501
|
Briot A, Decaunes P, Volat F, Belles C, Coupaye M, Ledoux S, Bouloumié A. Senescence Alters PPARγ (Peroxisome Proliferator–Activated Receptor Gamma)-Dependent Fatty Acid Handling in Human Adipose Tissue Microvascular Endothelial Cells and Favors Inflammation. Arterioscler Thromb Vasc Biol 2018; 38:1134-1146. [DOI: 10.1161/atvbaha.118.310797] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 03/01/2018] [Indexed: 02/06/2023]
Abstract
Objective—
Adipose tissue (AT) dysfunction associated with obesity or aging is a major cause for lipid redistribution and the progression of cardiometabolic disorders. Our goal is to decipher the contribution of human AT microvascular endothelial cells (ECs) in the maintenance of fatty acid (FA) fluxes and the impact of senescence on their function.
Approach and Results—
We used freshly isolated primary microvascular ECs from human AT. Our data identified the endothelial FA handling machinery including FATPs (FA transport proteins) FATP1, FATP3, FATP4, and CD36 as well as FABP4 (FA binding protein 4). We showed that PPARγ (peroxisome proliferator–activated receptor gamma) regulates the expression of FATP1, CD36, and FABP4 and is a major regulator of FA uptake in human AT EC (hATEC). We provided evidence that endothelial PPARγ activity is modulated by senescence. Indeed, the positive regulation of FA transport by PPARγ agonist was abolished, whereas the emergence of an inflammatory response was favored in senescent hATEC. This was associated with the retention of nuclear FOXO1 (forkhead box protein O1), whereas nuclear PPARγ translocation was impaired.
Conclusions—
These data support the notion that PPARγ is a key regulator of primary hATEC function including FA handling and inflammatory response. However, the outcome of PPARγ activation is modulated by senescence, a phenomenon that may impact the ability of hATEC to properly respond to and handle lipid fluxes. Finally, our work highlights the role of hATEC in the regulation of FA fluxes and reveals that dysfunction of these cells with accelerated aging is likely to participate to AT dysfunction and the redistribution of lipids.
Collapse
Affiliation(s)
- Anaïs Briot
- From the Inserm, UMR1048, Team 1, I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, Toulouse, Cedex 4, France (A. Briot, P.D., F.V., C.B., A. Bouloumié)
| | - Pauline Decaunes
- From the Inserm, UMR1048, Team 1, I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, Toulouse, Cedex 4, France (A. Briot, P.D., F.V., C.B., A. Bouloumié)
| | - Fanny Volat
- From the Inserm, UMR1048, Team 1, I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, Toulouse, Cedex 4, France (A. Briot, P.D., F.V., C.B., A. Bouloumié)
| | - Chloé Belles
- From the Inserm, UMR1048, Team 1, I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, Toulouse, Cedex 4, France (A. Briot, P.D., F.V., C.B., A. Bouloumié)
| | - Muriel Coupaye
- Center Support of Obesity, Hôpital Louis Mourier (APHP), Colombes, and Faculté Paris Diderot, France (M.C., S.L.)
| | - Séverine Ledoux
- Center Support of Obesity, Hôpital Louis Mourier (APHP), Colombes, and Faculté Paris Diderot, France (M.C., S.L.)
| | - Anne Bouloumié
- From the Inserm, UMR1048, Team 1, I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, Toulouse, Cedex 4, France (A. Briot, P.D., F.V., C.B., A. Bouloumié)
| |
Collapse
|
502
|
Abstract
Adipose tissue has traditionally been viewed as an organ of interest within studies of obesity and diet-associated metabolic disorders. However, as studies reveal the role white adipose tissue plays as an energy storage, a lipid metabolism site, and an adipokine secretor, it has become recognized as an organ of importance for metabolic health in both the young obese and the old obese. Within the realms of aging research, the pursuit of senolytics has taken the field's spotlight, where the clearance of senescent cells has shown to attenuate aspects of age-related disorders. More interestingly, these senolytics have also revealed that these senescent cells, specifically p16Ink4a cells, accumulate within adipose tissue, skeletal muscles, and eye (Baker et al., 2011). These results implicate the importance of adipose tissue inflammation in aging and widen the discussion on how senescent cells among other immune and non-immune cells cross paths to influence an organism's lifespan and healthspan.
Collapse
Affiliation(s)
- Theresa Mau
- Immunology Program, Michigan Medicine, United States
| | - Raymond Yung
- Division of Geriatric and Palliative Medicine, Geriatrics Center, Michigan Medicine, United States.
| |
Collapse
|
503
|
Rui Y, Yang S, Chen LH, Qin LQ, Wan Z. Chia Seed Supplementation Reduces Senescence Markers in Epididymal Adipose Tissue of High-Fat Diet-Fed SAMP8 Mice. J Med Food 2018; 21:755-760. [PMID: 29652550 DOI: 10.1089/jmf.2017.4129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue is a key organ with substantial senescent cell accumulation under both obesity and aging conditions. Chia seed is an ancient seed and is the richest plant source of α-linolenic acid. We aimed to determine how cellular senescence markers will be altered in adipose tissue of senescence-accelerated mouse-prone 8 (SAMP8) mice fed with high-fat diets (HFDs); and how chia seed can affect the above markers. SAMP8 mice and their control senescence-accelerated mouse-resistant 1 (SAMR1) were divided into four groups, that is, SAMR1 low-fat diet group (R1LF), SAMP8LF group (P8LF), SAMP8 high-fat group (P8HF), and SAMP8HF group supplemented with 10% chia seed (P8HC). At the end of the intervention, body composition was measured through T1-weighted magnetic resonance imaging, and epididymal (EPI) and subcutaneous (SC) adipose tissues were dissected for further analysis. Compared with the R1LF group, the P8HF and P8HC groups had significantly increased body fat mass. In EPI fat, p16, CD68 and PAI-1 mRNA expression from P8HF group were significantly increased; chia seed partially reduced p16 and CD68 mRNA expression. The P8LF group has increased p16 and CD68, and the P8HF group has increased p16, p21, and CD68; and P8HC group has increased p16 mRNA expression. The protein expression of p-AMPK in EPI and SC fat from the P8HF group was reduced. In conclusion, reductions in AMPK activity might be partially responsible for elevation in HFD-induced senescence markers in both EPI and SC fat, and chia seed supplementation is able to reduce senescence-associated markers at least in EPI adipose tissue.
Collapse
Affiliation(s)
- Yehua Rui
- 1 Department of Nutrition and Food Hygiene, School of Public Health, Soochow University , Suzhou, China
| | - Shengyi Yang
- 1 Department of Nutrition and Food Hygiene, School of Public Health, Soochow University , Suzhou, China
| | - Li-Hua Chen
- 1 Department of Nutrition and Food Hygiene, School of Public Health, Soochow University , Suzhou, China
| | - Li-Qiang Qin
- 1 Department of Nutrition and Food Hygiene, School of Public Health, Soochow University , Suzhou, China
| | - Zhongxiao Wan
- 1 Department of Nutrition and Food Hygiene, School of Public Health, Soochow University , Suzhou, China .,2 Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University , Suzhou, China
| |
Collapse
|
504
|
Yang Y, Dong R, Chen Z, Hu D, Fu M, Tang Y, Wang DW, Xu X, Tu L. Endothelium-specific CYP2J2 overexpression attenuates age-related insulin resistance. Aging Cell 2018; 17. [PMID: 29318723 PMCID: PMC5847864 DOI: 10.1111/acel.12718] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2017] [Indexed: 12/18/2022] Open
Abstract
Ample evidences demonstrate that cytochrome P450 epoxygenase‐derived epoxyeicosatrienoic acids (EETs) exert diverse biological activities, which include potent vasodilatory, anti‐inflammatory, and cardiovascular protective effects. In this study, we investigated the effects of endothelium‐specific CYP2J2 overexpression on age‐related insulin resistance and metabolic dysfunction. Endothelium‐specific targeting of the human CYP epoxygenase, CYP2J2, transgenic mice (Tie2‐CYP2J2‐Tr mice) was utilized. The effects of endothelium‐specific CYP2J2 overexpression on aging‐associated obesity, inflammation, and peripheral insulin resistance were evaluated by assessing metabolic parameters in young (3 months old) and aged (16 months old) adult male Tie2‐CYP2J2‐Tr mice. Decreased insulin sensitivity and attenuated insulin signaling in aged skeletal muscle, adipose tissue, and liver were observed in aged adult male mice, and moreover, these effects were partly inhibited in 16‐month‐old CYP2J2‐Tr mice. In addition, CYP2J2 overexpression‐mediated insulin sensitization in aged mice was associated with the amelioration of inflammatory state. Notably, the aging‐associated increases in fat mass and adipocyte size were only observed in 16‐month‐old wild‐type mice, and CYP2J2 overexpression markedly prevented the increase in fat mass and adipocyte size in aged Tie2‐CYP2J2‐Tr mice, which was associated with increased energy expenditure and decreased lipogenic genes expression. Furthermore, these antiaging phenotypes of Tie2‐CYP2J2‐Tr mice were also associated with increased muscle blood flow, enhanced active‐phase locomotor activity, and improved mitochondrial dysfunction in skeletal muscle. Collectively, our findings indicated that endothelium‐specific CYP2J2 overexpression alleviated age‐related insulin resistance and metabolic dysfunction, which highlighted CYP epoxygenase‐EET system as a potential target for combating aging‐related metabolic disorders.
Collapse
Affiliation(s)
- Yan Yang
- Department of Geriatric Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Ruolan Dong
- Department of Geriatric Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Zhihui Chen
- Department of Geriatric Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Danli Hu
- Department of Geriatric Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Menglu Fu
- Department of Geriatric Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Ying Tang
- Department of Geriatric Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Dao Wen Wang
- Hubei Key laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders and Division of Cardiology; Department of Internal Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Xizhen Xu
- Hubei Key laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders and Division of Cardiology; Department of Internal Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Ling Tu
- Department of Geriatric Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
505
|
Kang DH, Park YS, Lee DY. Senotherapy for attenuation of cellular senescence in aging and organ implantation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.08.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
506
|
Leukocyte count, systemic inflammation, and health status in older adults: a narrative review. ANTHROPOLOGICAL REVIEW 2018. [DOI: 10.2478/anre-2018-0007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epidemiological and clinical studies suggest that elevated leukocyte count within the normal range can predict cardiovascular and total mortality in older adults. These findings are remarkable because this simple and common laboratory test is included in routine medical check-ups. It is well known that chronic systemic inflammation (inflammaging) is one of the hallmarks of aging and an important component of obesity-associated insulin resistance that can lead to type 2 diabetes and other health problems in both overweight individuals and elderly people. To understand the molecular mechanisms linking increased systemic inflammation with aging-associated diseases and elevated leukocyte counts in the elderly is to unravel the multiplicity of molecular factors and mechanisms involved in chronic low-grade systemic inflammation, the gradual accumulation of random molecular damage, age-related diseases, and the process of leukopoiesis. There are several possible mechanisms through which chronic low-grade systemic inflammation is associated with both higher leukocyte count and a greater risk of aging-associated conditions in older adults. For example, the IL-6 centric model predicts that this biomediator is involved in chronic systemic inflammation and leukopoiesis, thereby suggesting that elevated leukocyte count is a signal of poor health in older adults. Alternatively, an increase in neutrophil and monocyte counts can be a direct cause of cardiovascular events in the elderly. Interestingly, some authors assert that the predictive ability of elevated leukocyte counts with regard to cardiovascular and allcause mortality among older adults surpass the predictive value of total cholesterol. This review reports the recent findings on the links between elevated but normal leukocyte counts and the increased risks of all-cause, cardiovascular, and cancer mortality. The possible molecular mechanisms linking higher but normal leukocyte counts with increased risk of aging-associated diseases in the elderly are discussed here.
Collapse
|
507
|
A decline in female baboon hypothalamo-pituitary-adrenal axis activity anticipates aging. Aging (Albany NY) 2018; 9:1375-1385. [PMID: 28490690 PMCID: PMC5472738 DOI: 10.18632/aging.101235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/29/2017] [Indexed: 12/17/2022]
Abstract
Stressors that disrupt homeostasis advance aging. Glucocorticoids regulate multiple processes that determine the aging trajectory. Debate exists regarding life-course circulating glucocorticoid concentrations. Rodent and nonhuman primate studies indicate circulating glucocorticoids fall from early life. We measured fasting morning cortisol in 24 female baboons (6-21 years, human equivalent ~18-70). We also quantified hypothalamic paraventricular nuclear (PVN) arginine vasopressin (AVP), corticotropin-releasing hormone, steroid receptors, and pituitary proopiomelanocortin immunohistochemically in 14 of these females at 6-13 years. We identified significant age-related 1) linear fall in cortisol and PVN AVP from as early as 6 years; 2) increased PVN glucocorticoid and mineralocorticoid receptors; 3) increased PVN 11β-hydroxysteroid dehydrogenase 1 and 2, regulators of local cortisol production, and 4) decreased pituitary proopiomelanocortin. Our data identify increased age-related negative feedback and local PVN cortisol production as potential mechanisms decreasing PVN drive to hypothalamo-pituitary-adrenal axis activity that result in the age-related circulating cortisol fall. Further studies are needed to determine whether the cortisol fall 1) causes aging, 2) protects by slowing aging, or 3) is an epiphenomenon unrelated to aging processes. We conclude that aging processes are best studied by linear life-course analysis beginning early in life.
Collapse
|
508
|
Sadowska A, Hausmann ON, Wuertz-Kozak K. Inflammaging in the intervertebral disc. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x18761146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
| | | | - Karin Wuertz-Kozak
- ETH Zurich, Zurich, Switzerland
- Department of Health Sciences, University of Potsdam, Potsdam, Germany
- Schön Klinik München Harlaching, Spine Center, Munich, Germany
- Academic Teaching Hospital and Spine Research Institute, Paracelsus Private Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
509
|
D'Espessailles A, Mora YA, Fuentes C, Cifuentes M. Calcium-sensing receptor activates the NLRP3 inflammasome in LS14 preadipocytes mediated by ERK1/2 signaling. J Cell Physiol 2018; 233:6232-6240. [PMID: 29345311 DOI: 10.1002/jcp.26490] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/17/2018] [Indexed: 12/20/2022]
Abstract
The study of the mechanisms that trigger inflammation in adipose tissue is key to understanding and preventing the cardiometabolic consequences of obesity. We have proposed a model where activation of the G protein-coupled calcium sensing receptor (CaSR) leads to inflammation and dysfunction in adipose cells. Upon activation, CaSR can mediate the expression and secretion of proinflammatory factors in human preadipocytes, adipocytes, and adipose tissue explants. One possible pathway involved in CaSR-induced inflammation is the activation of the NLR family, pyrin domain-containing 3 (NLRP3) inflammasome, that promotes maturation and secretion of interleukin (IL)-1β. The present work aimed to study whether CaSR mediates the activation of NLRP3 inflammasome in the human adipose cell model LS14. We assessed NLRP3 inflammasome priming and assembly after cinacalcet-induced CaSR activation and evaluated if this activation is mediated by downstream ERK1/2 signaling in LS14 preadipocytes. Exposure to 2 μM cinacalcet elevated mRNA expression of NLRP3, CASP-1, and IL-1β, as well as an increase in pro-IL-1β protein. In addition, CaSR activation triggered NLRP3 inflammasome assembly, as evidenced by a 25% increase in caspase-1 activity and 63% IL-1β secretion. CaSR silencing (siRNA) abolished the effect. Upstream ERK pathway inhibition decreased cinacalcet-dependent activation of NLRP3 inflammasome. We propose CaSR-dependent NLRP3 inflammasome activation in preadipocytes through ERK signaling as a novel mechanism for the development of adipose dysfunction, that may favor the cardiovascular and metabolic consequences of obesity. To the best of our knowledge, this is the first report linking the inflammatory effect of CaSR to NLRP3 inflammasome induction in adipose cells.
Collapse
Affiliation(s)
- Amanda D'Espessailles
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Macul, Santiago, Chile
| | - Yuly A Mora
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Macul, Santiago, Chile
| | - Cecilia Fuentes
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Macul, Santiago, Chile
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Macul, Santiago, Chile
| |
Collapse
|
510
|
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize knowledge of the prevalence, relevant physiology, and consequences of obesity and visceral adiposity in HIV-infected adults, including highlighting gaps in current knowledge and future research directions. RECENT FINDINGS Similar to the general population, obesity prevalence is increasing among HIV-infected persons, and obesity and visceral adiposity are associated with numerous metabolic and inflammatory sequelae. However, HIV- and antiretroviral therapy (ART)-specific factors may contribute to fat gain and fat quality in treated HIV infection, particularly to the development of visceral adiposity, and sex differences may exist. Obesity and visceral adiposity commonly occur in HIV-infected persons and have significant implications for morbidity and mortality. Future research should aim to better elucidate the HIV- and ART-specific contributors to obesity and visceral adiposity in treated HIV infection, with the goal of developing targeted therapies for the prevention and treatment of obesity and visceral adiposity in the modern ART era.
Collapse
Affiliation(s)
- Jordan E Lake
- University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.112, Houston, TX, 77030, USA.
| |
Collapse
|
511
|
Sasaki H, Yanagi K, Ugi S, Kobayashi K, Ohkubo K, Tajiri Y, Maegawa H, Kashiwagi A, Kaname T. Definitive diagnosis of mandibular hypoplasia, deafness, progeroid features and lipodystrophy (MDPL) syndrome caused by a recurrent de novo mutation in the POLD1 gene. Endocr J 2018; 65:227-238. [PMID: 29199204 DOI: 10.1507/endocrj.ej17-0287] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Segmental progeroid syndromes with lipodystrophy are extremely rare, heterogeneous, and complex multi-system disorders that are characterized by phenotypic features of premature aging affecting various tissues and organs. In this study, we present a "sporadic/isolated" Japanese woman who was ultimately diagnosed with mandibular hypoplasia, deafness, progeroid features, and progressive lipodystrophy (MDPL) syndrome (MIM #615381) using whole exome sequencing analysis. She had been suspected as having atypical Werner syndrome and/or progeroid syndrome based on observations spanning a 30-year period; however, repeated genetic testing by Sanger sequencing did not identify any causative mutation related to various subtypes of congenital partial lipodystrophy (CPLD) and/or mandibular dysplasia with lipodystrophy (MAD). Recently, MDPL syndrome has been described as a new entity showing progressive lipodystrophy. Furthermore, polymerase delta 1 (POLD1) gene mutations on chromosome 19 have been identified in patients with MDPL syndrome. To date, 21 cases with POLD1-related MDPL syndrome have been reported worldwide, albeit almost entirely of European origin. Here, we identified a de novo mutation in exon 15 (p.Ser605del) of the POLD1 gene in a Japanese case by whole exome sequencing. To the best of our knowledge, this is the first identified case of MDPL syndrome in Japan. Our results provide further evidence that mutations in POLD1 are responsible for MDPL syndrome and serve as a common genetic determinant across different ethnicities.
Collapse
Affiliation(s)
- Haruka Sasaki
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan
- Division of Diabetic Medicine, Bunyukai Hara Hospital, Ohnojo, Fukuoka 816-0943, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Research Institute for Child Health, Setagaya, Tokyo 157-8535, Japan
| | - Satoshi Ugi
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan
| | - Kumiko Ohkubo
- Department of Laboratory Medicine, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yuji Tajiri
- Division of Endocrinology and Metabolism, Kurume University School of Medicine, Kurume, Fukuoka 830-0111, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Atsunori Kashiwagi
- Diabetes Center, Seikokai Kusatsu General Hospital, Kusatsu, Shiga 525-8585, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Research Institute for Child Health, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
512
|
Grebenciucova E, Berger JR. Immunosenescence: the Role of Aging in the Predisposition to Neuro-Infectious Complications Arising from the Treatment of Multiple Sclerosis. Curr Neurol Neurosci Rep 2018; 17:61. [PMID: 28669032 DOI: 10.1007/s11910-017-0771-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review highlights some of the important changes in the immune system that occur in the process of normal aging. Immunosenescence as a concept is directly relevant to the world of neuro-inflammation, as it may be a contributing factor to the risks associated with some of the current immunosuppressive and immunomodulatory therapies used in treating multiple sclerosis (MS) and other inflammatory disorders. RECENT FINDINGS Profound qualitative and quantitative changes occur in the adaptive and innate immunity compartments during aging. These changes may explain why patients of older age are at an increased risk of infections and infection-associated mortality. Immunosenescence-associated changes may be additive or synergistic with the effects produced by immunomodulatory and immunosuppressive medications. Clinicians should exercise a high level of vigilance in monitoring the risk of infections in older patients on these treatments.
Collapse
Affiliation(s)
- Elena Grebenciucova
- Multiple Sclerosis Division, The Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, 3400 Convention Avenue, Philadelphia, PA, 19104, USA.
| | - Joseph R Berger
- Multiple Sclerosis Division, The Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, 3400 Convention Avenue, Philadelphia, PA, 19104, USA
| |
Collapse
|
513
|
Trim W, Turner JE, Thompson D. Parallels in Immunometabolic Adipose Tissue Dysfunction with Ageing and Obesity. Front Immunol 2018; 9:169. [PMID: 29479350 PMCID: PMC5811473 DOI: 10.3389/fimmu.2018.00169] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Ageing, like obesity, is often associated with alterations in metabolic and inflammatory processes resulting in morbidity from diseases characterised by poor metabolic control, insulin insensitivity, and inflammation. Ageing populations also exhibit a decline in immune competence referred to as immunosenescence, which contributes to, or might be driven by chronic, low-grade inflammation termed "inflammageing". In recent years, animal and human studies have started to uncover a role for immune cells within the stromal fraction of adipose tissue in driving the health complications that come with obesity, but relatively little work has been conducted in the context of immunometabolic adipose function in ageing. It is now clear that aberrant immune function within adipose tissue in obesity-including an accumulation of pro-inflammatory immune cell populations-plays a major role in the development of systemic chronic, low-grade inflammation, and limiting the function of adipocytes leading to an impaired fat handling capacity. As a consequence, these changes increase the chance of multiorgan dysfunction and disease onset. Considering the important role of the immune system in obesity-associated metabolic and inflammatory diseases, it is critically important to further understand the interplay between immunological processes and adipose tissue function, establishing whether this interaction contributes to age-associated immunometabolic dysfunction and inflammation. Therefore, the aim of this article is to summarise how the interaction between adipose tissue and the immune system changes with ageing, likely contributing to the age-associated increase in inflammatory activity and loss of metabolic control. To understand the potential mechanisms involved, parallels will be drawn to the current knowledge derived from investigations in obesity. We also highlight gaps in research and propose potential future directions based on the current evidence.
Collapse
Affiliation(s)
- William Trim
- Department for Health, University of Bath, Bath, United Kingdom
| | - James E Turner
- Department for Health, University of Bath, Bath, United Kingdom
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
514
|
Marycz K, Michalak I, Kornicka K. Advanced nutritional and stem cells approaches to prevent equine metabolic syndrome. Res Vet Sci 2018; 118:115-125. [PMID: 29421480 DOI: 10.1016/j.rvsc.2018.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/25/2022]
Abstract
Horses metabolic disorders have become an important problem of modern veterinary medicine. Pathological obesity, insulin resistance and predisposition toward laminitis are associated with Equine Metabolic Syndrome (EMS). Based on pathogenesis of EMS, dietary and cell therapy management may significantly reduce development of this disorder. Special attention has been paid to the diet supplementation with highly bioavailable minerals and mesenchymal stem cells (MSC) which increase insulin sensitivity. In nutrition, there is a great interests in natural algae enriched via biosorption process with micro- and macroelements. In the case of cellular therapy, metabolic condition of engrafted cells may be crucial for the effectiveness of the therapy. Although, recent studies indicated on MSC deterioration in EMS individuals. Here, we described the combined nutritional and stem cells therapy for the EMS treatment. Moreover, we specified in details how EMS affects the adipose-derived stem cells (ASC) population. Presented here, combined kind of therapy- an innovative and cutting edge approach of metabolic disorders treatment may become a new gold standard in personalized veterinary medicine.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, 50-630 Wrocław, Poland; Wroclaw Research Centre EIT+, 54-066 Wrocław, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
| | - Katarzyna Kornicka
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, 50-630 Wrocław, Poland; Wroclaw Research Centre EIT+, 54-066 Wrocław, Poland.
| |
Collapse
|
515
|
Miragem AA, Homem de Bittencourt PI. Nitric oxide-heat shock protein axis in menopausal hot flushes: neglected metabolic issues of chronic inflammatory diseases associated with deranged heat shock response. Hum Reprod Update 2018; 23:600-628. [PMID: 28903474 DOI: 10.1093/humupd/dmx020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although some unequivocal underlying mechanisms of menopausal hot flushes have been demonstrated in animal models, the paucity of similar approaches in humans impedes further mechanistic outcomes. Human studies might show some as yet unexpected physiological mechanisms of metabolic adaptation that permeate the phase of decreased oestrogen levels in both symptomatic and asymptomatic women. This is particularly relevant because both the severity and time span of hot flushes are associated with increased risk of chronic inflammatory disease. On the other hand, oestrogen induces the expression of heat shock proteins of the 70 kDa family (HSP70), which are anti-inflammatory and cytoprotective protein chaperones, whose expression is modulated by different types of physiologically stressful situations, including heat stress and exercise. Therefore, lower HSP70 expression secondary to oestrogen deficiency increases cardiovascular risk and predisposes the patient to senescence-associated secretory phenotype (SASP) that culminates in chronic inflammatory diseases, such as obesities, type 2 diabetes, neuromuscular and neurodegenerative diseases. OBJECTIVE AND RATIONALE This review focuses on HSP70 and its accompanying heat shock response (HSR), which is an anti-inflammatory and antisenescent pathway whose intracellular triggering is also oestrogen-dependent via nitric oxide (NO) production. The main goal of the manuscript was to show that the vasomotor symptoms that accompany hot flushes may be a disguised clue for important neuroendocrine alterations linking oestrogen deficiency to the anti-inflammatory HSR. SEARCH METHODS Results from our own group and recent evidence on hypothalamic control of central temperature guided a search on PubMed and Google Scholar websites. OUTCOMES Oestrogen elicits rapid production of the vasodilatory gas NO, a powerful activator of HSP70 expression. Whence, part of the protective effects of oestrogen over cardiovascular and neuroendocrine systems is tied to its capacity of inducing the NO-elicited HSR. The hypothalamic areas involved in thermoregulation (infundibular nucleus in humans and arcuate nucleus in other mammals) and whose neurons are known to have their function altered after long-term oestrogen ablation, particularly kisspeptin-neurokinin B-dynorphin neurons, (KNDy) are the same that drive neuroprotective expression of HSP70 and, in many cases, this response is via NO even in the absence of oestrogen. From thence, it is not illogical that hot flushes might be related to an evolutionary adaptation to re-equip the NO-HSP70 axis during the downfall of circulating oestrogen. WIDER IMPLICATIONS Understanding of HSR could shed light on yet uncovered mechanisms of menopause-associated diseases as well as on possible manipulation of HSR in menopausal women through physiological, pharmacological, nutraceutical and prebiotic interventions. Moreover, decreased HSR indices (that can be clinically determined with ease) in perimenopause could be of prognostic value in predicting the moment and appropriateness of starting a HRT.
Collapse
Affiliation(s)
- Antônio Azambuja Miragem
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil.,Federal Institute of Education, Science and Technology 'Farroupilha', Rua Uruguai 1675, Santa Rosa, RS 98900-000, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
516
|
Lake JE, Stanley TL, Apovian CM, Bhasin S, Brown TT, Capeau J, Currier JS, Dube MP, Falutz J, Grinspoon SK, Guaraldi G, Martinez E, McComsey GA, Sattler FR, Erlandson KM. Practical Review of Recognition and Management of Obesity and Lipohypertrophy in Human Immunodeficiency Virus Infection. Clin Infect Dis 2018; 64:1422-1429. [PMID: 28329372 DOI: 10.1093/cid/cix178] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/22/2016] [Indexed: 12/13/2022] Open
Abstract
Background Obesity and lipohypertrophy are common in treated human immunodeficiency virus (HIV) infection and contribute to morbidity and mortality among HIV-infected adults on antiretroviral therapy (ART). Methods We present a consensus opinion on the diagnosis, clinical consequences, and treatment of excess adiposity in adults with treated HIV infection. Results Obesity and lipohypertrophy commonly occur among HIV-infected adults on ART and may have overlapping pathophysiologies and/or synergistic metabolic consequences. Traditional, HIV-specific, and ART-specific risk factors all contribute. The metabolic and inflammatory consequences of excess adiposity are critical drivers of non-AIDS events in this population. Although promising treatment strategies exist, further research is needed to better understand the pathophysiology and optimal treatment of obesity and lipohypertrophy in the modern ART era. Conclusions Both generalized obesity and lipohypertrophy are prevalent among HIV-infected persons on ART. Aggressive diagnosis and management are key to the prevention and treatment of end-organ disease in this population and critical to the present and future health of HIV-infected persons.
Collapse
Affiliation(s)
- Jordan E Lake
- Department of Medicine, University of Texas Health Science Center at Houston
| | - Takara L Stanley
- Department of Pediatrics, Harvard University School of Medicine and
| | - Caroline M Apovian
- Departments of Medicine and.,Pediatrics, Boston University School of Medicine, Massachusetts
| | | | - Todd T Brown
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jaqueline Capeau
- Department of Cell Biology and Metabolism, Univ-Paris 6, Inserm UMRS938, ICAN, Paris, France
| | - Judith S Currier
- Department of Medicine, University of California Los Angeles and
| | - Michael P Dube
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles
| | - Julian Falutz
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Steven K Grinspoon
- Department of Medicine, Harvard University School of Medicine, Boston, Massachusetts
| | - Giovanni Guaraldi
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Grace A McComsey
- Department of Medicine and Pediatrics, Case Western University, Cleveland, Ohio; and
| | - Fred R Sattler
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles
| | | |
Collapse
|
517
|
Klingelhutz AJ, Gourronc FA, Chaly A, Wadkins DA, Burand AJ, Markan KR, Idiga SO, Wu M, Potthoff MJ, Ankrum JA. Scaffold-free generation of uniform adipose spheroids for metabolism research and drug discovery. Sci Rep 2018; 8:523. [PMID: 29323267 PMCID: PMC5765134 DOI: 10.1038/s41598-017-19024-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue dysfunction is critical to the development of type II diabetes and other metabolic diseases. While monolayer cell culture has been useful for studying fat biology, 2D culture often does not reflect the complexity of fat tissue. Animal models are also problematic in that they are expensive, time consuming, and may not completely recapitulate human biology because of species variation. To address these problems, we have developed a scaffold-free method to generate 3D adipose spheroids from primary or immortal human or mouse pre-adipocytes. Pre-adipocytes self-organize into spheroids in hanging drops and upon transfer to low attachment plates, can be maintained in long-term cultures. Upon exposure to differentiation cues, the cells mature into adipocytes, accumulating large lipid droplets that expand with time. The 3D spheroids express and secrete higher levels of adiponectin compared to 2D culture and respond to stress, either culture-related or toxin-associated, by secreting pro-inflammatory adipokines. In addition, 3D spheroids derived from brown adipose tissue (BAT) retain expression of BAT markers better than 2D cultures derived from the same tissue. Thus, this model can be used to study both the maturation of pre-adipocytes or the function of mature adipocytes in a 3D culture environment.
Collapse
Affiliation(s)
- Aloysius J Klingelhutz
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA. .,Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| | - Francoise A Gourronc
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Anna Chaly
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - David A Wadkins
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Anthony J Burand
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Kathleen R Markan
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA.,Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sharon O Idiga
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA.,Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Meng Wu
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S. Grand Ave, Iowa City, IA, 52242, USA.,High Throughput Screening Core Facility at University of Iowa (UIHTS), University of Iowa, 115 S. Grand Ave, Iowa City, IA, 52242, USA
| | - Matthew J Potthoff
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA.,Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - James A Ankrum
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA. .,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
518
|
Oliva-Olivera W, Coín-Aragüez L, Lhamyani S, Salas J, Gentile AM, Romero-Zerbo SY, Zayed H, Valderrama J, Tinahones FJ, El Bekay R. Differences in the neovascular potential of thymus versus subcutaneous adipose-derived stem cells from patients with myocardial ischaemia. J Tissue Eng Regen Med 2018; 12:e1772-e1784. [PMID: 29024495 DOI: 10.1002/term.2585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/19/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022]
Abstract
Adipose tissue-derived multipotent mesenchymal cells (ASCs) participate in the information of blood vessels under hypoxic conditions. It is probable that the susceptibility of ASCs to the influence of age and ageing-associated pathologies compromises their therapeutic effectiveness depending on the adipose tissue depot. Our aim was to examine the neovascular potential under hypoxic conditions of ASCs-derived from thymic (thymASCs) and subcutaneous (subASCs) adipose tissue from 39 subjects with and without type 2 diabetes mellitus (T2DM) and of different ages who were undergoing coronary bypass surgery. We confirmed a significant decrease in the percentage of CD34+ CD31- CD45- subASCs in the cell yield of subASCs and in the survival of cultured endothelial cells in the medium conditioned by the hypox-subASCs with increasing patient age, which was not observed in thymASCs. Whereas the length of the tubules generated by hypox-subASCs tended to correlate negatively with patient age, tubule formation capacity of the hypoxic thymASCs increased significantly. Compared with subASCs, thymASCs from subjects over age 65 and without T2DM showed higher cell yield, tubule formation capacity, vascular endothelial growth factor secretion levels, and ability to promote endothelial cell survival in their conditioned medium. Deterioration in subASCs neovascular potential relative to thymASCs derived from these subjects was accompanied by higher expression levels of NOX4 mRNA and fibrotic proteins. Our results indicate that thymASCs from patients over age 65 and without T2DM have a higher angiogenic potential than those from the other patient groups, suggesting they may be a good candidate for angiogenic therapy in subjects undergoing coronary bypass surgery.
Collapse
Affiliation(s)
- Wilfredo Oliva-Olivera
- Department of Clinical Endocrinology and Nutrition, Institute of Biomedical Research of Málaga (IBIMA), Clinical Hospital of Málaga (Virgen de la Victoria), University of Málaga (UMA), Malaga, Spain.,CIBER-The Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Malaga, Spain
| | - Leticia Coín-Aragüez
- Department of Clinical Endocrinology and Nutrition, Institute of Biomedical Research of Málaga (IBIMA), Clinical Hospital of Málaga (Virgen de la Victoria), University of Málaga (UMA), Malaga, Spain.,CIBER-The Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Malaga, Spain
| | | | - Julián Salas
- Cardiovascular Surgery Department, Carlos Haya University Hospital, Malaga, Spain
| | | | - Silvana-Yanina Romero-Zerbo
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Malaga, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Malaga, Spain
| | - Hatem Zayed
- Biomedical Sciences Program, Health Sciences Department, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Jf Valderrama
- Cardiovascular Surgery Department, Carlos Haya University Hospital, Malaga, Spain
| | - Francisco José Tinahones
- Department of Clinical Endocrinology and Nutrition, Institute of Biomedical Research of Málaga (IBIMA), Clinical Hospital of Málaga (Virgen de la Victoria), University of Málaga (UMA), Malaga, Spain.,CIBER-The Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Malaga, Spain
| | - Rajaa El Bekay
- CIBER-The Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Malaga, Spain.,Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Malaga, Spain
| |
Collapse
|
519
|
Ishaq A, Schröder J, Edwards N, von Zglinicki T, Saretzki G. Dietary Restriction Ameliorates Age-Related Increase in DNA Damage, Senescence and Inflammation in Mouse Adipose Tissuey. J Nutr Health Aging 2018; 22:555-561. [PMID: 29582897 PMCID: PMC5866821 DOI: 10.1007/s12603-017-0968-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022]
Abstract
Ageing is associated with redistribution of fat around the body and saturation of visceral adipose depots. Likewise, the presence of excess fat in obesity or during ageing places extra stress on visceral depots, resulting in chronic inflammation and increased senescence. This process can contribute to the establishment of the metabolic syndrome and accelerated ageing. Dietary restriction (DR) is known to alleviate physiological signs of inflammation, ageing and senescence in various tissues including adipose tissue. OBJECTIVES Our pilot study aimed to analyse senescence and inflammation parameters in mouse visceral fat tissue during ageing and by short term, late-onset dietary restriction as a nutritional intervention. Design, measurements: In this study we used visceral adipose tissue from mice between 5 and 30 months of age and analysed markers of senescence (adipocyte size, γH2A.X, p16, p21) and inflammation (e.g. IL-6, TNFα, IL-1β, macrophage infiltration) using immuno-staining, as well as qPCR for gene expression analysis. Fat tissues from 3 mice per group were analysed. RESULTS We found that the amount of γH2A.X foci as well as the expression of senescence and inflammation markers increased during ageing but decreased with short term DR. In contrast, the increase in amounts of single or aggregated macrophages in fat depots occurred only at higher ages. Surprisingly, we also found that adipocyte size as well as some senescence parameters decreased at very high age (30 months). CONCLUSIONS Our results demonstrate increased senescence and inflammation during ageing in mouse visceral fat while DR was able to ameliorate several of these parameters as well as increased adipocyte size at 17.5 months of age. This highlights the health benefits of a decreased nutritional intake over a relatively short period of time at middle age.
Collapse
Affiliation(s)
- A Ishaq
- Dr. Gabriele Saretzki, The Ageing Biology Centre and Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Edwardson Building, Newcastle upon Tyne, NE4 5PL, United Kingdom, Phone: 0044 191 208 1214, Fax: 0044 191 208 1101,
| | | | | | | | | |
Collapse
|
520
|
Abstract
The ageing trajectory is plastic and can be slowed down by lifestyle factors, including good nutrition, adequate physical activity and avoidance of smoking. In humans, plant-based diets such as the Mediterranean dietary pattern are associated with healthier ageing and lower risk of age-related disease, whereas obesity accelerates ageing and increases the likelihood of most common complex diseases including CVD, T2D, dementia, musculoskeletal diseases and several cancers. As yet, there is only weak evidence in humans about the molecular mechanisms through which dietary factors modulate ageing but evidence from cell systems and animal models suggest that it is probable that better dietary choices influence all 9 hallmarks of ageing. It seems likely that better eating patterns retard ageing in at least two ways including (i) by reducing pervasive damaging processes such as inflammation, oxidative stress/redox changes and metabolic stress and (ii) by enhancing cellular capacities for damage management and repair. From a societal perspective, there is an urgent imperative to discover, and to implement, cost-effective lifestyle (especially dietary) interventions which enable each of us to age well, i.e. to remain physically and socially active and independent and to minimise the period towards the end of life when individuals suffer from frailty and multi-morbidity.
Collapse
Affiliation(s)
- Fiona C Malcomson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
521
|
Prattichizzo F, De Nigris V, Spiga R, Mancuso E, La Sala L, Antonicelli R, Testa R, Procopio AD, Olivieri F, Ceriello A. Inflammageing and metaflammation: The yin and yang of type 2 diabetes. Ageing Res Rev 2018; 41:1-17. [PMID: 29081381 DOI: 10.1016/j.arr.2017.10.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/21/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is characterised by chronic low-grade inflammation, recently referred to as 'metaflammation', a relevant factor contributing to the development of both diabetes and its complications. Nonetheless, 'canonical' anti-inflammatory drugs do not yield satisfactory results in terms of prevention of diabetes progression and of cardiovascular events, suggesting that the causal mechanisms fostering metaflammation deserve further research to identify new druggable targets. Metaflammation resembles ageing-induced low-grade inflammation, previously referred to as inflammageing, in terms of clinical presentation and the molecular profile, pointing to a common aetiology for both conditions. Along with the mechanisms proposed to fuel inflammageing, here we dissect a plethora of pathological cascades triggered by gluco- and lipotoxicity, converging on candidate phenomena possibly explaining the enduring pro-inflammatory program observed in diabetic tissues, i.e. persistent immune-system stimulation, accumulation of senescent cells, epigenetic rearrangements, and alterations in microbiota composition. We discuss the possibility of harnessing these recent discoveries in future therapies for T2DM. Moreover, we review recent evidence regarding the ability of diets and physical exercise to modulate selected inflammatory pathways relevant for the diabetic pathology. Finally, we examine the latest findings showing putative anti-inflammatory mechanisms of anti-hyperglycaemic agents with proven efficacy against T2DM-induced cardiovascular complications, in order to gain insights into quickly translatable therapeutic approaches.
Collapse
|
522
|
Yanai H, Fraifeld VE. The role of cellular senescence in aging through the prism of Koch-like criteria. Ageing Res Rev 2018; 41:18-33. [PMID: 29106993 DOI: 10.1016/j.arr.2017.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022]
Abstract
Since Hayflick's discovery of cellular senescence (CS), a great volume of knowledge in the field has been accumulated and intensively discussed. Here, we attempted to organize the evidence "for" and "against" the hypothesized causal role of CS in aging. For that purpose, we utilized robust Koch-like logical criteria, based on the assumption that some quantitative relationships between the accumulation of senescent cells and aging rate should exist. If so, it could be expected that (i) the "CS load" would be greater in the premature aging phenotype and lesser in longevity phenotype; (ii) CS would promote age-related diseases, and (iii) the interventions that modulate the levels of senescent cells should also modulate health/lifespan. The analysis shows that CS can be considered a causal factor of aging and an important player in various age-related diseases, though its contribution may greatly vary across species. While the relative impact of senescent cells to aging could overall be rather limited and their elimination is hardly expected to be the "fountain of youth", the potential benefits of the senolytic strategy seems a promising option in combating age-related diseases and extending healthspan.
Collapse
|
523
|
Lettieri-Barbato D, Giovannetti E, Aquilano K. Effects of dietary restriction on adipose mass and biomarkers of healthy aging in human. Aging (Albany NY) 2017; 8:3341-3355. [PMID: 27899768 PMCID: PMC5270672 DOI: 10.18632/aging.101122] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/16/2016] [Indexed: 12/22/2022]
Abstract
In developing countries the rise of obesity and obesity-related metabolic disorders, such as cardiovascular diseases and type 2 diabetes, reflects the changes in lifestyle habits and wrong dietary choices. Dietary restriction (DR) regimens have been shown to extend health span and lifespan in many animal models including primates. Identifying biomarkers predictive of clinical benefits of treatment is one of the primary goals of precision medicine. To monitor the clinical outcomes of DR interventions in humans, several biomarkers are commonly adopted. However, a validated link between the behaviors of such biomarkers and DR effects is lacking at present time. Through a systematic analysis of human intervention studies, we evaluated the effect size of DR (i.e. calorie restriction, very low calorie diet, intermittent fasting, alternate day fasting) on health-related biomarkers. We found that DR is effective in reducing total and visceral adipose mass and improving inflammatory cytokines profile and adiponectin/leptin ratio. By analysing the levels of canonical biomarkers of healthy aging, we also validated the changes of insulin, IGF-1 and IGFBP-1,2 to monitor DR effects. Collectively, we developed a useful platform to evaluate the human responses to dietary regimens low in calories.
Collapse
Affiliation(s)
| | | | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.,IRCCS San Raffaele La Pisana, Rome, Italy
| |
Collapse
|
524
|
Silva VRR, Katashima CK, Bueno Silva CG, Lenhare L, Micheletti TO, Camargo RL, Ghezzi AC, Camargo JA, Assis AM, Tobar N, Morari J, Razolli DS, Moura LP, Pauli JR, Cintra DE, Velloso LA, Saad MJA, Ropelle ER. Hypothalamic S1P/S1PR1 axis controls energy homeostasis in Middle-Aged Rodents: the reversal effects of physical exercise. Aging (Albany NY) 2017; 9:142-155. [PMID: 28039439 PMCID: PMC5310661 DOI: 10.18632/aging.101138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023]
Abstract
Recently, we demonstrated that the hypothalamic S1PR1/STAT3 axis plays a critical role in the control of food consumption and energy expenditure in rodents. Here, we found that reduction of hypothalamic S1PR1 expression occurs in an age-dependent manner, and was associated with defective thermogenic signaling and weight gain. To address the physiological relevance of these findings, we investigated the effects of chronic and acute exercise on the hypothalamic S1PR1/STAT3 axis. Chronic exercise increased S1PR1 expression and STAT3 phosphorylation in the hypothalamus, restoring the anorexigenic and thermogenic signals in middle-aged mice. Acutely, exercise increased sphingosine-1-phosphate (S1P) levels in the cerebrospinal fluid (CSF) of young rats, whereas the administration of CSF from exercised young rats into the hypothalamus of middle-aged rats at rest was sufficient to reduce the food intake. Finally, the intracerebroventricular (ICV) administration of S1PR1 activators, including the bioactive lipid molecule S1P, and pharmacological S1PR1 activator, SEW2871, induced a potent STAT3 phosphorylation and anorexigenic response in middle-aged rats. Overall, these results suggest that hypothalamic S1PR1 is important for the maintenance of energy balance and provide new insights into the mechanism by which exercise controls the anorexigenic and thermogenic signals in the central nervous system during the aging process.
Collapse
Affiliation(s)
- Vagner Ramon Rodrigues Silva
- School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.,Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
| | | | - Carla G Bueno Silva
- Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
| | - Luciene Lenhare
- Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
| | | | | | - Ana Carolina Ghezzi
- Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
| | | | | | - Natalia Tobar
- Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
| | - Joseane Morari
- Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
| | - Daniela S Razolli
- Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
| | | | - José Rodrigo Pauli
- School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.,Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil.,CEPECE - Research Center of Sport Sciences, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | | | - Lício Augusto Velloso
- Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil.,Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, 1308-970, Brazil
| | - Mario J A Saad
- Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
| | - Eduardo Rochete Ropelle
- School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.,Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil.,CEPECE - Research Center of Sport Sciences, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.,Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, 1308-970, Brazil
| |
Collapse
|
525
|
Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, Rydkina E, Vujcic S, Balan K, Gitlin I, Leonova K, Polinsky A, Chernova OB, Gudkov AV. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging (Albany NY) 2017; 8:1294-315. [PMID: 27391570 PMCID: PMC4993332 DOI: 10.18632/aging.100991] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022]
Abstract
Senescent cells (SCs) have been considered a source of age-related chronic sterile systemic inflammation and a target for anti-aging therapies. To understand mechanisms controlling the amount of SCs, we analyzed the phenomenon of rapid clearance of human senescent fibroblasts implanted into SCID mice, which can be overcome when SCs were embedded into alginate beads preventing them from immunocyte attack. To identify putative SC killers, we analyzed the content of cell populations in lavage and capsules formed around the SC-containing beads. One of the major cell types attracted by secretory factors of SCs was a subpopulation of macrophages characterized by p16(Ink4a) gene expression and β-galactosidase activity at pH6.0 (β-gal(pH6)), thus resembling SCs. Consistently, mice with p16(Ink4a) promoter-driven luciferase, developed bright luminescence of their peritoneal cavity within two weeks following implantation of SCs embedded in alginate beads. p16(Ink4a)/β-gal(pH6)-expressing cells had surface biomarkers of macrophages F4/80 and were sensitive to liposomal clodronate used for the selective killing of cells capable of phagocytosis. At the same time, clodronate failed to kill bona fide SCs generated in vitro by genotoxic stress. Old mice with elevated proportion of p16(Ink4a)/β-gal(pH6)-positive cells in their tissues demonstrated reduction of both following systemic clodronate treatment, indicating that a significant proportion of cells previously considered to be SCs are actually a subclass of macrophages. These observations point at a significant role of p16(Ink4a)/β-gal(pH6)-positive macrophages in aging, which previously was attributed solely to SCs. They require re-interpretation of the mechanisms underlying rejuvenating effects following eradication of p16(Ink4a)/β-gal(pH6)-positive cells and reconsideration of potential cellular target for anti-aging treatment.
Collapse
Affiliation(s)
| | - Vitaly Balan
- Everon Biosciences, Inc., Buffalo, NY 14203, USA
| | | | | | | | | | | | | | - Karina Balan
- Everon Biosciences, Inc., Buffalo, NY 14203, USA
| | - Ilya Gitlin
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Katerina Leonova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
526
|
Uzhachenko R, Boyd K, Olivares-Villagomez D, Zhu Y, Goodwin JS, Rana T, Shanker A, Tan WJT, Bondar T, Medzhitov R, Ivanova AV. Mitochondrial protein Fus1/Tusc2 in premature aging and age-related pathologies: critical roles of calcium and energy homeostasis. Aging (Albany NY) 2017; 9:627-649. [PMID: 28351997 PMCID: PMC5391223 DOI: 10.18632/aging.101213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/18/2017] [Indexed: 12/20/2022]
Abstract
Decreased energy production and increased oxidative stress are considered to be major contributors to aging and aging-associated pathologies. The role of mitochondrial calcium homeostasis has also been highlighted as an important factor affecting different pathological conditions. Here, we present evidence that loss of a small mitochondrial protein Fus1 that maintains mitochondrial homeostasis results in premature aging, aging-associated pathologies, and decreased survival. We showed that Fus1KO mice develop multiple early aging signs including lordokyphosis, lack of vigor, inability to accumulate fat, reduced ability to tolerate stress, and premature death. Other prominent pathological changes included low sperm counts, compromised ability of adult stem cells to repopulate tissues, and chronic inflammation. At the molecular level, we demonstrated that mitochondria of Fus1 KO cells have low reserve respiratory capacity (the ability to produce extra energy during sudden energy demanding situations), and show significantly altered dynamics of cellular calcium response. Our recent studies on early hearing and memory loss in Fus1 KO mice combined with the new data presented here suggest that calcium and energy homeostasis controlled by Fus1 may be at the core of its aging-regulating activities. Thus, Fus1 protein and Fus1-dependent pathways and processes may represent new tools and targets for anti-aging strategies.
Collapse
Affiliation(s)
- Roman Uzhachenko
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Kelli Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Danyvid Olivares-Villagomez
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yueming Zhu
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - J Shawn Goodwin
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Tanu Rana
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA.,Present address: Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA.,Department of Surgery, Section of Otolaryngology, Yale University School of Medicine, New Haven, CT 0651, USA
| | - Winston J T Tan
- Department of Surgery, Section of Otolaryngology, Yale University School of Medicine, New Haven, CT 0651, USA
| | - Tanya Bondar
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 0651, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 0651, USA
| | - Alla V Ivanova
- Department of Surgery, Section of Otolaryngology, Yale University School of Medicine, New Haven, CT 0651, USA
| |
Collapse
|
527
|
McHugh D, Gil J. Senescence and aging: Causes, consequences, and therapeutic avenues. J Cell Biol 2017; 217:65-77. [PMID: 29114066 PMCID: PMC5748990 DOI: 10.1083/jcb.201708092] [Citation(s) in RCA: 787] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is the major risk factor for cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. Although we are far from understanding the biological basis of aging, research suggests that targeting the aging process itself could ameliorate many age-related pathologies. Senescence is a cellular response characterized by a stable growth arrest and other phenotypic alterations that include a proinflammatory secretome. Senescence plays roles in normal development, maintains tissue homeostasis, and limits tumor progression. However, senescence has also been implicated as a major cause of age-related disease. In this regard, recent experimental evidence has shown that the genetic or pharmacological ablation of senescent cells extends life span and improves health span. Here, we review the cellular and molecular links between cellular senescence and aging and discuss the novel therapeutic avenues that this connection opens.
Collapse
Affiliation(s)
- Domhnall McHugh
- Medical Research Council London Institute of Medical Sciences, London, England, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, England, UK
| | - Jesús Gil
- Medical Research Council London Institute of Medical Sciences, London, England, UK .,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, England, UK
| |
Collapse
|
528
|
Schafer MJ, Miller JD, LeBrasseur NK. Cellular senescence: Implications for metabolic disease. Mol Cell Endocrinol 2017; 455:93-102. [PMID: 27591120 PMCID: PMC5857952 DOI: 10.1016/j.mce.2016.08.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/03/2016] [Accepted: 08/29/2016] [Indexed: 12/19/2022]
Abstract
The growing burden of obesity- and aging-related diseases has hastened the search for governing biological processes. Cellular senescence is a stress-induced state of stable growth arrest strongly associated with aging that is aberrantly activated by obesity. The transition of a cell to a senescent state is demarcated by an array of phenotypic markers, and leveraging their context-dependent presentation is essential for determining the influence of senescent cells on tissue pathogenesis. Biomarkers of senescent cells have been identified in tissues that contribute to metabolic disease, including fat, liver, skeletal muscle, pancreata, and cardiovascular tissue, suggesting that pharmacological and behavioral interventions that alter their abundance and/or behavior may be a novel therapeutic strategy. However, contradictory findings with regard to a protective versus deleterious role of senescent cells in certain contexts emphasize the need for additional studies to uncover the complex interplay that defines multi-organ disease processes associated with obesity and aging.
Collapse
Affiliation(s)
- Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jordan D Miller
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA; Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
529
|
Shirakawa K, Endo J, Katsumata Y, Yamamoto T, Kataoka M, Isobe S, Yoshida N, Fukuda K, Sano M. Negative legacy of obesity. PLoS One 2017; 12:e0186303. [PMID: 29073165 PMCID: PMC5657997 DOI: 10.1371/journal.pone.0186303] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022] Open
Abstract
Obesity promotes excessive inflammation, which is associated with senescence-like changes in visceral adipose tissue (VAT) and the development of type 2 diabetes (T2DM) and cardiovascular diseases. We have reported that a unique population of CD44hi CD62Llo CD4+ T cells that constitutively express PD-1 and CD153 exhibit cellular senescence and cause VAT inflammation by producing large amounts of osteopontin. Weight loss improves glycemic control and reduces cardiovascular disease risk factors, but its long-term effects on cardiovascular events and longevity in obese individuals with T2DM are somewhat disappointing and not well understood. High-fat diet (HFD)-fed obese mice were subjected to weight reduction through a switch to a control diet. They lost body weight and visceral fat mass, reaching the same levels as lean mice fed a control diet. However, the VAT of weight reduction mice exhibited denser infiltration of macrophages, which formed more crown-like structures compared to the VAT of obese mice kept on the HFD. Mechanistically, CD153+ PD-1+ CD4+ T cells are long-lived and not easily eliminated, even after weight reduction. Their continued presence maintains a self-sustaining chronic inflammatory loop via production of large amounts of osteopontin. Thus, we concluded that T-cell senescence is essentially a negative legacy effect of obesity.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Jin Endo
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | | | - Tsunehisa Yamamoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaharu Kataoka
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Sarasa Isobe
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Naohiro Yoshida
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
530
|
Kitada M, Ogura Y, Maruki-Uchida H, Sai M, Suzuki T, Kanasaki K, Hara Y, Seto H, Kuroshima Y, Monno I, Koya D. The Effect of Piceatannol from Passion Fruit (Passiflora edulis) Seeds on Metabolic Health in Humans. Nutrients 2017; 9:nu9101142. [PMID: 29057795 PMCID: PMC5691758 DOI: 10.3390/nu9101142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/22/2017] [Accepted: 10/12/2017] [Indexed: 12/13/2022] Open
Abstract
Animal studies have shown the beneficial effects of piceatannol on metabolic health; however, there is a lack of human studies designed to examine these effects. The objective of this study was to investigate the effects of piceatannol on metabolic health in humans. This randomized, placebo-controlled study was conducted on 39 subjects, including 10 overweight men and 9 overweight women (BMI ≥ 25), as well as 10 non-overweight men and 10 non-overweight women (BMI < 25). Subjects received piceatannol (20 mg/day) or placebo capsules for eight weeks in a random order. The primary outcome was the effect of piceatannol on glucose-metabolism, including insulin sensitivity. The secondary outcomes were the effects on other parameters, including blood pressure (BP), heart rate (HR), endothelial function, lipids, inflammation, oxidative stress, mood status, and Sirt1 and phospho-AMP-activated kinase (p-AMPK) expression in isolated peripheral blood mononuclear cells (PBMNCs). Supplementation with piceatannol in overweight men reduced serum insulin levels, HOMA-IR, BP and HR. Other groups, including non-overweight men, as well as overweight and non-overweight women, showed no beneficial effects on insulin sensitivity, BP and HR. Furthermore, piceatannol is not associated with other data, including body weight (BW), body composition, endothelial function, lipids, inflammation, oxidative stress, mood status, and Sirt1/p-AMPK expression in PBMNCs. In conclusion, supplementation with piceatannol can improve metabolic health, including insulin sensitivity, BP and HR, in overweight men.
Collapse
Affiliation(s)
- Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | - Hiroko Maruki-Uchida
- Research and Development Department, Health and Wellness Headquarters, Morinaga and Company Limited, 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan.
| | - Masahiko Sai
- Research and Development Department, Health and Wellness Headquarters, Morinaga and Company Limited, 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan.
| | - Taeko Suzuki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | - Yuna Hara
- Division of Clinical Laboratory, Kanazawa Medical University Hospital, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | - Hiromi Seto
- Division of Clinical Laboratory, Kanazawa Medical University Hospital, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | - Yuka Kuroshima
- Department of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | - Itaru Monno
- Department of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| |
Collapse
|
531
|
Fougère B, Boulanger E, Nourhashémi F, Guyonnet S, Cesari M. Chronic Inflammation: Accelerator of Biological Aging. J Gerontol A Biol Sci Med Sci 2017; 72:1218-1225. [PMID: 28003373 DOI: 10.1093/gerona/glw240] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/09/2016] [Indexed: 12/13/2022] Open
Abstract
Biological aging is characterized by a chronic low-grade inflammation level. This chronic phenomenon has been named "inflamm-aging" and is a highly significant risk factor for morbidity and mortality in the older persons. The most common theories of inflamm-aging include redox stress, mitochondrial dysfunction, glycation, deregulation of the immune system, hormonal changes, epigenetic modifications, and dysfunction telomere attrition. Inflamm-aging plays a role in the initiation and progression of age-related diseases such as type II diabetes, Alzheimer's disease, cardiovascular disease, frailty, sarcopenia, osteoporosis, and cancer. This review will cover the identification of pathways that control age-related inflammation across multiple systems and its potential causal role in contributing to adverse health outcomes.
Collapse
Affiliation(s)
- Bertrand Fougère
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| | | | - Fati Nourhashémi
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Sophie Guyonnet
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Matteo Cesari
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
532
|
Zhang B, Chen F, Xu Q, Han L, Xu J, Gao L, Sun X, Li Y, Li Y, Qian M, Sun Y. Revisiting ovarian cancer microenvironment: a friend or a foe? Protein Cell 2017; 9:674-692. [PMID: 28929459 PMCID: PMC6053350 DOI: 10.1007/s13238-017-0466-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Development of ovarian cancer involves the co-evolution of neoplastic cells together with the adjacent microenvironment. Steps of malignant progression including primary tumor outgrowth, therapeutic resistance, and distant metastasis are not determined solely by genetic alterations in ovarian cancer cells, but considerably shaped by the fitness advantage conferred by benign components in the ovarian stroma. As the dynamic cancer topography varies drastically during disease progression, heterologous cell types within the tumor microenvironment (TME) can actively determine the pathological track of ovarian cancer. Resembling many other solid tumor types, ovarian malignancy is nurtured by a TME whose dark side may have been overlooked, rather than overestimated. Further, harnessing breakthrough and targeting cures in human ovarian cancer requires insightful understanding of the merits and drawbacks of current treatment modalities, which mainly target transformed cells. Thus, designing novel and precise strategies that both eliminate cancer cells and manipulate the TME is increasingly recognized as a rational avenue to improve therapeutic outcome and prevent disease deterioration of ovarian cancer patients.
Collapse
Affiliation(s)
- Boyi Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fei Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qixia Xu
- Institute of Health Sciences, Shanghai Jiao Tong University, School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liu Han
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiaqian Xu
- Institute of Health Sciences, Shanghai Jiao Tong University, School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Libin Gao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaochen Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yiwen Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Qian
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
533
|
Stout MB, Justice JN, Nicklas BJ, Kirkland JL. Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty. Physiology (Bethesda) 2017; 32:9-19. [PMID: 27927801 DOI: 10.1152/physiol.00012.2016] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age.
Collapse
Affiliation(s)
- Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jamie N Justice
- Department of Internal Medicine-Geriatrics, Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - Barbara J Nicklas
- Department of Internal Medicine-Geriatrics, Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
534
|
Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, Grassi D, Gregg SQ, Stripay JL, Dorronsoro A, Corbo L, Tang P, Bukata C, Ring N, Giacca M, Li X, Tchkonia T, Kirkland JL, Niedernhofer LJ, Robbins PD. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 2017; 8:422. [PMID: 28871086 PMCID: PMC5583353 DOI: 10.1038/s41467-017-00314-z] [Citation(s) in RCA: 474] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/21/2017] [Indexed: 01/07/2023] Open
Abstract
Aging is the main risk factor for many chronic degenerative diseases and cancer. Increased senescent cell burden in various tissues is a major contributor to aging and age-related diseases. Recently, a new class of drugs termed senolytics were demonstrated to extending healthspan, reducing frailty and improving stem cell function in multiple murine models of aging. To identify novel and more optimal senotherapeutic drugs and combinations, we established a senescence associated β-galactosidase assay as a screening platform to rapidly identify drugs that specifically affect senescent cells. We used primary Ercc1 -/- murine embryonic fibroblasts with reduced DNA repair capacity, which senesce rapidly if grown at atmospheric oxygen. This platform was used to screen a small library of compounds that regulate autophagy, identifying two inhibitors of the HSP90 chaperone family as having significant senolytic activity in mouse and human cells. Treatment of Ercc1 -/∆ mice, a mouse model of a human progeroid syndrome, with the HSP90 inhibitor 17-DMAG extended healthspan, delayed the onset of several age-related symptoms and reduced p16INK4a expression. These results demonstrate the utility of our screening platform to identify senotherapeutic agents as well as identified HSP90 inhibitors as a promising new class of senolytic drugs.The accumulation of senescent cells is thought to contribute to the age-associated decline in tissue function. Here, the authors identify HSP90 inhibitors as a new class of senolytic compounds in an in vitro screening and show that administration of a HSP90 inhibitor reduces age-related symptoms in progeroid mice.
Collapse
Affiliation(s)
| | - Yuan Yuan Ling
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Jing Zhao
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Sara J McGowan
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Yi Zhu
- University of Pittsburgh School of Medicine, Pittsburgh, 15261, PA, USA
| | - Robert W Brooks
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Diego Grassi
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Siobhan Q Gregg
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, 55905, MN, USA
| | - Jennifer L Stripay
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, 55905, MN, USA
| | - Akaitz Dorronsoro
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Lana Corbo
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Priscilla Tang
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Christina Bukata
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Nadja Ring
- International Centre for Genetic Engineering and Biotechnology, Trieste, 34100, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste, 34100, Italy
| | - Xuesen Li
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Tamara Tchkonia
- University of Pittsburgh School of Medicine, Pittsburgh, 15261, PA, USA
| | - James L Kirkland
- University of Pittsburgh School of Medicine, Pittsburgh, 15261, PA, USA
| | - Laura J Niedernhofer
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Paul D Robbins
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA.
| |
Collapse
|
535
|
Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD. The Clinical Potential of Senolytic Drugs. J Am Geriatr Soc 2017; 65:2297-2301. [PMID: 28869295 DOI: 10.1111/jgs.14969] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Senolytic drugs are agents that selectively induce apoptosis of senescent cells. These cells accumulate in many tissues with aging and at sites of pathology in multiple chronic diseases. In studies in animals, targeting senescent cells using genetic or pharmacological approaches delays, prevents, or alleviates multiple age-related phenotypes, chronic diseases, geriatric syndromes, and loss of physiological resilience. Among the chronic conditions successfully treated by depleting senescent cells in preclinical studies are frailty, cardiac dysfunction, vascular hyporeactivity and calcification, diabetes mellitus, liver steatosis, osteoporosis, vertebral disk degeneration, pulmonary fibrosis, and radiation-induced damage. Senolytic agents are being tested in proof-of-concept clinical trials. To do so, new clinical trial paradigms for testing senolytics and other agents that target fundamental aging mechanisms are being developed, because use of long-term endpoints such as lifespan or healthspan is not feasible. These strategies include testing effects on multimorbidity, accelerated aging-like conditions, diseases with localized accumulation of senescent cells, potentially fatal diseases associated with senescent cell accumulation, age-related loss of physiological resilience, and frailty. If senolytics or other interventions that target fundamental aging processes prove to be effective and safe in clinical trials, they could transform geriatric medicine by enabling prevention or treatment of multiple diseases and functional deficits in parallel, instead of one at a time.
Collapse
Affiliation(s)
- James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Laura J Niedernhofer
- Department of Molecular Medicine and the Center on Aging, Scripps Research Institute, Jupiter, Florida
| | - Paul D Robbins
- Department of Molecular Medicine and the Center on Aging, Scripps Research Institute, Jupiter, Florida
| |
Collapse
|
536
|
Frasca D, Blomberg BB. Adipose Tissue Inflammation Induces B Cell Inflammation and Decreases B Cell Function in Aging. Front Immunol 2017; 8:1003. [PMID: 28894445 PMCID: PMC5581329 DOI: 10.3389/fimmu.2017.01003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
Aging is the greatest risk factor for developing chronic diseases. Inflamm-aging, the age-related increase in low-grade chronic inflammation, may be a common link in age-related diseases. This review summarizes recent published data on potential cellular and molecular mechanisms of the age-related increase in inflammation, and how these contribute to decreased humoral immune responses in aged mice and humans. Briefly, we cover how aging and related inflammation decrease antibody responses in mice and humans, and how obesity contributes to the mechanisms for aging through increased inflammation. We also report data in the literature showing adipose tissue infiltration with immune cells and how these cells are recruited and contribute to local and systemic inflammation. We show that several types of immune cells infiltrate the adipose tissue and these include macrophages, neutrophils, NK cells, innate lymphoid cells, eosinophils, T cells, B1, and B2 cells. Our main focus is how the adipose tissue affects immune responses, in particular B cell responses and antibody production. The role of leptin in generating inflammation and decreased B cell responses is also discussed. We report data published by us and by other groups showing that the adipose tissue generates pro-inflammatory B cell subsets which induce pro-inflammatory T cells, promote insulin resistance, and secrete pathogenic autoimmune antibodies.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
537
|
Liu HW, Chan YC, Wei CC, Chen YA, Wang MF, Chang SJ. An alternative model for studying age-associated metabolic complications: Senescence-accelerated mouse prone 8. Exp Gerontol 2017; 99:61-68. [PMID: 28843510 DOI: 10.1016/j.exger.2017.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022]
Abstract
Rodent animal models take at least 18months to develop aging phenotypes for researchers to investigate the mechanism of age-related metabolic complications. Senescence-accelerated mouse prone 8 (SAMP8) shortens the process of aging and may facilitate an alternative model for studying age-related insulin resistance. The short-lived strain SAMP8 and two long-lived strains SAM resistant 1 (SAMR1) mice and C57BL/6 mice at 12 (young) and 40weeks old (old) were used in the present study. Glucose tolerance test, histology and signaling pathways involved in lipid metabolism in adipose tissue and liver and key components of insulin signaling pathway in the skeletal muscle were determined in these three strains. We found that short-lived SAMP8 mice developed symptoms of insulin resistance including hyperglycemia, hyperinsulinemia, and impaired glucose tolerance in association with adipocyte hypertrophy and ectopic lipid accumulation in liver and muscle at 40-wk.-old. Significantly increased serum IL-6, leptin, and resistin levels and adipogenic transcription factor PPARγ and macrophage marker F4/80 mRNA expression in adipose tissues were observed in old SAMP8 mice, compared with that in young SAMP8 mice. Marked increases in SREBP1 and PPARγ and a decrease in PPARα at mRNA level in accordance with activation of mTOR/Akt pathway were contributed to hepatic lipid accumulation in old SAMP8 mice. Down-regulation of insulin signaling pathway including IRβ, IRS1, and AS160 at protein level in skeletal muscle was observed in old SAMP8 mice. At 40-wk.-old, both long-lived SAMR1 and C57BL/6 mice have not been fully developed age-related metabolic disorders including insulin resistance and visceral fat expansion in line with fewer defects in lipid metabolism and skeletal muscle insulin signaling pathway. In conclusion, our data suggest the suitability of the SAMP8 mice as a model for studying age-related metabolic complications.
Collapse
Affiliation(s)
- Hung-Wen Liu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan; Department of Physical education, National Taiwan Normal University, Taipei, Taiwan
| | - Yin-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
| | - Chu-Chun Wei
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yun-An Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
538
|
Spirulina platensis Improves Mitochondrial Function Impaired by Elevated Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells (ASCs) and Intestinal Epithelial Cells (IECs), and Enhances Insulin Sensitivity in Equine Metabolic Syndrome (EMS) Horses. Mar Drugs 2017; 15:md15080237. [PMID: 28771165 PMCID: PMC5577592 DOI: 10.3390/md15080237] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
Equine Metabolic Syndrome (EMS) is a steadily growing life-threatening endocrine disorder linked to insulin resistance, oxidative stress, and systemic inflammation. Inflammatory microenvironment of adipose tissue constitutes the direct tissue milieu for various cell populations, including adipose-derived mesenchymal stromal cells (ASCs), widely considered as a potential therapeutic cell source in the course of the treatment of metabolic disorders. Moreover, elevated oxidative stress induces inflammation in intestinal epithelial cells (IECs)—the first-line cells exposed to dietary compounds. In the conducted research, we showed that in vitro application of Spirulina platensis contributes to the restoration of ASCs’ and IECs’ morphology and function through the reduction of cellular oxidative stress and inflammation. Enhanced viability, suppressed senescence, and improved proliferation of ASCs and IECs isolated from metabolic syndrome-affected individuals were evident following exposition to Spirulina. A protective effect of the investigated extract against mitochondrial dysfunction and degeneration was also observed. Moreover, our data demonstrate that Spirulina extract effectively suppressed LPS-induced inflammatory responses in macrophages. In vivo studies showed that horses fed with a diet based on Spirulina platensis supplementation lost weight and their insulin sensitivity improved. Thus, our results indicate the engagement of Spirulina platensis nourishing as an interesting alternative approach for supporting the conventional treatment of equine metabolic syndrome.
Collapse
|
539
|
García-Velázquez L, Arias C. The emerging role of Wnt signaling dysregulation in the understanding and modification of age-associated diseases. Ageing Res Rev 2017. [PMID: 28624530 DOI: 10.1016/j.arr.2017.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wnt signaling is a highly conserved pathway that participates in multiple aspects of cellular function during development and in adults. In particular, this pathway has been implicated in cell fate determination, proliferation and cell polarity establishment. In the brain, it contributes to synapse formation, axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. The expression and distribution of Wnt components in different organs vary with age, which may have important implications for preserving tissue homeostasis. The dysregulation of Wnt signaling has been implicated in age-associated diseases, such as cancer and some neurodegenerative conditions. This is a relevant research topic, as an important research avenue for therapeutic targeting of the Wnt pathway in regenerative medicine has recently been opened. In this review, we discuss the recent findings on the regulation of Wnt components during aging, particularly in brain functioning, and the implications of Wnt signaling in age-related diseases.
Collapse
|
540
|
Gradinaru D, Margina D, Borsa C, Ionescu C, Ilie M, Costache M, Dinischiotu A, Prada GI. Adiponectin: possible link between metabolic stress and oxidative stress in the elderly. Aging Clin Exp Res 2017; 29:621-629. [PMID: 27688246 DOI: 10.1007/s40520-016-0629-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the relationships between the serum levels of adiponectin and systemic oxidative stress exerted on lipids, proteins, as well as endothelial function and cardiovascular diseases (CVD) risk markers, in elderly subjects with metabolic syndrome (MS). METHODS The serum advanced glycation and oxidation protein products, low-density lipoprotein susceptibility to oxidation (oxLDL), nitric oxide metabolic pathway products (NOx), serum lipid peroxidation, as well as total antioxidant/oxidative capacity (TAC/TOC), were analyzed in elderly subjects with MS (n = 44), compared to aged-matched control (n = 39). RESULTS We pointed out significantly lower levels of adiponectin in elderly MS subjects concomitantly with significantly higher levels of oxidative stress and CVD risk markers. Significant positive correlations were found between serum adiponectin levels and HDL-cholesterol (p < 0.05) and the total cholesterol/LDL-cholesterol ratio (p < 0.01). Additionally, adiponectin levels were significantly inversely associated with insulin resistance index (HOMA-IR, r = -0.348; p < 0.05) and serum lipid peroxidation (r = -0.337; p < 0.05), and significantly positively with the antioxidant capacity (TAC, r = 0.339; p < 0.05). Conversely, adiponectin levels were significantly negatively (r = -0.310; p < 0.05) associated with serum uric acid concentration. CONCLUSIONS The major protective role of adiponectin versus stress related to an impaired glucose and lipid metabolism suggests that adiponectin plays a critical role in adiposity-related metabolic stress and redox homeostasis.
Collapse
Affiliation(s)
- Daniela Gradinaru
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila - University of Medicine and Pharmacy, 6 Taian Vuia street, sector 2, 020956, Bucharest, Romania.
| | - Denisa Margina
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila - University of Medicine and Pharmacy, 6 Taian Vuia street, sector 2, 020956, Bucharest, Romania
| | - Claudia Borsa
- Ana Aslan - National Institute of Gerontology and Geriatrics, 9 Caldarusani street, sector 1, PO Box 2-4, 011241, Bucharest, Romania
| | - Cristina Ionescu
- Ana Aslan - National Institute of Gerontology and Geriatrics, 9 Caldarusani street, sector 1, PO Box 2-4, 011241, Bucharest, Romania
| | - Mihaela Ilie
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila - University of Medicine and Pharmacy, 6 Taian Vuia street, sector 2, 020956, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, sector 5, 050107, Bucharest, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, sector 5, 050107, Bucharest, Romania
| | - Gabriel-Ioan Prada
- Ana Aslan - National Institute of Gerontology and Geriatrics, 9 Caldarusani street, sector 1, PO Box 2-4, 011241, Bucharest, Romania
| |
Collapse
|
541
|
Kim KH, Choi S, Zhou Y, Kim EY, Lee JM, Saha PK, Anakk S, Moore DD. Hepatic FXR/SHP axis modulates systemic glucose and fatty acid homeostasis in aged mice. Hepatology 2017; 66:498-509. [PMID: 28378930 PMCID: PMC8156739 DOI: 10.1002/hep.29199] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/25/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED The nuclear receptors farnesoid X receptor (FXR; NR1H4) and small heterodimer partner (SHP; NR0B2) play crucial roles in bile acid homeostasis. Global double knockout of FXR and SHP signaling (DKO) causes severe cholestasis and liver injury at early ages. Here, we report an unexpected beneficial impact on glucose and fatty acid metabolism in aged DKO mice, which show suppressed body weight gain and adiposity when maintained on normal chow. This phenotype was not observed in single Fxr or Shp knockouts. Liver-specific Fxr/Shp double knockout mice fully phenocopied the DKO mice, with lower hepatic triglyceride accumulation, improved glucose/insulin tolerance, and accelerated fatty acid use. In both DKO and liver-specific Fxr/Shp double knockout livers, these metabolic phenotypes were associated with altered expression of fatty acid metabolism and autophagy-machinery genes. Loss of the hepatic FXR/SHP axis reprogrammed white and brown adipose tissue gene expression to boost fatty acid usage. CONCLUSION Combined deletion of the hepatic FXR/SHP axis improves glucose/fatty acid homeostasis in aged mice, reversing the aging phenotype of body weight gain, increased adiposity, and glucose/insulin tolerance, suggesting a central role of this axis in whole-body energy homeostasis. (Hepatology 2017;66:498-509).
Collapse
Affiliation(s)
- Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Sungwoo Choi
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
| | - Ying Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX,Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX
| | - Eun Young Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Pradip K. Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX,Program in Developmental Biology, Baylor College of Medicine, Houston, TX,Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX
| |
Collapse
|
542
|
Berryman DE, List EO. Growth Hormone's Effect on Adipose Tissue: Quality versus Quantity. Int J Mol Sci 2017; 18:ijms18081621. [PMID: 28933734 PMCID: PMC5578013 DOI: 10.3390/ijms18081621] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity is an excessive accumulation or expansion of adipose tissue (AT) due to an increase in either the size and/or number of its characteristic cell type, the adipocyte. As one of the most significant public health problems of our time, obesity and its associated metabolic complications have demanded that attention be given to finding effective therapeutic options aimed at reducing adiposity or the metabolic dysfunction associated with its accumulation. Growth hormone (GH) has therapeutic potential due to its potent lipolytic effect and resultant ability to reduce AT mass while preserving lean body mass. However, AT and its resident adipocytes are significantly more dynamic and elaborate than once thought and require one not to use the reduction in absolute mass as a readout of efficacy alone. Paradoxically, therapies that reduce GH action may ultimately prove to be healthier, in part because GH also possesses potent anti-insulin activities along with concerns that GH may promote the growth of certain cancers. This review will briefly summarize some of the newer complexities of AT relevant to GH action and describe the current understanding of how GH influences this tissue using data from both humans and mice. We will conclude by considering the therapeutic use of GH or GH antagonists in obesity, as well as important gaps in knowledge regarding GH and AT.
Collapse
Affiliation(s)
- Darlene E Berryman
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
- Edison Biotechnology Institute, 218 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
| | - Edward O List
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
- Edison Biotechnology Institute, 218 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
543
|
Bektas A, Schurman SH, Sen R, Ferrucci L. Human T cell immunosenescence and inflammation in aging. J Leukoc Biol 2017; 102:977-988. [PMID: 28733462 DOI: 10.1189/jlb.3ri0716-335r] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 05/25/2017] [Accepted: 06/19/2017] [Indexed: 12/28/2022] Open
Abstract
The aging process is driven by a finite number of inter-related mechanisms that ultimately lead to the emergence of characteristic phenotypes, including increased susceptibility to multiple chronic diseases, disability, and death. New assays and analytical tools have become available that start to unravel some of these mechanisms. A prevailing view is that aging leads to an imbalance between stressors and stress-buffering mechanisms that causes loss of compensatory reserve and accumulation of unrepaired damage. Central to this paradigm are changes in the immune system and the chronic low-grade proinflammatory state that affect many older individuals, even when they are apparently healthy and free of risk factors. Independent of chronological age, high circulating levels of proinflammatory markers are associated with a high risk of multiple adverse health outcomes in older persons. In this review, we discuss current theories about causes and consequences of the proinflammatory state of aging, with a focus on changes in T cell function. We examine the role of NF-κB activation and its dysregulation and how NF-κB activity differs among subgroups of T cells. We explore emerging hypotheses about immunosenescence and changes in T cell behavior with age, including consideration of the T cell antigen receptor and regulatory T cells (Tregs). We conclude by illustrating how research using advanced technology is uncovering clues at the core of inflammation and aging. Some of the preliminary work in this field is already improving our understanding of the complex mechanisms by which immunosenescence of T cells is intertwined during human aging.
Collapse
Affiliation(s)
- Arsun Bektas
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Shepherd H Schurman
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA; and
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA;
| |
Collapse
|
544
|
Dinesh Yadav DM, Muralidhar MN, Prasad SMVK, Rajender Rao K. Pre-pubertal diet restriction reduces reactive oxygen species and restores fertility in male WNIN/Obese rat. Andrologia 2017; 50. [DOI: 10.1111/and.12849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- D. M. Dinesh Yadav
- Molecular Genetics; National Centre for Laboratory Animal Sciences; National Institute of Nutrition; Hyderabad Telangana India
| | - M. N. Muralidhar
- Molecular Genetics; National Centre for Laboratory Animal Sciences; National Institute of Nutrition; Hyderabad Telangana India
| | - S. M. V. K. Prasad
- Molecular Genetics; National Centre for Laboratory Animal Sciences; National Institute of Nutrition; Hyderabad Telangana India
| | - K. Rajender Rao
- Molecular Genetics; National Centre for Laboratory Animal Sciences; National Institute of Nutrition; Hyderabad Telangana India
| |
Collapse
|
545
|
Armani A, Berry A, Cirulli F, Caprio M. Molecular mechanisms underlying metabolic syndrome: the expanding role of the adipocyte. FASEB J 2017; 31:4240-4255. [PMID: 28705812 DOI: 10.1096/fj.201601125rrr] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/12/2017] [Indexed: 02/06/2023]
Abstract
The metabolic syndrome (MetS) is defined as a cluster of 3 or more metabolic and cardiovascular risk factors and represents a serious problem for public health. Altered function of adipose tissue has a significant impact on whole-body metabolism and represents a key driver for the development of these metabolic derangements, collectively referred as to MetS. In particular, increased visceral and ectopic fat deposition play a major role in the development of insulin resistance and MetS. A large body of evidence demonstrates that aging and MetS share several metabolic alterations. Of importance, molecular pathways that regulate lifespan affect key processes of adipose tissue physiology, and transgenic mouse models with adipose-specific alterations in these pathways show derangements of adipose tissue and other metabolic features of MetS, which highlights a causal link between dysfunctional adipose tissue and deleterious effects on whole-body homeostasis. This review analyzes adipose tissue-specific dysfunctions, including metabolic alterations that are related to aging, that have a significant impact on the development of MetS.-Armani, A., Berry, A., Cirulli, F., Caprio, M. Molecular mechanisms underlying metabolic syndrome: the expanding role of the adipocyte.
Collapse
Affiliation(s)
- Andrea Armani
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Pisana, Rome, Italy
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Pisana, Rome, Italy; .,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
546
|
Bouchi R, Fukuda T, Takeuchi T, Nakano Y, Murakami M, Minami I, Izumiyama H, Hashimoto K, Yoshimoto T, Ogawa Y. Gender difference in the impact of gynoid and android fat masses on the progression of hepatic steatosis in Japanese patients with type 2 diabetes. BMC OBESITY 2017; 4:27. [PMID: 28702206 PMCID: PMC5504846 DOI: 10.1186/s40608-017-0163-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Increased visceral adiposity is strongly associated with non-alcoholic fatty liver disease (NAFLD). However, little attention has been paid to the association between the change in subcutaneous adipose mass and the progression of non-alcoholic fatty liver disease (NAFLD). We aimed to investigate whether increased subcutaneous adipose tissue (gynoid fat mass) could be protective against the progression of NAFLD in Japanese patients with type 2 diabetes. METHODS This is a retrospective observational study of 294 Japanese patients with type 2 diabetes (65 ± 10 years old, 40% female). Liver attenuation index (LAI) measured by abdominal computed tomography was used for the assessment of hepatic steatosis. Both gynoid (kg) and android (kg) fat masses were measured by the whole body dual-energy X-ray absorptiometry. One-year changes in LAI, gynoid, and android fat masses were evaluated in both male and female patients. Linear regression analysis with a stepwise procedure was used for the statistical analyses to investigate the association of the changes in gynoid and android fat masses with the change in LAI. RESULTS LAI levels at baseline were 1.15 ± 0.31 and 1.10 ± 0.34 in female and male patients (p = 0.455). The change in gynoid fat mass was significantly and positively associated with the change in LAI in both univariate (standardized β 0.331, p = 0.049) and multivariate (standardized β 0.360, p = 0.016) models in the female patients. However, no significant association was observed in males. In contrast, the increase in android fat mass was significantly associated with the reduced LAI in both genders in the multivariate models (standardized β -0.651, p < 0.001 in females and standardized β -0.519, p = 0.042 in males). CONCLUSIONS This study provides evidence that increased gynoid fat mass may be protective against the progression of NAFLD in female Japanese patients with type 2 diabetes.
Collapse
Affiliation(s)
- Ryotaro Bouchi
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Tatsuya Fukuda
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Takato Takeuchi
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Yujiro Nakano
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Masanori Murakami
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Isao Minami
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Hajime Izumiyama
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 Japan.,Center for Medical Welfare and Liaison Services, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koshi Hashimoto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 Japan.,Department of Preemptive Medicine and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanobu Yoshimoto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 Japan.,CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
547
|
Garcia-Carrizo F, Priego T, Szostaczuk N, Palou A, Picó C. Sexual Dimorphism in the Age-Induced Insulin Resistance, Liver Steatosis, and Adipose Tissue Function in Rats. Front Physiol 2017; 8:445. [PMID: 28744221 PMCID: PMC5504177 DOI: 10.3389/fphys.2017.00445] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/12/2017] [Indexed: 01/01/2023] Open
Abstract
Age-linked metabolic disturbances, such as liver steatosis and insulin resistance, show greater prevalence in men than in women. Thus, our aim was to analyze these sex-related differences in male and female Wistar rats (aged 26 days and 3, 7, and 14 months), and to assess their potential relationship with alterations in the capacity of adipose tissue expansion and the dysregulation of the main adipokines produced by the adipose tissue, leptin and adiponectin. Adiposity-related parameters, blood parameters, the expression of genes related to expandability and inflammation (WAT), lipid metabolism (liver), and leptin and insulin signaling (both tissues) were measured. In females, adiposity index and WAT DNA content gradually increased with age, whereas males peaked at 7 months. A similar sex-dependent pattern was observed for leptin expression in WAT, while Mest expression levels decreased with age in males but not in females. Females also showed increased expression of the proliferation marker PCNA in the inguinal WAT compared to males. In males, leptin/adiponectin ratio greatly increased from 7 to 14 months in a more acute manner than in females, along with an increase in HOMA-IR index and hepatic triacylglyceride content, while no changes were observed in females. In liver, 14-month-old males displayed decreased mRNA levels of Insr, Ampkα2, and Cpt1a compared with levels at 7 months. Males also showed decreased mRNA levels of Obrb (both tissues), and increased expression levels of Cd68 and Emr1 (WAT) with age. In conclusion, females are more protected from age-related metabolic disturbances, such as insulin resistance, hepatic lipid deposition, and WAT inflammation compared to males. This may be related to their greater capacity for WAT expansion-reflected by a greater Mest/leptin mRNA ratio-and to their ability to maintain adiponectin levels and preserve leptin sensitivity with aging.
Collapse
Affiliation(s)
- Francisco Garcia-Carrizo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic IslandsPalma de Mallorca, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Palma de Mallorca, Spain
| | - Teresa Priego
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic IslandsPalma de Mallorca, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Palma de Mallorca, Spain
| | - Nara Szostaczuk
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic IslandsPalma de Mallorca, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Palma de Mallorca, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic IslandsPalma de Mallorca, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Palma de Mallorca, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic IslandsPalma de Mallorca, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Palma de Mallorca, Spain
| |
Collapse
|
548
|
Abstract
The induction of brown-like adipocyte development in white adipose tissue (WAT) confers numerous metabolic benefits by decreasing adiposity and increasing energy expenditure. Therefore, WAT browning has gained considerable attention for its potential to reverse obesity and its associated co-morbidities. However, this perspective has been tainted by recent studies identifying the detrimental effects of inducing WAT browning. This review aims to highlight the adverse outcomes of both overactive and underactive browning activity, the harmful side effects of browning agents, as well as the molecular brake-switch system that has been proposed to regulate this process. Developing novel strategies that both sustain the metabolic improvements of WAT browning and attenuate the related adverse side effects is therefore essential for unlocking the therapeutic potential of browning agents in the treatment of metabolic diseases.
Collapse
|
549
|
|
550
|
Revêchon G, Viceconte N, McKenna T, Sola Carvajal A, Vrtačnik P, Stenvinkel P, Lundgren T, Hultenby K, Franco I, Eriksson M. Rare progerin-expressing preadipocytes and adipocytes contribute to tissue depletion over time. Sci Rep 2017; 7:4405. [PMID: 28667315 PMCID: PMC5493617 DOI: 10.1038/s41598-017-04492-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
Accumulation of progerin is believed to underlie the pathophysiology of Hutchinson-Gilford progeria syndrome, a disease characterized by clinical features suggestive of premature aging, including loss of subcutaneous white adipose tissue (sWAT). Although progerin has been found in cells and tissues from apparently healthy individuals, its significance has been debated given its low expression levels and rare occurrence. Here we demonstrate that sustained progerin expression in a small fraction of preadipocytes and adipocytes of mouse sWAT (between 4.4% and 6.7% of the sWAT cells) results in significant tissue pathology over time, including fibrosis and lipoatrophy. Analysis of sWAT from mice of various ages showed senescence, persistent DNA damage and cell death that preceded macrophage infiltration, and systemic inflammation. Our findings suggest that continuous progerin expression in a small cell fraction of a tissue contributes to aging-associated diseases, the adipose tissue being particularly sensitive.
Collapse
Affiliation(s)
- Gwladys Revêchon
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Nikenza Viceconte
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Tomás McKenna
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Agustín Sola Carvajal
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Peter Vrtačnik
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Peter Stenvinkel
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Torbjörn Lundgren
- Department of Clinical Science, Intervention and Technology, Division of Transplantation Surgery, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institutet, 14183, Stockholm, Sweden
| | - Irene Franco
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden.
| |
Collapse
|