501
|
Araki T, Kato H, Shuto K, Itoyama Y. Post-ischemic alterations in [3H]FK506 binding in the gerbil and rat brains. Metab Brain Dis 1998; 13:9-19. [PMID: 9570636 DOI: 10.1023/a:1020622827351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated post-ischemic changes in FK506 binding protein (FKBP) in the brain after transient global ischemia in gerbils or transient focal ischemia in rats. [3H]FK506 was used to label FKBP as a immunophilin. In transient global ischemia, [3H]FK506 binding showed a transient reduction in the frontal cortex only 1 h after recirculation. In the striatum, the dorsolateral part exhibited a significant increase in [3H]FK506 binding 5, 24 and 48 h after ischemia. However, the ventromedial part showed a transient elevation in [3H]FK506 binding 24 h after ischemia. Thereafter, the ventromedial part showed no conspicuous change in [3H]FK506 binding up to 7 days after ischemia. The dorsolateral part also showed no significant change in [3H]FK506 binding 7 days after ischemia. In the hippocampus and thalamus, [3H]FK506 binding was unchanged in the stratum radiatum of the hippocampal CA1 sector, hippocampal CA3 sector, dentate gyrus and thalamus up to 7 days after ischemia. However, the stratum oriens of the hippocampal CA1 sector showed a significant reduction in [3H]FK506 binding 48 h and 7 days after ischemia. A histological study showed that transient cerebral ischemia caused a severe damage in the striatum and hippocampal CA1 sector. In a model of transient focal ischemia, a marked increase in [3H]FK506 binding was also found in the striatum and cerebral cortex where severe infarctions were observed. These results demonstrate that post-ischemic change in [3H]FK506 binding between the striatum and hippocampus may be produced by different mechanisms. Furthermore, our findings suggest that immunophilins may play some role in the pathogenesis of ischemic diseases.
Collapse
Affiliation(s)
- T Araki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | |
Collapse
|
502
|
Affiliation(s)
- W D Dietrich
- Department of Neurology, University of Miami of School of Medicine, Florida 33101, USA
| |
Collapse
|
503
|
|
504
|
Higuchi Y, Hattori H, Kume T, Tsuji M, Akaike A, Furusho K. Increase in nitric oxide in the hypoxic-ischemic neonatal rat brain and suppression by 7-nitroindazole and aminoguanidine. Eur J Pharmacol 1998; 342:47-9. [PMID: 9544791 DOI: 10.1016/s0014-2999(97)01524-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We measured the changes in nitric oxide (NO) metabolites in the brains of neonatal rats with hypoxic-ischemic damage. There were two peaks of NO metabolites in the lesioned side of the cortex without treatment: one during hypoxia and the other during the re-oxygenation period. Prehypoxic treatment with 7-nitroindazole, a selective neuronal NO synthase inhibitor, suppressed both peaks of NO metabolites, whereas prehypoxic treatment with aminoguanidine, a selective inducible NO synthase inhibitor, partially suppressed only the peak in the re-oxygenation period. These data suggest different roles of neuronal and inducible NO synthases in the pathogenesis of hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Y Higuchi
- Department of Pediatrics, Faculty of Medicine, Kyoto University, Japan.
| | | | | | | | | | | |
Collapse
|
505
|
Murakami K, Kondo T, Kawase M, Chan PH. The development of a new mouse model of global ischemia: focus on the relationships between ischemia duration, anesthesia, cerebral vasculature, and neuronal injury following global ischemia in mice. Brain Res 1998; 780:304-10. [PMID: 9507171 DOI: 10.1016/s0006-8993(97)01217-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new model for mouse global ischemia is presented, and the relationship of ischemia duration, cerebral vasculature, and ischemic neuronal injury has been determined. CD-1 mice anesthetized by chloral hydrate were subjected to global ischemia by bilateral common carotid artery occlusion under controlled ventilation for 3, 5, and 10 min. After evaluating the patency of the posterior communicating artery (PcomA) as hypoplastic or normoplastic, neuronal injury was independently determined in the striatum, cortex, and hippocampus in each hemisphere. Ischemic injury was strongly correlated with not only ischemia duration, but also with the patency of the PcomAs. Furthermore, neuronal injury developed in a delayed fashion after 3-min ischemia, while it was maximized at 24 h after 10-min ischemia. Physiological studies showed the induction of slight hypotension as compared with inhalation anesthesia, and improvement of blood gas data relative to spontaneous respiration. These data demonstrate the usefulness of this method to induce selective vulnerability and delayed neuronal cell death in mice, and to provide a useful model to study the detailed mechanism of global ischemia using transgenic or knockout mutant mice.
Collapse
Affiliation(s)
- K Murakami
- Department of Neurological Surgery, University of California, School of Medicine, San Francisco 94143-0651, USA
| | | | | | | |
Collapse
|
506
|
Beasley TC, Bari F, Thore C, Thrikawala N, Louis T, Busija D. Cerebral ischemia/reperfusion increases endothelial nitric oxide synthase levels by an indomethacin-sensitive mechanism. J Cereb Blood Flow Metab 1998; 18:88-96. [PMID: 9428309 DOI: 10.1097/00004647-199801000-00009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In anesthetized piglets, endothelial and neuronal nitric oxide synthase (eNOS and nNOS, respectively) levels were investigated after global cerebral ischemia. Increased intracranial pressure was used to produce 5 or 10 minutes of global ischemia, which was verified visually by observing pial arteriolar blood flow and by a microsphere technique. At 4 to 6 hours of reperfusion, parietal cortex, hippocampus, and cerebellum were collected for immunohistochemical or immunoblot analysis. Immunohistochemical examination localized eNOS only to blood vessels and nNOS only to nonvascular cells, which were primarily neurons in all regions examined. Analysis of immunoblot data revealed significant increases in eNOS levels from 47 +/- 22 pixels/micrograms protein for time controls to 77 +/- 36 pixels/micrograms protein (75% increase) for ischemia in parietal cortex (n = 9 to 10) and 22 +/- 10 for control to 40 +/- 16 pixels/micrograms protein (40% increase) for ischemia in hippocampus (n = 7 to 8). Levels of eNOS in cerebellum also tended to be higher but were variable and not significant (n = 5 to 6). In contrast, changes in nNOS levels were not detected at 4 or 6 hours. The increase in eNOS levels detected on immunoblots also was apparent on tissue sections as an increase in intensity of staining. Cyclooxygenase-dependent mechanisms were investigated with respect to the ischemia-induced increase in eNOS levels. Pretreatment with the cyclooxygenase inhibitor indomethacin (5 mg/kg intravenously) abolished the ischemia-induced eNOS increase in parietal cortex and hippocampus (n = 7). Thus, we conclude that the eNOS response is rapid, specific to vessels, and involves an indomethacin-sensitive mechanism.
Collapse
Affiliation(s)
- T C Beasley
- Department of Neurobiology and Anatomy, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1083, USA
| | | | | | | | | | | |
Collapse
|
507
|
Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev 1998; 78:53-97. [PMID: 9457169 DOI: 10.1152/physrev.1998.78.1.53] [Citation(s) in RCA: 608] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several new concepts have emerged in relation to mechanisms that contribute to regulation of the cerebral circulation. This review focuses on some physiological mechanisms of cerebral vasodilatation and alteration of these mechanisms by disease states. One mechanism involves release of vasoactive factors by the endothelium that affect underlying vascular muscle. These factors include endothelium-derived relaxing factor (nitric oxide), prostacyclin, and endothelium-derived hyperpolarizing factor(s). The normal vasodilator influence of endothelium is impaired by some disease states. Under pathophysiological conditions, endothelium may produce potent contracting factors such as endothelin. Another major mechanism of regulation of cerebral vascular tone relates to potassium channels. Activation of potassium channels appears to mediate relaxation of cerebral vessels to diverse stimuli including receptor-mediated agonists, intracellular second messenger, and hypoxia. Endothelial- and potassium channel-based mechanisms are related because several endothelium-derived factors produce relaxation by activation of potassium channels. The influence of potassium channels may be altered by disease states including chronic hypertension, subarachnoid hemorrhage, and diabetes.
Collapse
Affiliation(s)
- F M Faraci
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, USA
| | | |
Collapse
|
508
|
Affiliation(s)
- K Maiese
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| |
Collapse
|
509
|
Belayev L, Zhao W, Busto R, Ginsberg MD. Transient middle cerebral artery occlusion by intraluminal suture: I. Three-dimensional autoradiographic image-analysis of local cerebral glucose metabolism-blood flow interrelationships during ischemia and early recirculation. J Cereb Blood Flow Metab 1997; 17:1266-80. [PMID: 9397026 DOI: 10.1097/00004647-199712000-00002] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using autoradiographic image-averaging strategies, we studied the relationship between local glucose utilization (LCMRglc) and blood flow (LCBF) in a highly reproducible model of transient (2-hour) middle cerebral artery occlusion (MCAO) produced in Sprague-Dawley rats by insertion of an intraluminal suture coated with poly-L-lysine. Neurobehavioral examination at 60 minutes after occlusion substantiated a high-grade deficit in all animals. In two subgroups, LCBF was measured with 14C-iodoantipyrine at either 1.5 hours of MCAO, or at 1 hour of recirculation after suture removal. In two other matched subgroups, LCMRglc was measured with 14C-2-deoxyglucose at 1.5 to 2.25 hours of MCAO, and at 0.75 to 1.5 hours of recirculation after 2 hours of MCAO. Average image data sets were generated for LCBF, LCMRglc, and the LCMRglc/LCBF ratio for each study time. Middle cerebral artery occlusion for 2 hours induced graded LCBF decrements affecting ipsilateral cortical and basal ganglionic regions. After 1 hour of recirculation, LCBF in previously ischemic neocortical regions increased by 40% to 200% above ischemic levels, but remained depressed, on average, at about 40% of control. By contrast, frank hyperemia was noted in the previously ischemic caudoputamen. Mean cortical LCBF values during MCAO correlated highly with their respective LCBF values after 1 hour of recirculation (R = 0.93), suggesting that post-ischemic LCBF recovery is related to the depth of ischemia. Despite focal ischemia, LCMRglc during approximately 2 hours of MCAO was preserved, on average, at near-normal levels; but following approximately 1 h of recirculation, LCMRglc became markedly depressed (on average, 55% of control in previously densely ischemic cortical regions). Regression analysis indicated that this depressed glucose utilization was determined largely by the intensity of antecedent ischemia. By pixel analysis, the ischemic core (defined as LCBF 0% to 20% of control) comprised 33% of the ischemic hemisphere, and the penumbra (LCBF 20% to 40%) accounted for 26%. The penumbra was concentrated at the coronal poles of the ischemic lesion and formed a thin shell around the central ischemic core. During 2 hours of MCAO, the LCMRglc/LCBF ratio within the ischemic penumbra was increased four-fold above normal (average, 179 umol/100 mL). In marked contrast, after approximately 1 h recirculation, this uncoupling had almost completely subsided. The companion study (Zhao et al., 1997) further analyzes these findings in relation to patterns of infarctive histopathology.
Collapse
Affiliation(s)
- L Belayev
- Department of Neurology, University of Miami School of Medicine, FL 33101, USA
| | | | | | | |
Collapse
|
510
|
Abstract
Nitric oxide (NO) can act as a vasorelaxant, a modulator of neurotransmission and a defence against pathogens. However, under certain conditions, NO can also have damaging effects to cells. Whether NO is useful or harmful depends on its chemical fate, and on the rate and location of its production. Here, we discuss progress in NO chemistry and the enzymology of NO synthases, and we will also attempt to explain its actions in the cardiovascular, nervous and immune systems.
Collapse
Affiliation(s)
- B Mayer
- Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Austria.
| | | |
Collapse
|
511
|
Christopherson KS, Bredt DS. Nitric oxide in excitable tissues: physiological roles and disease. J Clin Invest 1997; 100:2424-9. [PMID: 9366555 PMCID: PMC508441 DOI: 10.1172/jci119783] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- K S Christopherson
- Department of Physiology, University of California at San Francisco 94143, USA
| | | |
Collapse
|
512
|
Bazzett T, Geiger A, Coppola B, Albin R. The neuronal NOS inhibitor L-MIN, but not 7-NINA, reduces neurotoxic effects of chronic intrastriatal administration of quinolinic acid. Brain Res 1997; 775:229-32. [PMID: 9439850 DOI: 10.1016/s0006-8993(97)00962-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rat striata were exposed to 15 mM quinolinic acid (QUIN), or QUIN plus the nitric oxide synthase inhibitors S-methyl-L-thiocitrulline dihydrochloride (L-MIN) or 7-nitroindazole monosodium salt (7-NINA) for 21 days. Co-administration of 100 microM or 1 mM L-MIN with QUIN significantly reduced lesion volume compared to QUIN alone. Co-administration of 1 microM or 10 microM L-MIN with QUIN had no significant effect. There was no significant effect of 7-NINA co-administered with QUIN compared to QUIN alone. L-MIN reduction of lesion volume supports the contention that neuronal nitric oxide synthase is a mediator of excitotoxic injury.
Collapse
Affiliation(s)
- T Bazzett
- Department of Psychology, SUNY Geneseo 14454, USA.
| | | | | | | |
Collapse
|
513
|
Abstract
BACKGROUND Recent clinical trials and meta-analyses of beta-hydroxy-beta-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have demonstrated a reduction in ischemic stroke in patients with a history of coronary artery disease both with and without elevations of serum cholesterol. This review summarizes clinical trials of these compounds and their recent impact on stroke and explores the underlying vascular mechanisms of their actions. SUMMARY OF REVIEW Use of statins in patients with vascular disease has been shown to lower the incidence of stroke by approximately 30%. Statins exhibit a number of antiatherosclerotic and antithrombotic properties that likely underlie the recently observed reductions in cerebrovascular disease. Statins reduce inflammatory, proliferative, and thrombogenic processes in plaque, making it less likely to rupture. Additionally, they reverse the endothelial dysfunction and platelet activation accompanying hypercholesterolemia and may reduce the tendency to thrombosis. CONCLUSIONS Hypercholesterolemia has reemerged as a risk factor for ischemic stroke. Statins protect against thromboembolic stroke through multiple beneficial effects within the vascular milieu. Further data are awaited to support the growing importance of cholesterol as a risk factor for ischemic stroke and the benefits of statin therapy in patients with cerebrovascular disease.
Collapse
Affiliation(s)
- N Delanty
- Department of Neurology, New York Hospital, Cornell Medical Center, New York 10021, USA
| | | |
Collapse
|
514
|
Abstract
Excitotoxicity has been implicated as a mechanism of neuronal death in acute and chronic neurologic diseases. Cerebral ischemia, head and spinal cord injury, and prolonged seizure activity are associated with excessive release of glutamate into the extracellular space and subsequent neurotoxicity. Accumulating evidence suggests that impairment of intracellular energy metabolism increases neuronal vulnerability to glutamate which, even when present at physiologic concentrations, can damage neurons. This mechanism of slow excitotoxicity may be involved in neuronal death in chronic neurodegenerative diseases such as the mitochondrial encephalomyopathies, Huntington's disease, spinocerebellar degeneration syndromes, and motor neuron diseases. If so, glutamate antagonists in combination with agents that selectively inhibit the multiple steps downstream of the excitotoxic cascade or help improve intracellular energy metabolism may slow the neurodegenerative process and offer a therapeutic approach to treat these disorders.
Collapse
Affiliation(s)
- P Bittigau
- Department of Pediatric Neurology, Children's Hospital, Humboldt University, Berlin, Germany
| | | |
Collapse
|
515
|
Increased susceptibility to ischemic brain damage in transgenic mice overexpressing the amyloid precursor protein. J Neurosci 1997. [PMID: 9315887 DOI: 10.1523/jneurosci.17-20-07655.1997] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We studied the role of the amyloid precursor protein (APP) in ischemic brain damage using transgenic mice overexpressing APP. The middle cerebral artery (MCA) was occluded in FVB/N mice expressing APP695.SWE (Swedish mutation) and in nontransgenic littermates. Infarct volume (cubic millimeters) was assessed 24 hr later in thionin-stained brain sections. The infarct produced by MCA occlusion was enlarged in the transgenics (+32 +/- 6%; n = 12; p < 0. 05; t test). Measurement of APP by ELISA revealed that, although relatively high levels of Abeta were present in the brain of the transgenics (Abeta1-40 = 80 +/- 19 pmol/g; n = 6), there were no differences between ischemic and nonischemic hemispheres (p > 0.05). The reduction in cerebral blood flow produced by MCA occlusion at the periphery of the ischemic territory was more pronounced in APP transgenics (-42 +/- 8%; n = 9) than in controls (-20 +/- 8%; n = 9). Furthermore, the vasodilatation produced by neocortical application of the endothelium-dependent vasodilator acetylcholine (10 microM) was reduced by 82 +/- 5% (n = 8; p < 0.05) in APP transgenics. The data demonstrate that APP overexpression increases the susceptibility of the brain to ischemic injury. The effect is likely to involve the Abeta-induced disturbance in endothelium-dependent vascular reactivity that leads to more severe ischemia in regions at risk for infarction. The cerebral vascular actions of peptides deriving from APP metabolism may play a role in the pathogenic effects of APP.
Collapse
|
516
|
Abstract
We investigated the role of neuronal (type I) nitric oxide synthase (nNOS) in NMDA-mediated excitotoxicity in wild-type (SV129 and C57BL/6J) and type I NOS knock-out (nNOS-/-) mice and examined its relationship to apoptosis. Excitotoxic lesions were produced by intrastriatal stereotactic NMDA microinjections (10-20 nmol). Lesion size was dose- and time-dependent, completely blocked by MK-801 pretreatment, and smaller in nNOS knock-out mice compared with wild-type littermates (nNOS+/+, 11.7 +/- 1.7 mm3; n = 8; nNOS-/-, 6. 4 +/- 1.8 mm3; n = 7). The density and distribution of striatal NMDA binding sites, determined by NMDA receptor autoradiography, did not differ between strains. Pharmacological inhibition of nNOS by 7-nitroindazole (50 mg/kg, i.p.) decreased NMDA lesion size by 32% in wild-type mice (n = 7). Neurochemical and immunohistochemical measurements of brain nitrotyrosine, a product of peroxynitrite formation, were increased markedly in wild-type but not in the nNOS-/- mice. Moreover, elevations in 2,3- and 2,5-dihydroxybenzoic acid levels were significantly reduced in the mutant striatum, as a measure of hydroxyl radical production. The importance of apoptosis to NMDA receptor-mediated toxicity was evaluated by DNA laddering and by quantitative histochemistry [terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL) staining]. DNA laddering was first detected within lesioned tissue after 12-24 hr. TUNEL-positive cells were first observed at 12 hr, increased in number at 48 hr and 7 d, and were located predominantly in proximity to the lesion border. The density was significantly lower in nNOS-/- mice. Hence, oligonucleosomal DNA breakdown suggesting apoptosis develops as a late consequence of NMDA microinjection and is reduced in nNOS mutants. The mechanism of protection in nNOS-/- mice may relate to decreased oxygen free radical production and related NO reaction products and, in part, involves mechanisms of neuronal death associated with the delayed appearance of apoptosis.
Collapse
|
517
|
Wagner BP, Stingele R, Williams MA, Wilson DA, Traystman RJ, Hanley DF. NO contributes to neurohypophysial but not other regional cerebral fluorocarbon-induced hyperemia in cats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:H1994-2000. [PMID: 9362271 DOI: 10.1152/ajpheart.1997.273.4.h1994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The large increase in cerebral blood flow (CBF) after fluorocarbon (FC)-exchange transfusion is thought to be caused by low oxygen content, decreased viscosity, or direct vasodilatory effect of the FC perfusate. The aim of this study was to determine whether nitric oxide (NO)-mediated vasorelaxation is increased in FC-perfused hemoglobin (Hb)-free cats because NO is not scavenged by Hb. We measured regional CBF with radiolabeled microspheres in three groups of anesthetized mechanically ventilated cats. The first group [FC + N(omega)-nitro-L-arginine methyl ester (L-NAME), n = 7] underwent a complete FC-exchange transfusion with FC-43 and subsequent nitric oxide synthase (NOS) inhibition with L-NAME (10 mg/kg i.v.) followed by L-arginine (100 mg/kg i.v.). A second group (FC + saline; n = 6) underwent an identical protocol, but NOS was not antagonized (saline i.v.). In a third group (blood + L-NAME; n = 7), cats were not FC exchanged but NOS was inhibited. In a separate cohort of four FC-perfused cats, NOS activity in brain tissue samples was reduced to 26% of control after NOS inhibition. FC-exchange transfusion nearly doubled hemispheric blood flow in both FC-exchanged groups, whereas it was constant in the blood + L-NAME group. These increases in regional CBF (hemispheres, brain stem, cerebellum, thalamus, and white matter) were not reversed by inhibition of NOS, except in the neurohypophysis, where L-NAME reduced blood flow to levels comparable to values in the blood + L-NAME group. In summary, increases in regional CBF after total FC-exchange transfusion are not caused by a lack of NO scavenging, with the exception of neurohypophysis. These findings suggest an increased vasorelaxation in neurohypophysis of FC-perfused and Hb-free cats caused by unscavenged NO, but this mechanism does not play a major role in FC-related CBF increases in the rest of the cerebral circulation.
Collapse
Affiliation(s)
- B P Wagner
- Department of Neurology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA
| | | | | | | | | | | |
Collapse
|
518
|
Toyoda K, Fujii K, Ibayashi S, Nagao T, Kitazono T, Fujishima M. Role of nitric oxide in regulation of brain stem circulation during hypotension. J Cereb Blood Flow Metab 1997; 17:1089-96. [PMID: 9346434 DOI: 10.1097/00004647-199710000-00011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We tested the hypothesis that nitric oxide (NO) plays a role in CBF autoregulation in the brain stem during hypotension. In anesthetized rats, local CBF to the brain stem was determined with laser-Doppler flowmetry, and diameters of the basilar artery and its branches were measured through an open cranial window during stepwise hemorrhagic hypotension. During topical application of 10(-5) mol/L and 10(-4) mol/L N(omega)-nitro-L-arginine (L-NNA), a nonselective inhibitor of nitric oxide synthase (NOS), CBF started to decrease at higher steps of mean arterial blood pressure in proportion to the concentration of L-NNA in stepwise hypotension (45 to 60 mm Hg in the 10(-5) mol/L and 60 to 75 mm Hg in the 10(-4) mol/L L-NNA group versus 30 to 45 mm Hg in the control group). Dilator response of the basilar artery to severe hypotension was significantly attenuated by topical application of L-NNA (maximum dilatation at 30 mm Hg: 16 +/- 8% in the 10(-5) mol/L and 12 +/- 5% in the 10(-4) mol/L L-NNA group versus 34 +/- 4% in the control group), but that of the branches was similar between the control and L-NNA groups. Topical application of 10(-5) mol/L 7-nitro indazole, a selective inhibitor of neuronal NOS, did not affect changes in CBF or vessel diameter through the entire pressure range. Thus, endothelial but not neuronal NO seems to take part in the regulation of CBF to the the brain stem during hypotension around the lower limits of CBF autoregulation. The role of NO in mediating dilatation in response to hypotension appears to be greater in large arteries than in small ones.
Collapse
Affiliation(s)
- K Toyoda
- Second Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
519
|
A684 OVARIECTOMY INCREASES AND ESTROGEN TREATMENT REDUCES THE NEUROPATHOLOGY ACCOMPANYING TRANSIENT FOREBRAIN ISCHEMIA IN RATS. Anesthesiology 1997. [DOI: 10.1097/00000542-199709001-00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
520
|
Fujii M, Hara H, Meng W, Vonsattel JP, Huang Z, Moskowitz MA. Strain-related differences in susceptibility to transient forebrain ischemia in SV-129 and C57black/6 mice. Stroke 1997; 28:1805-10; discussion 1811. [PMID: 9303029 DOI: 10.1161/01.str.28.9.1805] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE We explored susceptibility to injury after global ischemia in SV-129 and C57Black/6 mice, two commonly used-background strains in genetically engineered mice. METHODS Mice (n = 84) were subjected to 15, 30, or 75 minutes of bilateral common carotid artery (BCCA) occlusion followed by reperfusion for 72 hours. BCCA occlusion was performed under halothane or chloral hydrate anesthesia, in one experiment, mean arterial blood pressure and regional cerebral blood flow (laser Doppler flowmetry) were matched by controlled exsanguination. Baseline absolute blood flow measurements were obtained in both strains using a tracer, N-isopropyl-[methyl 1,3-14C]-p-iodoamphetamine, indicator fractionation technique (n = 5 per group). Vascular anatomy of the circle of Willis was visualized by intravascular perfusion of carbon black ink (n = 10 per group). Cerebrovascular reactivity was assessed by measuring the diameter of pial vessels (intravital microscopy) to acetylcholine (ACh) superfusion (0.1 to 10 mmol/L) in a closed cranial window preparation (n = 29). RESULTS Resting blood flow values did not differ between groups in striatum, cerebellum, and brain-stem regions. SV-129 mice were less susceptible than C57Black/6 mice to ischemic injury (0.0 +/- 0.0 versus 1.3 +/- 0.3 damage in hippocampal CA1 region after 30 minutes of ischemia in SV-129 and C57Black/6, respectively; P < .01). Cellular damage (grade 1 to 3 injury) comparable to 30-minute BCCA occlusion was achieved only after 75 minutes of ischemia in SV-129 mice (1.1 +/- 0.3). Ischemic damage was also significantly less in SV-129 mice after blood pressure and flow were matched during ischemia in halothane-anesthetized SV-129 mice (0.5 +/- 0.3 versus 1.4 +/- 0.2, P < .05), or after chloral hydrate anesthesia (0.4 +/- 0.2 versus 1.5 +/- 0.4, P < .05). Hypoplastic posterior communicating arteries were found in all 10 C57Black/6 mice and may explain the greater susceptibility of these mice to injury after BCCA occlusion. More robust vasodilation to ACh in C57Black/6 mice could also indicate genetic differences in responses to vasoactive substances. CONCLUSIONS C57Black/6 mice exhibit enhanced susceptibility to global cerebral ischemic injury, an incompletely formed circle of Willis, and augmented pial vessel dilation to ACh compared with SV-129 mice. Our findings suggest that strain differences may confound results when genetically engineered mice generated from more than a single background strain are used.
Collapse
Affiliation(s)
- M Fujii
- Department of Neurosurgery and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | | | | | | | | | |
Collapse
|
521
|
Abstract
Nitric oxide (NO) is a labile radical gas that is widely acclaimed as one of the most important molecules in biology. Through covalent modifications of target proteins and redox reactions with oxygen and superoxide radical and transition metal prosthetic groups, NO plays a critical role in many vital biological processes, including the control of vascular tone, neurotransmission, ventilation, hormone secretion, inflammation, and immunity. Moreover, NO has been shown to influence a host of fundamental cellular functions, such as RNA synthesis, mitochondrial respiration, glycolysis, and iron metabolism. NO is formed from L-arginine by NO synthases (NOSs), a family of related enzymes encoded by separate unlinked genes. The different NOS isozymes exhibit disparate tissue and intrarenal distributions and are governed by unique regulatory mechanisms. In the kidney, NO participates in several vital processes, including the regulation of glomerular and medullary hemodynamics, the tubuloglomerular feedback response, renin release, and the extracellular fluid volume. While NO serves beneficial roles as a messenger and host defense molecule, excessive NO production can be cytotoxic, the result of NO's reaction with reactive oxygen and nitrogen species, leading to peroxynitrite anion formation, protein tyrosine nitration, and hydroxyl radical production. Indeed, NO may contribute to the evolution of several commonly encountered renal diseases, including immune-mediated glomerulonephritis, postischemic renal failure, radiocontrast nephropathy, obstructive nephropathy, and acute and chronic renal allograft rejection. Moreover, impaired NO production has been implicated in the pathogenesis of volume-dependent hypertension. This duality of NO's beneficial and detrimental effects has created extraordinary interest in this molecule and the need for a detailed understanding of NO biosynthesis.
Collapse
Affiliation(s)
- B C Kone
- Department of Internal Medicine, The University of Texas Medical School at Houston, 77030, USA
| |
Collapse
|
522
|
O'Neill MJ, Hicks C, Ward M, Panetta JA. Neuroprotective effects of the antioxidant LY231617 and NO synthase inhibitors in global cerebral ischaemia. Brain Res 1997; 760:170-8. [PMID: 9237532 DOI: 10.1016/s0006-8993(97)00293-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent studies have shown that the novel antioxidant LY231617 protects against ischaemia-induced neuronal damage in rat models of global cerebral ischaemia. In the present studies we have examined the effects of LY231617 in the gerbil model of global cerebral ischaemia. We also examined the effects of four nitric oxide synthase inhibitors (3-bromo-7-nitroindazole, N(G)-nitro-L-arginine methyl ester, aminoguanidine and S-methylisothiourea sulphate) in this model. LY231617 (50 mg/kg p.o. or 30 mg/kg i.p.) was administered either 30 min prior to occlusion or immediately post-occlusion followed by three further doses at 4, 24 and 48 h after the initial dose. 3-Bromo-7-nitroindazole was administered at 40 mg/kg i.p. immediately after occlusion followed by 20 mg/kg i.p. at 3, 6, 24 and 48 h, N(G)-nitro-L-arginine methyl ester was administered at 10 mg/kg i.p. immediately after occlusion followed by 5 mg/kg i.p. at 3, 6, 24 and 48 h. Aminoguanidine was administered at 80 mg/kg i.p. immediately after occlusion followed by 40 mg/kg i.p. at 3, 6, 24 and 48 h and S-methylisothiourea sulphate was administered at 10 mg/kg i.p. immediately, 3, 6, 24 and 48 h after occlusion. We also examined the effects of aminoguanidine administered at 80 mg/kg i.p. immediately after occlusion followed by 40 mg/kg i.p. at 3, 6, 24, 48, 72 and 96 h and S-methylisothiourea sulphate administered at 10 mg/kg i.p. immediately, 3, 6, 24, 48, 72 and 96 h after occlusion. Control animals were either sham operated or subjected to 5 min bilateral carotid occlusion. Extensive neuronal death was observed in the CA1 layer of the hippocampus in 5-min bilateral carotid artery occluded animals 5 days after surgery. LY231617 provided significant neuroprotection against the ischaemia-induced brain damage when administration was initiated before or after occlusion (P < 0.05). The neuronal NO synthase inhibitors, 3-bromo-7-nitroindazole and a general NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester also provided significant neuroprotection (P < 0.05). In contrast aminoguanidine and S-methylisothiourea sulphate (two inducible NO synthase inhibitors) failed to protect against the ischaemia-induced brain damage. These results indicate that free radicals and nitric oxide are involved in ischaemia-induced brain damage following global cerebral ischaemia. Antioxidants such as LY231617 or neuronal NO synthase inhibitors can prevent the ischaemia-induced neurodegeneration and may be useful as anti-ischaemic agents.
Collapse
Affiliation(s)
- M J O'Neill
- Lilly Research Centre Limited, Erl Wood Manor, Surrey, UK.
| | | | | | | |
Collapse
|
523
|
Stagliano NE, Dietrich WD, Prado R, Green EJ, Busto R. The role of nitric oxide in the pathophysiology of thromboembolic stroke in the rat. Brain Res 1997; 759:32-40. [PMID: 9219860 DOI: 10.1016/s0006-8993(97)00200-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although nitric oxide (NO) has been shown to play an important role in the pathophysiology of cerebral ischemia, its contribution to the pathogenesis of experimentally induced thromboembolic stroke is unknown. In this study, we pharmacologically manipulated NO levels in the acute post-thrombotic stage and determined the effects on behavior and histopathology. The following drugs were used: nitro-L-arginine-methyl ester (L-NAME), a non-specific endothelial and neuronal nitric oxide synthase (eNOS and nNOS) inhibitor, 3-bromo-7-nitroindazole (7-NI), a specific inhibitor for nNOS, the NO precursor, exogenous L-arginine and the NO-donor, 3-morpholino-sydnonimine (SIN-1). Male Wistar rats (n = 76) were randomly assigned to receive vehicle or drug immediately after common carotid artery thrombosis (CCAT). Regional measurements of cortical NOS activity using the [3H]L-arginine to [3H]L-citrulline conversion assay were decreased 1 h after treatment with L-NAME and 7-NI by 50 and 65%, respectively; hippocampal NOS activity was reduced with L-NAME by 35% and with 7-NI by 65%. L-NAME significantly worsened forelimb placing as compared to other groups. 7-NI accelerated sensorimotor recovery. Water maze retention deficits were noted 48 h after CCAT and these were exacerbated by L-NAME treatment. Histopathological protection was conferred in the hippocampus by 7-NI and SIN-1; conversely, L-NAME increased neuronal injury in the contralateral cortex. L-arginine had no effect on these outcomes. In conclusion, both structural and functional consequences of CCAT can be aggravated by limiting endothelial NO production in the acutely post-thrombotic brain. In contrast, inhibition of nNOS and infusion of an NO donor has a beneficial effect on pathology.
Collapse
Affiliation(s)
- N E Stagliano
- Department of Neurology, University of Miami School of Medicine, FL 33101, USA
| | | | | | | | | |
Collapse
|
524
|
Abstract
Endogenous nitric oxide (NO) mediates certain aspects of synaptic plasticity and neurotoxicity associated with NMDA-type glutamate receptors. Neuronal NO synthase contains a modular protein-protein interaction motif, termed the PDZ domain, that links the synthase to a synaptic protein complex containing postsynaptic density protein PSD-95 and NMDA receptors. Characterization of this pathway has provided new insights into the role of NO in brain physiology and disease.
Collapse
Affiliation(s)
- J E Brenman
- Department of Physiology and Program in Biomedical Sciences, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0444, USA
| | | |
Collapse
|
525
|
Abstract
BACKGROUND AND PURPOSE Cessation of blood flow to the brain, for even a few minutes, sets in motion a potential reversible cascade of events resulting in neuronal cell death. Oxygen free radicals and oxidants appear to play an important role in central nervous system injury after cerebral ischemia and reperfusion. Recently, divergent roles for the newly identified neuronal messenger molecule and oxygen radical, nitric oxide (NO), have been identified in various models of cerebral ischemia. Because of the chemical and physical properties of NO, the numerous physiological activities it mediates, and the lack of specific agents to modulate the activity of the different isoforms of NO synthase (NOS), reports regarding the role of NO in focal cerebral ischemia have been confounding and often conflicting. Recent advances in pharmacology and the development of transgenic knockout mice specific for the different isoforms of NOS have advanced our knowledge and clarified the role of NO in cerebral ischemia. METHODS Animal models of focal ischemia employ occlusion of nutrient cerebral vessels, most commonly the middle cerebral artery. Primary cortical cultures are exposed to excitotoxic or ischemic conditions, and the activities of NOS isoforms or NO production are evaluated. Transgenic mice lacking expression of either the neuronal isoform of NOS (nNOS), the endothelial isoform of NOS (eNOS), or the immunologic isoform of NOS (iNOS) have been examined in models of excitotoxic injury and ischemia. RESULTS Excitotoxic or ischemic conditions excessively activate nNOS, resulting in concentrations of NO that are toxic to surrounding neurons. Conversely, NO generated from eNOS is critical in maintaining cerebral blood flow and reducing infarct volume. iNOS, which is not normally present in healthy tissue, is induced shortly after ischemia and contributes to secondary late-phase damage. CONCLUSIONS Pharmacological and genetic approaches have significantly advanced our knowledge regarding the role of NO and the different NOS isoforms in focal cerebral ischemia. nNOS and iNOS play key roles in neurodegeneration, while eNOS plays a prominent role in maintaining cerebral blood flow and preventing neuronal injury.
Collapse
Affiliation(s)
- A F Samdani
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
526
|
Sakamoto KI, Fujisawa H, Koizumi H, Tsuchida E, Ito H, Sadamitsu D, Maekawa T. Effects of mild hypothermia on nitric oxide synthesis following contusion trauma in the rat. J Neurotrauma 1997; 14:349-53. [PMID: 9199400 DOI: 10.1089/neu.1997.14.349] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The exact mechanism of hypothermic cerebroprotection after traumatic brain injury (TBI) is not fully understood. The present study was conducted to investigate the effects of mild hypothermia on trauma-induced synthesis of nitric oxide (NO), which has been implicated in the pathogenesis of ischemic brain damage associated with glutamate neurotoxicity. Cerebral contusion was created in the rat parietal cortex by a weight-drop method, and extracellular concentrations of the NO end products nitrite and nitrate were measured using in vivo brain microdialysis and capillary electrophoresis under normothermic (37 degrees C) and mild hypothermic (32 degrees C) conditions. In normothermic animals, the level of NO end products increased markedly 10 min after contusion, reaching a maximum level at 20 min. In the hypothermic rats, such increases were absent. Although it is unknown whether endothelial NO synthase, neuronal NO synthase, or both caused the elevation of the NO end products seen in the normothermic animals, the present results indicate that inhibition of NO synthesis may play a part in hypothermic cerebroprotection following TBI.
Collapse
Affiliation(s)
- K I Sakamoto
- Department of Neurosurgery, Yamaguchi University School of Medicine, Kogushi, Ube, Japan
| | | | | | | | | | | | | |
Collapse
|
527
|
Hara H, Ayata C, Huang PL, Waeber C, Ayata G, Fujii M, Moskowitz MA. [3H]L-NG-nitroarginine binding after transient focal ischemia and NMDA-induced excitotoxicity in type I and type III nitric oxide synthase null mice. J Cereb Blood Flow Metab 1997; 17:515-26. [PMID: 9183289 DOI: 10.1097/00004647-199705000-00005] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the density and distribution of nitric oxide synthase (NOS) binding by quantitative autoradiography using [3H]L-NG-nitroarginine ([3H]L-NNA) after transient focal ischemia or intrastriatal injection of N-methyl-D-aspartate (NMDA) in wild-type (SV-129 and C57black/6) and type I (neuronal) and type III (endothelial) NOS-deficient mice. The middle cerebral artery (MCA) was occluded by an intraluminal filament for 3 h followed by 10 min to 7 days of reperfusion. Specific [3H]L-NNA binding, observed in the wild-type and type III mutant mouse at baseline, increased by 50-250% in the MCA territory during ischemia and the first 3 h of reperfusion. The density of binding sites (Bmax), but not the dissociation constant (Kd), increased significantly during the ischemic period as did type I NOS mRNA as detected by quantitative reverse transcription polymerase chain reaction. [3H]L-NNA binding after intrastriatal NMDA injection also increased by 20-230%. In the type I NOS-deficient mouse, [3H]L-NNA binding was low and only a very small increase was observed after ischemia or excitotoxicity. Under conditions of this study, [3H]L-NNA did not bind to type II NOS as there was no difference in the distribution or density of [3H]L-NNA binding in the rat spleen obtained after lipopolysaccharide treatment despite induction of NOS type II catalytic activity. Our data suggest that an ischemic/excitotoxic insult up-regulates type I NOS gene expression and [3H]L-NNA binding and that this up-regulation may play a pivotal role in the pathogenesis of ischemic/excitotoxic diseases.
Collapse
Affiliation(s)
- H Hara
- Department of Neurosurgery and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, USA
| | | | | | | | | | | | | |
Collapse
|
528
|
List BM, Klösch B, Völker C, Gorren AC, Sessa WC, Werner ER, Kukovetz WR, Schmidt K, Mayer B. Characterization of bovine endothelial nitric oxide synthase as a homodimer with down-regulated uncoupled NADPH oxidase activity: tetrahydrobiopterin binding kinetics and role of haem in dimerization. Biochem J 1997; 323 ( Pt 1):159-65. [PMID: 9173876 PMCID: PMC1218289 DOI: 10.1042/bj3230159] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The fatty-acylation-deficient bovine endothelial NO synthase (eNOS) mutant (Gly-2 to Ala-2, G2AeNOS) was purified from a baculovirus overexpression system. The purified protein was soluble and highly active (0.2-0.7 micromol of l-citrulline. mg-1.min-1), contained 0. 77+/-0.01 equivalent of haem per subunit, showed a Soret maximum at 396 nm, and exhibited only minor uncoupling of NADPH oxidation in the absence of l-arginine or tetrahydrobiopterin. Radioligand binding studies revealed KD values of 147+/-24.1 nM and 52+/-9.2 nM for specific binding of tetrahydrobiopterin in the absence and presence of 0.1 mM l-arginine respectively. The positive co-operative effect of l-arginine was due to a pronounced decrease in the rate of tetrahydrobiopterin dissociation (from 1.6+/-0.5 to 0. 3+/-0.1 min-1). Low-temperature SDS gel electrophoresis showed that approx. 80% of the protein migrated as haem-containing dimer after preincubation with l-arginine and tetrahydrobiopterin. Gel-filtration chromatography yielded one peak with a Stokes radius of 6.8+/-0.04 nm, corresponding to a hydrodynamic volume of 1. 32x10(-24) m3, whereas haem-deficient preparations (approx. 0.3 equivalent per subunit) contained an additional protein species with a hydrodynamic radius of 5.1+/-0.2 nm and a corresponding volume of 0.55x10(-24) m3, suggesting that haem availability regulates eNOS dimerization.
Collapse
Affiliation(s)
- B M List
- Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
529
|
Sobey CG, Faraci FM. Effects of a novel inhibitor of guanylyl cyclase on dilator responses of mouse cerebral arterioles. Stroke 1997; 28:837-42; discussion 842-3. [PMID: 9099205 DOI: 10.1161/01.str.28.4.837] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND PURPOSE Nitric oxide-induced vasodilatation is mediated by both cGMP-dependent and -independent mechanisms. Previous studies that examined the role of soluble guanylyl cyclase in cerebral vessels have used methylene blue and LY-83583, compounds that generate superoxide anion and are not specific for inhibition of soluble guanylyl cyclase. We examined the effects of ODQ (1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one), a novel and highly selective inhibitor of soluble guanylyl cyclase, on responses of cerebral arterioles. METHODS The effects of ODQ on responses of cerebral arterioles to acetylcholine, nitroprusside, 8-bromo-cGMP, and adenosine were examined in anesthetized mice by means of a cranial window. The effects of two concentrations of ODQ were examined in the absence and presence of superoxide dismutase. The effects of NG-nitro-L-arginine, an inhibitor of nitric oxide synthase, were also tested. RESULTS ODQ (3 and 10 mumol/L) produced concentration-dependent inhibition of dilatation of cerebral arterioles (control diameter = 29 +/- 1 microns) (mean +/- SE) in response to acetylcholine and nitroprusside. For example, 10 mumol/L acetylcholine and 1 mumol/L nitroprusside dilated cerebral arterioles by 28 +/- 3% and 44 +/- 2% in the absence and 6 +/- 2% and 7 +/- 1%, respectively, in the presence of 10 mumol/L ODQ (P < .05 versus control). The inhibitory effects of ODQ were not altered by superoxide dismutase. Vasodilatation in response to 8-bromo-cGMP and adenosine was not inhibited by ODQ. NG-Nitro-L-arginine (100 mumol/L), an inhibitor of nitric oxide synthase, inhibited responses to acetylcholine by approximately 80% but tended to enhance responses to nitroprusside. CONCLUSIONS Thus, nitric oxide-mediated dilatation of mouse cerebral arterioles is profoundly inhibited by ODQ, an inhibitor of activity of soluble guanylyl cyclase. Cerebral vasodilator responses to adenosine and 8-bromo-cGMP were preserved in the presence of ODQ, indicating that inhibition by ODQ was selective. In contrast to previously used inhibitors of soluble guanylyl cyclase (methylene blue and LY-83583), the effects of ODQ are not mediated by generation of superoxide anion.
Collapse
Affiliation(s)
- C G Sobey
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA
| | | |
Collapse
|
530
|
|
531
|
Abstract
There is increasing evidence that nitric oxide (NO), a free radical that can act both as a signaling molecule and a neurotoxin, is involved in the mechanisms of cerebral ischemia. Although early investigations yielded conflicting results, the introduction of more-selective pharmacological tools and the use of molecular approaches for deletion of genes encoding for NO synthase have provided a better understanding of the role of NO in the mechanisms of ischemic brain damage. The evidence reviewed in this article suggests that NO is protective or destructive depending on the stage of evolution of the ischemic process and on the cellular source of NO. Defining the role of NO in cerebral ischemia provides the rationale for new neuroprotective strategies based on modulation of NO production in the post-ischemic brain.
Collapse
Affiliation(s)
- C Iadecola
- Dept of Neurology, University of Minnesota, Minneapolis 55455, USA
| |
Collapse
|
532
|
Dalkara T, Moskowitz MA. Neurotoxic and neuroprotective roles of nitric oxide in cerebral ischaemia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1996; 40:319-36. [PMID: 8989627 DOI: 10.1016/s0074-7742(08)60726-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- T Dalkara
- Department of Neurology and Neurosurgical Service, Massachusetts General Hospital, Charlestown, USA
| | | |
Collapse
|