501
|
Kumbalasiri T, Rollag MD, Isoldi MC, Castrucci AMDL, Provencio I. Melanopsin triggers the release of internal calcium stores in response to light. Photochem Photobiol 2007; 83:273-9. [PMID: 16961436 DOI: 10.1562/2006-07-11-ra-964] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Melanopsin is the photopigment that confers photosensitivity upon intrinsically photosensitive retinal ganglion cells (ipRGCs). This subset of retinal ganglion cells comprises less than 2% of all RGCs in the mammalian retina. The paucity of melanopsin-positive cells has made studies on melanopsin signaling difficult to pursue in ipRGCs. To address this issue, we have established several cell lines consisting of a transformed human embryonic kidney cell line (HEK293) stably expressing human melanopsin. With these cell lines, we have investigated the intracellular rise in calcium triggered upon light activation of melanopsin. Our human melanopsin-expressing cells exhibit an irradiance-dependent increase in intracellular calcium. Control cells expressing human melanopsin, where the Schiff-base lysine has been mutated to alanine, show no responses to light. Chelating extracellular calcium has no effect on the light-induced increase in intracellular calcium suggesting that calcium is mobilized from intracellular stores. This involvement of intracellular stores has been confirmed through their depletion by thapsigargin, which inhibits a subsequent light-induced increase in intracellular calcium. Addition of the nonselective cation channel blocker lanthanum does not alter light-induced rises in intracellular calcium, further supporting that melanopsin triggers a release of internal calcium from internal stores. HEK293 cells stably expressing melanopsin have proven to be a useful tool to study melanopsin-initiated signaling.
Collapse
Affiliation(s)
- T Kumbalasiri
- Graduate Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
502
|
Rahman FA, Ainscough JFX, Copeland N, Coverley D. Cancer-associated missplicing of exon 4 influences the subnuclear distribution of the DNA replication factor CIZ1. Hum Mutat 2007; 28:993-1004. [PMID: 17508423 DOI: 10.1002/humu.20550] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cip1-interacting zinc finger protein 1 (CIZ1, also known as CDKN1A-interacting zinc finger protein 1) stimulates initiation of mammalian DNA replication and is normally tethered to the nuclear matrix within DNA replication foci. Here, we show that an alternatively spliced human CIZ1 variant, lacking exon 4 (Delta E4), is misexpressed as a consequence of intronic mutation in Ewing tumor (ET) cell lines. In all ET lines tested, exon 4 is skipped and an upstream mononucleotide repeat element is expanded to contain up to 28 thymidines, compared to 16 in controls. In exon-trap experiments, a 24T variant produced three-fold more exon skipping than a 16T variant, demonstrating a direct effect on splicing. In functional assays, Delta E4 protein retains replication activity, but fails to form subnuclear foci. Furthermore, coexpression of mouse Delta E4 with Ciz1 prevents Ciz1 from localizing appropriately, having a dominant negative effect on foci formation. The data show that conditional exclusion of exon 4 influences the spatial distribution of the Ciz1 protein within the nucleus, and raise the possibility that CIZ1 alternative splicing could influence organized patterns of DNA replication.
Collapse
|
503
|
Abstract
Biolistic transfection is a technique in which subcellular-sized particles coated with DNA are accelerated to high velocity to propel them into cells. This method is applicable to tissues, cells and organelles, and can be used for both in vitro and in vivo transformations; with the right equipment, it is simple, rapid and efficient. Here we provide a detailed protocol for biolistic transfection of plasmids into cultured human embryonic kidney (HEK) 293 cells and organotypic brain slices using a hand-held gene gun. There are three major steps: (i) coating microcarriers with DNA, (ii) transferring the microcarriers into a cartridge to make a 'bullet', and (iii) firing the DNA-coated microcarriers into cells using a pulse of helium gas. The method can be readily adapted to other cell types and tissues. The protocol can be completed in 1-2 h.
Collapse
Affiliation(s)
- John A O'Brien
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
504
|
Hunt TA, Urbanowski MD, Kakani K, Law LMJ, Brinton MA, Hobman TC. Interactions between the West Nile virus capsid protein and the host cell-encoded phosphatase inhibitor, I2PP2A. Cell Microbiol 2007; 9:2756-66. [PMID: 17868381 DOI: 10.1111/j.1462-5822.2007.01046.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The West Nile virus (WNV) capsid protein functions in virus assembly to package genomic RNA into nucleocapsid structures. It is becoming clear, that in addition to their structural roles, capsid proteins of RNA viruses have non-structural functions. For example, the WNV capsid protein has been implicated as a pathogenic determinant. Presumably, many, if not all, of the non-structural functions of this protein involve interactions with host cell-encoded proteins. In the present study, we used affinity purification to isolate human proteins that bind to the WNV capsid protein. One of the capsid binding proteins is I(2)(PP2A), a previously characterized inhibitor of the serine/threonine phosphatase PP2A. Mapping studies revealed that capsid binding site overlaps with the region of I(2)(PP2A) that is required for inhibition of PP2A activity. Moreover, expression of the WNV capsid protein resulted in significantly increased PP2A activity and expected downstream events, such as inhibition of AP1-dependent transcription. Infected cells treated with I(2)(PP2A)-specific siRNAs produced less infectious virus than control siRNA-transfected cells, but this difference was minimal. Together, our data indicate that interactions between WNV capsid and I(2)(PP2A) result in increased PP2A activity. Given the central role of this phosphatase in cellular physiology, capsid/I(2)(PP2A) interactions may yet prove to be important for viral pathogenesis.
Collapse
Affiliation(s)
- Tracey A Hunt
- Department of Cell Biology, University of Alberta, 5-14 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
505
|
Terry-Allison T, Smith CA, DeLuca NA. Relaxed repression of herpes simplex virus type 1 genomes in Murine trigeminal neurons. J Virol 2007; 81:12394-405. [PMID: 17855552 PMCID: PMC2168976 DOI: 10.1128/jvi.01068-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The expression of herpes simplex virus (HSV) genomes in the absence of viral regulatory proteins in sensory neurons is poorly understood. Previously, our group reported an HSV immediate early (IE) mutant (d109) unable to express any of the five IE genes and encoding a model human cytomegalovirus immediate early promoter-green fluorescent protein (GFP) transgene. In cultured cells, GFP expressed from this mutant was observed in only a subset of infected cells. The subset exhibited cell type dependence, as the fractions of GFP-expressing cells varied widely among the cell types examined. Herein, we characterize this mutant in murine embryonic trigeminal ganglion (TG) cultures. We found that d109 was nontoxic to neural cultures and persisted in the cultures throughout their life spans. Unlike with some of the cultured cell lines and strains, expression of the GFP transgene was observed in a surprisingly large subset of neurons. However, very few nonneuronal cells expressed GFP. The abilities of ICP0 and an inhibitor of histone deacetylase, trichostatin A (TSA), to activate GFP expression from nonexpressing cells were also compared. The provision of ICP0 by infection with d105 reactivated quiescent genomes in nearly every cell, whereas reactivation by TSA was much more limited and restricted to the previously nonexpressing neurons. Moreover, we found that d109, which does not express ICP0, consistently reactivated HSV type 1 (KOS) in latently infected adult TG cultures. These results suggest that the state of persisting HSV genomes in some TG neurons may be more dynamic and more easily activated than has been observed with nonneuronal cells.
Collapse
Affiliation(s)
- Tracy Terry-Allison
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
506
|
Abstract
Apoptosis mediates the precise and programmed natural death of neurons and is a physiologically important process in neurogenesis during maturation of the central nervous system. However, premature apoptosis and/or an aberration in apoptosis regulation is implicated in the pathogenesis of neurodegeneration, a multifaceted process that leads to various chronic disease states, such as Alzheimer's (AD), Parkinson's (PD), Huntington's (HD) diseases, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and diabetic encephalopathy. The current review focuses on two major areas (a) the fundamentals of apoptosis, which includes elements of the apoptotic machinery, apoptosis inducers, and emerging concepts in apoptosis research, and (b) apoptotic involvement in neurodegenerative disorders, neuroprotective treatment strategies/modalities, and the mechanisms of, and signaling in, neuronal apoptosis. Current and new experimental models for apoptosis research in neurodegenerative diseases are also discussed.
Collapse
Affiliation(s)
- Masahiro Okouchi
- Department of Internal Medicine and Bioregulation, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | |
Collapse
|
507
|
Florez de Sessions P, Dobrikova E, Gromeier M. Genetic adaptation to untranslated region-mediated enterovirus growth deficits by mutations in the nonstructural proteins 3AB and 3CD. J Virol 2007; 81:8396-405. [PMID: 17537861 PMCID: PMC1951365 DOI: 10.1128/jvi.00321-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 05/22/2007] [Indexed: 12/17/2022] Open
Abstract
Both untranslated regions (UTRs) of plus-strand RNA virus genomes jointly control translation and replication of viral genomes. In the case of the Enterovirus genus of the Picornaviridae family, the 5'UTR consists of a cloverleaf-like terminus preceding the internal ribosomal entry site (IRES) and the 3' terminus is composed of a structured 3'UTR and poly(A). The IRES and poly(A) have been implicated in translation control, and all UTR structures, in addition to cis-acting genetic elements mapping to the open reading frame, have been assigned roles in RNA replication. Viral UTRs are recognized by viral and host cell RNA-binding proteins that may co-determine genome stability, translation, plus- and minus-strand RNA replication, and scaffolding of viral replication complexes within host cell substructures. In this report, we describe experiments with coxsackie B viruses with a cell type-specific propagation deficit in Sk-N-Mc neuroblastoma cells conferred by the combination of a heterologous IRES and altered 3'UTR. Serial passage of these constructs in Sk-N-Mc cells yielded genetic adaptation by mutations within the viral nonstructural proteins 3A and 3C. Our data implicate 3A and/or 3C or their precursors 3AB and/or 3CD in a functional complex with the IRES and 3'UTR that drives viral propagation. Adaptation to neuroblastoma cells suggests an involvement of cell type-specific host factors or the host cell cytoplasmic milieu in this phenomenon.
Collapse
Affiliation(s)
- Paola Florez de Sessions
- Division of Neurological Surgery, Department of Surgery, Duke University Medical Center, Box 3020, Durham, NC 27710, USA
| | | | | |
Collapse
|
508
|
Tamkun MM, O'connell KMS, Rolig AS. A cytoskeletal-based perimeter fence selectively corrals a sub-population of cell surface Kv2.1 channels. J Cell Sci 2007; 120:2413-23. [PMID: 17606996 DOI: 10.1242/jcs.007351] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Kv2.1 delayed-rectifier channel trafficks to 1-3 μm2 clusters on the surface of neurons and transfected HEK cells. Single quantum dot (Qdot) tracking and FRAP approaches were used to quantify the diffusion of GFP-labeled Kv2.1 channels on the cell surface and address the mechanisms underlying the formation of these unique membrane structures. Mean square displacement analysis of single Kv2.1 channel tracks inside or outside the surface clusters yielded mean diffusion coefficients of 0.03±0.02 μm2/second and 0.06±0.05 μm2/second, respectively. Kv2.1 channels outside the clusters effectively ignore the cluster boundary, readily diffusing through these microdomains. However, in 5% of the tracks analyzed, single, non-clustered channels were observed to cross into a cluster and become corralled within the cluster perimeter. Alexa Fluor 594-labelled phalloidin staining and mCherry-Kv2.1 co-expression with GFP-actin indicated that the Kv2.1 surface clusters form where the cortical actin cytoskeleton is reduced. Kv2.1 channels lacking the C-terminus do not form clusters, freely diffusing over the cell surface with a mean diffusion coefficient of 0.07±0.04 μm2/second. These data support a model whereby the Kv2.1 clusters are formed by sub-membrane cytoskeletal structures that limit the lateral diffusion of only the sub-population of Kv2.1 channels carrying the appropriate modifications on the Kv2.1 C-terminus.
Collapse
Affiliation(s)
- Michael M Tamkun
- Department of Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | | | | |
Collapse
|
509
|
Lee J, Sugden B. A membrane leucine heptad contributes to trafficking, signaling, and transformation by latent membrane protein 1. J Virol 2007; 81:9121-30. [PMID: 17581993 PMCID: PMC1951399 DOI: 10.1128/jvi.00136-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Latent membrane protein 1 (LMP1) of Epstein Barr virus (EBV) is important for maintaining proliferation of EBV-infected B cells. LMP1, unlike its cellular counterpart, CD40, signals without a ligand and is largely internal to the plasma membrane. In order to understand how LMP1 initiates its ligand-independent signaling, we focused on a leucine heptad in LMP1's first membrane-spanning domain that was shown to be necessary for LMP1's signaling through NF-kappaB. LZ1EBV, a recombinant EBV genetically altered to express LZ1, a derivative of LMP1 in which a leucine heptad was replaced with alanines, transformed B cells with 56% of wild-type (wt) EBV's efficiency, demonstrating the importance of this heptad. To elucidate the mechanism by which this domain contributes to the functions of LMP1, the properties of the wt and LZ1 were compared in transfected cells. LZ1 failed to home to lipid rafts as efficiently as did wt LMP1. The distribution of tagged derivatives of LZ1 also differed from that of wt LMP1 in transfected cells. LZ1's defect in homing to lipid rafts and altered trafficking likely underlie the defect in transformation of LZ1EBV. While the third and fourth membrane-spanning domains of LMP1 foster its trafficking to the Golgi, the leucine heptad within the first membrane-spanning domain contributes to its trafficking, particularly to internal rafts. B cells that are successfully transformed by LZ1EBV have the same average number of viral genomes and the same fraction of cells with capped LZ1 at the cell surface but express 50% more of the LZ1 allele than wt infected cells.
Collapse
Affiliation(s)
- Jisook Lee
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
510
|
Gary DS, Davidson A, Milhavet O, Slunt H, Borchelt DR. Investigation of RNA interference to suppress expression of full-length and fragment human huntingtin. Neuromolecular Med 2007; 9:145-55. [PMID: 17627034 DOI: 10.1007/bf02685888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 09/27/2006] [Accepted: 11/01/2006] [Indexed: 10/22/2022]
Abstract
The use of RNA interference (RNAi) to suppress the expression of genes has drastically improved the ability to examine gene function and is now being considered as a therapeutic approach for many diseases including genetic forms of neurodegenerative disease. Recently, research has focused on RNAi for the treatment of Huntington's and other polyglutamine diseases. In this work we explored the efficacy and specificity of short hairpin RNAs to target human huntingtin mRNA. We found two sequences that are specific for, and efficiently suppress human huntingtin mRNA. Mouse cell lines that stably harbored human short hairpin RNA constructs specifically inhibited the expression of human huntingtin supplied by transfected expression plasmids. However, these same constructs were unable to stably suppress endogenous human huntingtin when stably transfected into human 293 cells, despite effectively knocking down expression of huntingtin in transient transfection. These results demonstrate the efficacy and specificity of RNAi as a tool to target human huntingtin in RNAi-based therapies but point toward potential problems, possibly cell-type specific, regarding stable suppression of human huntingtin.
Collapse
Affiliation(s)
- Devin S Gary
- Department of Pathology, Division of Neuropathology; International Center for Spinal Cord Injury, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
511
|
De Ferrari GV, Papassotiropoulos A, Biechele T, Wavrant De-Vrieze F, Avila ME, Major MB, Myers A, Sáez K, Henríquez JP, Zhao A, Wollmer MA, Nitsch RM, Hock C, Morris CM, Hardy J, Moon RT. Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer's disease. Proc Natl Acad Sci U S A 2007; 104:9434-9. [PMID: 17517621 PMCID: PMC1890512 DOI: 10.1073/pnas.0603523104] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genome-wide linkage studies have defined a broad susceptibility region for late-onset Alzheimer's disease on chromosome 12, which contains the Low-Density Lipoprotein Receptor-Related Protein 6 (LRP6) gene, a coreceptor for Wnt signaling. Here, we report the association between common LRP6 variants and late-onset Alzheimer's disease in a multicenter case-control series as well as in a large family-based series ascertained by the National Institute of Mental Health-National Institute on Aging Genetics Initiative. As shown in the genome-wide linkage studies, our association depends mainly on apolipoprotein E-epsilon4 (APOE-epsilon4) carrier status. Haplotype tagging single-nucleotide polymorphisms (SNPs) with a set of seven allelic variants of LRP6 identified a putative risk haplotype, which includes a highly conserved coding sequence SNP: Ile-1062 --> Val. Functional analyses revealed that the associated allele Val-1062, an allele previously linked to low bone mass, has decreased beta-catenin signaling in HEK293T cells. Our study unveils a genetic relationship between LRP6 and APOE and supports the hypothesis that altered Wnt/beta-catenin signaling may be involved in this neurodegenerative disease.
Collapse
Affiliation(s)
- Giancarlo V. De Ferrari
- *Howard Hughes Medical Institute and
- Department of Pharmacology and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195
- Departamentos de Bioquímica y Biología Molecular
- To whom correspondence may be addressed. E-mail: or
| | - Andreas Papassotiropoulos
- Division of Molecular Psychology and Life Sciences Training Facility, Biozentrum, University of Basel, 4055 Basel, Switzerland
- Division of Psychiatry Research, University of Zurich, Lenggstrasse 31, 8029 Zurich, Switzerland
| | - Travis Biechele
- *Howard Hughes Medical Institute and
- Department of Pharmacology and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195
| | - Fabienne Wavrant De-Vrieze
- **Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892; and
| | | | - Michael B. Major
- *Howard Hughes Medical Institute and
- Department of Pharmacology and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195
| | - Amanda Myers
- **Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892; and
| | | | - Juan P. Henríquez
- Biología Celular, Universidad de Concepción, P.O. Box 160-C Concepción 4089100, Chile
| | - Alice Zhao
- **Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892; and
| | - M. Axel Wollmer
- Division of Psychiatry Research, University of Zurich, Lenggstrasse 31, 8029 Zurich, Switzerland
| | - Roger M. Nitsch
- Division of Psychiatry Research, University of Zurich, Lenggstrasse 31, 8029 Zurich, Switzerland
| | - Christoph Hock
- Division of Psychiatry Research, University of Zurich, Lenggstrasse 31, 8029 Zurich, Switzerland
| | - Chris M. Morris
- Institute for Aging and Health, MRC Building, Newcastle General Hospital, Newcastle-upon-Tyne NE4 6BE, United Kingdom
| | - John Hardy
- **Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892; and
| | - Randall T. Moon
- *Howard Hughes Medical Institute and
- Department of Pharmacology and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
512
|
Kosulin K, Haberler C, Hainfellner JA, Amann G, Lang S, Lion T. Investigation of adenovirus occurrence in pediatric tumor entities. J Virol 2007; 81:7629-35. [PMID: 17494079 PMCID: PMC1933336 DOI: 10.1128/jvi.00355-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenoviruses (AdVs) contain genes coding for proteins with transforming potential, and certain AdV serotypes have been shown to induce tumors in rodents. However, data on the possible oncogenicity of AdVs in humans are scarce. We have therefore employed a real-time quantitative PCR (RQ-PCR) assay permitting highly sensitive detection of all 51 currently known human AdV serotypes to screen more than 500 tumor specimens derived from 17 different childhood cancer entities including leukemias, lymphomas, and solid tumors. Most tumor entities analyzed showed no evidence for the presence of AdV sequences, but AdV DNA was detected by RQ-PCR in different brain tumors including 25/30 glioblastomas, 22/30 oligodendrogliomas, and 20/30 ependymomas. Nonmalignant counterparts of AdV-positive brain tumors, including specimens of ependymal cells, plexus choroideus, and periventricular white matter, were screened for control purposes and revealed the presence of AdV DNA in most specimens tested. Identification of the AdV types present in positive malignant and nonmalignant brain tissue specimens revealed predominantly representatives of species B and D and, less commonly, C. To exclude contamination as a possible cause of false-positive results, specimens with AdV sequences detectable by PCR were subsequently analyzed by in situ hybridization, which confirmed the PCR findings in all instances. The central nervous system appears to represent a common site of AdV infection with virus persistence, thus providing the first evidence for the possible contribution of AdVs to the multistep process of tumor pathogenesis in brain tissue.
Collapse
Affiliation(s)
- Karin Kosulin
- Division of Molecular Microbiology and Development of Genetic Diagnostics, St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Kinderspitalgasse 6, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
513
|
Dworkin S, Heath JK, deJong-Curtain TA, Hogan BM, Lieschke GJ, Malaterre J, Ramsay RG, Mantamadiotis T. CREB activity modulates neural cell proliferation, midbrain-hindbrain organization and patterning in zebrafish. Dev Biol 2007; 307:127-41. [PMID: 17531969 DOI: 10.1016/j.ydbio.2007.04.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 04/18/2007] [Accepted: 04/23/2007] [Indexed: 11/29/2022]
Abstract
Neural stem/progenitor cells (NPCs) self-renew and differentiate, generating neuronal and non-neuronal (glial) cell lineages. Although a number of factors, including transcription factors, have been shown to be important in the regulation of NPC proliferation and differentiation, the precise molecular networks remain to be identified. The cAMP Response Element-Binding protein (CREB) is a transcription factor important for neuronal survival, differentiation and plasticity. Recent work suggests that CREB activation, via serine phosphorylation in the kinase inducible domain, is important for neurogenesis in the adult rodent brain. We sought to further investigate CREB function in neurogenesis, using the zebrafish (Danio rerio). Structural and functional analysis of the zebrafish CREB orthologue showed high conservation with mammalian CREB. Activated (phosphorylated) CREB (pCREB) was localised to all known proliferation zones in the adult zebrafish brain, including actively cycling cells. Furthermore, we found that modulating CREB activity during early zebrafish development caused significant defects in neural proliferation, midbrain-hindbrain organization and body patterning. These findings reveal broader and stage-specific physiological roles of CREB function during vertebrate neural development and proliferation.
Collapse
Affiliation(s)
- Sebastian Dworkin
- Differentiation and Transcription Laboratory, Trescowthick Laboratories, Peter MacCallum Cancer Centre, Victoria, 3002, Australia
| | | | | | | | | | | | | | | |
Collapse
|
514
|
Yea C, Dembowy J, Pacione L, Brown M. Microtubule-mediated and microtubule-independent transport of adenovirus type 5 in HEK293 cells. J Virol 2007; 81:6899-908. [PMID: 17442712 PMCID: PMC1933318 DOI: 10.1128/jvi.02330-05] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adenovirus serotypes 2 and 5 are taken into cells by receptor-mediated endocytosis, and following release from endosomes, destabilized virions travel along microtubules to accumulate around the nucleus. The entry process culminates in delivery of the viral genome through nuclear pores. This model is based on studies with conventional cell lines, such as HeLa and HEp-2, but in HEK293 cells, which are routinely used in this laboratory because they are permissive for replication of multiple adenovirus serotypes, a different trafficking pattern has been observed. Nuclei of 293 cells have an irregular shape, with an indented region, and virions directly labeled with carboxyfluorescein accumulate in a cluster within that indented region. The clusters, which form in close proximity to the microtubule organizing center (MTOC) and to the Golgi apparatus, are remarkably stable; a fluorescent signal can be seen in the MTOC region up to 16 h postinfection. Furthermore, if cells are infected and then undergo mitosis after the cluster is formed, the signal is found at each spindle pole. Despite the sequestration of virions near the MTOC, 293 cells are no less sensitive than other cells to productive infection with adenovirus. Even though cluster formation depends on intact microtubules, infectivity is not compromised by disruption of microtubules with either nocodazole or colchicine, as determined by expression of an enhanced green fluorescent protein reporter gene inserted in the viral genome. These results indicate that virion clusters do not represent the infectious pathway and suggest an alternative route to the nucleus that does not depend on nocodazole-sensitive microtubules.
Collapse
Affiliation(s)
- Carmen Yea
- Dept. of Medical Genetics and Microbiology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
515
|
Lam PMW, Hainsworth AH, Smith GD, Owen DE, Davies J, Lambert DG. Activation of recombinant human TRPV1 receptors expressed in SH-SY5Y human neuroblastoma cells increases [Ca2+]i, initiates neurotransmitter release and promotes delayed cell death. J Neurochem 2007; 102:801-11. [PMID: 17442052 DOI: 10.1111/j.1471-4159.2007.04569.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transient receptor potential (TRP) vanilloid receptor subtype 1 (TRPV1) is a ligand-gated, Ca(2+)-permeable ion channel in the TRP superfamily of channels. We report the establishment of the first neuronal model expressing recombinant human TRPV1 (SH-SY5Y(hTRPV1)). SH-SY5Y human neuroblastoma cells were stably transfected with hTRPV1 using the Amaxa Biosystem (hTRPV1 in pIREShyg2 with hygromycin selection). Capsaicin, olvanil, resiniferatoxin and the endocannabinoid anandamide increased [Ca(2+)](i) with potency (EC(50)) values of 2.9 nmol/L, 34.7 nmol/L, 0.9 nmol/L and 4.6 micromol/L, respectively. The putative endovanilloid N-arachidonoyl-dopamine increased [Ca(2+)](i) but this response did not reach a maximum. Capsaicin, anandamide, resiniferatoxin and olvanil mediated increases in [Ca(2+)](i) were inhibited by the TRPV1 antagonists capsazepine and iodo-resiniferatoxin with potencies (K(B)) of approximately 70 nmol/L and 2 nmol/L, respectively. Capsaicin stimulated the release of pre-labelled [(3)H]noradrenaline from monolayers of SH-SY5Y(hTRPV1) cells with an EC(50) of 0.6 nmol/L indicating amplification between [Ca(2+)](i) and release. In a perfusion system, we simultaneously measured [(3)H]noradrenaline release and [Ca(2+)](i) and observed that increased [Ca(2+)](i) preceded transmitter release. Capsaicin treatment also produced a cytotoxic response (EC(50) 155 nmol/L) that was antagonist-sensitive and mirrored the [Ca(2+)](I) response. This model displays pharmacology consistent with TRPV1 heterologously expressed in standard non-neuronal cells and native neuronal cultures. The advantage of SH-SY5Y(hTRPV1) is the ability of hTRPV1 to couple to neuronal biochemical machinery and produce large quantities of cells.
Collapse
Affiliation(s)
- Patricia M W Lam
- Department of Cardiovascular Sciences (Pharmacology and Therapeutics Group), Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester Royal Infirmary, Leicester, UK
| | | | | | | | | | | |
Collapse
|
516
|
Chen H, Piedras-Rentería ES. Altered frequency-dependent inactivation and steady-state inactivation of polyglutamine-expanded α1A in SCA6. Am J Physiol Cell Physiol 2007; 292:C1078-86. [PMID: 17020933 DOI: 10.1152/ajpcell.00353.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease of the cerebellum and inferior olives characterized by a late-onset cerebellar ataxia and selective loss of Purkinje neurons ( 15 , 16 ). SCA6 arises from an expansion of the polyglutamine tract located in exon 47 of the α1A (P/Q-type calcium channel) gene from a nonpathogenic size of 4 to 18 glutamines (CAG4–18) to CAG19–33 in SCA6. The molecular basis of SCA6 is poorly understood. To date, the biophysical properties studied in heterologous systems support both a gain and a loss of channel function in SCA6. We studied the behavior of the human α1A isoform, previously found to elicit a gain of function in disease ( 41 ), focusing on properties in which the COOH terminus of the channel is critical for function: we analyzed the current properties in the presence of β4- and β2a-subunits (both known to interact with the α1A COOH terminus), current kinetics of activation and inactivation, calcium-dependent inactivation and facilitation, voltage-dependent inactivation, frequency dependence, and steady-state activation and inactivation properties. We found that SCA6 channels have decreased activity-dependent inactivation and a depolarizing shift (+6 mV) in steady-state inactivation properties consistent with a gain of function.
Collapse
Affiliation(s)
- Haiyan Chen
- Dept. of Physiology, Loyola Univresity Chicago, Maywood, IL 60153-5500, USA
| | | |
Collapse
|
517
|
Matskova LV, Helmstetter C, Ingham RJ, Gish G, Lindholm CK, Ernberg I, Pawson T, Winberg G. The Shb signalling scaffold binds to and regulates constitutive signals from the Epstein–Barr virus LMP2A membrane protein. Oncogene 2007; 26:4908-17. [PMID: 17311000 DOI: 10.1038/sj.onc.1210298] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Epstein-Barr virus latency-associated membrane protein LMP2A has been shown to activate the survival kinase Akt in epithelial and B cells in a phosphoinositide 3-kinase-dependent fashion. In this study, we demonstrate that the signalling scaffold Shb associates through SH2 and PTB domain interactions with phosphorylated tyrosine motifs in the LMP2A N-terminal tail. Additionally, we show that mutation of tyrosines in these motifs as well as shRNA-mediated downregulation of Shb leads to a loss of constitutive Akt-activation in LMP2A-expressing cells. Furthermore, utilization by Shb of the LMP2A ITAM motif regulates stability of the Syk tyrosine kinase in LMP2A-expressing cells. Our data set the precedent for viral utilization of the Shb signalling scaffold and implicate Shb as a regulator of LMP2A-dependent Akt activation.
Collapse
Affiliation(s)
- L V Matskova
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
518
|
Ramos A, Chi Ho W, Forte S, Dickson K, Boutilier J, Favell K, Barker PA. Hypo-osmolar stress induces p75NTR expression by activating Sp1-dependent transcription. J Neurosci 2007; 27:1498-506. [PMID: 17287525 PMCID: PMC6673569 DOI: 10.1523/jneurosci.4806-06.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 12/21/2006] [Accepted: 12/28/2006] [Indexed: 01/02/2023] Open
Abstract
Injury-induced expression of the p75 neurotrophin receptor (p75NTR) in the CNS facilitates neuronal apoptosis and prevents neuronal regrowth, but the mechanisms regulating p75NTR expression are poorly characterized. In this study, we showed that hypo-osmolarity induces p75NTR expression in primary neurons, and, using a comparative genomics approach, we identified conserved elements in the 25 kb upstream sequences of the rat, mouse, and human p75NTR genes. We found that only one of these, a proximal region rich in Sp1 sites, responds to changes in hypo-osmolarity. We then showed that Sp1 DNA binding activity is increased in cells exposed to hypo-osmolarity, established that hypo-osmolarity enhanced Sp1 binding to the endogenous p75NTR promoter, and showed that Sp1 is required for p75NTR expression induced by hypo-osmolarity. We examined how Sp1 is regulated to effect these changes and established that Sp1 turnover is strongly inhibited by hypo-osmolarity. We propose that stress-induced Sp1 accumulation that results from reductions in Sp1 turnover rate contributes to injury-induced gene expression.
Collapse
MESH Headings
- Animals
- Binding Sites
- Cell Line
- Cerebral Cortex/cytology
- Consensus Sequence
- Cycloheximide/pharmacology
- DNA/metabolism
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation/drug effects
- Genes, Dominant
- Humans
- Hypotonic Solutions/pharmacology
- Kidney
- Mice
- Mutation
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Neurons/drug effects
- Neurons/metabolism
- Osmotic Pressure
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoinositide-3 Kinase Inhibitors
- Promoter Regions, Genetic/genetics
- Protein Binding
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/physiology
- Protein Processing, Post-Translational
- RNA, Messenger/biosynthesis
- RNA, Small Interfering/pharmacology
- Rats
- Receptors, Growth Factor
- Receptors, Nerve Growth Factor/biosynthesis
- Receptors, Nerve Growth Factor/genetics
- Recombinant Fusion Proteins/physiology
- Sequence Homology, Nucleic Acid
- Sp1 Transcription Factor/chemistry
- Sp1 Transcription Factor/metabolism
- Sp1 Transcription Factor/physiology
- Sp3 Transcription Factor/metabolism
- Species Specificity
- Transcription, Genetic/genetics
- Type C Phospholipases/antagonists & inhibitors
- Type C Phospholipases/physiology
Collapse
Affiliation(s)
- Alberto Ramos
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Wai Chi Ho
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Stephanie Forte
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Kathleen Dickson
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Jacqueline Boutilier
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Kristy Favell
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Philip A. Barker
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| |
Collapse
|
519
|
Lin H, Shabbir A, Molnar M, Lee T. Stem cell regulatory function mediated by expression of a novel mouse Oct4 pseudogene. Biochem Biophys Res Commun 2007; 355:111-6. [PMID: 17280643 DOI: 10.1016/j.bbrc.2007.01.106] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 01/22/2007] [Indexed: 11/23/2022]
Abstract
Multiple pseudogenes have been proposed for embryonic stem (ES) cell-specific genes, and their abundance suggests that some of these potential pseudogenes may be functional. ES cell-specific expression of Oct4 regulates stem cell pluripotency and self-renewing state. Although Oct4 expression has been reported in adult tissues during gene reprogramming, the detected Oct4 signal might be contributed by Oct4 pseudogenes. Among the multiple Oct4 transcripts characterized here is a approximately 1 kb clone derived from P19 embryonal carcinoma stem cells, which shares a approximately 87% sequence homology with the parent Oct4 gene, and has the potential of encoding an 80-amino acid product (designated as Oct4P1). Adenoviral expression of Oct4P1 in mesenchymal stem cells promotes their proliferation and inhibits their osteochondral differentiation. These dual effects of Oct4P1 are reminiscent of the stem cell regulatory function of the parent Oct4, and suggest that Oct4P1 may be a functional pseudogene or a novel Oct4-related gene with a unique function in stem cells.
Collapse
Affiliation(s)
- Huey Lin
- Department of Biochemistry, SUNY at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
520
|
Zhao LY, Santiago A, Liu J, Liao D. Repression of p53-mediated transcription by adenovirus E1B 55-kDa does not require corepressor mSin3A and histone deacetylases. J Biol Chem 2007; 282:7001-10. [PMID: 17209038 DOI: 10.1074/jbc.m610749200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ad E1B 55-kDa protein (E1B) is a potent transcriptional repressor. In vitro biochemical studies revealed that direct p53-E1B interaction is essential for E1B to block p53-activated transcription and a corepressor may be involved. To understand how E1B represses p53-mediated transcription in vivo, we expressed E1B in several tumor cell lines that express wild type p53. Here we show that E1B strongly suppresses the expression of p53 target genes such as p21 and Puma-alpha in normal growth conditions or after cells were treated with p53-activating chemotherapeutic agents, suggesting that E1B-mediated gene repression is dominant and cannot be reversed via p53 activation. Interestingly, we found that E1B binds to corepressor mSin3A. Mutagenesis analysis indicated that the sequence motif "LHLLA" near the NH(2) terminus of E1B is responsible for mSin3A binding, and this motif is conserved among E1B proteins from different Ad serotypes. The conserved paired amphipathic helix domain 1 of mSin3A is critical for mSin3A-E1B interaction. Surprisingly, E1B mutants that cannot bind to mSin3A can still repress p53 target genes, indicating that it is not the corepressor required for E1B-mediated gene repression. In support of this notion, repression of p53 target genes by E1B is insensitive to HDAC inhibitor trichostatin A. We further show that both the NH(2)- and COOH-terminal domains of E1B are required for the repression function. Therefore, E1B employs a unique repression mechanism to block p53-mediated transcription.
Collapse
Affiliation(s)
- Lisa Y Zhao
- Department of Anatomy and Cell Biology, and Shands Cancer Center Programs in Cancer Genetics, Epigenetics and Tumor Virology, and Cell Signaling, Apoptosis and Cancer, University of Florida College of Medicine, Gainesville, Florida 32611-3633, USA
| | | | | | | |
Collapse
|
521
|
Aguiar RS, Costa LJ, Pereira HS, Brindeiro RM, Tanuri A. Development of a new methodology for screening of human immunodeficiency virus type 1 microbicides based on real-time PCR quantification. Antimicrob Agents Chemother 2006; 51:638-44. [PMID: 17116672 PMCID: PMC1797782 DOI: 10.1128/aac.00749-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Potential topical retrovirucides or vaginal microbicides against human immunodeficiency virus type 1 (HIV-1) include nonnucleoside reverse transcriptase inhibitors (NNRTIs). To be successful, such agents have to be highly active against cell-free virions. In the present study, we developed a new real-time PCR-based assay to measure the natural endogenous reverse transcription (NERT) activity directly on intact HIV-1 particles in the presence of reverse transcriptase (RT) inhibitors. We further evaluated the permeability to nevirapine (NVP) and efavirenz (EFV) and their retention within nascent viral particles. We also demonstrated the NVP and EFV inhibitory effects on NERT activity and the impact of resistance mutations measured directly by this new strategy. Furthermore, the results showed a clear correlation between NERT activity and classical infectivity assays. The 50% inhibitory concentrations (IC50s) of NVP and EFV were demonstrated to be up to 100-fold higher for cell-free than for cell-associated virions, suggesting that cell-free virions are less permeable to these drugs. Our results suggest that NVP and EFV penetrate both the envelope and the capsid of HIV-1 particles and readily inactivate cell-free virions. However, the characteristics of these NNRTIs, such as lower permeability and lower retention during washing procedures, in cell-free virions reduce their efficacies as microbicides. Here, we demonstrate the usefulness of the NERT real-time PCR as an assay for screening novel antiretroviral compounds with unique mechanisms of action.
Collapse
Affiliation(s)
- Renato S Aguiar
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, CCS-Bloco A2, Sala 121, Cidade Universitária, Ilha do Fundão, 21944-970, Rio de Janeiro-RJ, Brazil
| | | | | | | | | |
Collapse
|
522
|
Arita M, Nagata N, Sata T, Miyamura T, Shimizu H. Quantitative analysis of poliomyelitis-like paralysis in mice induced by a poliovirus replicon. J Gen Virol 2006; 87:3317-3327. [PMID: 17030866 DOI: 10.1099/vir.0.82172-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poliovirus (PV) infection causes severe paralysis, typically of the legs, by destruction of the motor neurons in the spinal cord. In this study, the relationship between PV replication in the spinal cord, damage in the motor neurons and poliomyelitis-like paralysis was analysed in transgenic mice expressing the human PV receptor (TgPVR21). First, a PV replicon encoding firefly luciferase in place of the capsid genes (PV-Fluc mc) was trans-encapsidated in 293T cells and the trans-encapsidated PV-Fluc mc (TE-PV-Fluc mc) was then inoculated into the spinal cords of TgPVR21 mice. TE-PV-Fluc mc was recovered with a titre of 6.3 x 10(7) infectious units ml(-1), which was comparable to those of PV1 strains. TgPVR21 mice inoculated with TE-PV-Fluc mc showed non-lethal paralysis of the hindlimbs, with severity ranging from a decline in grip strength to complete flaccid paralysis. The replication of TE-PV-Fluc mc in the spinal cord reached peak levels at 10 h post-inoculation (p.i.), followed by the appearance of paralysis at as early as 12 h p.i., reaching a plateau at 16 h p.i. Histological analysis showed a correlation between the lesion and the severity of the clinical symptoms in most mice. However, severe paralysis could also be observed with an apparently low lesion score, where as few as 5.3 x 10(2) motor neurons (1.4 % of the susceptible cells in the lumbar cord) were infected by TE-PV-Fluc mc. These results indicate that PV replication in a small population of the motor neurons was critical for severe residual poliomyelitis-like paralysis in TgPVR21 mice.
Collapse
Affiliation(s)
- Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Tetsutaro Sata
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Tatsuo Miyamura
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| |
Collapse
|
523
|
Sutherland HG, Newton K, Brownstein DG, Holmes MC, Kress C, Semple CA, Bickmore WA. Disruption of Ledgf/Psip1 results in perinatal mortality and homeotic skeletal transformations. Mol Cell Biol 2006; 26:7201-10. [PMID: 16980622 PMCID: PMC1592893 DOI: 10.1128/mcb.00459-06] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PC4- and SF2-interacting protein 1 (Psip1)-also known as lens epithelium-derived growth factor (Ledgf)-is a chromatin-associated protein that has been implicated in transcriptional regulation, mRNA splicing, and cell survival in vitro, but its biological function in vivo is unknown. We identified an embryonic stem cell clone with disrupted Psip1 in a gene trap screen. The resulting Psip1-betageo fusion protein retains chromatin-binding activity and the PWWP and AT hook domains of the wild-type protein but is missing the highly conserved C terminus. The majority of mice homozygous for the disrupted Psip1 gene died perinatally, but some survived to adulthood and displayed a range of phenotypic abnormalities, including low fertility, an absence of epididymal fat pads, and a tendency to develop blepharitis. However, contrary to expectations, the lens epithelium was normal. The mutant mice also exhibited motor and/or behavioral defects such as hind limb clenching, reduced grip strength, and reduced locomotor activity. Finally, both Psip1(-/-) neonates and surviving adults had craniofacial and skeletal abnormalities. They had brachycephaly, small rib cages, and homeotic skeletal transformations with incomplete penetrance. The latter phenotypes suggest a role for Psip1 in the control of Hox expression and may also explain why PSIP1 (LEDGF) is found as a fusion partner with NUP98 in myeloid leukemias.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Animals, Outbred Strains
- Behavior, Animal
- Bone and Bones/abnormalities
- Cells, Cultured
- Chromatin/metabolism
- Conserved Sequence
- Embryo, Mammalian/cytology
- Embryo, Mammalian/pathology
- Eye/cytology
- Eye/pathology
- Female
- Gene Expression Regulation, Developmental
- Gene Targeting
- Homeodomain Proteins/genetics
- Homozygote
- Humans
- Mice
- Mice, Mutant Strains
- Motor Skills Disorders/pathology
- Phenotype
- Protein Structure, Tertiary
- Survival Analysis
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Up-Regulation/genetics
Collapse
|
524
|
Kapoor R, Nimmagadda D, Sheng JJ. Cellular Localization Studies on Human Estrogen Sulfotransferase SULT1E1 in Human Embryonic Kidney 293 Cells. Drug Metab Dispos 2006; 35:17-20. [PMID: 17035602 DOI: 10.1124/dmd.106.011247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human cytosolic sulfotransferase SULT1E1 catalyzes the sulfation of endogenous estrogens as well as xenobiotic estrogen-like chemicals. This reaction increases the water solubility of the molecule, which may affect its cellular distribution and biological activity. This could alter estrogen signaling to the estrogen receptor in human estrogen receptor-positive cells. The current work characterized the cellular distribution of SULT1E1 in the human embryonic kidney 293 (HEK293) cell line using green fluorescent protein (GFP) tagging and immunochemistry methods. The GFP-tagged recombinant SULT1E1 protein was expressed and localized in the cytoplasm of HEK293 cells. By using a commercial anti-SULT1E1 peptide antibody, a 35.7-kDa protein was detected in HEK293 cells via Western blot. The molecular mass of the protein detected suggested that it may be related to native SULT1E1 protein. However, reverse transcription-polymerase chain reaction (RT-PCR) with gene-specific primers could not confirm the presence of the SULT1E1 transcript in the total RNA sample of HEK293 cells. The discrepancy between protein and transcript data could be due to the instability of SULT1E1 mRNA or the specificity of the anti-SULT1E1 antibody used. In the present work, RT-PCR analysis with gene-specific primers also identified a transcript fragment of human estrogen-related receptor gamma. Future studies on the functional relationship between estrogen-related receptors and sulfotransferases are expected to provide additional insights into the physiological and toxicological roles of human estrogen sulfotransferases.
Collapse
Affiliation(s)
- Ruchita Kapoor
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, ND 58105, USA
| | | | | |
Collapse
|
525
|
Cynis H, Schilling S, Bodnár M, Hoffmann T, Heiser U, Saido TC, Demuth HU. Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1618-25. [PMID: 17005457 DOI: 10.1016/j.bbapap.2006.08.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 07/29/2006] [Accepted: 08/11/2006] [Indexed: 11/19/2022]
Abstract
Mammalian cell lines were examined concerning their Glutaminyl Cyclase (QC) activity using a HPLC method. The enzyme activity was suppressed by a QC specific inhibitor in all homogenates. Aim of the study was to prove whether inhibition of QC modifies the posttranslational maturation of N-glutamine and N-glutamate peptide substrates. Therefore, the impact of QC-inhibition on amino-terminal pyroglutamate (pGlu) formation of the modified amyloid peptides Abeta(N3E-42) and Abeta(N3Q-42) was investigated. These amyloid-beta peptides were expressed as fusion proteins with either the pre-pro sequence of TRH, to be released by a prohormone convertase, or as engineered amyloid precursor protein for subsequent liberation of Abeta(N3Q-42) after beta- and gamma-secretase cleavage during posttranslational processing. Inhibition of QC leads in both expression systems to significantly reduced pGlu-formation of differently processed Abeta-peptides. This reveals the importance of QC-activity during cellular maturation of pGlu-containing peptides. Thus, QC-inhibition should impact bioactivity, stability or even toxicity of pyroglutamyl peptides preventing glutamine and glutamate cyclization.
Collapse
Affiliation(s)
- Holger Cynis
- Probiodrug AG, Weinbergweg 22, 06120 Halle/Saale, Germany
| | | | | | | | | | | | | |
Collapse
|
526
|
Machado AV, Cardoso JE, Claser C, Rodrigues MM, Gazzinelli RT, Bruna-Romero O. Long-Term Protective Immunity Induced AgainstTrypanosoma cruziInfection After Vaccination with Recombinant Adenoviruses Encoding Amastigote Surface Protein-2 andTrans-Sialidase. Hum Gene Ther 2006; 17:898-908. [PMID: 16972758 DOI: 10.1089/hum.2006.17.898] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protection against protozoan parasite Trypanosoma cruzi has been shown to be dependent on the induction of type 1 immune responses. Replication-deficient human type 5 recombinant adenoviruses have an unsurpassed ability to induce type 1 immune responses. Thus, we constructed two type 5 recombinant adenoviruses encoding parasite antigens trans-sialidase (rAdTS) and amastigote surface protein-2 (rAdASP2). Both antigens were genetically engineered to secrete recombinant products in order to induce both optimal antibody and T cell responses. Immunizations of mice with rAdASP2 and rAdTS induced high levels of serum antibodies specific for their recombinant products. In addition, both recombinant viruses were able to elicit a biased helper T cell type 1 (Th1) cellular immune response and a substantial CD8+ T cell-mediated immune response. Moreover, individual immunization with rAdASP2 or rAdTS induced high levels of protection against a challenge with live parasites. CD8+ T cells mediated, at least in part, such protection. Furthermore, when combined in the same inoculum, rAdTS plus rAdASP2 induced complete protection in all animals tested, even when challenges were performed 14 weeks after the last immunization. Taking together, these results show that recombinant adenoviruses expressing TS and ASP-2 antigens of T. cruzi are interesting candidates for the development of a vaccine against Chagas' disease.
Collapse
Affiliation(s)
- Alexandre V Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, Brazil
| | | | | | | | | | | |
Collapse
|
527
|
Machado AV, Cardoso JE, Claser C, Rodrigues MM, Gazzinelli RT, Bruna-Romero O. Long-Term Protective Immunity Induced Against Trypanosoma cruziInfection After Vaccination with Recombinant Adenoviruses Encoding Amastigote Surface Protein-2 and Trans-Sialidase. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
528
|
Radecke F, Peter I, Radecke S, Gellhaus K, Schwarz K, Cathomen T. Targeted chromosomal gene modification in human cells by single-stranded oligodeoxynucleotides in the presence of a DNA double-strand break. Mol Ther 2006; 14:798-808. [PMID: 16904944 DOI: 10.1016/j.ymthe.2006.06.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 06/16/2006] [Accepted: 06/21/2006] [Indexed: 01/05/2023] Open
Abstract
A DNA double-strand break (DSB) cannot be tolerated by a cell and is dealt with by several pathways. Here, it was hypothesized that DSB induction close to a targeted mutation in the genome of a mammalian cell might attract oligodeoxynucleotide (ODN)-directed gene repair. A HEK-293-derived cell line had been engineered harboring a single target locus with open reading frames encoding the living-cell reporter proteins LacZ and EGFP, the latter translationally decoupled by a DNA spacer with a unique I-SceI recognition site for defined DSB induction. To enable expression of a fluorescent LacZ-EGFP fusion protein, single-stranded (ss) ODNs (80 or 96 nucleotides long) spanning the DSB were designed to fuse both reading frames by altering a few base-pair positions, deleting 59 bp or introducing a 10-bp fragment. The ssODNs alone generated few EGFP-positive cells. With I-SceI transiently expressed, more than 0.3% of cells revealed EGFP expression 7 days after transfection, with up to 96% of the loci faithfully corrected, depending on the ssODN used. During these correction events, the ssODN did not become physically incorporated into the chromosome, but served only as information template. Unwanted insertional mutagenesis also occurred. Both observations have important implications for gene therapy.
Collapse
Affiliation(s)
- Frank Radecke
- Department of Transfusion Medicine, University Hospital Ulm, and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
529
|
Boulos S, Meloni BP, Arthur PG, Bojarski C, Knuckey NW. Assessment of CMV, RSV and SYN1 promoters and the woodchuck post-transcriptional regulatory element in adenovirus vectors for transgene expression in cortical neuronal cultures. Brain Res 2006; 1102:27-38. [PMID: 16806110 DOI: 10.1016/j.brainres.2006.04.089] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 04/05/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
In order to investigate protein function in rat primary cortical neuronal cultures, we modified an adenoviral vector expression system and assessed the strength and specificity of the cytomegalovirus (CMV), rous sarcoma virus (RSV), and rat and human synapsin 1 (SYN1) promoters to drive DsRed-X expression. We also incorporated the woodchuck post-transcriptional regulatory element (WPRE) and a CMV promoter-enhanced green fluorescent protein (EGFP) reporter cassette. We observed that the RSV promoter activity was strong in neurons and moderate in astrocytes, while the CMV promoter activity was weak-to-moderate in neurons and very strong in astrocytes. The rat and human SYN1 promoters exhibited similar but weak activity in neurons, despite inclusion of the WPRE. We confirmed that the WPRE enhanced RSV promoter-mediated DsRed-X expression in a time-dependent fashion. Interestingly, we observed very weak SYN1-mediated DsRed-X expression in astrocytes and HEK293 cells suggesting incomplete neuronal-restrictive behavior for this promoter. Finally, using our adenoviral expression system, we demonstrated that RSV promoter-mediated Bcl-X(L) overexpression attenuated neuronal death caused by in vitro ischemia and oxidative stress.
Collapse
Affiliation(s)
- Sherif Boulos
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, and Australian Neuromuscular Research Institute.
| | | | | | | | | |
Collapse
|
530
|
Caetano BC, Bruña-Romero O, Fux B, Mendes EA, Penido MLO, Gazzinelli RT. Vaccination with replication-deficient recombinant adenoviruses encoding the main surface antigens of toxoplasma gondii induces immune response and protection against infection in mice. Hum Gene Ther 2006; 17:415-26. [PMID: 16610929 DOI: 10.1089/hum.2006.17.415] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have generated recombinant adenoviruses encoding three genetically modified surface antigens (SAGs) of the parasite Toxoplasma gondii, that is, AdSAG1, AdSAG2, and AdSAG3. Modifications included the removal of their glycosylphosphatidylinositol (GPI) anchoring motifs and, in some cases, the exchange of the native signal peptide for influenza virus hemagglutinin signal sequence. Adenovirus immunization of BALB/c mice elicited potent antibody responses against each protein, displaying a significant bias toward a helper T cell type 1 (Th1) profile in animals vaccinated with AdSAG1. Furthermore, the presence of parasite-specific IFN-gamma-producing T cells was analyzed by proliferation assays and enzyme-linked immunospot assays in the same animals. Splenocytes from immunized mice secreted IFN-gamma after in vitro stimulation with tachyzoite lysate antigen or with a fraction enriched for membrane-purified GPI-anchored proteins (F3) from the T. gondii tachyzoite surface. Epitopes recognized by CD8+ T cells were identified in SAG1 and SAG3, but not SAG2, sequences, although this protein also induced a specific response. We also tested the capacity of the immune responses detected to protect mice against a challenge with live T. gondii parasites. Although no protection was observed against tachyzoites of the highly virulent RH strain, a significant reduction in cyst loads in the brain was observed in animals challenged with the P-Br strain. Thus, up to 80% of the cysts were eliminated from animals vaccinated with a mixture of the three recombinant viruses. Because adenoviruses seemed capable of inducing Th1-biased protective immune responses against T. gondii antigens, other parasite antigens should be tested alone or in combination with those described here to further develop a protective vaccine against toxoplasmosis.
Collapse
MESH Headings
- Adenoviridae
- Animals
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Female
- Gene Deletion
- Immunity, Active
- Immunity, Cellular
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred BALB C
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Vaccines/genetics
- Protozoan Vaccines/immunology
- Recombination, Genetic
- Toxoplasma/immunology
- Toxoplasmosis, Animal/immunology
- Toxoplasmosis, Animal/prevention & control
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Virus Replication/genetics
Collapse
Affiliation(s)
- Bráulia C Caetano
- Laboratório de Imunoparasitologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | | | | | | | | |
Collapse
|
531
|
Blanchard Y, Le Meur N, Le Cunff M, Blanchard P, Léger J, Jestin A. Cellular gene expression survey of PseudoRabies Virus (PRV) infected Human Embryonic Kidney cells (HEK-293). Vet Res 2006; 37:705-23. [PMID: 16820135 DOI: 10.1051/vetres:2006027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 02/21/2006] [Indexed: 11/14/2022] Open
Abstract
Pseudorabies virus (PRV) is an alpha herpesvirus that causes Aujezsky disease in the pig. To characterize the impact of PRV infection on cellular expression, we used microarrays consisting of 9850 oligonucleotides corresponding to human genes and examined the expression levels of mRNA isolated 0.5, 3, 6, and 9 h post infection (hpi) from cultures of infected HEK-293 cells. Very few changes were observed during the first 3 h of infection but significant modifications in the cell expression of more than 1000 genes were clearly apparent by 6 hpi. More than 2400 genes were either up- or down-regulated during the 9 h experiment. These results were then analyzed using gene ontology and the MAPP and MAPPFinder software. This comprehensive analysis clearly shows that the down-regulated genes were mainly involved in macromolecular synthesis (DNA, RNA and proteins) and the cell cycle. The up-regulated genes primarily concerned the regulation of DNA transcription, developmental processes (central nervous system development, neurogenesis, angiogenesis), cell adhesion and potassium transport. This study is the first qualitative analysis of a gene expression survey in a human cell line following PRV infection. It demonstrates global changes in the cell expression profile, and identifies the main biological processes that are altered during virus replication.
Collapse
Affiliation(s)
- Yannick Blanchard
- Laboratoire de Génétique Virale et Biosécurité, Agence Française de Sécurité Sanitaire des Aliments, BP 53, 22440 Ploufragan, France.
| | | | | | | | | | | |
Collapse
|
532
|
Hui AS, Bauer AL, Striet JB, Schnell PO, Czyzyk-Krzeska MF. Calcium signaling stimulates translation of HIF-alpha during hypoxia. FASEB J 2006; 20:466-75. [PMID: 16507764 DOI: 10.1096/fj.05-5086com] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypoxia-inducible factors (HIFs) are ubiquitous transcription factors that mediate adaptation to hypoxia by inducing specific sets of target genes. It is well accepted that hypoxia induces accumulation and activity of HIFs by causing stabilization of their alpha subunits. We have demonstrated that hypoxia stimulates translation of HIF-1alpha and -2alpha proteins by distributing HIF-alpha mRNAs to larger polysome fractions. This requires influx of extracellular calcium, stimulation of classical protein kinase C-alpha (cPKC-alpha), and the activity of mammalian target of rapamycin, mTOR. The translational component contributes to approximately 40-50% of HIF-alpha proteins accumulation after 3 h of 1% O2. Hypoxia also inhibits general protein synthesis and mTOR activity; however, cPKC-alpha inhibitors or rapamycin reduce mTOR activity and total protein synthesis beyond the effects of hypoxia alone. These data show that during general inhibition of protein synthesis by hypoxia, cap-mediated translation of selected mRNAs is induced through the mTOR pathway. We propose that calcium-induced activation of cPKC-alpha hypoxia partially protects an activity of mTOR from hypoxic inhibition. These results provide an important physiologic insight into the mechanism by which hypoxia-stimulated influx of calcium selectively induces the translation of mRNAs necessary for adaptation to hypoxia under conditions repressing general protein synthesis.
Collapse
Affiliation(s)
- Anna S Hui
- Department of Genome Science, Genome Research Institute, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0505, USA
| | | | | | | | | |
Collapse
|
533
|
Merrill MK, Dobrikova EY, Gromeier M. Cell-type-specific repression of internal ribosome entry site activity by double-stranded RNA-binding protein 76. J Virol 2006; 80:3147-56. [PMID: 16537583 PMCID: PMC1440377 DOI: 10.1128/jvi.80.7.3147-3156.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Translation of picornavirus plus-strand RNA genomes occurs via internal ribosomal entry at highly structured 5' untranslated regions. In addition to canonical translation factors, translation rate is likely influenced by supplementary host and viral trans-acting factors. We previously reported that insertion of a heterologous human rhinovirus type 2 internal ribosomal entry site (IRES) into the poliovirus (PV) genome, generating the chimeric virus PV-RIPO, selectively abrogates viral translation and propagation in neurons, which eliminate poliovirus's signature neuropathogenicity. While severely deficient in cells of neuronal lineage, the rhinovirus IRES promotes efficient propagation of PV-RIPO in cancer cells. Tumor-specific IRES function can be therapeutically exploited to direct viral cytotoxicity to cancer cells. Neuron-glioma heterokaryon analysis implicates neuronal trans-dominant inhibition in this effect, suggesting that host trans-acting factors repress IRES function in a cell-type-specific manner. We identified a set of proteins from neuronal cells with affinity for the rhinovirus IRES, including double-stranded RNA-binding protein 76 (DRBP76). DRBP76 associates with the IRES in neuronal but not in malignant glioma cells. Moreover, DRBP76 depletion in neuronal cells enhances rhinovirus IRES-driven translation and virus propagation. Our observations suggest that cell-type-specific association of DRBP76 with the rhinovirus IRES represses PV-RIPO translation and propagation in neuronal cells.
Collapse
Affiliation(s)
- Melinda K Merrill
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
534
|
Caetano BC, Bruna-Romero O, Fux B, Mendes EA, Penido MLO, Gazzinelli RT. Vaccination with Replication-Deficient Recombinant Adenoviruses Encoding the Main Surface Antigens of Toxoplasma gondii Induces Immune Response and Protection Against Infection in Mice. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
535
|
Mohapatra DP, Trimmer JS. The Kv2.1 C terminus can autonomously transfer Kv2.1-like phosphorylation-dependent localization, voltage-dependent gating, and muscarinic modulation to diverse Kv channels. J Neurosci 2006; 26:685-95. [PMID: 16407566 PMCID: PMC6674430 DOI: 10.1523/jneurosci.4620-05.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modulation of K+ channels is widely used to dynamically regulate neuronal membrane excitability. The voltage-gated K+ channel Kv2.1 is an abundant delayed rectifier K+ (IK) channel expressed at high levels in many types of mammalian central neurons where it regulates diverse aspects of membrane excitability. Neuronal Kv2.1 is constitutively phosphorylated, localized in high-density somatodendritic clusters, and has a relatively depolarized voltage dependence of activation. Here, we show that the clustering and voltage-dependent gating of endogenous Kv2.1 in cultured rat hippocampal neurons are modulated by cholinergic stimulation, a common form of neuromodulation. The properties of neuronal Kv2.1 are recapitulated in recombinant Kv2.1 expressed in human embryonic kidney 293 (HEK293) cells, but not COS-1 cells, because of cell background-specific differences in Kv2.1 phosphorylation. As in neurons, Kv2.1 in HEK293 cells is dynamically regulated by cholinergic stimulation, which leads to Ca2+/calcineurin-dependent dephosphorylation of Kv2.1, dispersion of channel clusters, and hyperpolarizing shifts in the voltage-dependent gating properties of the channel. Immunocytochemical, biochemical, and biophysical analyses of chimeric Kv channels show that the Kv2.1 cytoplasmic C-terminal domain can act as an autonomous domain sufficient to transfer Kv2.1-like clustering, voltage-dependent activation, and cholinergic modulation to diverse Kv channels. These findings provide novel mechanistic insights into cholinergic modulation of ion channels and regulation of the localization and voltage-dependent gating properties of the abundant neuronal Kv2.1 channel by cholinergic and other neuromodulatory stimuli.
Collapse
Affiliation(s)
- Durga P Mohapatra
- Department of Pharmacology, School of Medicine, University of California, Davis, California 95616, USA
| | | |
Collapse
|
536
|
Cagnol S, Van Obberghen-Schilling E, Chambard JC. Prolonged activation of ERK1,2 induces FADD-independent caspase 8 activation and cell death. Apoptosis 2006; 11:337-46. [PMID: 16538383 DOI: 10.1007/s10495-006-4065-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prolonged ERK/MAPK activation has been implicated in neuronal cell death in vitro and in vivo. We found that HEK293 cells, recently reported to express neuronal markers, are exquisitely sensitive to long term ERK stimulation. Activation of an inducible form of Raf-1 (Raf-1:ER) in HEK293 cells induced massive apoptosis characterized by DNA degradation, loss of plasma membrane integrity and PARP cleavage. Cell death required MEK activity and protein synthesis and occurred via the death receptor pathway independently of the mitochondrial pathway. Accordingly, prolonged ERK stimulation activated caspase 8 and strongly potentiated Fas signaling. The death receptor adaptator FADD was found to be rapidly induced upon ERK activation. However using RNA interference and ectopic expression, we demonstrated that neither FADD nor Fas were necessary for caspase 8 activation and cell death. These findings reveal that prolonged ERK/MAPK stimulation results in caspase 8 activation and cell death.
Collapse
Affiliation(s)
- S Cagnol
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR6543, Université de Nice Sophia-Antipolis, Centre Antoine Lacassagne, 33 Ave Valombrose, 06189, Nice, France
| | | | | |
Collapse
|
537
|
Ungrin MD, Harrington L. Strict control of telomerase activation using Cre-mediated inversion. BMC Biotechnol 2006; 6:10. [PMID: 16504006 PMCID: PMC1403769 DOI: 10.1186/1472-6750-6-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 02/20/2006] [Indexed: 01/25/2023] Open
Abstract
Background Human cells appear exquisitely sensitive to the levels of hTERT expression, the telomerase reverse transcriptase. In primary cells that do not express hTERT, telomeres erode with each successive cell division, leading to the eventual loss of telomere DNA, an induction of a telomere DNA damage response, and the onset of cellular senescence or crisis. In some instances, an average of less than one appropriately spliced hTERT transcript per cell appears sufficient to restore telomerase activity and telomere maintenance, and overcome finite replicative capacity. Results To underscore this sensitivity, we showed that a widely used system of transcriptional induction involving ecdysone (muristerone) led to sufficient expression of hTERT to immortalize human fibroblasts, even in the absence of induction. To permit tightly regulated expression of hTERT, or any other gene of interest, we developed a method of transcriptional control using an invertible expression cassette flanked by antiparallel loxP recombination sites. When introduced into human fibroblasts with the hTERT cDNA positioned in the opposite orientation relative to a constitutively active promoter, no telomerase activity was detected, and the cell population retained a mortal phenotype. Upon inversion of the hTERT cDNA to a transcriptionally competent orientation via the action of Cre recombinase, cells acquired telomerase activity, telomere DNA was replenished, and the population was immortalized. Further, using expression of a fluorescent protein marker, we demonstrated the ability to repeatedly invert specific transcripts between an active and inactive state in an otherwise isogenic cell background. Conclusion This binary expression system thus provides a useful genetic means to strictly regulate the expression of a given gene, or to control the expression of at least two different genes in a mutually exclusive manner.
Collapse
Affiliation(s)
- Mark D Ungrin
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, Toronto, Ontario, M5S 3E1, USA
| | - Lea Harrington
- Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, and Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Toronto, ON M5G 2C1, USA
| |
Collapse
|
538
|
Altaras NE, Aunins JG, Evans RK, Kamen A, Konz JO, Wolf JJ. Production and formulation of adenovirus vectors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 99:193-260. [PMID: 16568893 DOI: 10.1007/10_008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adenovirus vectors have attracted considerable interest over the past decade, with ongoing clinical development programs for applications ranging from replacement therapy for protein deficiencies to cancer therapeutics to prophylactic vaccines. Consequently, considerable product, process, analytical, and formulation development has been undertaken to support these programs. For example, "gutless" vectors have been developed in order to improve gene transfer capacity and durability of expression; new cell lines have been developed to minimize recombination events; production conditions have been optimized to improve volumetric productivities; analytical techniques and scaleable purification processes have advanced towards the goal of purified adenovirus becoming a "well-characterized biological"; and liquid formulations have been developed which maintain virus infectivity at 2-8 degrees C for over 18 months. These and other advances in the production of adenovirus vectors are discussed in detail in this review. In addition, the needs for the next decade are highlighted.
Collapse
Affiliation(s)
- Nedim E Altaras
- Fermentation and Cell Culture, Merck Research Laboratories, West Point, Pennsylvannia 19486-0004, USA
| | | | | | | | | | | |
Collapse
|
539
|
Abstract
Adenovirus continues to be an important model system for investigating basic aspects of cell biology. Interactions of several cellular proteins with E1A conserved regions (CR) 1 and 2, and inhibition of apoptosis by E1B proteins are required for oncogenic transformation. CR2 binds RB family members, de-repressing E2F transcription factors, thus activating genes required for cell cycling. E1B-19K is a BCL2 homolog that binds and inactivates proapoptotic BAK and BAX. E1B-55K binds p53, inhibiting its transcriptional activation function. In productively infected cells, E1B-55K and E4orf6 assemble a ubiquitin ligase with cellular proteins Elongins B and C, Cullin 5 and RBX1 that polyubiquitinates p53 and one or more subunits of the MRN complex involved in DNA double-strand break repair, directing them to proteosomal degradation. E1A CR3 activates viral transcription by interacting with the MED23 Mediator subunit, stimulating preinitiation complex assembly on early viral promoters and probably also the rate at which they initiate transcription. The viral E1B-55K/E4orf6 ubiquitin ligase is also required for efficient viral late protein synthesis in many cell types, but the mechanism is not understood. E1A CR1 binds several chromatin-modifying complexes, but how this contributes to stimulation of cellular DNA synthesis and transformation is not clear. E1A CR4 binds the CtBP corepressor, but the mechanism by which this modulates the frequency of transformation remains to be determined. Clearly, adenovirus has much left to teach us about fundamental cellular processes.
Collapse
Affiliation(s)
- Arnold J Berk
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, University of California, Los Angeles (UCLA), 90095-1570, USA.
| |
Collapse
|
540
|
Radecke F, Radecke S, Schwarz K. Unmodified oligodeoxynucleotides require single-strandedness to induce targeted repair of a chromosomal EGFP gene. J Gene Med 2005; 6:1257-71. [PMID: 15459968 DOI: 10.1002/jgm.613] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A number of genetic defects in humans are due to point mutations in a single, often tightly regulated gene. Genetic treatment of such defects is preferably done by correcting only the altered base pair at the endogenous locus rather than by a gene replacement strategy involving viral vectors. Promisingly high repair rates have been achieved in some systems with the non-viral approach of transfecting chimeric RNA/DNA oligonucleotides (chimeraplasts). However, since this technique does not yet perform robustly, several parameters thought to be important in oligonucleotide-mediated gene repair were examined. METHODS A series of transgenic HEK-293 cell clones has been established harboring high or low copy numbers of a point-mutated 'enhanced green fluorescent protein' (EGFP) gene as the target. At the level of single living cells, repair efficiencies were measured by fluorescence-activated cell sorting (FACS) regarding topology (single-stranded, double-stranded), exonuclease protection (four phosphorothioate linkages at both ends), polarity (sense, antisense), and length (13mer, 19mer, 35mer, 69mer) of the oligonucleotide. RESULTS When targeting chromosomal loci, up to 0.2% corrected cells were obtained with single-stranded unmodified oligodeoxynucleotides, whereas a chimeraplast, its DNA analogue, and double-stranded DNA fragments were practically non-functional. Correction efficiencies correlated with target gene copy numbers. Modifying exonuclease resistance, polarity or length of single-stranded oligodeoxynucleotides did not enhance repair efficacy above the sub-percentage range. CONCLUSIONS Successful chromosomal reporter gene repair in HEK-293 cells required an oligodeoxynucleotide to be single-stranded. In concert with the gene copy number correlation, functional interaction between the repair molecule and the target site seems to be one bottleneck in targeted gene repair.
Collapse
MESH Headings
- Cell Line
- Chromosomes, Human/genetics
- DNA Repair
- Flow Cytometry
- Gene Dosage
- Green Fluorescent Proteins/genetics
- Humans
- Oligodeoxyribonucleotides, Antisense/chemistry
- Oligodeoxyribonucleotides, Antisense/genetics
- Oligodeoxyribonucleotides, Antisense/toxicity
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/toxicity
- Oligoribonucleotides, Antisense/chemistry
- Oligoribonucleotides, Antisense/genetics
- Oligoribonucleotides, Antisense/toxicity
- Point Mutation
Collapse
Affiliation(s)
- Frank Radecke
- Institut für Klinische Transfusionsmedizin und Immungenetik Ulm gGmbH, Abteilung Transfusionsmedizin, Universität Ulm, D-89081 Ulm, Germany
| | | | | |
Collapse
|
541
|
Liu Y, Shevchenko A, Shevchenko A, Berk AJ. Adenovirus exploits the cellular aggresome response to accelerate inactivation of the MRN complex. J Virol 2005; 79:14004-16. [PMID: 16254336 PMCID: PMC1280221 DOI: 10.1128/jvi.79.22.14004-14016.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 08/18/2005] [Indexed: 12/26/2022] Open
Abstract
Results reported here indicate that adenovirus 5 exploits the cellular aggresome response to accelerate inactivation of MRE11-RAD50-NBS1 (MRN) complexes that otherwise inhibit viral DNA replication and packaging. Aggresomes are cytoplasmic inclusion bodies, observed in many degenerative diseases, that are formed from aggregated proteins by dynein-dependent retrograde transport on microtubules to the microtubule organizing center. Viral E1B-55K protein forms aggresomes that sequester p53 and MRN in transformed cells and in cells transfected with an E1B-55K expression vector. During adenovirus infection, the viral protein E4orf3 associates with MRN in promyelocytic leukemia protein nuclear bodies before MRN is bound by E1B-55K. Either E4orf3 or E4orf6 is required in addition to E1B-55K for E1B-55K aggresome formation and MRE11 export to aggresomes in adenovirus-infected cells. Aggresome formation contributes to the protection of viral DNA from MRN activity by sequestering MRN in the cytoplasm and greatly accelerating its degradation by proteosomes following its ubiquitination by the E1B-55K/E4orf6/elongin BC/Cullin5/Rbx1 ubiquitin ligase. Our results show that aggresomes significantly accelerate protein degradation by the ubiquitin-proteosome system. The observation that a normal cellular protein is inactivated when sequestered into an aggresome through association with an aggresome-inducing protein has implications for the potential cytotoxicity of aggresome-like inclusion bodies in degenerative diseases.
Collapse
Affiliation(s)
- Yue Liu
- Molecular Biology Institute and Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095-1570, USA
| | | | | | | |
Collapse
|
542
|
Pericić D, Lazić J, Strac DS. Chronic treatment with flumazenil enhances binding sites for convulsants at recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors. Biomed Pharmacother 2005; 59:408-14. [PMID: 16084060 DOI: 10.1016/j.biopha.2005.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 02/24/2005] [Indexed: 11/26/2022] Open
Abstract
GABA(A) receptors mediate most of the fast inhibitory neurotransmission in the brain. Prolonged occupancy of these receptors by ligands leads to regulatory changes often resulting in reduction of receptor function. The mechanism of these changes is still unknown. In this study, stably transfected human embryonic kidney (HEK) 293 cells were used as a model to study the effects of prolonged flumazenil (antagonist of benzodiazepine binding sites at GABA(A) receptors) exposure on the recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors, the most common type of GABA(A) receptors found in the brain. Exposure (48 h) of HEK 293 cells stably expressing recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors to flumazenil (1 or 5 microM) in the presence of GABA (1 microM), enhanced the maximum number (B(max)) without affecting the affinity (K(d)) of [(3)H]TBOB labeled binding sites for convulsants. Diazepam (1 nM-1 mM) in the presence of GABA (1 microM) modulated [(3)H]TBOB binding to control and flumazenil pretreated cells according to a two-site model. No significant differences between the groups were observed in either the potency or efficacy of diazepam to modulate [(3)H]TBOB binding, as evidenced by a lack of significant changes between their IC(50) and I(max) values. The results suggest that chronic exposure of HEK 293 cells stably expressing recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors to flumazenil up-regulates the binding sites for convulsants, but it does not appear to affect the functional coupling between these sites and benzodiazepine binding sites. Along with our recent data, these results suggest that chronic treatment with flumazenil enhances the number of GABA(A) receptors.
Collapse
Affiliation(s)
- Danka Pericić
- Ruder Bosković Institute, Laboratory for Molecular Neuropharmacology, Division of Molecular Medicine, P.O.B. 180, 10002 Zagreb, Croatia.
| | | | | |
Collapse
|
543
|
Abstract
Recent studies show that the melanocyte transcription factor MITF not only activates differentiation genes but also genes involved in the regulation of the cell cycle, suggesting that it provides a link between cell proliferation and differentiation. MITF, however, comes in a variety of splice isoforms with potentially distinct biological activities. In particular, there are two isoforms, (-) and (+) MITF, that differ in six residues located upstream of the DNA binding basic domain and show slight differences in the efficiency with which they bind to target DNA. Using in vitro BrdU incorporation assays and FACS analysis in transiently transfected cells, we show that (+) MITF has a strong inhibitory effect on DNA synthesis while (-) MITF has none or only a mild one. The strong inhibitory activity of (+) MITF is not influenced by a number of mutations that modulate MITF's transcriptional activities and is independent of the protein's carboxyl terminus but dependent on its aminoterminus. A further dissection of the molecule points to the importance of an aminoterminal serine, serine-73, which in both isoforms is phosphorylated to comparable degrees. The results suggest that one or several aminoterminal domains cooperate with the alternatively spliced hexapeptide to render MITF anti-proliferative in a way that does not depend on direct E box binding.
Collapse
Affiliation(s)
- Keren Bismuth
- Mammalian Development Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
544
|
Bottley G, Cook GP, Meade JL, Holt JR, Hoeben RC, Blair GE. Differential expression of LFA-3, Fas and MHC Class I on Ad5- and Ad12-transformed human cells and their susceptibility to lymphokine-activated killer (LAK) cells. Virology 2005; 338:297-308. [PMID: 15963548 DOI: 10.1016/j.virol.2005.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 02/25/2005] [Accepted: 05/12/2005] [Indexed: 11/19/2022]
Abstract
Adenovirus (Ad) E1A is a potent oncogene and has been shown to deregulate the expression of a large number of cellular genes leading to cellular transformation. Here we have analysed the expression of several immunomodulatory molecules on the surface of a set of human cell lines transformed with either Ad12 or Ad5. Human cells transformed with Ad12 demonstrated reduced expression of cell surface LFA-3, Fas and MHC class I when compared to Ad5-transformed cells. Furthermore, Ad12-transformed human cell lines demonstrated greater susceptibility to lysis by lymphokine-activated killer (LAK) cells, compared to Ad5-transformed human cell lines. In contrast, previous studies with rodent cells showed that both Ad5- and Ad12-transformed rat cells were susceptible to LAK cells. Thus, transformation of human cells with Ad5 or Ad12 results in differences in the expression of immunomodulatory molecules on the cell surface and differential recognition of these virus-transformed cells by immune effector cells.
Collapse
Affiliation(s)
- Graham Bottley
- Molecular Cell Biology Research Group and School of Biochemistry and Microbiology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
545
|
Ghiselli G, Liu CG. Global gene expression profiling of cells overexpressing SMC3. Mol Cancer 2005; 4:34. [PMID: 16156898 PMCID: PMC1242249 DOI: 10.1186/1476-4598-4-34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 09/12/2005] [Indexed: 12/24/2022] Open
Abstract
Background The Structural Maintenance of Chromosome 3 protein (SMC3) plays an essential role during the sister chromatid separation, is involved in DNA repair and recombination and participates in microtubule-mediated intracellular transport. SMC3 is frequently elevated in human colon carcinoma and overexpression of the protein transforms murine NIH3T3 fibroblasts. In order to gain insight into the mechanism of SMC3-mediated tumorigenesis a gene expression profiling was performed on human 293 cells line stably overexpressing SMC3. Results Biotinylated complementary RNA (cRNA) was used for hybridization of a cDNAmicroarray chip harboring 18,861 65-mer oligos derived from the published dEST sequences. After filtering, the hybridization data were normalized and statistically analyzed. Sixty-five genes for which a putative function could be assigned displayed at least two-fold change in their expression level. Eighteen of the affected genes is either a transcriptional factor or is involved in DNA and chromatin related mechanisms whereas most of those involved in signal transduction are members or modulators of the ras-rho/GTPase and cAMP signaling pathways. In particular the expression of RhoB and CRE-BPa, two mediators of cellular transformation, was significantly enhanced. This association was confirmed by analyzing the RhoB and CRE-BPa transcript levels in cells transiently transfected with an SMC3 expression vector. Consistent with the idea that the activation of ras-rho/GTPase and cAMP pathways is relevant in the context of the cellular changes following SMC3 overexpression, gene transactivation through the related serum (SRE) and cAMP (CRE) cis-acting response elements was significantly increased. Conclusion We have documented a selective effect of the ectopic expression of SMC3 on a set of genes and transcriptional signaling pathways that are relevant for tumorigenesis. The results lead to postulate that RhoB and CRE-BPa two known oncogenic mediators whose expression is significantly increased following SMC3 overexpression play a significant role in mediating SMC3 tumorigenesis.
Collapse
Affiliation(s)
- Giancarlo Ghiselli
- Department of Pathology and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
- Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Chang-Gong Liu
- Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
- Department of Microbiology and Immunology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
546
|
Redmond TM, Poliakov E, Yu S, Tsai JY, Lu Z, Gentleman S. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc Natl Acad Sci U S A 2005; 102:13658-63. [PMID: 16150724 PMCID: PMC1224626 DOI: 10.1073/pnas.0504167102] [Citation(s) in RCA: 334] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RPE65 is essential for isomerization of vitamin A to the visual chromophore. Mutations in RPE65 cause early-onset blindness, and Rpe65-deficient mice lack 11-cis-retinal but overaccumulate alltrans-retinyl esters in the retinal pigment epithelium (RPE). RPE65 is proposed to be a substrate chaperone but may have an enzymatic role because it is closely related to carotenoid oxygenases. We hypothesize that, by analogy with other carotenoid oxygenases, the predicted iron-coordinating residues of RPE65 are essential for retinoid isomerization. To clarify RPE65's role in isomerization, we reconstituted a robust minimal visual cycle in 293-F cells. Only cells transfected with RPE65 constructs produced 11-cis-retinoids, but coexpression with lecithin:retinol acyltransferase was needed for high-level production. Accumulation was significant, amounting to >2 nmol of 11-cis-retinol per culture. Transfection with constructs harboring mutations in residues of RPE65 homologous to those required for interlinked enzymatic activity and iron coordination in related enzymes abolish this isomerization. Iron chelation also abolished isomerization activity. Mutating cysteines implicated in palmitoylation of RPE65 had generally little effect on isomerization activity. Mutations associated with Leber congenital amaurosis/early-onset blindness cause partial to total loss of isomerization activity in direct relation to their clinical effects. These findings establish a catalytic role, in conjunction with lecithin:retinol acyltransferase, for RPE65 in synthesis of 11-cis-retinol, and its identity as the isomerohydrolase.
Collapse
Affiliation(s)
- T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology and Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-0706, USA.
| | | | | | | | | | | |
Collapse
|
547
|
Campbell SA, Lin J, Dobrikova EY, Gromeier M. Genetic determinants of cell type-specific poliovirus propagation in HEK 293 cells. J Virol 2005; 79:6281-90. [PMID: 15858012 PMCID: PMC1091735 DOI: 10.1128/jvi.79.10.6281-6290.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of poliovirus to propagate in neuronal cells can be reduced by introducing appropriate nucleotide substitutions into the viral genome. Specific mutations scattered throughout the poliovirus genome yielded the live attenuated vaccine strains of poliovirus. Neuron-specific propagation deficits of the Sabin strains are partially encrypted within a confined region of the internal ribosomal entry site (IRES), which carries attenuating point mutations in all three serotypes. Recently, high levels of neurovirulence attenuation were achieved with genetically engineered polioviruses containing heterologous IRES elements. This is exemplified with poliovirus recombinants replicating under control of a human rhinovirus type 2 (HRV2) IRES element. We have carried out experiments delineating the genetic basis for neuronal IRES function. Neuronal dysfunction of the HRV2 IRES is determined mainly by IRES stem-loop domain V, the locus for attenuating point mutations within the Sabin strains. Neuronal incompetence associated with HRV2 IRES domain V is substantially more pronounced than that observed with the attenuating IRES point mutation of the Sabin serotype 1 vaccine strain. Mix-and-match recombination of polio and HRV2 IRES domain V suggests that the attenuation phenotype correlates with overall structural features rather than primary sequence. Our experiments have identified HEK 293 cells as a novel system for the study of neuron-specific replication phenotypes of poliovirus. This cell line, originally derived from embryonic human kidney, has recently been described to display neuronal characteristics. We report propagation properties in HEK 293 cells for poliovirus recombinants with attenuated neurovirulence in experimental animals that corroborate this observation.
Collapse
Affiliation(s)
- Stephanie A Campbell
- Dept. of Molecular Genetics and Microbiology, Duke University Medical Center, Box 3020, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
548
|
Moog-Lutz C, Degoutin J, Gouzi JY, Frobert Y, Brunet-de Carvalho N, Bureau J, Créminon C, Vigny M. Activation and inhibition of anaplastic lymphoma kinase receptor tyrosine kinase by monoclonal antibodies and absence of agonist activity of pleiotrophin. J Biol Chem 2005; 280:26039-48. [PMID: 15886198 DOI: 10.1074/jbc.m501972200] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is transiently expressed in specific regions of the central and peripheral nervous systems, suggesting a role in its normal development and function. The nature of the cognate ligands of ALK in vertebrate is still a matter of debate. We produced a panel of monoclonal antibodies (mAbs) directed against the extracellular domain of the human receptor. Two major species of ALK (220 and 140 kDa) were identified in transfected cells, and the use of our mAbs established that the 140-kDa species results from a cleavage of the 220-kDa form. Two mAbs, in the nm range, induced the differentiation of PC12 cells transiently transfected with ALK. In human embryonic kidney 293 cells stably expressing ALK, these two mAbs strongly activated the receptor and subsequently the mitogen-activated protein kinase pathway. We further showed for the first time that activation of ALK also resulted in a specific activation of STAT3. In contrast, other mAbs presented the characteristics of blocking antibodies. Finally, in these cell systems, a mitogenic form of pleiotrophin, a proposed ligand of ALK, failed to activate this receptor. Thus, in the absence of clearly established ligand(s) in vertebrates, the availability of mAbs allowing the activation or the inhibition of the receptor will be essential for a better understanding of the biological roles of ALK.
Collapse
Affiliation(s)
- Christel Moog-Lutz
- INSERM, Unité 706/Université Pierre et Marie Curie, Paris F-75005, France
| | | | | | | | | | | | | | | |
Collapse
|
549
|
Parks RJ. Adenovirus protein IX: a new look at an old protein. Mol Ther 2005; 11:19-25. [PMID: 15585402 DOI: 10.1016/j.ymthe.2004.09.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 09/21/2004] [Accepted: 09/22/2004] [Indexed: 10/26/2022] Open
Abstract
The success of gene therapy depends in part on our understanding of the biology of gene therapy vectors. This knowledge must be used to improve the function, safety, and versatility of the vector system. For decades, we have known which viral proteins are involved in formation of the adenovirus (Ad) capsid, but we are still learning how these proteins can be altered or manipulated to improve vector function. The Ad protein IX (pIX) was originally identified as a minor component of the Ad capsid, but was not essential for virion formation. However, more recent studies have suggested that pIX may have multiple roles in the Ad life cycle, including acting as a transcriptional activator and reorganizing nuclear proteins to provide an environment more conducive to virus replication. In gene therapy studies, removal of pIX from the Ad vector backbone was used to increase the cloning capacity of E1-deleted Ad vectors and to develop a new method for preparing helper-dependent Ad vectors. pIX has also been at the center of numerous attempts to eliminate the problem of replication-competent Ad in Ad vector preparations. Finally, pIX represents a versatile platform for the presentation of polypeptides on the surface of the viral capsid, including ligands for virus retargeting and fluorescent proteins for visualizing the virus in vitro and in vivo. Thus, the importance and uses of this "minor" capsid protein have changed significantly over the past few years.
Collapse
Affiliation(s)
- Robin J Parks
- Molecular Medicine Program, Ottawa Health Research Institute, Ottawa, ON, Canada K1H 8L6.
| |
Collapse
|
550
|
Thomas P, Smart TG. HEK293 cell line: A vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 2005; 51:187-200. [PMID: 15862464 DOI: 10.1016/j.vascn.2004.08.014] [Citation(s) in RCA: 471] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2004] [Indexed: 11/25/2022]
Abstract
The HEK cell line has been extensively used as an expression tool for recombinant proteins since it was generated over 25 years ago. Although of epithelial origin, its biochemical machinery is capable of carrying out most of the post-translational folding and processing required to generate functional, mature protein from a wide spectrum of both mammalian and non-mammalian nucleic acids. Though popular as a transient expression system, this cell type has also seen wide use in stably transfected forms (i.e. transformed cells) to study a variety of cell-biological questions in neurobiology. The principal attributes which have made the HEK cell a popular choice among electrophysiologists to study isolated receptor channels include; its quick and easy reproduction and maintenance; amenability to transfection using a wide variety of methods; high efficiency of transfection and protein production; faithful translation and processing of proteins; and small cell size with minimal processes appropriate for voltage-clamp experimentation. These, and other attributes, also mean that complementary biochemical/cell biological evaluations of expressed proteins can be performed in concert with functional analyses to establish detailed pharmacological and biophysical profiles for the action of new drugs and their targets. The increased amount of sequence information available from the human genome has placed greater emphasis upon heterologous cell expression systems as targets for high throughput structure-function evaluation of novel drug targets and disease markers. Here we have highlighted some of the innate characteristics of the HEK cell in order that its suitability as a vehicle for the expression of a gene product can be assessed for particular needs. We have also detailed some of the standard methods used for transfection and obtaining functional data from electrophysiological recording techniques.
Collapse
Affiliation(s)
- Philip Thomas
- Department of Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|