501
|
Boitz JM, Jardim A, Ullman B. GMP reductase and genetic uncoupling of adenylate and guanylate metabolism in Leishmania donovani parasites. Mol Biochem Parasitol 2016; 208:74-83. [PMID: 27343371 DOI: 10.1016/j.molbiopara.2016.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/26/2022]
Abstract
Purine acquisition is an essential nutritional process for Leishmania. Although purine salvage into adenylate nucleotides has been investigated in detail, little attention has been focused on the guanylate branch of the purine pathway. To characterize guanylate nucleotide metabolism in Leishmania and create a cell culture model in which the pathways for adenylate and guanylate nucleotide synthesis can be genetically uncoupled for functional studies in intact cells, we created and characterized null mutants of L. donovani that were deficient in either GMP reductase alone (Δgmpr) or in both GMP reductase and its paralog IMP dehydrogenase (Δgmpr/Δimpdh). Whereas wild type parasites were capable of utilizing virtually any purine nucleobase/nucleoside, the Δgmpr and Δgmpr/Δimpdh null lines exhibited highly restricted growth phenotypes. The Δgmpr single mutant could not grow in xanthine, guanine, or their corresponding nucleosides, while no purine on its own could support the growth of Δgmpr/Δimpdh cells. Permissive growth conditions for the Δgmpr/Δimpdh necessitated both xanthine, guanine, or the corresponding nucleosides, and additionally, a second purine that could serve as a source for adenylate nucleotide synthesis. Interestingly, GMPR, like its paralog IMPDH, is compartmentalized to the leishmanial glycosome, a process mediated by its COOH-terminal peroxisomal targeting signal. The restricted growth phenotypes displayed by the L. donovani Δgmpr and Δgmpr/Δimpdh null mutants confirms the importance of GMPR in the purine interconversion processes of this parasite.
Collapse
Affiliation(s)
- Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail Code L224, Portland, OR 97239, USA
| | - Armando Jardim
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X3V9, Canada
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail Code L224, Portland, OR 97239, USA.
| |
Collapse
|
502
|
Genomic Appraisal of the Multifactorial Basis for In Vitro Acquisition of Miltefosine Resistance in Leishmania donovani. Antimicrob Agents Chemother 2016; 60:4089-100. [PMID: 27114280 DOI: 10.1128/aac.00478-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/22/2016] [Indexed: 12/16/2022] Open
Abstract
Protozoan parasites of the Leishmania donovani complex are the causative agents of visceral leishmaniasis (VL), the most severe form of leishmaniasis, with high rates of mortality if left untreated. Leishmania parasites are transmitted to humans through the bite of infected female sandflies (Diptera: Phlebotominae), and approximately 500,000 new cases of VL are reported each year. In the absence of a safe human vaccine, chemotherapy, along with vector control, is the sole tool with which to fight the disease. Miltefosine (hexadecylphosphatidylcholine [HePC]), an antitumoral drug, is the only successful oral treatment for VL. In the current study, we describe the phenotypic traits of L. donovani clonal lines that have acquired resistance to HePC. We performed whole-genome and RNA sequencing of these resistant lines to provide an inclusive overview of the multifactorial acquisition of experimental HePC resistance, circumventing the challenge of identifying changes in membrane-bound proteins faced by proteomics. This analysis was complemented by assessment of the in vitro infectivity of HePC-resistant parasites. Our work underscores the importance of complementary "omics" to acquire the most comprehensive insight for multifaceted processes, such as HePC resistance.
Collapse
|
503
|
Alves MJM, Kawahara R, Viner R, Colli W, Mattos EC, Thaysen-Andersen M, Larsen MR, Palmisano G. Comprehensive glycoprofiling of the epimastigote and trypomastigote stages of Trypanosoma cruzi. J Proteomics 2016; 151:182-192. [PMID: 27318177 DOI: 10.1016/j.jprot.2016.05.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 12/17/2022]
Abstract
Trypanosoma cruzi, the protozoan that causes Chagas disease, has a complex life cycle involving insect and mammalian hosts and distinct developmental stages. During T. cruzi developmental stages, glycoproteins play important role in the host-parasite interaction, such as cellular recognition, host cell invasion and adhesion, and immune evasion. In this study, comprehensive glycoprofiling analysis was performed in the epimastigote and trypomastigote stages of T. cruzi using two glycopeptide enrichment strategies, lectin-based and hydrophilic interaction liquid chromatography, followed by high resolution LC-MS/MS. Following deglycosylation, a total of 1306 N-glycosylation sites in NxS/T/C motifs were identified from 690 T. cruzi glycoproteins. Among them, 170 and 334 glycoproteins were exclusively identified in epimastigotes and trypomastigotes, respectively. Besides, global site-specific characterization of the N- and O-linked glycan heterogeneity in the two life stages of T. cruzi was achieved by intact glycopeptide analysis, revealing 144/466 unique N-linked and 10/97 unique O-linked intact glycopeptides in epimastigotes/trypomastigotes, respectively. Conclusively, this study documents the significant T. cruzi stage-specific expression of glycoproteins that can help to better understand the T. cruzi phenotype and response caused by the interaction with different hosts during its complex life cycle. BIOLOGICAL SIGNIFICANCE Chagas disease caused by the protozoan Trypanosoma cruzi is a neglected disease which affects millions of people especially in Latin America. The absence of efficient drugs and vaccines against Chagas disease stimulates the search for novel targets. Glycoproteins are very attractive therapeutic candidate targets since they mediate key processes in the host-parasite interaction, such as cellular recognition, host cell invasion and adhesion, and immune evasion. This study aimed to provide an in depth characterization of the N-linked and O-linked glycoproteome of two T. cruzi life stages: epimastigotes and trypomastigotes. Mass spectrometry-based proteomics showed interesting stage-specific glycoproteome signatures that are valuable to better understand the importance of protein glycosylation in epimastigotes and trypomastigotes and to expand the repertoire of potential therapeutic targets against Chagas disease.
Collapse
Affiliation(s)
- Maria Julia Manso Alves
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Rebeca Kawahara
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, USA
| | - Walter Colli
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Eliciane Cevolani Mattos
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, USP, São Paulo, Brazil
| | | | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern, Odense, DK, Denmark
| | - Giuseppe Palmisano
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, USP, São Paulo, Brazil.
| |
Collapse
|
504
|
Wright MH, Paape D, Price HP, Smith DF, Tate EW. Global Profiling and Inhibition of Protein Lipidation in Vector and Host Stages of the Sleeping Sickness Parasite Trypanosoma brucei. ACS Infect Dis 2016; 2:427-441. [PMID: 27331140 PMCID: PMC4906374 DOI: 10.1021/acsinfecdis.6b00034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Indexed: 01/05/2023]
Abstract
The enzyme N-myristoyltransferase (NMT) catalyzes the essential fatty acylation of substrate proteins with myristic acid in eukaryotes and is a validated drug target in the parasite Trypanosoma brucei, the causative agent of African trypanosomiasis (sleeping sickness). N-Myristoylation typically mediates membrane localization of proteins and is essential to the function of many. However, only a handful of proteins are experimentally validated as N-myristoylated in T. brucei. Here, we perform metabolic labeling with an alkyne-tagged myristic acid analogue, enabling the capture of lipidated proteins in insect and host life stages of T. brucei. We further compare this with a longer chain palmitate analogue to explore the chain length-specific incorporation of fatty acids into proteins. Finally, we combine the alkynyl-myristate analogue with NMT inhibitors and quantitative chemical proteomics to globally define N-myristoylated proteins in the clinically relevant bloodstream form parasites. This analysis reveals five ARF family small GTPases, calpain-like proteins, phosphatases, and many uncharacterized proteins as substrates of NMT in the parasite, providing a global view of the scope of this important protein modification and further evidence for the crucial and pleiotropic role of NMT in the cell.
Collapse
Affiliation(s)
- Megan H. Wright
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Daniel Paape
- Centre for Immunology and Infection, Department
of Biology, University of York, York YO10 5DD, United Kingdom
| | - Helen P. Price
- Centre for Immunology and Infection, Department
of Biology, University of York, York YO10 5DD, United Kingdom
| | - Deborah F. Smith
- Centre for Immunology and Infection, Department
of Biology, University of York, York YO10 5DD, United Kingdom
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
505
|
Cruz-Reyes J, Mooers BHM, Abu-Adas Z, Kumar V, Gulati S. DEAH-RHA helicase•Znf cofactor systems in kinetoplastid RNA editing and evolutionarily distant RNA processes. RNA & DISEASE 2016; 3. [PMID: 27540585 PMCID: PMC4987287 DOI: 10.14800/rd.1336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multi-zinc finger proteins are an emerging class of cofactors in DEAH-RHA RNA helicases across highly divergent eukaryotic lineages. DEAH-RHA helicase•zinc finger cofactor partnerships predate the split of kinetoplastid protozoa, which include several human pathogens, from other eukaryotic lineages 100-400 Ma. Despite a long evolutionary history, the prototypical DEAH-RHA domains remain highly conserved. This short review focuses on a recently identified DEAH-RHA helicase•zinc finger cofactor system in kinetoplastid RNA editing, and its potential functional parallels with analogous systems in embryogenesis control in nematodes and antivirus protection in humans.
Collapse
Affiliation(s)
- Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Blaine H M Mooers
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zakaria Abu-Adas
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vikas Kumar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Shelly Gulati
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
506
|
Proteome profiling of the growth phases of Leishmania pifanoi promastigotes in axenic culture reveals differential abundance of immunostimulatory proteins. Acta Trop 2016; 158:240-247. [PMID: 26992294 DOI: 10.1016/j.actatropica.2016.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/28/2016] [Accepted: 03/14/2016] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is a term that encompasses a compendium of neglected tropical diseases caused by dimorphic and digenetic protozoan parasites from the genus Leishmania (Kinetoplastida: Trypanosomatidae). The clinical manifestations of neotropical cutaneous leishmaniasis (NCL) caused by Leishmania pifanoi and other species of the "Leishmania mexicana complex" mainly correspond to anergic diffuse cutaneous leishmaniasis (ADCL), which is the origin of considerable morbidity. Despite the outstanding advances in the characterization of the trypanosomatid genomes and proteomes, the biology of this species has been scarcely explored. However, the close relation of L. pifanoi to the sequenced species L. mexicana and others included in the "L. mexicana complex" allowed us to perform a two-dimension electrophoresis (2DE) approach to the promastigote proteome at the differential expression level. Protein identifications were performed by matrix-assisted laser desorption-ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF). This insight has revealed similarities and differences between L. pifanoi and other species responsible for cutaneous and visceral leishmaniasis. Interestingly, certain proteins that were previously described as immunostimulatory (elongation factor 1β, trypanothione peroxidase, heat shock protein 70, enolase, GDP-forming succinyl-CoA and aldehyde dehydrogenase) are more abundant in the final growth stages of promastigotes (late-logarithmic and/or stationary phase) in the case of L. pifanoi.
Collapse
|
507
|
Lima BSS, Pires SF, Fialho LC, Oliveira EJ, Machado-de-Avila RA, Chávez-Olórtegui C, Chapeaurouge AD, Perales J, Andrade HM. A proteomic road to acquire an accurate serological diagnosis for human tegumentary leishmaniasis. J Proteomics 2016; 151:174-181. [PMID: 27262223 DOI: 10.1016/j.jprot.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/02/2016] [Accepted: 05/17/2016] [Indexed: 11/26/2022]
Abstract
Diagnostic tools are important for clinical management and epidemiological evaluation of Tegumentary (TL) and Visceral (VL) Leishmaniasis. Serology is not frequently used for the diagnosis of the TL form because low antibody titers and cross-reaction with VL. Therefore, it is crucial to identify specific and immunogenic antigens from species associated with the TL form. Here we employed a proteomic approach coupled to an in silico analysis and identified the most abundant and immunogenic proteins from Leishmania amazonensis, Leishmania braziliensis and Leishmania infantum. Of 16 species specific proteins, nine were from the species causative of the TL form (L. amazonensis and L. braziliensis). In silico analysis revealed 18 B-cell epitopes with 0% similarity to Trypanosoma cruzi orthologs and, therefore, less likely to crossreact with sera of patients with Chagas disease. Two proteins reacted exclusively with serum from TL patients and presented several B-cell epitopes without similarity to T. cruzi orthologs: the hypothetical protein GI 134063939 and the metallo-peptidase Clan MA(E)-Family M3. The immunoassay revealed nine peptides with strong reactivity to sera from TL patients. These proteins and peptides may be good candidates to improve the specificity and sensibility of serological tests aiming to diagnose the TL of this neglected human disease. BIOLOGICAL SIGNIFICANCE As no gold-standard test for tegumentary leishmaniasis (TL) exists, a combination of different diagnostic techniques is often necessary to obtain precise results. Thus, the identification of species-specific, highly immunogenic and abundant proteins that stimulate the humoral immune response in the host should help in the development of serological tests for human TL. Herein we searched for these potential antigens in Leishmania species related to American Leishmaniasis (L. amazonensis, L. braziliensis and L. infantum). To this end, we employed an immunoproteomic approach using proteins from these Leishmania species and sera from TL and Visceral Leishmaniasis (VL) patients. Our study unveils specific proteins and peptides that may represent antigens that will help the efforts to improve the accuracy of serological tests to diagnose the TL form.
Collapse
Affiliation(s)
- B S S Lima
- Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, CP: 486 - CEP: 31.270-901, Belo Horizonte, Minas Gerais, Brazil
| | - S F Pires
- Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, CP: 486 - CEP: 31.270-901, Belo Horizonte, Minas Gerais, Brazil
| | - L C Fialho
- Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, CP: 486 - CEP: 31.270-901, Belo Horizonte, Minas Gerais, Brazil
| | - E J Oliveira
- Laboratório de Pesquisas Clínicas, Centro de Pesquisas René Rachou, CP: 1742 - CEP: 30190-002 Belo Horizonte, Minas Gerais, Brazil
| | - R A Machado-de-Avila
- Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, CEP: 88.806-000 Criciúma, Santa Catarina, Brazil
| | - C Chávez-Olórtegui
- Departamento Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, CP: 486 - CEP: 31.270-901, Belo Horizonte, Minas Gerais, Brazil
| | - A D Chapeaurouge
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, CEP: 21040-360, Rio de Janeiro, Brazil
| | - J Perales
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, CEP: 21040-360, Rio de Janeiro, Brazil
| | - H M Andrade
- Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, CP: 486 - CEP: 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
508
|
Ishemgulova A, Kraeva N, Faktorova D, Podesvova L, Lukes J, Yurchenko V. T7 polymerase-driven transcription is downregulated in metacyclic promastigotes and amastigotes of Leishmania mexicana. Folia Parasitol (Praha) 2016; 63. [PMID: 27311571 DOI: 10.14411/fp.2016.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/18/2016] [Indexed: 12/28/2022]
Abstract
In our previous work we established a T7 polymerase-driven Tetracycline-inducible protein expression system in Leishmania mexicana (Biagi, 1953). We used this system to analyse gene expression profiles during development of L. mexicana in procyclic and metacyclic promastigotes and amastigotes. The transcription of the gene of interest and the T7 polymerase genes was significantly reduced upon cell differentiation. This regulation is not locus-specific. It depends on untranslated regions flanking open reading frames of the genes analysed. In this paper, we report that the previously established conventional inducible protein expression system may not be suitable for studies on differentiation of species of Leishmania Ross, 1903 and protein expression systems might have certain limitations.
Collapse
Affiliation(s)
- Aygul Ishemgulova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Drahomira Faktorova
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Lucie Podesvova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukes
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Faculty of Sciences, University of South Bohemia, Ceske Budejovice, Czech Republic.,Canadian Institute for Advanced Research, Toronto, Canada
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.,Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
509
|
Cenci U, Moog D, Curtis BA, Tanifuji G, Eme L, Lukeš J, Archibald JM. Heme pathway evolution in kinetoplastid protists. BMC Evol Biol 2016; 16:109. [PMID: 27193376 PMCID: PMC4870792 DOI: 10.1186/s12862-016-0664-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 04/21/2016] [Indexed: 01/09/2023] Open
Abstract
Background Kinetoplastea is a diverse protist lineage composed of several of the most successful parasites on Earth, organisms whose metabolisms have coevolved with those of the organisms they infect. Parasitic kinetoplastids have emerged from free-living, non-pathogenic ancestors on multiple occasions during the evolutionary history of the group. Interestingly, in both parasitic and free-living kinetoplastids, the heme pathway—a core metabolic pathway in a wide range of organisms—is incomplete or entirely absent. Indeed, Kinetoplastea investigated thus far seem to bypass the need for heme biosynthesis by acquiring heme or intermediate metabolites directly from their environment. Results Here we report the existence of a near-complete heme biosynthetic pathway in Perkinsela spp., kinetoplastids that live as obligate endosymbionts inside amoebozoans belonging to the genus Paramoeba/Neoparamoeba. We also use phylogenetic analysis to infer the evolution of the heme pathway in Kinetoplastea. Conclusion We show that Perkinsela spp. is a deep-branching kinetoplastid lineage, and that lateral gene transfer has played a role in the evolution of heme biosynthesis in Perkinsela spp. and other Kinetoplastea. We also discuss the significance of the presence of seven of eight heme pathway genes in the Perkinsela genome as it relates to its endosymbiotic relationship with Paramoeba. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0664-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ugo Cenci
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Goro Tanifuji
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, České Budӗjovice, Czech Republic.,Canadian Institute for Advanced Research, Toronto, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada. .,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada. .,Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
510
|
A non-commercial approach for the generation of transgenic Leishmania tarentolae and its application in antileishmanial drug discovery. Parasitology 2016; 143:1133-42. [PMID: 27174193 DOI: 10.1017/s0031182016000585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Leishmaniasis is a parasitic infection caused by several species of the genus Leishmania that is considered as a neglected disease. Drug development process requires a robust and updated high-throughput technology to the evaluation of candidate compounds that imply the manipulation of the pathogenic species of the parasite in the laboratory. Therefore, it is restricted to trained personal and level II biosafety environments. However, it has been established the utility of Leishmania tarentolae as a model for in vitro screening of antileishmanial agents without the necessity of level II biosafety setups. In parallel the transfection of Leishmania parasites with reporter genes as the eGFP using non-commercial integration vectors like the pIRmcs3(-) has proved to be a powerful tool for the implementation of semi automatized high-throughput platforms for the evaluation of antileishmanial compounds. Here we report the generation of a new L. tarentolae strain overexpressing the eGFP gene harboured by the non-commercial vector pIR3(-). We also demonstrate its utility for the semi-automatized screening of antileshmanial compounds in intracellular forms of the L. tarentolae parasite.
Collapse
|
511
|
Alcolea PJ, Alonso A, Domínguez M, Parro V, Jiménez M, Molina R, Larraga V. Influence of the Microenvironment in the Transcriptome of Leishmania infantum Promastigotes: Sand Fly versus Culture. PLoS Negl Trop Dis 2016; 10:e0004693. [PMID: 27163123 PMCID: PMC4862625 DOI: 10.1371/journal.pntd.0004693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
Zoonotic visceral leishmaniasis is a vector-borne disease caused by Leishmania infantum in the Mediterranean Basin, where domestic dogs and wild canids are the main reservoirs. The promastigote stage replicates and develops within the gut of blood-sucking phlebotomine sand flies. Mature promastigotes are injected in the dermis of the mammalian host and differentiate into the amastigote stage within parasitophorous vacuoles of phagocytic cells. The major vector of L. infantum in Spain is Phlebotomus perniciosus. Promastigotes are routinely axenized and cultured to mimic in vitro the conditions inside the insect gut, which allows for most molecular, cellular, immunological and therapeutical studies otherwise inviable. Culture passages are known to decrease infectivity, which is restored by passage through laboratory animals. The most appropriate source of promastigotes is the gut of the vector host but isolation of the parasite is technically challenging. In fact, this option is not viable unless small samples are sufficient for downstream applications like promastigote cultures and nucleic acid amplification. In this study, in vitro infectivity and differential gene expression have been studied in cultured promastigotes at the stationary phase and in promastigotes isolated from the stomodeal valve of the sand fly P. perniciosus. About 20 ng RNA per sample could be isolated. Each sample contained L. infantum promastigotes from 20 sand flies. RNA was successfully amplified and processed for shotgun genome microarray hybridization analysis. Most differentially regulated genes are involved in regulation of gene expression, intracellular signaling, amino acid metabolism and biosynthesis of surface molecules. Interestingly, meta-analysis by hierarchical clustering supports that up-regulation of 22.4% of the differentially regulated genes is specifically enhanced by the microenvironment (i.e. sand fly gut or culture). The correlation between cultured and naturally developed promastigotes is strong but not very high (Pearson coefficient R2 = 0.727). Therefore, the influence of promastigote culturing should be evaluated case-by-case in experimentation. The protozoan parasite Leishmania infantum causes visceral leishmaniasis in humans and is responsible for a recent outbreak reported in central Spain. Domestic dogs and wild canids are the main reservoirs. The life cycle of the parasite involves two stages and two hosts. The motile promastigote stage differentiates within the gut of the sand fly vector host and develops into non-motile amastigotes within phagocytes of the mammalian host. Promastigotes are routinely cultured in liquid media because it is assumed that they mimic the conditions within the gut of the insect. Therefore, the culture model is used in most studies about the biology of the parasite, pathogenesis and development of vaccines and new compounds for treatment. Isolating promastigotes from the natural microenvironment (i.e. the vector host) is desirable but technically challenging. We were able to perform a high-throughput analysis of gene expression thanks to mRNA amplification. The over-expressed genes detected may influence life cycle progression depending on the promastigote microenvironment (i.e. culture or vector host). Upcoming studies based on these results may reveal new therapeutic targets or vaccine candidates. Our results suggest that evaluating the influence of cultures in experimentation is convenient.
Collapse
Affiliation(s)
- Pedro J. Alcolea
- Laboratorio de Parasitología Molecular, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| | - Ana Alonso
- Laboratorio de Parasitología Molecular, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mercedes Domínguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Virología e Inmunología Sanitarias, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Víctor Parro
- Laboratorio de Ecología Molecular, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial “Esteban Terradas”—Consejo Superior de Investigaciones Científicas, Torrejón de Ardoz, Madrid, Spain
| | - Maribel Jiménez
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Virología e Inmunología Sanitarias, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ricardo Molina
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Virología e Inmunología Sanitarias, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Vicente Larraga
- Laboratorio de Parasitología Molecular, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
512
|
Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages Reveals Distinct Reprogramming Signatures. mBio 2016; 7:mBio.00027-16. [PMID: 27165796 PMCID: PMC4959658 DOI: 10.1128/mbio.00027-16] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. Little is known about the transcriptional changes that occur within mammalian cells harboring intracellular pathogens. This study characterizes the gene expression signatures of Leishmania spp. parasites and the coordinated response of infected human macrophages as the pathogen enters and persists within them. After accounting for the generic effects of large-particle phagocytosis, we observed a parasite-specific response of the human macrophages early in infection that was reduced at later time points. A similar expression pattern was observed in the parasites. Our analyses provide specific insights into the interplay between human macrophages and Leishmania parasites and constitute an important general resource for the study of how pathogens evade host defenses and modulate the functions of the cell to survive intracellularly.
Collapse
|
513
|
Cos-Seq for high-throughput identification of drug target and resistance mechanisms in the protozoan parasite Leishmania. Proc Natl Acad Sci U S A 2016; 113:E3012-21. [PMID: 27162331 DOI: 10.1073/pnas.1520693113] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Innovative strategies are needed to accelerate the identification of antimicrobial drug targets and resistance mechanisms. Here we develop a sensitive method, which we term Cosmid Sequencing (or "Cos-Seq"), based on functional cloning coupled to next-generation sequencing. Cos-Seq identified >60 loci in the Leishmania genome that were enriched via drug selection with methotrexate and five major antileishmanials (antimony, miltefosine, paromomycin, amphotericin B, and pentamidine). Functional validation highlighted both known and previously unidentified drug targets and resistance genes, including novel roles for phosphatases in resistance to methotrexate and antimony, for ergosterol and phospholipid metabolism genes in resistance to miltefosine, and for hypothetical proteins in resistance to paromomycin, amphothericin B, and pentamidine. Several genes/loci were also found to confer resistance to two or more antileishmanials. This screening method will expedite the discovery of drug targets and resistance mechanisms and is easily adaptable to other microorganisms.
Collapse
|
514
|
Martin JL, Yates PA, Boitz JM, Koop DR, Fulwiler AL, Cassera MB, Ullman B, Carter NS. A role for adenine nucleotides in the sensing mechanism to purine starvation in Leishmania donovani. Mol Microbiol 2016; 101:299-313. [PMID: 27062185 DOI: 10.1111/mmi.13390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2016] [Indexed: 01/25/2023]
Abstract
Purine salvage by Leishmania is an obligatory nutritional process that impacts both cell viability and growth. Previously, we have demonstrated that the removal of purines in culture provokes significant metabolic changes that enable Leishmania to survive prolonged periods of purine starvation. In order to understand how Leishmania sense and respond to changes in their purine environment, we have exploited several purine pathway mutants, some in which adenine and guanine nucleotide metabolism is uncoupled. While wild type parasites grow in any one of a variety of naturally occurring purines, the proliferation of these purine pathway mutants requires specific types or combinations of exogenous purines. By culturing purine pathway mutants in high levels of extracellular purines that are either permissive or non-permissive for growth and monitoring for previously defined markers of the adaptive response to purine starvation, we determined that adaptation arises from a surveillance of intracellular purine nucleotide pools rather than from a direct sensing of the extracellular purine content of the environment. Specifically, our data suggest that perturbation of intracellular adenine-containing nucleotide pools provides a crucial signal for inducing the metabolic changes necessary for the long-term survival of Leishmania in a purine-scarce environment.
Collapse
Affiliation(s)
- Jessica L Martin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Phillip A Yates
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Dennis R Koop
- Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Audrey L Fulwiler
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Maria Belen Cassera
- Department of Biochemistry and Virginia Tech Center for Drug Discovery, M/C 0308, Virginia, Tech, Blacksburg, VA, 24061, USA
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Nicola S Carter
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| |
Collapse
|
515
|
Chemogenetic Characterization of Inositol Phosphate Metabolic Pathway Reveals Druggable Enzymes for Targeting Kinetoplastid Parasites. Cell Chem Biol 2016; 23:608-617. [PMID: 27133314 DOI: 10.1016/j.chembiol.2016.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 01/08/2023]
Abstract
Kinetoplastids cause Chagas disease, human African trypanosomiasis, and leishmaniases. Current treatments for these diseases are toxic and inefficient, and our limited knowledge of drug targets and inhibitors has dramatically hindered the development of new drugs. Here we used a chemogenetic approach to identify new kinetoplastid drug targets and inhibitors. We conditionally knocked down Trypanosoma brucei inositol phosphate (IP) pathway genes and showed that almost every pathway step is essential for parasite growth and infection. Using a genetic and chemical screen, we identified inhibitors that target IP pathway enzymes and are selective against T. brucei. Two series of these inhibitors acted on T. brucei inositol polyphosphate multikinase (IPMK) preventing Ins(1,4,5)P3 and Ins(1,3,4,5)P4 phosphorylation. We show that IPMK is functionally conserved among kinetoplastids and that its inhibition is also lethal for Trypanosoma cruzi. Hence, IP enzymes are viable drug targets in kinetoplastids, and IPMK inhibitors may aid the development of new drugs.
Collapse
|
516
|
Mondelaers A, Sanchez-Cañete MP, Hendrickx S, Eberhardt E, Garcia-Hernandez R, Lachaud L, Cotton J, Sanders M, Cuypers B, Imamura H, Dujardin JC, Delputte P, Cos P, Caljon G, Gamarro F, Castanys S, Maes L. Genomic and Molecular Characterization of Miltefosine Resistance in Leishmania infantum Strains with Either Natural or Acquired Resistance through Experimental Selection of Intracellular Amastigotes. PLoS One 2016; 11:e0154101. [PMID: 27123924 PMCID: PMC4849676 DOI: 10.1371/journal.pone.0154101] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/08/2016] [Indexed: 02/06/2023] Open
Abstract
During the last decade miltefosine (MIL) has been used as first-line treatment for visceral leishmaniasis in endemic areas with antimonial resistance, but a decline in clinical effectiveness is now being reported. While only two MIL-resistant Leishmania infantum strains from HIV co-infected patients have been documented, phenotypic MIL-resistance for L. donovani has not yet been identified in the laboratory. Hence, a better understanding of the factors contributing to increased MIL-treatment failure is necessary. Given the paucity of defined MIL-resistant L. donovani clinical isolates, this study used an experimental amastigote-selected MIL-resistant L. infantum isolate (LEM3323). In-depth exploration of the MIL-resistant phenotype was performed by coupling genomic with phenotypic data to gain insight into gene function and the mutant phenotype. A naturally MIL-resistant L. infantum clinical isolate (LEM5159) was included to compare both datasets. Phenotypically, resistance was evaluated by determining intracellular amastigote susceptibility in vitro and actual MIL-uptake. Genomic analysis provided supportive evidence that the resistance selection model on intracellular amastigotes can be a good proxy for the in vivo field situation since both resistant strains showed mutations in the same inward transporter system responsible for the acquired MIL-resistant phenotype. In line with previous literature findings in promastigotes, our data confirm a defective import machinery through inactivation of the LiMT/LiRos3 protein complex as the main mechanism for MIL-resistance also in intracellular amastigotes. Whole genome sequencing analysis of LEM3323 revealed a 2 base pair deletion in the LiMT gene that led to the formation an early stop codon and a truncation of the LiMT protein. Interestingly, LEM5159 revealed mutations in both the LiMT and LiRos3 genes, resulting in an aberrant expression of the LiMT protein. To verify that these mutations were indeed accountable for the acquired resistance, transfection experiments were performed to re-establish MIL-susceptibility. In LEM3323, susceptibility was restored upon expression of a LiMT wild-type gene, whereas the MIL-susceptibility of LEM5159 could be reversed after expression of the LiRos3 wild-type gene. The aberrant expression profile of the LiMT protein could be restored upon rescue of the LiRos3 gene both in the LEM5159 clinical isolate and a ΔLiRos3 strain, showing that expression of LdMT is dependent on LdRos3 expression. The present findings clearly corroborate the pivotal role of the LiMT/LiRos3 complex in resistance towards MIL.
Collapse
Affiliation(s)
- Annelies Mondelaers
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Maria P. Sanchez-Cañete
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Avda. Conocimiento S/N Parque Tecnológico Ciencias de la Salud, 18016, Granada, Spain
| | - Sarah Hendrickx
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Eline Eberhardt
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Raquel Garcia-Hernandez
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Avda. Conocimiento S/N Parque Tecnológico Ciencias de la Salud, 18016, Granada, Spain
| | - Laurence Lachaud
- Laboratoire de Parasitologie-Mycologie et Centre National de Référence des Leishmanioses, Centre Hospitalier Universitaire et Université de Montpellier 39, Avenue Charles Flahault, 34295, Montpellier, France
| | - James Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, Cambridge, United Kingdom
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, Cambridge, United Kingdom
| | - Bart Cuypers
- Molecular Parasitology Unit (MPU), Institute of Tropical Medicine, Nationalestraat 155, B-2000, Antwerp, Belgium
- Advanced Database Research and Modeling (ADReM) research group, University of Antwerp, Middelheimlaan 1,2020, Antwerpen, Belgium
| | - Hideo Imamura
- Molecular Parasitology Unit (MPU), Institute of Tropical Medicine, Nationalestraat 155, B-2000, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
- Molecular Parasitology Unit (MPU), Institute of Tropical Medicine, Nationalestraat 155, B-2000, Antwerp, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Francisco Gamarro
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Avda. Conocimiento S/N Parque Tecnológico Ciencias de la Salud, 18016, Granada, Spain
| | - Santiago Castanys
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Avda. Conocimiento S/N Parque Tecnológico Ciencias de la Salud, 18016, Granada, Spain
- * E-mail:
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
- * E-mail:
| |
Collapse
|
517
|
ElBashir R, Vanselow JT, Kraus A, Janzen CJ, Siegel TN, Schlosser A. Fragment ion patchwork quantification for measuring site-specific acetylation degrees. Anal Chem 2016; 87:9939-45. [PMID: 26335048 DOI: 10.1021/acs.analchem.5b02517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We introduce fragment ion patchwork quantification as a new mass spectrometry-based approach for the highly accurate quantification of site-specific acetylation degrees. This method combines (13)C1-acetyl derivatization on the protein level, proteolysis by low-specificity proteases and quantification on the fragment ion level. Acetylation degrees are determined from the isotope patterns of acetylated b and y ions. We show that this approach allows to determine site-specific acetylation degrees of all lysine residues for all core histones of Trypanosoma brucei. In addition, we demonstrate how this approach can be used to identify substrate sites of histone acetyltransferases.
Collapse
Affiliation(s)
| | | | | | - Christian J Janzen
- Department of Cell & Developmental Biology, Biocenter University of Wuerzburg , Am Hubland, 97074 Wuerzburg, Germany
| | | | | |
Collapse
|
518
|
Parsons M, Myler PJ. Illuminating Parasite Protein Production by Ribosome Profiling. Trends Parasitol 2016; 32:446-457. [PMID: 27061497 DOI: 10.1016/j.pt.2016.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 12/29/2022]
Abstract
While technologies for global enumeration of transcript abundance are well-developed, those that assess protein abundance require tailoring to penetrate to low-abundance proteins. Ribosome profiling circumvents this challenge by measuring global protein production via sequencing small mRNA fragments protected by the assembled ribosome. This powerful approach is now being applied to protozoan parasites including trypanosomes and Plasmodium. It has been used to identify new protein-coding sequences (CDSs) and clarify the boundaries of previously annotated CDSs in Trypanosoma brucei. Ribosome profiling has demonstrated that translation efficiencies vary widely between genes and, for trypanosomes at least, for the same gene across stages. The ribosomal proteins are themselves subjected to translational control, suggesting a means of reinforcing global translational regulation.
Collapse
Affiliation(s)
- Marilyn Parsons
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North STE 500, Seattle, WA 98109 USA; Department of Global Health, Box 357965, University of Washington, Seattle, WA 98195, USA.
| | - Peter J Myler
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North STE 500, Seattle, WA 98109 USA; Department of Global Health, Box 357965, University of Washington, Seattle, WA 98195, USA; Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
519
|
Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep 2016; 6:23704. [PMID: 27021793 PMCID: PMC4810370 DOI: 10.1038/srep23704] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/24/2016] [Indexed: 01/22/2023] Open
Abstract
Many high-quality genomes are available for dixenous (two hosts) trypanosomatid species of the genera Trypanosoma, Leishmania, and Phytomonas, but only fragmentary information is available for monoxenous (single-host) trypanosomatids. In trypanosomatids, monoxeny is ancestral to dixeny, thus it is anticipated that the genome sequences of the key monoxenous parasites will be instrumental for both understanding the origin of parasitism and the evolution of dixeny. Here, we present a high-quality genome for Leptomonas pyrrhocoris, which is closely related to the dixenous genus Leishmania. The L. pyrrhocoris genome (30.4 Mbp in 60 scaffolds) encodes 10,148 genes. Using the L. pyrrhocoris genome, we pinpointed genes gained in Leishmania. Among those genes, 20 genes with unknown function had expression patterns in the Leishmania mexicana life cycle suggesting their involvement in virulence. By combining differential expression data for L. mexicana, L. major and Leptomonas seymouri, we have identified several additional proteins potentially involved in virulence, including SpoU methylase and U3 small nucleolar ribonucleoprotein IMP3. The population genetics of L. pyrrhocoris was also addressed by sequencing thirteen strains of different geographic origin, allowing the identification of 1,318 genes under positive selection. This set of genes was significantly enriched in components of the cytoskeleton and the flagellum.
Collapse
|
520
|
Selenoproteins of African trypanosomes are dispensable for parasite survival in a mammalian host. Mol Biochem Parasitol 2016; 206:13-9. [DOI: 10.1016/j.molbiopara.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 01/12/2023]
|
521
|
Yamasaki K, Tani O, Tateishi Y, Tanabe E, Namatame I, Niimi T, Furukawa K, Sakashita H. An NMR Biochemical Assay for Fragment-Based Drug Discovery: Evaluation of an Inhibitor Activity on Spermidine Synthase of Trypanosoma cruzi. J Med Chem 2016; 59:2261-6. [DOI: 10.1021/acs.jmedchem.5b01769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| | - Osamu Tani
- Biomedical Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| | - Yukihiro Tateishi
- Drug
Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, 305-8585, Japan
| | - Eiki Tanabe
- Drug
Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, 305-8585, Japan
| | - Ichiji Namatame
- Drug
Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, 305-8585, Japan
| | - Tatsuya Niimi
- Drug
Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, 305-8585, Japan
| | - Koji Furukawa
- Biomedical Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| | - Hitoshi Sakashita
- Biomedical Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| |
Collapse
|
522
|
Štáfková J, Mach J, Biran M, Verner Z, Bringaud F, Tachezy J. Mitochondrial pyruvate carrier in Trypanosoma brucei. Mol Microbiol 2016; 100:442-56. [PMID: 26748989 DOI: 10.1111/mmi.13325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/30/2022]
Abstract
Pyruvate is a key product of glycolysis that regulates the energy metabolism of cells. In Trypanosoma brucei, the causative agent of sleeping sickness, the fate of pyruvate varies dramatically during the parasite life cycle. In bloodstream forms, pyruvate is mainly excreted, whereas in tsetse fly forms, pyruvate is metabolized in mitochondria yielding additional ATP molecules. The character of the molecular machinery that mediates pyruvate transport across mitochondrial membrane was elusive until the recent discovery of mitochondrial pyruvate carrier (MPC) in yeast and mammals. Here, we characterized pyruvate import into mitochondrion of T. brucei. We identified mpc1 and mpc2 homologs in the T. brucei genome with attributes of MPC protein family and we demonstrated that both proteins are present in the mitochondrial membrane of the parasite. Investigations of mpc1 or mpc2 gene knock-out cells proved that T. brucei MPC1/2 proteins facilitate mitochondrial pyruvate transport. Interestingly, MPC is expressed not only in procyclic trypanosomes with fully activated mitochondria but also in bloodstream trypanosomes in which most of pyruvate is excreted. Moreover, MPC appears to be essential for bloodstream forms, supporting the recently emerging picture that the functions of mitochondria in bloodstream forms are more diverse than it was originally thought.
Collapse
Affiliation(s)
- Jitka Štáfková
- Department of Parasitology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536 CNRS
| | - Zdeněk Verner
- Department of Parasitology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536 CNRS.,Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), UMR5234 CNRS, Université de Bordeaux, Bordeaux, France
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University in Prague, Czech Republic
| |
Collapse
|
523
|
Alonso G, Rastrojo A, López-Pérez S, Requena JM, Aguado B. Resequencing and assembly of seven complex loci to improve the Leishmania major (Friedlin strain) reference genome. Parasit Vectors 2016; 9:74. [PMID: 26857920 PMCID: PMC4746890 DOI: 10.1186/s13071-016-1329-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/20/2016] [Indexed: 01/22/2023] Open
Abstract
Background Leishmania parasites cause severe human diseases known as leishmaniasis. These eukaryotic microorganisms possess an atypical chromosomal architecture and the regulation of gene expression occurs almost exclusively at post-transcriptional levels. Accordingly, sequencing of the genome of Leishmania major, and subsequently the genome of other related species, was paramount for highlighting these peculiar molecular aspects. Recently, we carried out an analysis of gene expression by massive sequencing of RNA in the L. major promastigote, and data derived from that analysis were suggestive of possible errors in the current genome assembly for this Leishmania species. Results During the analysis by RNA-Seq of the transcriptome for L. major Friedlin strain, 163,714 reads could not be aligned with the reference genome. Thus, de novo assembly with these reads was carried out and the resulting contigs were further analyzed. After detailed homology searches using available databases, it was postulated that 15 contigs might correspond to genomic sequences lost during the initial genome assembly of the L. major Friedlin strain. This was experimentally confirmed by PCR amplification, cloning and sequencing of the new genomic regions. As a result, we have identified seven regions of the L. major (Friedlin) genome that were lost during the sequence assembly. This led to the uncovering of six new genes (LmjF.15.1475, LmjF.15.0285, LmjF.24.0765, LmjF.14.0860, LmjF.19.0305, and LmjF.27.2035), and correction of the annotation for two others (LmjF.15.1480 and LmjF.27.2030). Our data suggest that these genomic regions probably collapsed during the genome assembly due to the existence of gene duplications and/or repeated regions surrounding the missed genes. Conclusion RNA-seq data helped to reconstruct some genomic regions misassembled during the L. major Friedlin genome assembly, which is otherwise quite robust. On the other hand, this study shows that data derived from massive sequencing approaches, including RNA-Seq, should be carefully inspected to improve current genome definition and gene annotations. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1329-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Graciela Alonso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, c/ Nicolás Cabrera, 1, 28049, Madrid, Spain.
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, c/ Nicolás Cabrera, 1, 28049, Madrid, Spain.
| | - Sara López-Pérez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, c/ Nicolás Cabrera, 1, 28049, Madrid, Spain.
| | - Jose M Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, c/ Nicolás Cabrera, 1, 28049, Madrid, Spain.
| | - Begoña Aguado
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, c/ Nicolás Cabrera, 1, 28049, Madrid, Spain.
| |
Collapse
|
524
|
Rahbari M, Diederich K, Becker K, Krauth-Siegel RL, Jortzik E. Detection of thiol-based redox switch processes in parasites - facts and future. Biol Chem 2016; 396:445-63. [PMID: 25741735 DOI: 10.1515/hsz-2014-0279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/23/2015] [Indexed: 12/28/2022]
Abstract
Malaria and African trypanosomiasis are tropical diseases caused by the protozoa Plasmodium and Trypanosoma, respectively. The parasites undergo complex life cycles in the mammalian host and insect vector, during which they are exposed to oxidative and nitrosative challenges induced by the host immune system and endogenous processes. Attacking the parasite's redox metabolism is a target mechanism of several known antiparasitic drugs and a promising approach to novel drug development. Apart from this aspect, oxidation of cysteine residues plays a key role in protein-protein interaction, metabolic responses to redox events, and signaling. Understanding the role and dynamics of reactive oxygen species and thiol switches in regulating cellular redox homeostasis is crucial for both basic and applied biomedical approaches. Numerous techniques have therefore been established to detect redox changes in parasites including biochemical methods, fluorescent dyes, and genetically encoded probes. In this review, we aim to give an insight into the characteristics of redox networks in the pathogens Plasmodium and Trypanosoma, including a comprehensive overview of the consequences of specific deletions of redox-associated genes. Furthermore, we summarize mechanisms and detection methods of thiol switches in both parasites and discuss their specificity and sensitivity.
Collapse
|
525
|
Cording A, Gormally M, Bond PJ, Carrington M, Balasubramanian S, Miska EA, Thomas B. Selective inhibitors of trypanosomal uridylyl transferase RET1 establish druggability of RNA post-transcriptional modifications. RNA Biol 2016; 14:611-619. [PMID: 26786754 PMCID: PMC5449093 DOI: 10.1080/15476286.2015.1137422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Non-coding RNAs are crucial regulators for a vast array of cellular processes and have been implicated in human disease. These biological processes represent a hitherto untapped resource in our fight against disease. In this work we identify small molecule inhibitors of a non-coding RNA uridylylation pathway. The TUTase family of enzymes is important for modulating non-coding RNA pathways in both human cancer and pathogen systems. We demonstrate that this new class of drug target can be accessed with traditional drug discovery techniques. Using the Trypanosoma brucei TUTase, RET1, we identify TUTase inhibitors and lay the groundwork for the use of this new target class as a therapeutic opportunity for the under-served disease area of African Trypanosomiasis. In a broader sense this work demonstrates the therapeutic potential for targeting RNA post-transcriptional modifications with small molecules in human disease.
Collapse
Affiliation(s)
- Amy Cording
- a The Gurdon Institute, University of Cambridge , Cambridge , UK
| | - Michael Gormally
- b Department of Chemistry , University of Cambridge , Cambridge , UK.,c Cancer Research UK Cambridge Institute, Li Ka Shing Center , Cambridge , UK.,d National Center for Advancing Translational Sciences , National Institutes of Health , Bethesda , MD , USA
| | - Peter J Bond
- e Bioinformatics Institute (A*STAR) , Singapore.,f Department of Biological Sciences , National University of Singapore , Singapore
| | | | - Shankar Balasubramanian
- b Department of Chemistry , University of Cambridge , Cambridge , UK.,c Cancer Research UK Cambridge Institute, Li Ka Shing Center , Cambridge , UK
| | - Eric A Miska
- a The Gurdon Institute, University of Cambridge , Cambridge , UK
| | - Beth Thomas
- b Department of Chemistry , University of Cambridge , Cambridge , UK
| |
Collapse
|
526
|
The Trypanosoma cruzi Protein TcHTE Is Critical for Heme Uptake. PLoS Negl Trop Dis 2016; 10:e0004359. [PMID: 26752206 PMCID: PMC4713871 DOI: 10.1371/journal.pntd.0004359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas' disease, presents nutritional requirements for several metabolites. It requires heme for the biosynthesis of several heme-proteins involved in essential metabolic pathways like mitochondrial cytochromes and respiratory complexes, as well as enzymes involved in the biosynthesis of sterols and unsaturated fatty acids. However, this parasite lacks a complete route for its synthesis. In view of these facts, T. cruzi has to incorporate heme from the environment during its life cycle. In other words, their hosts must supply the heme for heme-protein synthesis. Although the acquisition of heme is a fundamental issue for the parasite's replication and survival, how this cofactor is imported and distributed is poorly understood. In this work, we used different fluorescent heme analogs to explore heme uptake along the different life-cycle stages of T. cruzi, showing that this parasite imports it during its replicative stages: the epimastigote in the insect vector and the intracellular amastigote in the mammalian host. Also, we identified and characterized a T. cruzi protein (TcHTE) with 55% of sequence similarity to LHR1 (protein involved in L. amazonensis heme transport), which is located in the flagellar pocket, where the transport of nutrients proceeds in trypanosomatids. We postulate TcHTE as a protein involved in improving the efficiency of the heme uptake or trafficking in T. cruzi.
Collapse
|
527
|
Richardson JB, Evans B, Pyana PP, Van Reet N, Sistrom M, Büscher P, Aksoy S, Caccone A. Whole genome sequencing shows sleeping sickness relapse is due to parasite regrowth and not reinfection. Evol Appl 2016; 9:381-93. [PMID: 26834831 PMCID: PMC4721075 DOI: 10.1111/eva.12338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/29/2015] [Indexed: 11/27/2022] Open
Abstract
The trypanosome Trypanosoma brucei gambiense (Tbg) is a cause of human African trypanosomiasis (HAT) endemic to many parts of sub-Saharan Africa. The disease is almost invariably fatal if untreated and there is no vaccine, which makes monitoring and managing drug resistance highly relevant. A recent study of HAT cases from the Democratic Republic of the Congo reported a high incidence of relapses in patients treated with melarsoprol. Of the 19 Tbg strains isolated from patients enrolled in this study, four pairs were obtained from the same patient before treatment and after relapse. We used whole genome sequencing to investigate whether these patients were infected with a new strain, or if the original strain had regrown to pathogenic levels. Clustering analysis of 5938 single nucleotide polymorphisms supports the hypothesis of regrowth of the original strain, as we found that strains isolated before and after treatment from the same patient were more similar to each other than to other isolates. We also identified 23 novel genes that could affect melarsoprol sensitivity, representing a promising new set of targets for future functional studies. This work exemplifies the utility of using evolutionary approaches to provide novel insights and tools for disease control.
Collapse
Affiliation(s)
- Joshua B Richardson
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | - Benjamin Evans
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | - Patient P Pyana
- Department de Parasitologie Institut National de Recherche Biomedicale Kinshasa Gombe Democratic Republic of the Congo
| | - Nick Van Reet
- Department of Biomedical Sciences Institute of Tropical Medicine Antwerp Belgium
| | - Mark Sistrom
- School of Natural Sciences University of California Merced Merced CA USA
| | - Philippe Büscher
- Department of Biomedical Sciences Institute of Tropical Medicine Antwerp Belgium
| | - Serap Aksoy
- Department of Epidemiology and Public Health Yale School of Public Health New Haven CT USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| |
Collapse
|
528
|
Vikeved E, Backlund A, Alsmark C. The Dynamics of Lateral Gene Transfer in Genus Leishmania - A Route for Adaptation and Species Diversification. PLoS Negl Trop Dis 2016; 10:e0004326. [PMID: 26730948 PMCID: PMC4711719 DOI: 10.1371/journal.pntd.0004326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/04/2015] [Indexed: 11/18/2022] Open
Abstract
Background The genome of Leishmania major harbours a comparably high proportion of genes of prokaryote origin, acquired by lateral gene transfer (LGT). Some of these are present in closely related trypanosomatids, while some are detected in Leishmania only. We have evaluated the impact and destiny of LGT in genus Leishmania. Methodology/Principal Findings To study the dynamics and fate of LGTs we have performed phylogenetic, as well as nucleotide and amino acid composition analyses within orthologous groups of LGTs detected in Leishmania. A set of universal trypanosomatid LGTs was added as a reference group. Both groups of LGTs have, to some extent, ameliorated to resemble the recipient genomes. However, while virtually all of the universal trypanosomatid LGTs are distributed and conserved in the entire genus Leishmania, the LGTs uniquely present in genus Leishmania are more prone to gene loss and display faster rates of evolution. Furthermore, a PCR based approach has been employed to ascertain the presence of a set of twenty LGTs uniquely present in genus Leishmania, and three universal trypanosomatid LGTs, in ten additional strains of Leishmania. Evolutionary rates and predicted expression levels of these LGTs have also been estimated. Ten of the twenty LGTs are distributed and conserved in all species investigated, while the remainder have been subjected to modifications, or undergone pseudogenization, degradation or loss in one or more species. Conclusions/Significance LGTs unique to the genus Leishmania have been acquired after the divergence of Leishmania from the other trypanosomatids, and are evolving faster than their recipient genomes. This implies that LGT in genus Leishmania is a continuous and dynamic process contributing to species differentiation and speciation. This study also highlights the importance of carefully evaluating these dynamic genes, e.g. as LGTs have been suggested as potential drug targets. Leishmania parasites cause leishmaniasis, a neglected tropical disease, estimated to threaten 350 million people in 88 countries worldwide according to the WHO. The genome of Leishmania major harbours a number of genes, which have been proposed as acquired by lateral gene transfer (LGT) from a broad variety of prokaryote donors. Such genes may prove beneficial for the parasites, e.g. by promoting survival of the parasite in new environments. We have studied orthologs to LGTs previously detected uniquely in L. major as well as LGTs shared also by other trypanosomatids. The universal trypanosomatid LGTs are more conserved within genus Leishmania, as compared to LGTs that are exclusively present in genus Leishmania. One possible explanation to this observation is that these have resided in their host genomes for a longer time period. This explanation strengthens the hypothesis that the LGTs unique to genus Leishmaina were acquired after the divergence from the trypanosomes, rather than before the divergence, and then subsequently lost from the trypanosome lineage. An in-depth analysis of a subset of the LGTs, which are present only in genus Leishmania showed that LGT within genus Leishmania is a dynamic process. LGTs, providing beneficial capabilities to the parasite, are demonstrated to become conserved throughout generic diversification, hence contributing to species differentiation, while LGTs of limited use are degraded and lost.
Collapse
Affiliation(s)
- Elisabet Vikeved
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Anders Backlund
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Cecilia Alsmark
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
- * E-mail:
| |
Collapse
|
529
|
De Gaudenzi JG, Jäger AV, Izcovich R, Campo VA. Insights into the Regulation of mRNA Processing of Polycistronic Transcripts Mediated by DRBD4/PTB2, a Trypanosome Homolog of the Polypyrimidine Tract-Binding Protein. J Eukaryot Microbiol 2016; 63:440-52. [PMID: 26663092 DOI: 10.1111/jeu.12288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/11/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
Abstract
Trypanosomes regulate gene expression mostly by posttranscriptional mechanisms, including control of mRNA turnover and translation efficiency. This regulation is carried out via certain elements located at the 3'-untranslated regions of mRNAs, which are recognized by RNA-binding proteins. In trypanosomes, trans-splicing is of central importance to control mRNA maturation. We have previously shown that TcDRBD4/PTB2, a trypanosome homolog of the human polypyrimidine tract-binding protein splicing regulator, interacts with the intergenic region of one specific dicistronic transcript, referred to as TcUBP (and encoding for TcUBP1 and TcUBP2, two closely kinetoplastid-specific proteins). In this work, a survey of TcUBP RNA processing revealed certain TcDRBD4/PTB2-regulatory elements within its intercistronic region, which are likely to influence the trans-splicing rate of monocistronic-derived transcripts. Furthermore, TcDRBD4/PTB2 overexpression in epimastigote cells notably decreased both UBP1 and UBP2 protein expression. This type of posttranscriptional gene regulatory mechanism could be extended to other transcripts as well, as we identified several other RNA precursor molecules that specifically bind to TcDRBD4/PTB2. Altogether, these findings support a model in which TcDRBD4/PTB2-containing ribonucleoprotein complexes can prevent trans-splicing. This could represent another stage of gene expression regulation mediated by the masking of trans-splicing/polyadenylation signals.
Collapse
Affiliation(s)
- Javier G De Gaudenzi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Sede San Martín, Prov. de Buenos Aires, Argentina
| | - Adriana V Jäger
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Sede San Martín, Prov. de Buenos Aires, Argentina
| | - Ronan Izcovich
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Sede San Martín, Prov. de Buenos Aires, Argentina
| | - Vanina A Campo
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Sede San Martín, Prov. de Buenos Aires, Argentina
| |
Collapse
|
530
|
Bessho T, Okada T, Kimura C, Shinohara T, Tomiyama A, Imamura A, Kuwamura M, Nishimura K, Fujimori K, Shuto S, Ishibashi O, Kubata BK, Inui T. Novel Characteristics of Trypanosoma brucei Guanosine 5'-monophosphate Reductase Distinct from Host Animals. PLoS Negl Trop Dis 2016; 10:e0004339. [PMID: 26731263 PMCID: PMC4701174 DOI: 10.1371/journal.pntd.0004339] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/08/2015] [Indexed: 12/02/2022] Open
Abstract
The metabolic pathway of purine nucleotides in parasitic protozoa is a potent drug target for treatment of parasitemia. Guanosine 5’-monophosphate reductase (GMPR), which catalyzes the deamination of guanosine 5’-monophosphate (GMP) to inosine 5’-monophosphate (IMP), plays an important role in the interconversion of purine nucleotides to maintain the intracellular balance of their concentration. However, only a few studies on protozoan GMPR have been reported at present. Herein, we identified the GMPR in Trypanosoma brucei, a causative protozoan parasite of African trypanosomiasis, and found that the GMPR proteins were consistently localized to glycosomes in T. brucei bloodstream forms. We characterized its recombinant protein to investigate the enzymatic differences between GMPRs of T. brucei and its host animals. T. brucei GMPR was distinct in having an insertion of a tandem repeat of the cystathionine β-synthase (CBS) domain, which was absent in mammalian and bacterial GMPRs. The recombinant protein of T. brucei GMPR catalyzed the conversion of GMP to IMP in the presence of NADPH, and showed apparent affinities for both GMP and NADPH different from those of its mammalian counterparts. Interestingly, the addition of monovalent cations such as K+ and NH4+ to the enzymatic reaction increased the GMPR activity of T. brucei, whereas none of the mammalian GMPR’s was affected by these cations. The monophosphate form of the purine nucleoside analog ribavirin inhibited T. brucei GMPR activity, though mammalian GMPRs showed no or only a little inhibition by it. These results suggest that the mechanism of the GMPR reaction in T. brucei is distinct from that in the host organisms. Finally, we demonstrated the inhibitory effect of ribavirin on the proliferation of trypanosomes in a dose-dependent manner, suggesting the availability of ribavirin to develop a new therapeutic agent against African trypanosomiasis. Only a limited number of therapeutics for human African trypanosomiasis also known as African sleeping sickness is available today, and it narrows the choice of the drugs to escape from the side effects and the emergence of drug-resistant pathogens. The parasitic protozoa Trypanosoma brucei is the causative reagent of African trypanosomiasis, and is infective to various mammalian species. T. brucei and its mammalian hosts share almost the same metabolic machinery, and therefore it is important to understand the differences in biochemical properties of the metabolic enzymes between T. brucei and its hosts. Here we report that guanosine 5’-monophosphate reductase (GMPR) of T. brucei showed apparent differences in its primary structure and biochemical properties from those of its host counterparts, and was more sensitive to purine nucleotide analogs such as monophosphate forms of ribavirin and mizoribine than were the host GMPRs. Furthermore, ribavirin prevented the proliferation of trypanosomes in vitro. Our present findings may imply the availability of ribavirin and/or its derivatives in a treatment of African trypanosomiasis.
Collapse
Affiliation(s)
- Tomoaki Bessho
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Tetsuya Okada
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Chihiro Kimura
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Takahiro Shinohara
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Ai Tomiyama
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Akira Imamura
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Kazuhiko Nishimura
- Laboratory of Toxicology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Ko Fujimori
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Satoshi Shuto
- Laboratory of Organic Chemistry for Drug Development, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Osamu Ishibashi
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | | | - Takashi Inui
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- * E-mail:
| |
Collapse
|
531
|
Reynolds D, Hofmeister BT, Cliffe L, Alabady M, Siegel TN, Schmitz RJ, Sabatini R. Histone H3 Variant Regulates RNA Polymerase II Transcription Termination and Dual Strand Transcription of siRNA Loci in Trypanosoma brucei. PLoS Genet 2016; 12:e1005758. [PMID: 26796527 PMCID: PMC4721609 DOI: 10.1371/journal.pgen.1005758] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/01/2015] [Indexed: 01/22/2023] Open
Abstract
Base J, β-D-glucosyl-hydroxymethyluracil, is a chromatin modification of thymine in the nuclear DNA of flagellated protozoa of the order Kinetoplastida. In Trypanosoma brucei, J is enriched, along with histone H3 variant (H3.V), at sites involved in RNA Polymerase (RNAP) II termination and telomeric sites involved in regulating variant surface glycoprotein gene (VSG) transcription by RNAP I. Reduction of J in T. brucei indicated a role of J in the regulation of RNAP II termination, where the loss of J at specific sites within polycistronic gene clusters led to read-through transcription and increased expression of downstream genes. We now demonstrate that the loss of H3.V leads to similar defects in RNAP II termination within gene clusters and increased expression of downstream genes. Gene derepression is intensified upon the subsequent loss of J in the H3.V knockout. mRNA-seq indicates gene derepression includes VSG genes within the silent RNAP I transcribed telomeric gene clusters, suggesting an important role for H3.V in telomeric gene repression and antigenic variation. Furthermore, the loss of H3.V at regions of overlapping transcription at the end of convergent gene clusters leads to increased nascent RNA and siRNA production. Our results suggest base J and H3.V can act independently as well as synergistically to regulate transcription termination and expression of coding and non-coding RNAs in T. brucei, depending on chromatin context (and transcribing polymerase). As such these studies provide the first direct evidence for histone H3.V negatively influencing transcription elongation to promote termination.
Collapse
Affiliation(s)
- David Reynolds
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Brigitte T. Hofmeister
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Laura Cliffe
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Magdy Alabady
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - T. Nicolai Siegel
- Research Center for Infectious Diseases, University of Wuerzburg, Wuerzburg, Germany
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
532
|
Jones DC, Foth BJ, Urbaniak MD, Patterson S, Ong HB, Berriman M, Fairlamb AH. Genomic and Proteomic Studies on the Mode of Action of Oxaboroles against the African Trypanosome. PLoS Negl Trop Dis 2015; 9:e0004299. [PMID: 26684831 PMCID: PMC4689576 DOI: 10.1371/journal.pntd.0004299] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/21/2015] [Indexed: 11/30/2022] Open
Abstract
SCYX-7158, an oxaborole, is currently in Phase I clinical trials for the treatment of human African trypanosomiasis. Here we investigate possible modes of action against Trypanosoma brucei using orthogonal chemo-proteomic and genomic approaches. SILAC-based proteomic studies using an oxaborole analogue immobilised onto a resin was used either in competition with a soluble oxaborole or an immobilised inactive control to identify thirteen proteins common to both strategies. Cell-cycle analysis of cells incubated with sub-lethal concentrations of an oxaborole identified a subtle but significant accumulation of G2 and >G2 cells. Given the possibility of compromised DNA fidelity, we investigated long-term exposure of T. brucei to oxaboroles by generating resistant cell lines in vitro. Resistance proved more difficult to generate than for drugs currently used in the field, and in one of our three cell lines was unstable. Whole-genome sequencing of the resistant cell lines revealed single nucleotide polymorphisms in 66 genes and several large-scale genomic aberrations. The absence of a simple consistent mechanism among resistant cell lines and the diverse list of binding partners from the proteomic studies suggest a degree of polypharmacology that should reduce the risk of resistance to this compound class emerging in the field. The combined genetic and chemical biology approaches have provided lists of candidates to be investigated for more detailed information on the mode of action of this promising new drug class. The mode of action of a new class of boron-containing chemicals (the oxaboroles), currently under development for the treatment of human African trypanosomiasis, is unknown. Here we identify a number of potential candidate proteins that could be involved either in the mode of action of these compounds or in the mechanism of resistance. This information could prove critical in protecting the compounds against resistance emerging in the field as well as opening up new avenues for drug discovery.
Collapse
Affiliation(s)
- Deuan C. Jones
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Bernardo J. Foth
- Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Michael D. Urbaniak
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Stephen Patterson
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Han B. Ong
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Matthew Berriman
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Alan H. Fairlamb
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
533
|
Aresta-Branco F, Pimenta S, Figueiredo LM. A transcription-independent epigenetic mechanism is associated with antigenic switching in Trypanosoma brucei. Nucleic Acids Res 2015; 44:3131-46. [PMID: 26673706 PMCID: PMC4838347 DOI: 10.1093/nar/gkv1459] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/28/2015] [Indexed: 12/27/2022] Open
Abstract
Antigenic variation in Trypanosoma brucei relies on periodic switching of variant surface glycoproteins (VSGs), which are transcribed monoallelically by RNA polymerase I from one of about 15 bloodstream expression sites (BES). Chromatin of the actively transcribed BES is depleted of nucleosomes, but it is unclear if this open conformation is a mere consequence of a high rate of transcription, or whether it is maintained by a transcription-independent mechanism. Using an inducible BES-silencing reporter strain, we observed that chromatin of the active BES remains open for at least 24 hours after blocking transcription. This conformation is independent of the cell-cycle stage, but dependent upon TDP1, a high mobility group box protein. For two days after BES silencing, we detected a transient and reversible derepression of several silent BESs within the population, suggesting that cells probe other BESs before commitment to one, which is complete by 48 hours. FACS sorting and subsequent subcloning confirmed that probing cells are switching intermediates capable of returning to the original BES, switch to the probed BES or to a different BES. We propose that regulation of BES chromatin structure is an epigenetic mechanism important for successful antigenic switching.
Collapse
Affiliation(s)
- Francisco Aresta-Branco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Silvia Pimenta
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| |
Collapse
|
534
|
Basal body multipotency and axonemal remodelling are two pathways to a 9+0 flagellum. Nat Commun 2015; 6:8964. [PMID: 26667778 PMCID: PMC4682162 DOI: 10.1038/ncomms9964] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/21/2015] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cilia/flagella exhibit two characteristic ultrastructures reflecting two main functions; a 9+2 axoneme for motility and a 9+0 axoneme for sensation and signalling. Whether, and if so how, they interconvert is unclear. Here we analyse flagellum length, structure and molecular composition changes in the unicellular eukaryotic parasite Leishmania during the transformation of a life cycle stage with a 9+2 axoneme (the promastigote) to one with a 9+0 axoneme (the amastigote). We show 9+0 axonemes can be generated by two pathways: by de novo formation and by restructuring of existing 9+2 axonemes associated with decreased intraflagellar transport. Furthermore, pro-basal bodies formed under conditions conducive for 9+2 axoneme formation can form a 9+0 axoneme de novo. We conclude that pro-centrioles/pro-basal bodies are multipotent and not committed to form either a 9+2 or 9+0 axoneme. In an alternative pathway structures can also be removed from existing 9+2 axonemes to convert them to 9+0. Whether basal bodies are pre-committed to form 9+2 motile or 9+0 sensory axonemes and whether interconversion occurs between the two types of axonemes is not clear. Here, the authors used the unicellular eukaryote Leishmania as a model system to demonstrate that 9+0 axonemes can be formed de novo or by restructuring of 9+2 axonemes.
Collapse
|
535
|
Jamdhade MD, Pawar H, Chavan S, Sathe G, Umasankar PK, Mahale KN, Dixit T, Madugundu AK, Prasad TSK, Gowda H, Pandey A, Patole MS. Comprehensive proteomics analysis of glycosomes from Leishmania donovani. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:157-70. [PMID: 25748437 DOI: 10.1089/omi.2014.0163] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Leishmania donovani is a kinetoplastid protozoan that causes a severe and fatal disease kala-azar, or visceral leishmaniasis. L. donovani infects human host after the phlebotomine sandfly takes a blood meal and resides within the phagolysosome of infected macrophages. Previous studies on host-parasite interactions have not focused on Leishmania organelles and the role that they play in the survival of this parasite within macrophages. Leishmania possess glycosomes that are unique and specialized subcellular microbody organelles. Glycosomes are known to harbor most peroxisomal enzymes and, in addition, they also possess nine glycolytic enzymes. In the present study, we have carried out proteomic profiling using high resolution mass spectrometry of a sucrose density gradient-enriched glycosomal fraction isolated from L. donovani promastigotes. This study resulted in the identification of 4022 unique peptides, leading to the identification of 1355 unique proteins from a preparation enriched in L. donovani glycosomes. Based on protein annotation, 566 (41.8%) were identified as hypothetical proteins with no known function. A majority of the identified proteins are involved in metabolic processes such as carbohydrate, lipid, and nucleic acid metabolism. Our present proteomic analysis is the most comprehensive study to date to map the proteome of L. donovani glycosomes.
Collapse
|
536
|
Manhas R, Gowri VS, Madhubala R. Leishmania donovani Encodes a Functional Selenocysteinyl-tRNA Synthase. J Biol Chem 2015; 291:1203-20. [PMID: 26586914 DOI: 10.1074/jbc.m115.695007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Indexed: 11/06/2022] Open
Abstract
The synthesis of selenocysteine, the 21st amino acid, occurs on its transfer RNA (tRNA), tRNA(Sec). tRNA(Sec) is initially aminoacylated with serine by seryl-tRNA synthetase and the resulting seryl moiety is converted to phosphoserine by O-phosphoseryl-tRNA kinase (PSTK) in eukaryotes. The selenium donor, selenophosphate is synthesized from selenide and ATP by selenophosphate synthetase. Selenocysteinyl-tRNA synthase (SepSecS) then uses the O-phosphoseryl-tRNA(Sec) and selenophosphate to form Sec-tRNA(Sec) in eukaryotes. Here, we report the characterization of selenocysteinyl-tRNA synthase from Leishmania donovani. Kinetoplastid SepSecS enzymes are phylogenetically closer to worm SepSecS. LdSepSecS was found to exist as a tetramer. Leishmania SepSecS enzyme was found to be active and able to complement the ΔselA deletion in Escherichia coli JS1 strain only in the presence of archaeal PSTK, indicating the conserved nature of the PSTK-SepSecS pathway. LdSepSecS was found to localize in the cytoplasm of the parasite. Gene deletion studies indicate that Leishmania SepSecS is dispensable for the parasite survival. The parasite was found to encode three selenoproteins, which were only expressed in the presence of SepSecS. Selenoproteins of L. donovani are not required for the growth of the promastigotes. Auranofin, a known inhibitor of selenoprotein synthesis showed the same sensitivity toward the wild-type and null mutants suggesting its effect is not through binding to selenoproteins. The three-dimensional structural comparison indicates that human and Leishmania homologs are structurally highly similar but their association modes leading to tetramerization seem different.
Collapse
Affiliation(s)
- Reetika Manhas
- From the School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Rentala Madhubala
- From the School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
537
|
Valdivia HO, Scholte LLS, Oliveira G, Gabaldón T, Bartholomeu DC. The Leishmania metaphylome: a comprehensive survey of Leishmania protein phylogenetic relationships. BMC Genomics 2015; 16:887. [PMID: 26518129 PMCID: PMC4628237 DOI: 10.1186/s12864-015-2091-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/15/2015] [Indexed: 11/22/2022] Open
Abstract
Background Leishmaniasis is a neglected parasitic disease with diverse clinical manifestations and a complex epidemiology. It has been shown that its parasite-related traits vary between species and that they modulate infectivity, pathogenicity, and virulence. However, understanding of the species-specific adaptations responsible for these features and their evolutionary background is limited. To improve our knowledge regarding the parasite biology and adaptation mechanisms of different Leishmania species, we conducted a proteome-wide phylogenomic analysis to gain insights into Leishmania evolution. Results The analysis of the reconstructed phylomes (totaling 45,918 phylogenies) allowed us to detect genes that are shared in pathogenic Leishmania species, such as calpain-like cysteine peptidases and 3'a2rel-related proteins, or genes that could be associated with visceral or cutaneous development. This analysis also established the phylogenetic relationship of several hypothetical proteins whose roles remain to be characterized. Our findings demonstrated that gene duplication constitutes an important evolutionary force in Leishmania, acting on protein families that mediate host-parasite interactions, such as amastins, GP63 metallopeptidases, cathepsin L-like proteases, and our methods permitted a deeper analysis of their phylogenetic relationships. Conclusions Our results highlight the importance of proteome wide phylogenetic analyses to detect adaptation and evolutionary processes in different organisms and underscore the need to characterize the role of expanded and species-specific proteins in the context of Leishmania evolution by providing a framework for the phylogenetic relationships of Leishmania proteins. Phylogenomic data are publicly available for use through PhylomeDB (http://www.phylomedb.org). Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2091-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hugo O Valdivia
- Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil. .,Department of Parasitology, U.S. Naval Medical Research Unit No. 6, Lima, Peru. .,Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Lima, Peru.
| | - Larissa L S Scholte
- Genomics and Computational Biology Group, Centro de Pesquisas René Rachou, Belo Horizonte, Brazil.
| | - Guilherme Oliveira
- Genomics and Computational Biology Group, Centro de Pesquisas René Rachou, Belo Horizonte, Brazil. .,Instituto Tecnológico Vale - ITV, Belém, Brazil.
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Daniella C Bartholomeu
- Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil. .,Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Lima, Peru.
| |
Collapse
|
538
|
Zoltner M, Leung KF, Alsford S, Horn D, Field MC. Modulation of the Surface Proteome through Multiple Ubiquitylation Pathways in African Trypanosomes. PLoS Pathog 2015; 11:e1005236. [PMID: 26492041 PMCID: PMC4619645 DOI: 10.1371/journal.ppat.1005236] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/28/2015] [Indexed: 12/29/2022] Open
Abstract
Recently we identified multiple suramin-sensitivity genes with a genome wide screen in Trypanosoma brucei that includes the invariant surface glycoprotein ISG75, the adaptin-1 (AP-1) complex and two deubiquitylating enzymes (DUBs) orthologous to ScUbp15/HsHAUSP1 and pVHL-interacting DUB1 (type I), designated TbUsp7 and TbVdu1, respectively. Here we have examined the roles of these genes in trafficking of ISG75, which appears key to suramin uptake. We found that, while AP-1 does not influence ISG75 abundance, knockdown of TbUsp7 or TbVdu1 leads to reduced ISG75 abundance. Silencing TbVdu1 also reduced ISG65 abundance. TbVdu1 is a component of an evolutionarily conserved ubiquitylation switch and responsible for rapid receptor modulation, suggesting similar regulation of ISGs in T. brucei. Unexpectedly, TbUsp7 knockdown also blocked endocytosis. To integrate these observations we analysed the impact of TbUsp7 and TbVdu1 knockdown on the global proteome using SILAC. For TbVdu1, ISG65 and ISG75 are the only significantly modulated proteins, but for TbUsp7 a cohort of integral membrane proteins, including the acid phosphatase MBAP1, that is required for endocytosis, and additional ISG-related proteins are down-regulated. Furthermore, we find increased expression of the ESAG6/7 transferrin receptor and ESAG5, likely resulting from decreased endocytic activity. Therefore, multiple ubiquitylation pathways, with a complex interplay with trafficking pathways, control surface proteome expression in trypanosomes. The mechanisms by which pathogens interact with their environment are of major importance, both for fulfilling the basic needs of the parasite and understanding immune evasion. For African trypanosomes, the surface is dominated by the variant surface glycoprotein (VSG), but recent data has demonstrated an important role for ubiquitylation in mediating turnover of invariant surface glycoproteins (ISGs) and maintaining ISG copy number independent of VSG. Further, ISG expression is required for suramin-sensitivity. Here we describe mechanisms mediating ISG turnover, uncovered using a screen for genes involved in sensitivity to suramin. These involve multiple aspects of the ubiquitylation machinery, and connect ISG turnover with additional surface proteins. Our data provide a first insight into the complexity of regulation of the ISG family, identifying further aspects to the control of a drug-sensitivity pathway in trypanosomes, and offering insights into metabolism of the parasite surface proteome.
Collapse
Affiliation(s)
- Martin Zoltner
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Ka Fai Leung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sam Alsford
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - David Horn
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Mark C. Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
539
|
Domingo-Sananes MR, Szöőr B, Ferguson MAJ, Urbaniak MD, Matthews KR. Molecular control of irreversible bistability during trypanosome developmental commitment. J Cell Biol 2015; 211:455-68. [PMID: 26483558 PMCID: PMC4621835 DOI: 10.1083/jcb.201506114] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022] Open
Abstract
Phosphoproteomic and functional analysis of the developmental progression of Trypanosomes demonstrates that this transition shows bistability, with commitment to differentiation requiring new protein synthesis, and that the protein kinase NRK is a key regulator. The life cycle of Trypanosoma brucei involves developmental transitions that allow survival, proliferation, and transmission of these parasites. One of these, the differentiation of growth-arrested stumpy forms in the mammalian blood into insect-stage procyclic forms, can be induced synchronously in vitro with cis-aconitate. Here, we show that this transition is an irreversible bistable switch, and we map the point of commitment to differentiation after exposure to cis-aconitate. This irreversibility implies that positive feedback mechanisms operate to allow commitment (i.e., the establishment of “memory” of exposure to the differentiation signal). Using the reversible translational inhibitor cycloheximide, we show that this signal memory requires new protein synthesis. We further performed stable isotope labeling by amino acids in cell culture to analyze synchronized parasite populations, establishing the protein and phosphorylation profile of parasites pre- and postcommitment, thereby defining the “commitment proteome.” Functional interrogation of this data set identified Nek-related kinase as the first-discovered protein kinase controlling the initiation of differentiation to procyclic forms.
Collapse
Affiliation(s)
- Maria Rosa Domingo-Sananes
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, Scotland, UK
| | - Balazs Szöőr
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, Scotland, UK
| | - Michael A J Ferguson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Michael D Urbaniak
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, England, UK
| | - Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, Scotland, UK
| |
Collapse
|
540
|
Dynein Light Chain LC8 Is Required for RNA Polymerase I-Mediated Transcription in Trypanosoma brucei, Facilitating Assembly and Promoter Binding of Class I Transcription Factor A. Mol Cell Biol 2015; 36:95-107. [PMID: 26459761 DOI: 10.1128/mcb.00705-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022] Open
Abstract
Dynein light chain LC8 is highly conserved among eukaryotes and has both dynein-dependent and dynein-independent functions. Interestingly, LC8 was identified as a subunit of the class I transcription factor A (CITFA), which is essential for transcription by RNA polymerase I (Pol I) in the parasite Trypanosoma brucei. Given that LC8 has never been identified with a basal transcription factor and that T. brucei relies on RNA Pol I for expressing the variant surface glycoprotein (VSG), the key protein in antigenic variation, we investigated the CITFA-specific role of LC8. Depletion of LC8 from mammalian-infective bloodstream trypanosomes affected cell cycle progression, reduced the abundances of rRNA and VSG mRNA, and resulted in rapid cell death. Sedimentation analysis, coimmunoprecipitation of recombinant proteins, and bioinformatic analysis revealed an LC8 binding site near the N terminus of the subunit CITFA2. Mutation of this site prevented the formation of a CITFA2-LC8 heterotetramer and, in vivo, was lethal, affecting assembly of a functional CITFA complex. Gel shift assays and UV cross-linking experiments identified CITFA2 as a promoter-binding CITFA subunit. Accordingly, silencing of LC8 or CITFA2 resulted in a loss of CITFA from RNA Pol I promoters. Hence, we discovered an LC8 interaction that, unprecedentedly, has a basal function in transcription.
Collapse
|
541
|
Moreira S, Noutahi E, Lamoureux G, Burger G. Three-dimensional structure model and predicted ATP interaction rewiring of a deviant RNA ligase 2. BMC STRUCTURAL BIOLOGY 2015; 15:20. [PMID: 26449279 PMCID: PMC4599027 DOI: 10.1186/s12900-015-0046-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/25/2015] [Indexed: 11/23/2022]
Abstract
Background RNA ligases 2 are scarce and scattered across the tree of life. Two members of this family are well studied: the mitochondrial RNA editing ligase from the parasitic trypanosomes (Kinetoplastea), a promising drug target, and bacteriophage T4 RNA ligase 2, a workhorse in molecular biology. Here we report the identification of a divergent RNA ligase 2 (DpRNL) from Diplonema papillatum (Diplonemea), a member of the kinetoplastids’ sister group. Methods We identified DpRNL with methods based on sensitive hidden Markov Model. Then, using homology modeling and molecular dynamics simulations, we established a three dimensional structure model of DpRNL complexed with ATP and Mg2+. Results The 3D model of Diplonema was compared with available crystal structures from Trypanosoma brucei, bacteriophage T4, and two archaeans. Interaction of DpRNL with ATP is predicted to involve double π-stacking, which has not been reported before in RNA ligases. This particular contact would shift the orientation of ATP and have considerable consequences on the interaction network of amino acids in the catalytic pocket. We postulate that certain canonical amino acids assume different functional roles in DpRNL compared to structurally homologous residues in other RNA ligases 2, a reassignment indicative of constructive neutral evolution. Finally, both structure comparison and phylogenetic analysis show that DpRNL is not specifically related to RNA ligases from trypanosomes, suggesting a unique adaptation of the latter for RNA editing, after the split of diplonemids and kinetoplastids. Conclusion Homology modeling and molecular dynamics simulations strongly suggest that DpRNL is an RNA ligase 2. The predicted innovative reshaping of DpRNL’s catalytic pocket is worthwhile to be tested experimentally. Electronic supplementary material The online version of this article (doi:10.1186/s12900-015-0046-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandrine Moreira
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada.
| | - Emmanuel Noutahi
- Department of Biochemistry, currently Département d'informatique et de recherche opérationnelle (DIRO), Université de Montréal, Montreal, QC, Canada.
| | - Guillaume Lamoureux
- Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling (CERMM), Groupe d'étude des protéines membranaires (GÉPROM), Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Concordia University, Montreal, QC, Canada.
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
542
|
Subramanian A, Sarkar RR. Comparison of codon usage bias across Leishmania and Trypanosomatids to understand mRNA secondary structure, relative protein abundance and pathway functions. Genomics 2015; 106:232-41. [DOI: 10.1016/j.ygeno.2015.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/25/2022]
|
543
|
Neglected Tropical Diseases in the Post-Genomic Era. Trends Genet 2015; 31:539-555. [DOI: 10.1016/j.tig.2015.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 01/22/2023]
|
544
|
Wang Q, Rosa BA, Nare B, Powell K, Valente S, Rotili D, Mai A, Marshall GR, Mitreva M. Targeting Lysine Deacetylases (KDACs) in Parasites. PLoS Negl Trop Dis 2015; 9:e0004026. [PMID: 26402733 PMCID: PMC4581690 DOI: 10.1371/journal.pntd.0004026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/02/2015] [Indexed: 12/30/2022] Open
Abstract
Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in targeting Plasmodium to develop new anti-malarial treatments, and also pioneers experiments with these KDAC inhibitors as potential new anthelminthics. The selectivity observed begins to address the challenges of targeting specific parasitic diseases while limiting host toxicity. Due to pandemic drug resistance in the treatment of parasitic infections, there is an urgent need to identify novel drug targets and their associated drug compounds. Although “drug repurposing”, i.e. the application of known drugs and compounds to new indications such as infectious diseases, provides a cost effective approach in the development of novel therapeutics, selectivity is one of the major obstacles to overcome in getting such compounds into clinical trials as anti-parasitic drugs. Using the lysine deacetylases (KDACs) as an example, we explored the activities of a panel of known inhibitors against the KDAC targets in a range of parasitic organisms. The computational study of their binding modes to the targets (by docking the compounds to the homology models within different organisms in comparison with the human proteins) helps to rationalize the different activities observed and provide insight on the optimization of lead compounds to improve selectivity. Our work provides support of “drug repurposing” in the treatment of parasitic diseases, and demonstrates the necessity of optimizing these leads for the ultimate goal of preparing them for clinical use.
Collapse
Affiliation(s)
- Qi Wang
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruce A. Rosa
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bakela Nare
- SCYNEXIS, Inc, Research Triangle Park, North Carolina, United States of America
| | - Kerrie Powell
- SCYNEXIS, Inc, Research Triangle Park, North Carolina, United States of America
| | - Sergio Valente
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, Roma, Italy
| | - Dante Rotili
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, Roma, Italy
| | - Antonello Mai
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, Roma, Italy
| | - Garland R. Marshall
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Makedonka Mitreva
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Departments of Genetics and of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
545
|
Teixeira AAR, de Vasconcelos VDCS, Colli W, Alves MJM, Giordano RJ. Trypanosoma cruzi Binds to Cytokeratin through Conserved Peptide Motifs Found in the Laminin-G-Like Domain of the gp85/Trans-sialidase Proteins. PLoS Negl Trop Dis 2015; 9:e0004099. [PMID: 26398185 PMCID: PMC4580646 DOI: 10.1371/journal.pntd.0004099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022] Open
Abstract
Background Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, is a disease that affects millions of people most of them living in South and Central Americas. There are few treatment options for individuals with Chagas' disease making it important to understand the molecular details of parasite infection, so novel therapeutic alternatives may be developed for these patients. Here, we investigate the interaction between host cell intermediate filament proteins and the T. cruzi gp85 glycoprotein superfamily with hundreds of members that have long been implicated in parasite cell invasion. Methodology/Principal Findings An in silico analysis was utilized to identify peptide motifs shared by the gp85 T. cruzi proteins and, using phage display, these selected peptide motifs were screened for their ability to bind to cells. One peptide, named TS9, showed significant cell binding capacity and was selected for further studies. Affinity chromatography, phage display and invasion assays revealed that peptide TS9 binds to cytokeratins and vimentin, and prevents T. cruzi cell infection. Interestingly, peptide TS9 and a previously identified binding site for intermediate filament proteins are disposed in an antiparallel β-sheet fold, present in a conserved laminin-G-like domain shared by all members of the family. Moreover, peptide TS9 overlaps with an immunodominant T cell epitope. Conclusions/Significance Taken together, the present study reinforces previous results from our group implicating the gp85 superfamily of glycoproteins and the intermediate filament proteins cytokeratin and vimentin in the parasite infection process. It also suggests an important role in parasite biology for the conserved laminin-G-like domain, present in all members of this large family of cell surface proteins. Chagas' disease affects millions of people worldwide and is caused by a microorganism called Trypanosoma cruzi. Treatment options for patients with Chagas' disease is still limited to a small number of drugs, all of them very toxic with important side effects that can be debilitating for the health of patients. Understanding the molecular details of how T. cruzi infects humans is an important step toward the development of new drugs for this disease. As part of its life cycle, T. cruzi has to invade cells in order to replicate and produce new parasites. This is a complex event, which involves different proteins produced by both the parasite and the human host cells. Among them, there is a large family of highly polymorphic T. cruzi proteins important to guide the parasite to the target cells. Here we show that notwithstanding their differences, all members of this family share a small region comprised of nine amino acids that is important for cell recognition and infection by the parasite. Exploring these findings may provide researchers with new insights on how to prevent T. cruzi cell invasion and lead to novel therapeutic alternative for this debilitating disease.
Collapse
Affiliation(s)
| | | | - Walter Colli
- Department of Biochemistry, Chemistry Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Júlia Manso Alves
- Department of Biochemistry, Chemistry Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo José Giordano
- Department of Biochemistry, Chemistry Institute, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
546
|
Alves-Ferreira EVC, Toledo JS, De Oliveira AHC, Ferreira TR, Ruy PC, Pinzan CF, Santos RF, Boaventura V, Rojo D, López-Gonzálvez Á, Rosa JC, Barbas C, Barral-Netto M, Barral A, Cruz AK. Differential Gene Expression and Infection Profiles of Cutaneous and Mucosal Leishmania braziliensis Isolates from the Same Patient. PLoS Negl Trop Dis 2015; 9:e0004018. [PMID: 26366580 PMCID: PMC4569073 DOI: 10.1371/journal.pntd.0004018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/30/2015] [Indexed: 12/21/2022] Open
Abstract
Background Leishmaniasis is a complex disease in which clinical outcome depends on factors such as parasite species, host genetics and immunity and vector species. In Brazil, Leishmania (Viannia) braziliensis is a major etiological agent of cutaneous (CL) and mucosal leishmaniasis (MCL), a disfiguring form of the disease, which occurs in ~10% of L. braziliensis-infected patients. Thus, clinical isolates from patients with CL and MCL may be a relevant source of information to uncover parasite factors contributing to pathogenesis. In this study, we investigated two pairs of L. (V.) braziliensis isolates from mucosal (LbrM) and cutaneous (LbrC) sites of the same patient to identify factors distinguishing parasites that migrate from those that remain at the primary site of infection. Methodology/Principal Findings We observed no major genomic divergences among the clinical isolates by molecular karyotype and genomic sequencing. RT-PCR revealed that the isolates lacked Leishmania RNA virus (LRV). However, the isolates exhibited distinct in vivo pathogenesis in BALB/c mice; the LbrC isolates were more virulent than the LbrM isolates. Metabolomic analysis revealed significantly increased levels of 14 metabolites in LbrC parasites and 31 metabolites in LbrM parasites that were mainly related to inflammation and chemotaxis. A proteome comparative analysis revealed the overexpression of LbrPGF2S (prostaglandin f2-alpha synthase) and HSP70 in both LbrC isolates. Overexpression of LbrPGF2S in LbrC and LbrM promastigotes led to an increase in infected macrophages and the number of amastigotes per cell at 24–48 h post-infection (p.i.). Conclusions/Significance Despite sharing high similarity at the genome structure and ploidy levels, the parasites exhibited divergent expressed genomes. The proteome and metabolome results indicated differential profiles between the cutaneous and mucosal isolates, primarily related to inflammation and chemotaxis. BALB/c infection revealed that the cutaneous isolates were more virulent than the mucosal parasites. Furthermore, our data suggest that the LbrPGF2S protein is a candidate to contribute to parasite virulence profiles in the mammalian host. Leishmaniasis is a critical public health problem worldwide. The clinical outcome of leishmaniasis depends on the infecting parasite species, host genetics and immune response and insect species. Leishmania braziliensis is a major etiological agent of cutaneous and mucosal leishmaniasis in Brazil. Fewer than 10% of L. braziliensis-infected patients with CL develop the mucosal form (a severe clinical manifestation). The small number of parasites in the mucosae increases the difficulty of obtaining clinical isolates, and parasite samples are frequently derived from individuals with different genetic backgrounds. Therefore, clinical isolates from cutaneous and mucosal sites from the same patient represent unique tools to understand parasite factors that contribute to disease outcome and pathogenesis. In this study, we investigated parasite factors involved in disease progression using two pairs of L. (V.) braziliensis isolates from mucosal (LbrM) and cutaneous (LbrC) sites of the same patient. In conclusion, the murine infection and proteome and metabolome data suggest that the differences between the cutaneous and mucosal isolates are mainly related to inflammation and chemotaxis. Our data also suggest that the LbrPGF2S protein plays a role in parasite virulence in the mammalian host.
Collapse
Affiliation(s)
- Eliza V. C. Alves-Ferreira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Juliano S. Toledo
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
- Centro de Metabolómica y Bioanálisis (CEMBIO), Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Madrid, Spain
| | - Arthur H. C. De Oliveira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Tiago R. Ferreira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Patricia C. Ruy
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Camila F. Pinzan
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Ramon F. Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Viviane Boaventura
- Centro de Pesquisas Gonçalo Moniz (CPqGM)—Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brasil
- Faculdade de Medicina da Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Madrid, Spain
| | - Ángelez López-Gonzálvez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Madrid, Spain
| | - Jose C. Rosa
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Madrid, Spain
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz (CPqGM)—Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brasil
- Faculdade de Medicina da Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz (CPqGM)—Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brasil
- Faculdade de Medicina da Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | - Angela K. Cruz
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
547
|
Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, Gull K. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol 2015; 5:140197. [PMID: 25567099 PMCID: PMC4313374 DOI: 10.1098/rsob.140197] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
One of the first steps in understanding a protein's function is to determine its localization; however, the methods for localizing proteins in some systems have not kept pace with the developments in other fields, creating a bottleneck in the analysis of the large datasets that are generated in the post-genomic era. To address this, we developed tools for tagging proteins in trypanosomatids. We made a plasmid that, when coupled with long primer PCR, can be used to produce transgenes at their endogenous loci encoding proteins tagged at either terminus or within the protein coding sequence. This system can also be used to generate deletion mutants to investigate the function of different protein domains. We show that the length of homology required for successful integration precluded long primer PCR tagging in Leishmania mexicana. Hence, we developed plasmids and a fusion PCR approach to create gene tagging amplicons with sufficiently long homologous regions for targeted integration, suitable for use in trypanosomatids with less efficient homologous recombination than Trypanosoma brucei. Importantly, we have automated the primer design, developed universal PCR conditions and optimized the workflow to make this system reliable, efficient and scalable such that whole genome tagging is now an achievable goal.
Collapse
Affiliation(s)
- Samuel Dean
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jack Sunter
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Richard J Wheeler
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ian Hodkinson
- Department of Computing, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
548
|
Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myškova J, Grybchuk D, Leštinová T, Votýpka J, Volf P, Opperdoes F, Flegontov P, Lukeš J, Yurchenko V. Leptomonas seymouri: Adaptations to the Dixenous Life Cycle Analyzed by Genome Sequencing, Transcriptome Profiling and Co-infection with Leishmania donovani. PLoS Pathog 2015; 11:e1005127. [PMID: 26317207 PMCID: PMC4552786 DOI: 10.1371/journal.ppat.1005127] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/04/2015] [Indexed: 11/18/2022] Open
Abstract
The co-infection cases involving dixenous Leishmania spp. (mostly of the L. donovani complex) and presumably monoxenous trypanosomatids in immunocompromised mammalian hosts including humans are well documented. The main opportunistic parasite has been identified as Leptomonas seymouri of the sub-family Leishmaniinae. The molecular mechanisms allowing a parasite of insects to withstand elevated temperature and substantially different conditions of vertebrate tissues are not understood. Here we demonstrate that L. seymouri is well adapted for the environment of the warm-blooded host. We sequenced the genome and compared the whole transcriptome profiles of this species cultivated at low and high temperatures (mimicking the vector and the vertebrate host, respectively) and identified genes and pathways differentially expressed under these experimental conditions. Moreover, Leptomonas seymouri was found to persist for several days in two species of Phlebotomus spp. implicated in Leishmania donovani transmission. Despite of all these adaptations, L. seymouri remains a predominantly monoxenous species not capable of infecting vertebrate cells under normal conditions.
Collapse
Affiliation(s)
- Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jana Hlaváčová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alexei Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Jitka Myškova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fred Opperdoes
- de Duve Institute and Université catholique de Louvain, Brussels, Belgium
| | - Pavel Flegontov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
549
|
Swann J, Jamshidi N, Lewis NE, Winzeler EA. Systems analysis of host-parasite interactions. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:381-400. [PMID: 26306749 PMCID: PMC4679367 DOI: 10.1002/wsbm.1311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 12/16/2022]
Abstract
Parasitic diseases caused by protozoan pathogens lead to hundreds of thousands of deaths per year in addition to substantial suffering and socioeconomic decline for millions of people worldwide. The lack of effective vaccines coupled with the widespread emergence of drug‐resistant parasites necessitates that the research community take an active role in understanding host–parasite infection biology in order to develop improved therapeutics. Recent advances in next‐generation sequencing and the rapid development of publicly accessible genomic databases for many human pathogens have facilitated the application of systems biology to the study of host–parasite interactions. Over the past decade, these technologies have led to the discovery of many important biological processes governing parasitic disease. The integration and interpretation of high‐throughput ‐omic data will undoubtedly generate extraordinary insight into host–parasite interaction networks essential to navigate the intricacies of these complex systems. As systems analysis continues to build the foundation for our understanding of host–parasite biology, this will provide the framework necessary to drive drug discovery research forward and accelerate the development of new antiparasitic therapies. WIREs Syst Biol Med 2015, 7:381–400. doi: 10.1002/wsbm.1311 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Justine Swann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Neema Jamshidi
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, USA.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics and Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
550
|
Messenger LA, Miles MA, Bern C. Between a bug and a hard place: Trypanosoma cruzi genetic diversity and the clinical outcomes of Chagas disease. Expert Rev Anti Infect Ther 2015; 13:995-1029. [PMID: 26162928 PMCID: PMC4784490 DOI: 10.1586/14787210.2015.1056158] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the last 30 years, concomitant with successful transnational disease control programs across Latin America, Chagas disease has expanded from a neglected, endemic parasitic infection of the rural poor to an urbanized chronic disease, and now a potentially emergent global health problem. Trypanosoma cruzi infection has a highly variable clinical course, ranging from complete absence of symptoms to severe and often fatal cardiovascular and/or gastrointestinal manifestations. To date, few correlates of clinical disease progression have been identified. Elucidating a putative role for T. cruzi strain diversity in Chagas disease pathogenesis is complicated by the scarcity of parasites in clinical specimens and the limitations of our contemporary genotyping techniques. This article systematically reviews the historical literature, given our current understanding of parasite genetic diversity, to evaluate the evidence for any association between T. cruzi genotype and chronic clinical outcome, risk of congenital transmission or reactivation and orally transmitted outbreaks.
Collapse
Affiliation(s)
- Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael A Miles
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Caryn Bern
- Global Health Sciences, Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|