013 and 2017 with unresectable IIIC or stage IV melanoma, registered in the Dutch Melanoma Treatment Registry. Centers' performance on 2-year survival was evaluated using Empirical Bayes estimates calculated in a random effects model. Treatment patterns of the centers with the lowest and highest estimates for 2-year survival were compared. RESULTS For patients diagnosed between 2014 and 2015, significant center variation in 2-year survival probabilities was observed even after correcting for case-mix and treatment with new systemic therapies. The different use of new systemic therapies partially explained the observed variation. From 2016 onwards, no significant difference in 2-year survival was observed between centers. CONCLUSION Our data suggest that between 2014 and 2015, after correcting for patient case-mix, significant variation in 2-year survival probabilities between Dutch melanoma centers existed. The use of new systemic therapies could partially explain this variation. In 2013 and between 2016 and 2017, no significant variation between centers existed.
Collapse
Affiliation(s)
- Jesper van Breeschoten
- Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, 2333 AA Leiden, The Netherlands;
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands;
| | - Alfonsus J. M. van den Eertwegh
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands;
| | - Liesbeth C. de Wreede
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; (L.C.d.W.); (E.W.v.Z.)
| | - Doranne L. Hilarius
- Department of Pharmacy, Rode Kruis Ziekenhuis, Vondellaan 13, 1942 LE Beverwijk, The Netherlands;
| | - Erik W. van Zwet
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; (L.C.d.W.); (E.W.v.Z.)
| | - John B. Haanen
- Department of Medical Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (J.B.H.); (C.U.B.)
| | - Christian U. Blank
- Department of Medical Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (J.B.H.); (C.U.B.)
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Maureen J. B. Aarts
- Department of Medical Oncology, GROW School of Oncology and Developmental Biology, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands;
| | | | | | - Geke A. P. Hospers
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Djura Piersma
- Department of Internal Medicine, Medisch Spectrum Twente, Koningsplein 1, 7512 KZ Enschede, The Netherlands;
| | - Rozemarijn S. van Rijn
- Department of Internal Medicine, Medical Centre Leeuwarden, Henri Dunantweg 2, 8934 AD Leeuwarden, The Netherlands;
| | | | - Astrid A. M. van der Veldt
- Department of Medical Oncology and Radiology & Nuclear Medicine, Erasmus Medical Centre, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands;
| | - Gerard Vreugdenhil
- Department of Internal Medicine, Maxima Medical Centre, De Run 4600, 5504 DB Eindhoven, The Netherlands;
| | - Marye J. Boers-Sonderen
- Department of Medical Oncology, Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Karijn P. M. Suijkerbuijk
- Department of Medical Oncology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Michel W. J. M. Wouters
- Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, 2333 AA Leiden, The Netherlands;
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; (L.C.d.W.); (E.W.v.Z.)
- Department of Surgical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
529
|
Mansouri A, Padmanaban V, Aregawi D, Glantz M. VEGF and Immune Checkpoint Inhibition for Prevention of Brain Metastases: Systematic Review and Meta-analysis. Neurology 2021; 97:e1484-e1492. [PMID: 34380750 DOI: 10.1212/wnl.0000000000012642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/14/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES We conducted a systematic review and meta-analysis to investigate the role of vascular endothelial growth factor (VEGF) inhibitors and immune checkpoint inhibitors (ICIs) in preventing the development of brain metastases (BMs). METHODS We searched MEDLINE, Embase, Cochrane Database, and Google Scholar between January 1, 2000, and June 1, 2020. Included studies were randomized controlled trials (RCTs) of adults with systemic cancer that reported the incidence of BMs treated with and without VEGF inhibitors, as well as observational studies of adults with systemic cancer that reported the incidence of BMs treated with and without ICIs (no RCTs addressed the ICI question). Pooled relative risks (RR) were computed with a binary random-effects model. RESULTS A search for VEGF and incidence of new BMs revealed 7 studies (6,212 patients with breast, colon, and non-small-cell lung cancer). Meta-analysis showed a lower incidence of new BMs compared to control (RR 0.71, 95% confidence interval [CI] 0.56-0.89, p = 0.003). A search for ICIs and incidence of new BMs yielded 8 studies (732 patients with non-small-cell lung cancer or metastatic melanoma) in which ICIs were used as an adjunct to radiosurgery. Meta-analysis showed a lower incidence of out-of-treatment-field BMs with ICIs compared to controls at 1 year (RR 0.65, 95% CI 0.49-0.88, p = 0.005). The overall Grading of Recommendations, Assessment, Development and Evaluations score for the evidence evaluating the role of bevacizumab and ICIs was high and moderate, respectively. DISCUSSION VEGF and ICIs may have a role in prophylaxis against BM in patients with solid tumors.
Collapse
Affiliation(s)
- Alireza Mansouri
- From the Departments of Neurosurgery (A.M., V.P., D.A., M.G.), Neurology (D.A., M.G.), and Oncology (D.A., M.G.), Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Varun Padmanaban
- From the Departments of Neurosurgery (A.M., V.P., D.A., M.G.), Neurology (D.A., M.G.), and Oncology (D.A., M.G.), Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Dawit Aregawi
- From the Departments of Neurosurgery (A.M., V.P., D.A., M.G.), Neurology (D.A., M.G.), and Oncology (D.A., M.G.), Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Michael Glantz
- From the Departments of Neurosurgery (A.M., V.P., D.A., M.G.), Neurology (D.A., M.G.), and Oncology (D.A., M.G.), Penn State Milton S. Hershey Medical Center, Hershey, PA.
| |
Collapse
|
530
|
Quantifying ERK activity in response to inhibition of the BRAFV600E-MEK-ERK cascade using mathematical modelling. Br J Cancer 2021; 125:1552-1560. [PMID: 34621046 PMCID: PMC8608797 DOI: 10.1038/s41416-021-01565-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Simultaneous inhibition of multiple components of the BRAF-MEK-ERK cascade (vertical inhibition) has become a standard of care for treating BRAF-mutant melanoma. However, the molecular mechanism of how vertical inhibition synergistically suppresses intracellular ERK activity, and consequently cell proliferation, are yet to be fully elucidated. METHODS We develop a mechanistic mathematical model that describes how the mutant BRAF inhibitor, dabrafenib, and the MEK inhibitor, trametinib, affect BRAFV600E-MEK-ERK signalling. The model is based on a system of chemical reactions that describes cascade signalling dynamics. Using mass action kinetics, the chemical reactions are re-expressed as ordinary differential equations that are parameterised by in vitro data and solved numerically to obtain the temporal evolution of cascade component concentrations. RESULTS The model provides a quantitative method to compute how dabrafenib and trametinib can be used in combination to synergistically inhibit ERK activity in BRAFV600E-mutant melanoma cells. The model elucidates molecular mechanisms of vertical inhibition of the BRAFV600E-MEK-ERK cascade and delineates how elevated BRAF concentrations generate drug resistance to dabrafenib and trametinib. The computational simulations further suggest that elevated ATP levels could be a factor in drug resistance to dabrafenib. CONCLUSIONS The model can be used to systematically motivate which dabrafenib-trametinib dose combinations, for treating BRAFV600E-mutated melanoma, warrant experimental investigation.
Collapse
|
531
|
Battaglia L, Scomparin A, Dianzani C, Milla P, Muntoni E, Arpicco S, Cavalli R. Nanotechnology Addressing Cutaneous Melanoma: The Italian Landscape. Pharmaceutics 2021; 13:1617. [PMID: 34683910 PMCID: PMC8540596 DOI: 10.3390/pharmaceutics13101617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous melanoma is one of the most aggressive solid tumors, with a low survival for the metastatic stage. Currently, clinical melanoma treatments include surgery, chemotherapy, targeted therapy, immunotherapy and radiotherapy. Of note, innovative therapeutic regimens concern the administration of multitarget drugs in tandem, in order to improve therapeutic efficacy. However, also, if this drug combination is clinically relevant, the patient's response is not yet optimal. In this scenario, nanotechnology-based delivery systems can play a crucial role in the clinical treatment of advanced melanoma. In fact, their nano-features enable targeted drug delivery at a cellular level by overcoming biological barriers. Various nanomedicines have been proposed for the treatment of cutaneous melanoma, and a relevant number of them are undergoing clinical trials. In Italy, researchers are focusing on the pharmaceutical development of nanoformulations for malignant melanoma therapy. The present review reports an overview of the main melanoma-addressed nanomedicines currently under study in Italy, alongside the state of the art of melanoma therapy. Moreover, the latest Italian advances concerning the pre-clinical evaluation of nanomedicines for melanoma are described.
Collapse
Affiliation(s)
- Luigi Battaglia
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Anna Scomparin
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
- . Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chiara Dianzani
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Paola Milla
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Elisabetta Muntoni
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Silvia Arpicco
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Roberta Cavalli
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| |
Collapse
|
532
|
Jafri S, Yaqub A. Redifferentiation of BRAF V600E-Mutated Radioiodine Refractory Metastatic Papillary Thyroid Cancer After Treatment With Dabrafenib and Trametinib. Cureus 2021; 13:e17488. [PMID: 34595070 PMCID: PMC8465644 DOI: 10.7759/cureus.17488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2021] [Indexed: 01/01/2023] Open
Abstract
Radioactive iodine-refractory metastatic differentiated thyroid cancer (RAIR) is associated with a poor prognosis. Multikinase inhibitors have demonstrated improvement in progression-free but not overall survival in such patients, but usage is limited by significant adverse effects and the development of resistance. Clinical research has demonstrated improvement in progression-free survival with the combined use of the BRAF/MEK inhibitor in patients with metastatic melanoma and anaplastic thyroid cancer with the BRAFV600E mutation and has shown promise in redifferentiation of BRAF-positive RAIR differentiated thyroid cancer. A 58-year-old woman went to her primary care physician for a growing mass on the left side of her neck. CT imaging noted a 6 x 8 x 6 cm mixed cystic and solid mass and lymphadenopathy. Core biopsy subsequently showed metastatic papillary thyroid cancer (Stage III, PT4a/PN1b), and she underwent a total thyroidectomy with left neck dissection. She then received 204mCi 131I post-total thyroidectomy. Unfortunately, her thyroglobulin continued to increase post-radioactive iodine (RAI) treatment, indicating persistent and/or recurrent thyroid cancer. An RAI-131 whole-body scan on the thyrogen protocol showed no significant RAI uptake. A fluorodeoxyglucose (FDG)-positron emission tomography (PET) CT scan was then performed, which showed recurrent metastatic disease with hypermetabolism noted in the left thyroid bed and FDG-avid bilateral cervical lymph nodes and pulmonary nodules. Given these findings, her cancer was classified as radioactive iodine refractory (RAIR). Molecular testing indicated the BRAFV600E mutation. After a discussion with the patient, it was decided to initiate therapy with a BRAF inhibitor (dabrafenib 150 mg twice a day) and MEK inhibitor (trametinib 2 mg once a day) in an attempt to redifferentiate RAIR. Repeat RAI-131 thyrogen whole body scan one month after initiation of therapy demonstrated left level 2 cervical lymphadenopathy radioiodine uptake. The patient subsequently received 216 mCi 131I treatment given evidence of redifferentiation. Her post-treatment scan indicated additional uptake in a left lower lobe pulmonary nodule as well as a left paratracheal mass indicating successful RAI-131 uptake by metastases. Her thyroglobulin level, six months post-RAI, decreased to 4.0 indicating an encouraging response. Further surveillance, including imaging studies, is planned. This case illustrates the re-differential potential for dabrafenib and trametinib treatment in patients with BRAFV600E-mutated RAIR differentiated thyroid cancer. This therapy has been shown to be successful in small series of patients and could potentially be offered to RAIR patients with the BRAFV600E mutation as an alternative to multikinase treatment given its favorable side-effect profile.
Collapse
Affiliation(s)
- Sabih Jafri
- Internal Medicine, University of Cincinnati, College of Medicine, Cincinnati, USA
| | - Abid Yaqub
- Endocrinology, University of Cincinnati, College of Medicine, Cincinnati, USA
| |
Collapse
|
533
|
Zhu C, Zhu L, Gu Y, Liu P, Tong X, Wu G, Zhu W, Shen W, Bao H, Ma X, Yu R, Wu X, Zhu D, Shu Y, Feng J. Genomic Profiling Reveals the Molecular Landscape of Gastrointestinal Tract Cancers in Chinese Patients. Front Genet 2021; 12:608742. [PMID: 34594355 PMCID: PMC8478156 DOI: 10.3389/fgene.2021.608742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal tract cancers have high incidence and mortality in China, but their molecular characteristics have not been fully investigated. We sequenced 432 tumor samples from the colorectum, stomach, pancreas, gallbladder, and biliary tract to investigate cancer-related mutations and detail the landscape of microsatellite instability (MSI), tumor mutation burden (TMB), and chromosomal instability (CIN). We observed the highest TMB in colorectal and gastric cancers and the lowest TMB in gastrointestinal stromal tumors (GISTs). Twenty-four hyper-mutated tumors were identified only in colorectal and gastric cancers, with a significant enrichment of mutations in the polymerase genes (POLE, POLD1, and POLH) and mismatch repair (MMR) genes. Additionally, CIN preferentially occurred in colorectal and gastric cancers, while pancreatic, gallbladder, and biliary duct cancers had a much lower CIN. High CIN was correlated with a higher prevalence of malfunctions in chromosome segregation and cell cycle genes, including the copy number loss of WRN, NAT1, NF2, and BUB1B, and the copy number gain of MYC, ERBB2, EGFR, and CDK6. In addition, TP53 mutations were more abundant in high-CIN tumors, while PIK3CA mutations were more frequent in low-CIN tumors. In colorectal and gastric cancers, tumors with MSI demonstrated much fewer copy number changes than microsatellite stable (MSS) tumors. In colorectal and gastric cancers, the molecular characteristics of tumors revealed the mutational diversity between the different anatomical origins of tumors. This study provides novel insights into the molecular landscape of Chinese gastrointestinal cancers and the genetic differences between tumor locations, which could be useful for future clinical patient stratification and targeted interventions.
Collapse
Affiliation(s)
- Chunrong Zhu
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liangjun Zhu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yanhong Gu
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Liu
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | - Wenyu Zhu
- Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | | | - Hua Bao
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xiangyuan Ma
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Ruoying Yu
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xue Wu
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Dongqin Zhu
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yongqian Shu
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Jiangsu Provincial Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
534
|
Ge Y, Che X, Gao X, Zhao S, Su J. Combination of radiotherapy and targeted therapy for melanoma brain metastases: a systematic review. Melanoma Res 2021; 31:413-420. [PMID: 34406985 DOI: 10.1097/cmr.0000000000000761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Radiotherapy is a mainstay of efficient treatment of brain metastases from solid tumors. Immunotherapy has improved the survival of metastatic cancer patients across many tumor types. However, targeted therapy is a feasible alternative for patients unable to continue immunotherapy or with poor outcomes of immunotherapy. The combination of radiotherapy and targeted therapy for the treatment of brain metastases has a strong theoretical underpinning, but data on the efficacy and safety of this combination is still limited. A systematic search of PubMed, Embase, Web of Science and the Cochrane library database was conducted. Eleven studies were included for a total of 316 patients. Median OS was about 6.2-17.8 months from radiotherapy. Weighted survival and local control at 1 and 2 years were correlated (50.1 and 17.8%, 90.7 and 14.7% at 1 and 2 year, respectively). Radiotherapy given before or concurrently to targeted therapy provided the best effect on the outcome. For patients with brain metastases from cutaneous melanoma, the addition of concurrent targeted therapy to brain radiotherapy can increase survival and provide long-term control.
Collapse
Affiliation(s)
- Yi Ge
- Department of Dermatology, Xiangya Hospital, Central South University
- Hunan Engineering Research Center of Skin Health and Disease
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Xuanlin Che
- Department of Dermatology, Xiangya Hospital, Central South University
- Hunan Engineering Research Center of Skin Health and Disease
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Xin Gao
- Department of Dermatology, Xiangya Hospital, Central South University
- Hunan Engineering Research Center of Skin Health and Disease
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University
- Hunan Engineering Research Center of Skin Health and Disease
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University
- Hunan Engineering Research Center of Skin Health and Disease
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| |
Collapse
|
535
|
Ascierto PA, Dréno B, Larkin J, Ribas A, Liszkay G, Maio M, Mandalà M, Demidov L, Stroyakovskiy D, Thomas L, de la Cruz-Merino L, Atkinson V, Dutriaux C, Garbe C, Hsu J, Jones S, Li H, McKenna E, Voulgari A, McArthur GA. 5-Year Outcomes with Cobimetinib plus Vemurafenib in BRAFV600 Mutation-Positive Advanced Melanoma: Extended Follow-up of the coBRIM Study. Clin Cancer Res 2021; 27:5225-5235. [PMID: 34158360 PMCID: PMC9401485 DOI: 10.1158/1078-0432.ccr-21-0809] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 06/11/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE The randomized phase III coBRIM study (NCT01689519) demonstrated improved progression-free survival (PFS) and overall survival (OS) with addition of cobimetinib to vemurafenib compared with vemurafenib in patients with previously untreated BRAFV600 mutation-positive advanced melanoma. We report long-term follow-up of coBRIM, with at least 5 years since the last patient was randomized. PATIENTS AND METHODS Eligible patients were randomized 1:1 to receive either oral cobimetinib (60 mg once daily on days 1-21 in each 28-day cycle) or placebo in combination with oral vemurafenib (960 mg twice daily). RESULTS 495 patients were randomized to cobimetinib plus vemurafenib (n = 247) or placebo plus vemurafenib (n = 248). Median follow-up was 21.2 months for cobimetinib plus vemurafenib and 16.6 months for placebo plus vemurafenib. Median OS was 22.5 months (95% CI, 20.3-28.8) with cobimetinib plus vemurafenib and 17.4 months (95% CI, 15.0-19.8) with placebo plus vemurafenib; 5-year OS rates were 31% and 26%, respectively. Median PFS was 12.6 months (95% CI, 9.5-14.8) with cobimetinib plus vemurafenib and 7.2 months (95% CI, 5.6-7.5) with placebo plus vemurafenib; 5-year PFS rates were 14% and 10%, respectively. OS and PFS were longest in patients with normal baseline lactate dehydrogenase levels and low tumor burden, and in those achieving complete response. The safety profile remained consistent with previously published reports. CONCLUSIONS Extended follow-up of coBRIM confirms the long-term clinical benefit and safety profile of cobimetinib plus vemurafenib compared with vemurafenib monotherapy in patients with BRAFV600 mutation-positive advanced melanoma.
Collapse
Affiliation(s)
- Paolo A. Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy.,Corresponding Author: Paolo A. Ascierto, Melanoma, Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione Pascale, Via Mariano Semmola, 80131 Napoli, Italy. Phone: 39-081-5903236; E-mail:
| | | | | | - Antoni Ribas
- Jonsson Comprehensive Cancer Center at the University of California at Los Angeles, Los Angeles, CA, USA
| | | | - Michele Maio
- Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Lev Demidov
- N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | | | - Luc Thomas
- Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | | | - Victoria Atkinson
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia; Gallipoli Medical Research Foundation, Greenslopes, Queensland, Australia; and University of Queensland, St. Lucia, Queensland, Australia
| | | | | | - Jessie Hsu
- Genentech, a Member of the Roche Group, South San Francisco, California
| | - Surai Jones
- Genentech, a Member of the Roche Group, South San Francisco, California
| | - Haocheng Li
- F. Hoffmann-La Roche Ltd, Mississauga, ON, Canada
| | - Edward McKenna
- Genentech, a Member of the Roche Group, South San Francisco, California
| | | | - Grant A. McArthur
- Peter MacCallum Cancer Centre and the University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
536
|
Gong X, Fan L, Wang P. MEK inhibition by trametinib overcomes chemoresistance in preclinical nasopharyngeal carcinoma models. Anticancer Drugs 2021; 32:978-985. [PMID: 34282746 DOI: 10.1097/cad.0000000000001092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The development of chemoresistance is the major cause of treatment failure in nasopharyngeal carcinoma (NPC). Although 'paradoxical' activation of extracellular signal-regulated kinase (ERK) has been shown to contribute resistance to anticancer treatment, the role of ERK in NPC chemoresistance has not been yet revealed. In this work, we report that trametinib, a clinically available mitogen-activated protein kinase inhibitor for melanoma treatment, overcomes NPC chemoresistance via suppressing ERK activation induced by chemotherapy. We first showed that trametinib at nanomolar concentrations was active against NPC cells and acted synergistically with cisplatin. Trametinib remarkably decreased phosphorylation of ERK and its downstream effector in NPC cells. We next showed that cisplatin treatment stimulates ERK signaling, and furthermore that this can be abolished by trametinib. We finally generated cisplatin-resistant NPC models and demonstrated that trametinib was effective in inhibiting cisplatin-resistant NPC growth, colony formation and survival via suppressing ERK signaling in vitro and in vivo. Our work demonstrates the potential of trametinib in overcoming chemoresistance in preclinical NPC models and provides evidence of initializing clinical trials of using trametinib for NPC treatment.
Collapse
Affiliation(s)
| | - Lei Fan
- Department of Urologic Surgery
| | - Pu Wang
- Department of Neurology, Xiangyang No. 1 People's Hospital, Affiliated Hospital of Hubei University of Medicine, Xiangyang, Hubei, People's Republic of China
| |
Collapse
|
537
|
Back J, Nguyen MN, Li L, Lee S, Lee I, Chen F, Gillinov L, Chung YH, Alder KD, Kwon HK, Yu KE, Dussik CM, Hao Z, Flores MJ, Kim Y, Ibe IK, Munger AM, Seo SW, Lee FY. Inflammatory conversion of quiescent osteoblasts by metastatic breast cancer cells through pERK1/2 aggravates cancer-induced bone destruction. Bone Res 2021; 9:43. [PMID: 34588427 PMCID: PMC8481290 DOI: 10.1038/s41413-021-00158-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/09/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023] Open
Abstract
Disruption of bone homeostasis caused by metastatic osteolytic breast cancer cells increases inflammatory osteolysis and decreases bone formation, thereby predisposing patients to pathological fracture and cancer growth. Alteration of osteoblast function induces skeletal diseases due to the disruption of bone homeostasis. We observed increased activation of pERK1/2 in osteolytic breast cancer cells and osteoblasts in human pathological specimens with aggressive osteolytic breast cancer metastases. We confirmed that osteolytic breast cancers with high expression of pERK1/2 disrupt bone homeostasis via osteoblastic ERK1/2 activation at the bone-breast cancer interface. The process of inflammatory osteolysis modulates ERK1/2 activation in osteoblasts and breast cancer cells through dominant-negative MEK1 expression and constitutively active MEK1 expression to promote cancer growth within bone. Trametinib, an FDA-approved MEK inhibitor, not only reduced breast cancer-induced bone destruction but also dramatically reduced cancer growth in bone by inhibiting the inflammatory skeletal microenvironment. Taken together, these findings suggest that ERK1/2 activation in both breast cancer cells and osteoblasts is required for osteolytic breast cancer-induced inflammatory osteolysis and that ERK1/2 pathway inhibitors may represent a promising adjuvant therapy for patients with aggressive osteolytic breast cancers by altering the shared cancer and bone microenvironment.
Collapse
Affiliation(s)
- Jungho Back
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Minh Nam Nguyen
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA ,grid.444808.40000 0001 2037 434XResearch Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Lu Li
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA ,grid.415869.7Department of Rehabilitation Medicine, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Saelim Lee
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA ,grid.411982.70000 0001 0705 4288College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Inkyu Lee
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA ,grid.254224.70000 0001 0789 9563Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Fancheng Chen
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA ,grid.11841.3d0000 0004 0619 8943Shanghai Medical College, Fudan University, Shanghai City, China
| | - Lauren Gillinov
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Yeon-Ho Chung
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Kareme D. Alder
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Hyuk-Kwon Kwon
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Kristin E. Yu
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Christopher M. Dussik
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Zichen Hao
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA ,grid.411525.60000 0004 0369 1599Department of Emergency & Trauma, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Michael J. Flores
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Yoseph Kim
- grid.21107.350000 0001 2171 9311Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA
| | - Izuchukwu K. Ibe
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Alana M. Munger
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Sung Wook Seo
- grid.414964.a0000 0001 0640 5613Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Gangnam-gu Republic of Korea
| | - Francis Y. Lee
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| |
Collapse
|
538
|
Sun G, Rong D, Li Z, Sun G, Wu F, Li X, Cao H, Cheng Y, Tang W, Sun Y. Role of Small Molecule Targeted Compounds in Cancer: Progress, Opportunities, and Challenges. Front Cell Dev Biol 2021; 9:694363. [PMID: 34568317 PMCID: PMC8455877 DOI: 10.3389/fcell.2021.694363] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Research on molecular targeted therapy of tumors is booming, and novel targeted therapy drugs are constantly emerging. Small molecule targeted compounds, novel targeted therapy drugs, can be administered orally as tablets among other methods, and do not draw upon genes, causing no immune response. It is easily structurally modified to make it more applicable to clinical needs, and convenient to promote due to low cost. It refers to a hotspot in the research of tumor molecular targeted therapy. In the present study, we review the current Food and Drug Administration (FDA)-approved use of small molecule targeted compounds in tumors, summarize the clinical drug resistance problems and mechanisms facing the use of small molecule targeted compounds, and predict the future directions of the evolving field.
Collapse
Affiliation(s)
- Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dawei Rong
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhouxiao Li
- Department of Hand Surgery, Plastic Surgery and Aesthetic Surgery, Ludwig-Maximilians University, Munich, Germany
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
539
|
Fibroblasts Influence Metastatic Melanoma Cell Sensitivity to Combined BRAF and MEK Inhibition. Cancers (Basel) 2021; 13:cancers13194761. [PMID: 34638245 PMCID: PMC8507536 DOI: 10.3390/cancers13194761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Preclinical 3D in vitro coculture models are known to be more complex systems than monolayer cell culture and mimic the physiological environment more closely. Three-dimensional dermal equivalents provide a relevant environment for cutaneous metastatic melanoma cells and are capable of modulating a cancer cell’s response to drugs. We showed that a combined targeted therapy (vemurafenib and cobimetinib) efficiently inhibits cell proliferation and induces apoptosis, especially in the 3D coculture model. A cancer-associated fibroblast population isolated from a cutaneous melanoma was also sensitive to the treatment but with no detectable induction of apoptosis. To better understand the complex crosstalk between melanoma cells and their microenvironment, we compared the influence of conditioned media obtained from healthy or cancer-associated fibroblasts on the response of metastatic melanomas to the drugs. Our data indicate that normal fibroblast supernatants potentialize the therapy’s efficiency, whereas cancer-associated fibroblast secretomes favor melanoma cell survival. Abstract The sensitivity of melanoma cells to targeted therapy compounds depends on the tumor microenvironment. Three-dimensional (3D) in vitro coculture systems better reflect the native structural architecture of tissues and are ideal for investigating cellular interactions modulating cell sensitivity to drugs. Metastatic melanoma (MM) cells (SK-MEL-28 BRAF V600E mutant and SK-MEL-2 BRAF wt) were cultured as a monolayer (2D) or cocultured on 3D dermal equivalents (with fibroblasts) and treated with a BRAFi (vemurafenib) combined with a MEK inhibitor (MEKi, cobimetinib). The drug combination efficiently inhibited 2D and 3D MM cell proliferation and survival regardless of their BRAF status. Two-dimensional and three-dimensional cancer-associated fibroblasts (CAFs), isolated from a cutaneous MM biopsy, were also sensitive to the targeted therapy. Conditioned media obtained from healthy dermal fibroblasts or CAFs modulated the MM cell’s response differently to the treatment: while supernatants from healthy fibroblasts potentialized the efficiency of drugs on MM, those from CAFs tended to increase cell survival. Our data indicate that the secretory profiles of fibroblasts influence MM sensitivity to the combined vemurafenib and cobimetinib treatment and highlight the need for 3D in vitro cocultures representing the complex crosstalk between melanoma and CAFs during preclinical studies of drugs.
Collapse
|
540
|
Maloney NJ, Rana J, Yang JJ, Zaba LC, Kwong BY. Clinical features of drug-induced hypersensitivity syndrome to BRAF inhibitors with and without previous immune checkpoint inhibition: a review. Support Care Cancer 2021; 30:2839-2851. [PMID: 34546454 DOI: 10.1007/s00520-021-06543-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/04/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Cutaneous reactions to BRAF inhibitors are common, but severe reactions resembling or consistent with drug-induced hypersensitivity syndrome (DIHS)/drug reaction with eosinophilia and systemic symptoms (DRESS) are relatively rare. Several reports suggest that cutaneous reactions including DRESS/DIHS to BRAF inhibitors are more frequent and severe in the setting of previous immune checkpoint inhibition (ICI). METHODS To characterize existing literature on these reports, we queried the PubMed/MEDLINE database for cases of DIHS/DRESS to BRAF inhibitors. RESULTS We identified 23 cases of DIHS to BRAF inhibitors following checkpoint inhibition and 14 cases without prior checkpoint inhibitor therapy. In both cohorts, DIHS occurred relatively early, with median time to onset from drug exposure of 8-10 days. Patients who received prior ICI were less likely to have peripheral eosinophilia (26% vs 71%), atypical lymphocytes (9% vs 50%), renal involvement (61% vs 79%), hepatic involvement (52% vs 86%), and lymphadenopathy (9% vs 43%) compared to patients who did not receive prior ICI. Thrombocytopenia was more common with prior ICI (17% vs 7%). Only patients who received prior ICI experienced hypotension (26%) during the course of their DIHS. All cases of BRAF-induced DIHS generally improved on systemic steroids/supportive care, and no cases of death were identified. CONCLUSION Dermatologists should consider a diagnosis of DIHS following BRAF inhibitor initiation, particularly in the setting of past checkpoint inhibition, with atypical features including relatively rapid onset and steroid responsiveness, lack of peripheral eosinophilia, lymphocytosis, or lymphadenopathy, and increased risk of thrombocytopenia and hypotension.
Collapse
Affiliation(s)
- Nolan J Maloney
- Department of Dermatology, Stanford University Medical Center and Cancer Institute, 780 Welch Road, CJ220F, Palo Alto, CA, 94304-5779, USA
| | - Jasmine Rana
- Department of Dermatology, Stanford University Medical Center and Cancer Institute, 780 Welch Road, CJ220F, Palo Alto, CA, 94304-5779, USA
| | - Jason J Yang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA
| | - Lisa C Zaba
- Department of Dermatology, Stanford University Medical Center and Cancer Institute, 780 Welch Road, CJ220F, Palo Alto, CA, 94304-5779, USA
| | - Bernice Y Kwong
- Department of Dermatology, Stanford University Medical Center and Cancer Institute, 780 Welch Road, CJ220F, Palo Alto, CA, 94304-5779, USA.
| |
Collapse
|
541
|
Thawer A, Miller WH, Gregorio N, Claveau J, Rajagopal S, Savage KJ, Song X, Petrella TM, on behalf of the Canadian Working Group. Management of Pyrexia Associated with the Combination of Dabrafenib and Trametinib: Canadian Consensus Statements. Curr Oncol 2021; 28:3537-3553. [PMID: 34590600 PMCID: PMC8482100 DOI: 10.3390/curroncol28050304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
The combination of dabrafenib and trametinib is a well-established treatment for BRAF-mutated melanoma. However, the effectiveness of this approach may be hindered by the development of treatment-related pyrexia syndrome, which occurs in at least 50% of treated patients. Without appropriate intervention, pyrexia syndrome has the potential to worsen and can result in hypotension secondary to dehydration and associated organ-related complications. Furthermore, premature treatment discontinuation may result in a reduction in progression-free and overall survival. Despite existing guidance, there is still a wide variety of therapeutic approaches suggested in the literature for both the definition and management of dabrafenib and trametinib-related pyrexia. This is reflected in the practice variation of its prevention and treatment within and between Canadian cancer centres. A Canadian working group was formed and consensus statements were constructed based on evidence and finalised through a two-round modified Delphi approach. The statements led to the development of a pyrexia treatment algorithm that can easily be applied in routine practice. The Canadian working group consensus statements serve to provide practical guidance for the management of dabrafenib and trametinib-related pyrexia, hopefully leading to reduced discontinuation rates, and ultimately improve patients' quality of life and cancer-related outcomes.
Collapse
Affiliation(s)
- Alia Thawer
- Department of Pharmacy, Sunnybrook Odette Cancer Centre, Toronto, ON M4N 3M5, Canada;
| | - Wilson H. Miller
- Departments of Medicine and Oncology, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Nancy Gregorio
- Princess Margaret Cancer Centre, Toronto, ON M5T 2M9, Canada;
| | - Joël Claveau
- Department of Internal Medicine, Dermatology Division, CHU de Québec, Université Laval, Quebec City, QC G1Y 0A1, Canada;
| | | | - Kerry J. Savage
- Department of Medical Oncology, BC Cancer, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Xinni Song
- Department of Internal Medicine, The Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
| | - Teresa M. Petrella
- Department of Medical Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | | |
Collapse
|
542
|
Teixido C, Castillo P, Martinez-Vila C, Arance A, Alos L. Molecular Markers and Targets in Melanoma. Cells 2021; 10:2320. [PMID: 34571969 PMCID: PMC8469294 DOI: 10.3390/cells10092320] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
Melanoma develops as a result of several genetic alterations, with UV radiation often acting as a mutagenic risk factor. Deep knowledge of the molecular signaling pathways of different types of melanoma allows better characterization and provides tools for the development of therapies based on the intervention of signals promoted by these cascades. The latest World Health Organization classification acknowledged the specific genetic drivers leading to melanoma and classifies melanocytic lesions into nine distinct categories according to the associate cumulative sun damage (CSD), which correlates with the molecular alterations of tumors. The largest groups are melanomas associated with low-CSD or superficial spreading melanomas, characterized by frequent presentation of the BRAFV600 mutation. High-CSD melanomas include lentigo maligna type and desmoplastic melanomas, which often have a high mutation burden and can harbor NRAS, BRAFnon-V600E, or NF1 mutations. Non-CSD-associated melanomas encompass acral and mucosal melanomas that usually do not show BRAF, NRAS, or NF1 mutations (triple wild-type), but in a subset may have KIT or SF3B1 mutations. To improve survival, these driver alterations can be treated with targeted therapy achieving significant antitumor activity. In recent years, relevant improvement in the prognosis and survival of patients with melanoma has been achieved, since the introduction of BRAF/MEK tyrosine kinase inhibitors and immune checkpoint inhibitors. In this review, we describe the current knowledge of molecular pathways and discuss current and potential therapeutic targets in melanoma, focusing on their clinical relevance of development.
Collapse
Affiliation(s)
- Cristina Teixido
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (P.C.); (L.A.)
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain;
| | - Paola Castillo
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (P.C.); (L.A.)
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain;
| | - Clara Martinez-Vila
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain;
- Department of Medical Oncology, Althaia Xarxa Assistencial Universitària de Manresa, Dr. Joan Soler, 1–3, 08243 Manresa, Spain
| | - Ana Arance
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain;
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain;
| | - Llucia Alos
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (P.C.); (L.A.)
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain;
| |
Collapse
|
543
|
Sendeng-4 Suppressed Melanoma Growth by Induction of Autophagy and Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5519973. [PMID: 34475961 PMCID: PMC8407990 DOI: 10.1155/2021/5519973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022]
Abstract
Sendeng-4 is a traditional Chinese medicine that has been successfully applied to anti-inflammatory diseases in clinical practice. Monomers within Sendeng-4 showed promising antitumor activity against lung cancer, colon cancer, and cutaneous cancer. However, potency of Sendeng-4 in melanoma has not been explored. This study aims to explore the potential application of Sendeng-4 in melanoma treatment. In the present study, we systemically investigate the possibility of Sendeng-4 for treatment of melanoma cancer in vitro by proliferation assay, colony formation, flow cell cytometry, RNA-seq, western blot, and fluorescence-based assay. Our data demonstrated that Sendeng-4 suppresses the proliferation and colony formation capacity of melanoma cells and induces cell cycle block at G2/M phase and eventually cell death. Mechanistically, transcriptome sequencing demonstrates that the PI3K-AKT pathway was significantly inactivated upon Sendeng-4 exposure, which was confirmed by western blot showing decreased phosphorylation of AKT. In addition, decreased BCL-2 expression and increased BAX expression were observed, suggesting programmed cell death via apoptosis. Moreover, LC3-II production as well as autophagosomes formation was observed as demonstrated by western blot and immunofluorescence, indicating elevated autophagy network by Sendeng-4 stimulation. Collectively, we concluded that Sendeng-4 might be used as an anticancer drug for melanoma.
Collapse
|
544
|
Abstract
The rapid adoption of next-generation sequencing in clinical oncology has enabled the detection of molecular biomarkers shared between multiple tumor types. These pan-cancer biomarkers include sequence-altering mutations, copy number changes, gene rearrangements, and mutational signatures and have been demonstrated to predict response to targeted therapy. This article reviews issues surrounding current and emerging pan-cancer molecular biomarkers in clinical oncology: technological advances that enable the broad detection of cancer mutations across hundreds of genes, the spectrum of driver and passenger mutations derived from human cancer genomes, and implications for patient care now and in the near future.
Collapse
Affiliation(s)
- Fei Dong
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
545
|
Kennedy WR, DeWees TA, Acharya S, Mahmood M, Knutson NC, Goddu SM, Kavanaugh JA, Mitchell TJ, Rich KM, Kim AH, Leuthardt EC, Dowling JL, Dunn GP, Chicoine MR, Perkins SM, Huang J, Tsien CI, Robinson CG, Abraham CD. Internal dose escalation associated with increased local control for melanoma brain metastases treated with stereotactic radiosurgery. J Neurosurg 2021; 135:855-861. [PMID: 33307528 DOI: 10.3171/2020.7.jns192210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 07/09/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The internal high-dose volume varies widely for a given prescribed dose during stereotactic radiosurgery (SRS) to treat brain metastases (BMs). This may be altered during treatment planning, and the authors have previously shown that this improves local control (LC) for non-small cell lung cancer BMs without increasing toxicity. Here, they seek to identify potentially actionable dosimetric predictors of LC after SRS for melanoma BM. METHODS The records of patients with unresected melanoma BM treated with single-fraction Gamma Knife RS between 2006 and 2017 were reviewed. LC was assessed on a per-lesion basis, defined as stability or a decrease in lesion size. Outcome-oriented approaches were utilized to determine optimal dichotomization for dosimetric variables relative to LC. Univariable and multivariable Cox regression analysis was implemented to evaluate the impact of collected parameters on LC. RESULTS Two hundred eighty-seven melanoma BMs in 79 patients were identified. The median age was 56 years (range 31-86 years). The median follow-up was 7.6 months (range 0.5-81.6 months), and the median survival was 9.3 months (range 1.3-81.6 months). Lesions were optimally stratified by volume receiving at least 30 Gy (V30) greater than or equal to versus less than 25%. V30 was ≥ and < 25% in 147 and 140 lesions, respectively. For all patients, 1-year LC was 83% versus 66% for V30 ≥ and < 25%, respectively (p = 0.001). Stratifying by volume, lesions 2 cm or less (n = 215) had 1-year LC of 82% versus 70% (p = 0.013) for V30 ≥ and < 25%, respectively. Lesions > 2 to 3 cm (n = 32) had 1-year LC of 100% versus 43% (p = 0.214) for V30 ≥ and < 25%, respectively. V30 was still predictive of LC even after controlling for the use of immunotherapy and targeted therapy. Radionecrosis occurred in 2.8% of lesions and was not significantly associated with V30. CONCLUSIONS For a given prescription dose, an increased internal high-dose volume, as indicated by measures such as V30 ≥ 25%, is associated with improved LC but not increased toxicity in single-fraction SRS for melanoma BM. Internal dose escalation is an independent predictor of improved LC even in patients receiving immunotherapy and/or targeted therapy. This represents a dosimetric parameter that is actionable at the time of treatment planning and warrants further evaluation.
Collapse
Affiliation(s)
| | - Todd A DeWees
- 2Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, Arizona; and
| | - Sahaja Acharya
- 3Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | | | | | | | - Keith M Rich
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Albert H Kim
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Eric C Leuthardt
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua L Dowling
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Gavin P Dunn
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Michael R Chicoine
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | |
Collapse
|
546
|
Wohlmuth C, Wohlmuth-Wieser I. Vulvar Melanoma: Molecular Characteristics, Diagnosis, Surgical Management, and Medical Treatment. Am J Clin Dermatol 2021; 22:639-651. [PMID: 34125416 PMCID: PMC8421300 DOI: 10.1007/s40257-021-00614-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
Ten percent of all women have pigmented vulvar lesions. Fortunately, most of these are benign but 1% of all melanomas in women affect the vulva. While the mortality rate of cutaneous melanoma has dropped by 7% annually during the last 5 years, the prognosis of vulvar melanoma remains dismal: the 5-year overall survival rate is 47% compared with 92% for cutaneous melanoma. The current evidence suggests that this likely results from a combination of delayed diagnosis and different tumor biology, treatment strategies, and treatment response. Although many landmark trials on checkpoint inhibitors included mucosal and vulvar melanomas, the results were often not reported separately. Post-hoc analyses indicate overall response rates between 19 and 37% for checkpoint inhibitors. A recently published retrospective study on vulvar melanomas suggests an objective response in 33.3% with a similar safety profile to cutaneous melanoma. Tyrosine kinase inhibitors may be considered in recurrent disease if a c-KIT mutation is present.
Collapse
Affiliation(s)
- Christoph Wohlmuth
- Department of Obstetrics and Gynecology, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria.
| | - Iris Wohlmuth-Wieser
- Department of Dermatology and Allergology, Paracelsus Medical University, Salzburg, Austria
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
547
|
Verdegaal E, van der Kooij MK, Visser M, van der Minne C, de Bruin L, Meij P, Terwisscha van Scheltinga A, Welters MJ, Santegoets S, de Miranda N, Roozen I, Liefers GJ, Kapiteijn E, van der Burg SH. Low-dose interferon-alpha preconditioning and adoptive cell therapy in patients with metastatic melanoma refractory to standard (immune) therapies: a phase I/II study. J Immunother Cancer 2021; 8:jitc-2019-000166. [PMID: 32238469 PMCID: PMC7174065 DOI: 10.1136/jitc-2019-000166] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2020] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT) with tumor-reactive T cells has shown consistent clinical efficacy. We evaluated the response to ACT in combination with interferon alpha (IFNa) preconditioning in patients with stage IV metastatic melanoma, most of which were progressive on cytotoxic T-lymphocyte-associated protein 4 and/or programmed cell death protein 1 checkpoint blockade therapy. METHODS Thirty-four patients were treated with ex vivo expanded tumor reactive T cells, derived from mixed lymphocyte autologous tumor cultures, or with autologous tumor-infiltrating lymphocytes and evaluated for clinical response. Clinical and immunological parameters associated with response were also evaluated. RESULTS Best overall response defined as clinical benefit, comprising either complete response, partial response or stable disease >6 months, was observed in 29% of the patients. Forty-three per cent of the 14 immunotherapy-naïve patients and 20% of the 20 patients progressive on prior immunotherapy benefited from ACT. The overall survival (OS) was 90% versus 28.6% at 1 year and 46.7% versus 0% at 3 years follow-up, of responder and non-responder patients, respectively. Median OS was 36 versus 7 months, respectively. IFNa pretreatment resulted in leukopenia, neutropenia and lymphopenia, which was sustained during the treatment in clinical responders and associated with response. Differences in antigen specificity, but not in phenotype, cytokine profile or CD8+ T cell number of the ACT products correlated with clinical response. Cross-reactivity of the ACT products to one or more allogeneic human leukocyte antigen-matched melanoma cell lines was associated with short OS after treatment while the ACT products of very long-term survivors showed no cross-reactivity but recognized patient-specific neoantigens. CONCLUSION This study demonstrates that ACT in combination with a mild IFNa preconditioning regimen can induce clinical benefit even in immunotherapy pretreated patients, although with lower success than in immunotherapy-naïve patients. ACT products comprising neoantigen reactivity may be more effective.
Collapse
Affiliation(s)
- Els Verdegaal
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique K van der Kooij
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Marten Visser
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline van der Minne
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda de Bruin
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Pauline Meij
- GMP Facility Leiden, Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton Terwisscha van Scheltinga
- GMP Facility Leiden, Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marij J Welters
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Saskia Santegoets
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Noel de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge Roozen
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerrit Jan Liefers
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
548
|
Quaglino P, Fava P, Tonella L, Rubatto M, Ribero S, Fierro MT. Treatment of Advanced Metastatic Melanoma. Dermatol Pract Concept 2021; 11:e2021164S. [PMID: 34447613 DOI: 10.5826/dpc.11s1a164s] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
The introduction in clinical practice of new drug compounds both targeted therapies anti-BRAF and checkpoint inhibitors have largely improved our potential to manage advanced metastatic melanoma patients. This has led to a significant improvement in terms of response rates and particularly in the overall survival (OS). The long-term results of trials with follow-up data of patients treated with targeted or immunotherapies reported median OS rates around 24 months, with 5-year survival rates around 35-40%. As to the drugs currently available and reimbursed by the Italian National Health System, 3 combinations of anti-BRAF/anti-MEK inhibitors are available (dabrafenib/trametinib, vemurafenib/cobimetinib and the most recently introduced encorafenib/binimetinib). As for checkpoint inhibitors, first line immunotherapy is represented by anti-PD1 blockers (nivolumab and pembrolizumab), whilst the anti-CTLA-4 ipilimumab can be used as second line immunotherapy. The decision-making factors that define the best treatment approach in stage IV patients with metastatic melanoma include the mutation pattern, performance status, high/low tumor load, brain metastases, progression pattern (low/fast), and availability of clinical trials. This review will analyze the current therapeutic tools adopted for the treatment of metastatic melanoma patients. It will then focus on the latest results obtained by novel treatments (checkpoint inhibitors and targeted therapies) which can be used in the clinical daily practice.
Collapse
Affiliation(s)
- Pietro Quaglino
- Dermatologic Clinic, University of Turin Medical School, Turin, Italy
| | - Paolo Fava
- Dermatologic Clinic, University of Turin Medical School, Turin, Italy
| | - Luca Tonella
- Dermatologic Clinic, University of Turin Medical School, Turin, Italy
| | - Marco Rubatto
- Dermatologic Clinic, University of Turin Medical School, Turin, Italy
| | - Simone Ribero
- Dermatologic Clinic, University of Turin Medical School, Turin, Italy
| | | |
Collapse
|
549
|
Arangalage D, Degrauwe N, Michielin O, Monney P, Özdemir BC. Pathophysiology, diagnosis and management of cardiac toxicity induced by immune checkpoint inhibitors and BRAF and MEK inhibitors. Cancer Treat Rev 2021; 100:102282. [PMID: 34438238 DOI: 10.1016/j.ctrv.2021.102282] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
Immune checkpoint inhibitors (ICIs) and BRAF and MEK inhibitors (BRAFi/MEKi) have drastically improved the outcome of melanoma patients. ICIs can induce myocarditis, a rare immune related adverse event (irAE) with an estimated lethality of 50%. BRAFi/MEKi may induce left ventricular ejection fraction decrease, hypertension or QT interval prolongation. While the BRAFi/MEKi induced cardiotoxicity is often reversible upon treatment discontinuation or dose adaptation and symptomatic therapy is often sufficient to restore cardiac function, the treatment of ICI-induced myocarditis mainly relies on high dose corticosteroids. There is no established therapy for steroid resistant myocarditis, yet various drugs have been reported to improve outcome. Shared epitopes between melanoma cells and cardiac tissue are thought to underlie the development of ICIs induced myocarditis. The mechanism of BRAFi/MEKi induced cardiotoxicity appears to be related to the Ras-Raf-MEK-ERK pathway in cardiomyocyte repair, survival and proliferation. With the emerging application of ICI-BRAFi/MEKi combinations, so called triplet therapies, differentiating between these two types of cardiotoxicity will become important for appropriate patient management. In this article we provide a summary of the existing literature on the pathophysiology, diagnosis and management of cardiotoxicity of melanoma therapies.
Collapse
Affiliation(s)
- Dimitri Arangalage
- Department of Cardiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Nils Degrauwe
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Olivier Michielin
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Pierre Monney
- Department of Cardiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland.
| | - Berna C Özdemir
- Department of Oncology, Bern University Hospital (Inselspital), University of Bern, Switzerland; International Cancer Prevention Institute, Epalinges, Switzerland.
| |
Collapse
|
550
|
Phase 2 Study of Dabrafenib Plus Trametinib in Patients With BRAF V600E-Mutant Metastatic NSCLC: Updated 5-Year Survival Rates and Genomic Analysis. J Thorac Oncol 2021; 17:103-115. [PMID: 34455067 DOI: 10.1016/j.jtho.2021.08.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Dabrafenib plus trametinib was found to have robust antitumor activity in patients with BRAF V600E-mutant metastatic NSCLC (mNSCLC). We report updated survival analysis of a phase 2 study (NCT01336634) with a minimum of 5-year follow-up and updated genomic data. METHODS Pretreated (cohort B) and treatment-naive (cohort C) patients with BRAF V600E-mutant mNSCLC received dabrafenib 150 mg twice daily and trametinib 2 mg once daily. The primary end point was investigator-assessed overall response rate per Response Evaluation Criteria in Solid Tumors version 1.1. Secondary end points were duration of response, progression-free survival, overall survival, and safety. RESULTS At data cutoff, for cohorts B (57 patients) and C (36 patients), the median follow-up was 16.6 (range: 0.5-78.5) and 16.3 (range: 0.4-80) months, overall response rate (95% confidence interval [CI]) was 68.4% (54.8-80.1) and 63.9% (46.2-79.2), median progression-free survival (95% CI) was 10.2 (6.9-16.7) and 10.8 (7.0-14.5) months, and median overall survival (95% CI) was 18.2 (14.3-28.6) and 17.3 (12.3-40.2) months, respectively. The 4- and 5-year survival rates were 26% and 19% in pretreated patients and 34% and 22% in treatment-naive patients, respectively. A total of 17 patients (18%) were still alive. The most frequent adverse event was pyrexia (56%). Exploratory genomic analysis indicated that the presence of coexisting genomic alterations might influence clinical outcomes in these patients; however, these results require further investigation. CONCLUSIONS Dabrafenib plus trametinib therapy was found to have substantial and durable clinical benefit, with a manageable safety profile, in patients with BRAF V600E-mutant mNSCLC, regardless of previous treatment.
Collapse
|