501
|
Gathercole LL, Hazlehurst JM, Armstrong MJ, Crowley R, Boocock S, O'Reilly MW, Round M, Brown R, Bolton S, Cramb R, Newsome PN, Semple RK, Paisey R, Tomlinson JW, Geberhiwot T. Advanced non-alcoholic fatty liver disease and adipose tissue fibrosis in patients with Alström syndrome. Liver Int 2016; 36:1704-1712. [PMID: 27178444 DOI: 10.1111/liv.13163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/23/2016] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS Alström syndrome (AS) is a recessive monogenic syndrome characterized by obesity, extreme insulin resistance and multi-organ fibrosis. Despite phenotypically being high risk of non-alcoholic fatty liver disease (NAFLD), there is a lack of data on the extent of fibrosis in the liver and its close links to adipose in patients with AS. Our aim was to characterize the hepatic and adipose phenotype in patients with AS. METHODS Observational cohort study with comprehensive assessment of metabolic liver phenotype including liver elastography (Fibroscan® ), serum Enhanced Liver Fibrosis (ELF) Panel and liver histology. In addition, abdominal adipose histology and gene expression was assessed. We recruited 30 patients from the UK national AS clinic. A subset of six patients underwent adipose biopsies which was compared with control tissue from nine healthy participants. RESULTS Patients were overweight/obese (BMI 29.3 (25.95-34.05) kg/m2 ). A total of 80% (24/30) were diabetic; 74% (20/27) had liver ultrasound scanning suggestive of NAFLD. As judged by the ELF panel, 96% (24/25) were categorized as having fibrosis and 10/21 (48%) had liver elastography consistent with advanced liver fibrosis/cirrhosis. In 7/8 selected cases, there was evidence of advanced NAFLD on liver histology. Adipose tissue histology showed marked fibrosis as well as disordered pro-inflammatory and fibrotic gene expression profiles. CONCLUSIONS NAFLD and adipose dysfunction are common in patients with AS. The severity of liver disease in our cohort supports the need for screening of liver fibrosis in AS.
Collapse
Affiliation(s)
- Laura L Gathercole
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Jonathan M Hazlehurst
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Matthew J Armstrong
- Centre for Liver Research and NIHR Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK
| | - Rachel Crowley
- St Vincent's Hospital, Ireland and University College, Dublin, Ireland
| | - Sarah Boocock
- Department of Endocrinology and Metabolism, University Hospitals Birmingham, Birmingham, UK
| | - Michael W O'Reilly
- Centre for Diabetes, Endocrinology and Metabolism, University of Birmingham, Birmingham, UK
| | - Maria Round
- Department of Gastroenterology, University Hospitals Birmingham, Birmingham, UK
| | - Rachel Brown
- Department of Pathology, University Hospital of Birmingham, Birmingham, UK
| | - Shaun Bolton
- Department of Endocrinology and Metabolism, University Hospitals Birmingham, Birmingham, UK
| | - Robert Cramb
- Department of Endocrinology and Metabolism, University Hospitals Birmingham, Birmingham, UK
| | - Phillip N Newsome
- Centre for Liver Research and NIHR Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK
| | - Robert K Semple
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Richard Paisey
- Diabetes Research Unit, Horizon Centre, Torbay Hospital NHS Foundation Trust, Torquay, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Tarekegn Geberhiwot
- Department of Endocrinology and Metabolism, University Hospitals Birmingham, Birmingham, UK. .,Centre for Diabetes, Endocrinology and Metabolism, University of Birmingham, Birmingham, UK.
| |
Collapse
|
502
|
Myneni VD, Mousa A, Kaartinen MT. Factor XIII-A transglutaminase deficient mice show signs of metabolically healthy obesity on high fat diet. Sci Rep 2016; 6:35574. [PMID: 27759118 PMCID: PMC5069677 DOI: 10.1038/srep35574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/03/2016] [Indexed: 12/20/2022] Open
Abstract
F13A1 gene, which encodes for Factor XIII-A blood clotting factor and a transglutaminase enzyme, was recently identified as a potential causative gene for obesity in humans. In our previous in vitro work, we showed that FXIII-A regulates preadipocyte differentiation and modulates insulin signaling via promoting plasma fibronectin assembly into the extracellular matrix. To understand the role of FXIII-A in whole body energy metabolism, here we have characterized the metabolic phenotype of F13a1-/- mice. F13a1-/- and F13a1+/+ type mice were fed chow or obesogenic, high fat diet for 20 weeks. Weight gain, total fat mass and fat pad mass, glucose handling, insulin sensitivity, energy expenditure and, morphological and biochemical analysis of adipose tissue was performed. We show that mice lacking FXIII-A gain weight on obesogenic diet, similarly as wild type mice, but exhibit a number of features of metabolically healthy obesity such as protection from developing diet-induced insulin resistance and hyperinsulinemia. Mice also show normal fasting glucose levels, larger adipocytes, decreased extracellular matrix accumulation and inflammation of adipose tissue, as well as decreased circulating triglycerides. This study reveals that FXIII-A transglutaminase can regulate whole body insulin sensitivity and may have a role in the development of diet-induced metabolic disturbances.
Collapse
Affiliation(s)
- Vamsee D Myneni
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Aisha Mousa
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Mari T Kaartinen
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
503
|
Shook B, Rivera Gonzalez G, Ebmeier S, Grisotti G, Zwick R, Horsley V. The Role of Adipocytes in Tissue Regeneration and Stem Cell Niches. Annu Rev Cell Dev Biol 2016; 32:609-631. [PMID: 27146311 PMCID: PMC5157158 DOI: 10.1146/annurev-cellbio-111315-125426] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Classically, white adipose tissue (WAT) was considered an inert component of connective tissue but is now appreciated as a major regulator of metabolic physiology and endocrine homeostasis. Recent work defining how WAT develops and expands in vivo emphasizes the importance of specific locations of WAT or depots in metabolic regulation. Interestingly, mature white adipocytes are integrated into several tissues. A new perspective regarding the in vivo regulation and function of WAT in these tissues has highlighted an essential role of adipocytes in tissue homeostasis and regeneration. Finally, there has been significant progress in understanding how mature adipocytes regulate the pathology of several diseases. In this review, we discuss these novel roles of WAT in the homeostasis and regeneration of epithelial, muscle, and immune tissues and how they contribute to the pathology of several disorders.
Collapse
Affiliation(s)
- Brett Shook
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520;
| | - Guillermo Rivera Gonzalez
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520;
| | - Sarah Ebmeier
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520;
| | | | - Rachel Zwick
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520;
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520;
- Department of Dermatology, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
504
|
Relevance of omental pericellular adipose tissue collagen in the pathophysiology of human abdominal obesity and related cardiometabolic risk. Int J Obes (Lond) 2016; 40:1823-1831. [PMID: 27698346 DOI: 10.1038/ijo.2016.173] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/29/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adipose tissue fibrosis is a relatively new notion and its relationship with visceral obesity and cardiometabolic alterations remains unclear, particularly in moderate obesity. OBJECTIVE Our objective was to examine if total and pericellular collagen accumulation are relevant for the pathophysiology of visceral obesity and related cardiometabolic risk. SUBJECTS AND METHODS Surgical omental (OM) and subcutaneous (SC) fat samples were obtained in 56 women (age: 47.2±5.8 years; body mass index (BMI): 27.1±4.4 kg/m2). Body composition and fat distribution were measured by dual-energy X-ray absorptiometry and computed tomography, respectively. Total and pericellular collagen were measured using picrosirius red staining. CD68+ cells (total macrophages) and CD163+ cells (M2-macrophages) were identified using immunohistochemistry. RESULTS We found that only pericellular collagen percentage, especially in OM fat, was associated with higher BMI, body fat mass and adipose tissue areas as well as lower radiologic attenuation of visceral adipose tissue and altered cardiometabolic risk variables. Strong correlations between peri-adipocyte collagen percentage and total or M2-macrophage percentages were observed in both depots. Total collagen percentage in either compartment was not related to adiposity, fat distribution or cardiometabolic risk. CONCLUSIONS As opposed to whole tissue-based assessments of adipose tissue fibrosis, collagen deposition around the adipocyte, especially in the OM fat compartment is related to total and regional adiposity as well as altered cardiometabolic risk profile.
Collapse
|
505
|
Antonopoulos AS, Oikonomou EK, Antoniades C, Tousoulis D. From the BMI paradox to the obesity paradox: the obesity-mortality association in coronary heart disease. Obes Rev 2016; 17:989-1000. [PMID: 27405510 DOI: 10.1111/obr.12440] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/15/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022]
Abstract
Despite a strong association between body weight and mortality in the general population, clinical evidence suggests better clinical outcome of overweight or obese individuals with established coronary heart disease. This finding has been termed the 'obesity paradox', but its existence remains a point of debate, because it is mostly observed when body mass index (BMI) is used to define obesity. Inherent limitations of BMI as an index of adiposity, as well as methodological biases and the presence of confounding factors, may account for the observed findings of clinical studies. In this review, our aim is to present the data that support the presence of a BMI paradox in coronary heart disease and then explore whether next to a BMI paradox a true obesity paradox exists as well. We conclude by attempting to link the obesity paradox notion to available translational research data supporting a 'healthy', protective adipose tissue phenotype. © 2016 World Obesity.
Collapse
Affiliation(s)
- A S Antonopoulos
- 1st Cardiology Department, Hippokration Hospital, Athens Medical School, Athens, Greece. .,Division of Cardiovascular Medicine, University of Oxford, Oxford, UK.
| | - E K Oikonomou
- 1st Cardiology Department, Hippokration Hospital, Athens Medical School, Athens, Greece.,Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - C Antoniades
- Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - D Tousoulis
- 1st Cardiology Department, Hippokration Hospital, Athens Medical School, Athens, Greece
| |
Collapse
|
506
|
Guneta V, Tan NS, Chan SKJ, Tanavde V, Lim TC, Wong TCM, Choong C. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions. Exp Cell Res 2016; 348:155-164. [PMID: 27658569 DOI: 10.1016/j.yexcr.2016.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/20/2016] [Accepted: 09/18/2016] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP) and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation.
Collapse
Affiliation(s)
- Vipra Guneta
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nguan Soon Tan
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; KK Research Centre, KK Women's and Children Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore; Institute of Molecular and Cell Biology, Agency for Science Technology & Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Soon Kiat Jeremy Chan
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Vivek Tanavde
- Bioinformatics Institute, Agency for Science Technology & Research (A⁎STAR), 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - Thiam Chye Lim
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, National University Hospital (NUH) and National University of Singapore (NUS), Kent Ridge Wing, Singapore 119074, Singapore
| | - Thien Chong Marcus Wong
- Plastic, Reconstructive and Aesthetic Surgery Section, Tan Tock Seng Hospital (TTSH), 11, Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Cleo Choong
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; KK Research Centre, KK Women's and Children Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore.
| |
Collapse
|
507
|
Yu Y, Alkhawaji A, Ding Y, Mei J. Decellularized scaffolds in regenerative medicine. Oncotarget 2016; 7:58671-58683. [PMID: 27486772 PMCID: PMC5295461 DOI: 10.18632/oncotarget.10945] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/18/2016] [Indexed: 12/11/2022] Open
Abstract
Allogeneic organ transplantation remains the ultimate solution for end-stage organ failure. Yet, the clinical application is limited by the shortage of donor organs and the need for lifelong immunosuppression, highlighting the importance of developing effective therapeutic strategies. In the field of regenerative medicine, various regenerative technologies have lately been developed using various biomaterials to address these limitations. Decellularized scaffolds, derived mainly from various non-autologous organs, have been proved a regenerative capability in vivo and in vitro and become an emerging treatment approach. However, this regenerative capability varies between scaffolds as a result of the diversity of anatomical structure and cellular composition of organs used for decellularization. Herein, recent advances in scaffolds based on organ regeneration in vivo and in vitro are highlighted along with aspects where further investigations and analyses are needed.
Collapse
Affiliation(s)
- Yaling Yu
- Department of Anatomy, Wenzhou Medical University, Wenzhou, China.,Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Ali Alkhawaji
- Department of Anatomy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Yuqiang Ding
- Institute of Neuroscience, Wenzhou Medical University, Wenzhou, China
| | - Jin Mei
- Department of Anatomy, Wenzhou Medical University, Wenzhou, China.,Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
508
|
O'Sullivan TE, Rapp M, Fan X, Weizman OE, Bhardwaj P, Adams NM, Walzer T, Dannenberg AJ, Sun JC. Adipose-Resident Group 1 Innate Lymphoid Cells Promote Obesity-Associated Insulin Resistance. Immunity 2016; 45:428-41. [PMID: 27496734 DOI: 10.1016/j.immuni.2016.06.016] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/05/2016] [Accepted: 05/02/2016] [Indexed: 01/20/2023]
Abstract
Innate lymphoid cells (ILCs) function to protect epithelial barriers against pathogens and maintain tissue homeostasis in both barrier and non-barrier tissues. Here, utilizing Eomes reporter mice, we identify a subset of adipose group 1 ILC (ILC1) and demonstrate a role for these cells in metabolic disease. Adipose ILC1s were dependent on the transcription factors Nfil3 and T-bet but phenotypically and functionally distinct from adipose mature natural killer (NK) and immature NK cells. Analysis of parabiotic mice revealed that adipose ILC1s maintained long-term tissue residency. Diet-induced obesity drove early production of interleukin (IL)-12 in adipose tissue depots and led to the selective proliferation and accumulation of adipose-resident ILC1s in a manner dependent on the IL-12 receptor and STAT4. ILC1-derived interferon-γ was necessary and sufficient to drive proinflammatory macrophage polarization to promote obesity-associated insulin resistance. Thus, adipose-resident ILC1s contribute to obesity-related pathology in response to dysregulated local proinflammatory cytokine production.
Collapse
Affiliation(s)
- Timothy E O'Sullivan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Moritz Rapp
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiying Fan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Orr-El Weizman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Priya Bhardwaj
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France
| | - Andrew J Dannenberg
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
509
|
Gesta S, Guntur K, Majumdar ID, Akella S, Vishnudas VK, Sarangarajan R, Narain NR. Reduced expression of collagen VI alpha 3 (COL6A3) confers resistance to inflammation-induced MCP1 expression in adipocytes. Obesity (Silver Spring) 2016; 24:1695-703. [PMID: 27312141 DOI: 10.1002/oby.21565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Collagen VI alpha 3 (COL6A3) is associated with insulin resistance and adipose tissue inflammation. In this study, the role of COL6A3 in human adipocyte function was characterized. METHODS Immortalized human preadipocyte cell lines stably expressing control or COL6A3 shRNA were used to study adipocyte function and inflammation. RESULTS COL6A3 knockdown increased triglyceride content, lipolysis, insulin-induced Akt phosphorylation, and mRNA expression of key adipogenic genes (peroxisome proliferator-activated receptor-γ, glucose transporter, adiponectin, and fatty acid binding protein), indicating increased adipocyte function and insulin sensitivity. However, COL6A3 knockdown decreased basal adipocyte chemokine (C-C motif) ligand 2 [CCL2, monocyte chemoattractant protein (MCP1)] mRNA expression, reduced secreted protein levels, and abrogated tumor necrosis factor-α- and lipopolysaccharide-induced MCP1 mRNA expression. In addition, while control adipocytes co-cultured with THP1 macrophages showed a threefold increase in adipocyte MCP1 mRNA expression, in COL6A3 knockdown adipocytes MCP1 mRNA expression was unaltered by co-culturing. Lastly, in normal differentiated adipocytes, matrix metalloproteinase-11 treatment reduced expression of COL6A3 protein, MCP1 mRNA, MCP1 secretion, and abrogated tumor necrosis factor-α- and lipopolysaccharide-induced MCP1 mRNA expression and protein secretion. CONCLUSIONS COL6A3 knockdown in adipocytes leads to the development of a unique state of inflammatory resistance via suppression of MCP1 induction.
Collapse
|
510
|
Luo T, Nocon A, Fry J, Sherban A, Rui X, Jiang B, Xu XJ, Han J, Yan Y, Yang Q, Li Q, Zang M. AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity. Diabetes 2016; 65:2295-310. [PMID: 27207538 PMCID: PMC4955985 DOI: 10.2337/db15-1122] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/27/2016] [Indexed: 12/30/2022]
Abstract
Fibrosis is emerging as a hallmark of metabolically dysregulated white adipose tissue (WAT) in obesity. Although adipose tissue fibrosis impairs adipocyte plasticity, little is known about how aberrant extracellular matrix (ECM) remodeling of WAT is initiated during the development of obesity. Here we show that treatment with the antidiabetic drug metformin inhibits excessive ECM deposition in WAT of ob/ob mice and mice with diet-induced obesity, as evidenced by decreased collagen deposition surrounding adipocytes and expression of fibrotic genes including the collagen cross-linking regulator LOX Inhibition of interstitial fibrosis by metformin is likely attributable to the activation of AMPK and the suppression of transforming growth factor-β1 (TGF-β1)/Smad3 signaling, leading to enhanced systemic insulin sensitivity. The ability of metformin to repress TGF-β1-induced fibrogenesis is abolished by the dominant negative AMPK in primary cells from the stromal vascular fraction. TGF-β1-induced insulin resistance is suppressed by AMPK agonists and the constitutively active AMPK in 3T3L1 adipocytes. In omental fat depots of obese humans, interstitial fibrosis is also associated with AMPK inactivation, TGF-β1/Smad3 induction, aberrant ECM production, myofibroblast activation, and adipocyte apoptosis. Collectively, integrated AMPK activation and TGF-β1/Smad3 inhibition may provide a potential therapeutic approach to maintain ECM flexibility and combat chronically uncontrolled adipose tissue expansion in obesity.
Collapse
Affiliation(s)
- Ting Luo
- Department of Medicine, Boston University School of Medicine, Boston, MA Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Allison Nocon
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Jessica Fry
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Alex Sherban
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Xianliang Rui
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Bingbing Jiang
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - X Julia Xu
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Jingyan Han
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Yun Yan
- Division of Endocrinology, Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, MO
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, Center for Diabetes Research and Treatment and Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA
| | - Qifu Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengwei Zang
- Department of Medicine, Boston University School of Medicine, Boston, MA Barshop Institute for Longevity and Aging Studies, Center for Healthy Aging, The University of Texas Health Science Center, San Antonio, TX Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX Geriatric Research, Education and Clinical Center, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX
| |
Collapse
|
511
|
Depot specific differences in the adipogenic potential of precursors are mediated by collagenous extracellular matrix and Flotillin 2 dependent signaling. Mol Metab 2016; 5:937-947. [PMID: 27689006 PMCID: PMC5034610 DOI: 10.1016/j.molmet.2016.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 01/23/2023] Open
Abstract
Objective Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots respond differently to an increased demand for lipid storage. Orchestrating cellular expansion in vivo requires extracellular matrix (ECM) remodeling and a high degree of interaction between cells and ECM. Methods We studied decellularized primary adipose stromal cell derived ECM of different adipose depots and reseeded them with primary adipose precursors. We tested ECM effect on adipocyte differentiation and analyzed ECM composition using proteomic and immunohistochemical approaches to identify factors in the ECM influencing adipogenesis. Results We show that the ECM of an adipose depot is the major determinant for the differentiation capacity of primary preadipocytes. Visceral adipose tissue stromal cells differentiate less than subcutaneous cells, which, in turn, are less adipogenic than BAT-derived cells. This effect is based on the ECM composition of the respective depot and not dependent on the precursor origin. Addition of vitamin C pronounces the pro-adipogenic effects of the ECM, indicating the importance of collagenous ECM in mediating the effect. Using a proteomic global and a targeted downstream analysis, we identify Flotillin 2 as a protein enriched in pro-adipogenic ECM, which is involved in orchestrating ECM to preadipocyte signaling. Conclusions We show that adipose tissue SVF secretes collagenous ECM, which directly modulates terminal differentiation of adipocyte precursors in a depot specific manner. These data demonstrate the importance of the tissue microenvironment in preadipocyte differentiation. Different adipose tissue depots have different differentiation capacities. Differentiation of preadipocytes is enhanced by vitamin c through formation of collagenous ECM. Collagenous ECM is the main determinant of adipose depot specific differences in adipogenic potential. FLOT2 plays a role in mediating collagenous-ECM specific effects.
Collapse
|
512
|
Enhanced biglycan gene expression in the adipose tissues of obese women and its association with obesity-related genes and metabolic parameters. Sci Rep 2016; 6:30609. [PMID: 27465988 PMCID: PMC4964581 DOI: 10.1038/srep30609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/07/2016] [Indexed: 01/14/2023] Open
Abstract
Extracellular matrix (ECM) remodeling dynamically occurs to accommodate adipose tissue expansion during obesity. One non-fibrillar component of ECM, biglycan, is released from the matrix in response to tissue stress; the soluble form of biglycan binds to toll-like receptor 2/4 on macrophages, causing proinflammatory cytokine secretion. To investigate the pattern and regulatory properties of biglycan expression in human adipose tissues in the context of obesity and its related diseases, we recruited 21 non-diabetic obese women, 11 type 2 diabetic obese women, and 59 normal-weight women. Regardless of the presence of diabetes, obese patients had significantly higher biglycan mRNA in both visceral and subcutaneous adipose tissue. Biglycan mRNA was noticeably higher in non-adipocytes than adipocytes and significantly decreased during adipogenesis. Adipose tissue biglycan mRNA positively correlated with adiposity indices and insulin resistance parameters; however, this relationship disappeared after adjusting for BMI. In both fat depots, biglycan mRNA strongly correlated with the expression of genes related to inflammation and endoplasmic reticulum stress. In addition, culture of human preadipocytes and differentiated adipocytes under conditions mimicking the local microenvironments of obese adipose tissues significantly increased biglycan mRNA expression. Our data indicate that biglycan gene expression is increased in obese adipose tissues by altered local conditions.
Collapse
|
513
|
Ojima K, Oe M, Nakajima I, Muroya S, Nishimura T. Dynamics of protein secretion during adipocyte differentiation. FEBS Open Bio 2016; 6:816-26. [PMID: 27516960 PMCID: PMC4971837 DOI: 10.1002/2211-5463.12091] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/25/2016] [Accepted: 05/18/2016] [Indexed: 01/03/2023] Open
Abstract
The major functions of adipocytes include both lipid storage and the production of secretory factors. However, the type of proteins released from mouse 3T3-L1 cells during adipocyte differentiation remains poorly understood. We examined the dynamics of secreted proteins during adipocyte differentiation using mass spectrometry (MS) combined with an iTRAQ (®) labeling method that enables the simultaneous analysis of relative protein expression levels. A total of 215 proteins were identified and quantified from approximately 10 000 MS/MS spectra. Of these, approximately 38% were categorized as secreted proteins based on gene ontology classification. Adipokine secretion levels were increased with the progression of differentiation. By contrast, levels of fibril collagen components, such as subunits of type I and III collagens, were decreased during differentiation. Basement membrane components attained their peak levels at day 4 when small lipid droplets accumulated in differentiated 3T3-L1 cells. Simultaneously, peak levels of collagen microfibril components that comprise type V and VI collagen subunits were also observed. Our data demonstrated that extracellular matrix components were predominantly released during the early and middle stages of adipocyte differentiation, with a subsequent increase in the secretion of adipokines. This suggests that 3T3-L1 cells secrete adipokines after their ECM is constructed during adipocyte differentiation.
Collapse
Affiliation(s)
- Koichi Ojima
- Animal Products Research Division NARO, Institute of Livestock and Grassland Science Tsukuba Ibaraki Japan
| | - Mika Oe
- Animal Products Research Division NARO, Institute of Livestock and Grassland Science Tsukuba Ibaraki Japan
| | - Ikuyo Nakajima
- Animal Products Research Division NARO, Institute of Livestock and Grassland Science Tsukuba Ibaraki Japan
| | - Susumu Muroya
- Animal Products Research Division NARO, Institute of Livestock and Grassland Science Tsukuba Ibaraki Japan
| | - Takanori Nishimura
- Research Faculty of Agriculture Hokkaido University Sapporo Hokkaido Japan
| |
Collapse
|
514
|
Microenvironmental Control of Adipocyte Fate and Function. Trends Cell Biol 2016; 26:745-755. [PMID: 27268909 DOI: 10.1016/j.tcb.2016.05.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 01/07/2023]
Abstract
The properties of tissue-specific microenvironments vary widely in the human body and demonstrably influence the structure and function of many cell types. Adipocytes are no exception, responding to cues in specialized niches to perform vital metabolic and endocrine functions. The adipose microenvironment is remodeled during tissue expansion to maintain the structural and functional integrity of the tissue and disrupted remodeling in obesity contributes to the progression of metabolic syndrome, breast cancer, and other malignancies. The increasing incidence of these obesity-related diseases and the recent focus on improved in vitro models of human tissue biology underscore growing interest in the regulatory role of adipocyte microenvironments in health and disease.
Collapse
|
515
|
Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov 2016; 15:639-660. [PMID: 27256476 DOI: 10.1038/nrd.2016.75] [Citation(s) in RCA: 500] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose tissue regulates numerous physiological processes, and its dysfunction in obese humans is associated with disrupted metabolic homeostasis, insulin resistance and type 2 diabetes mellitus (T2DM). Although several US-approved treatments for obesity and T2DM exist, these are limited by adverse effects and a lack of effective long-term glucose control. In this Review, we provide an overview of the role of adipose tissue in metabolic homeostasis and assess emerging novel therapeutic strategies targeting adipose tissue, including adipokine-based strategies, promotion of white adipose tissue beiging as well as reduction of inflammation and fibrosis.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center
| | - Perry E Bickel
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center
| |
Collapse
|
516
|
Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia 2016; 59:1075-88. [PMID: 27039901 PMCID: PMC4861754 DOI: 10.1007/s00125-016-3933-4] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
Abstract
White adipose tissue (WAT) has key metabolic and endocrine functions and plays a role in regulating energy homeostasis and insulin sensitivity. WAT is characterised by its capacity to adapt and expand in response to surplus energy through processes of adipocyte hypertrophy and/or recruitment and proliferation of precursor cells in combination with vascular and extracellular matrix remodelling. However, in the context of sustained obesity, WAT undergoes fibro-inflammation, which compromises its functionality, contributing to increased risk of type 2 diabetes and cardiovascular diseases. Conversely, brown adipose tissue (BAT) and browning of WAT represent potential therapeutic approaches, since dysfunctional white adipocyte-induced lipid overspill can be halted by BAT/browning-mediated oxidative anti-lipotoxic effects. Better understanding of the cellular and molecular pathophysiological mechanisms regulating adipocyte size, number and depot-dependent expansion has become a focus of interest over recent decades. Here, we summarise the mechanisms contributing to adipose tissue (AT) plasticity and function including characteristics and cellular complexity of the various adipose depots and we discuss recent insights into AT origins, identification of adipose precursors, pathophysiological regulation of adipogenesis and its relation to WAT/BAT expandability in obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 OQQ, UK.
| | - Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 OQQ, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 OQQ, UK.
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
517
|
Scherer PE. The Multifaceted Roles of Adipose Tissue-Therapeutic Targets for Diabetes and Beyond: The 2015 Banting Lecture. Diabetes 2016; 65:1452-61. [PMID: 27222389 PMCID: PMC4878420 DOI: 10.2337/db16-0339] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/28/2016] [Indexed: 12/29/2022]
Abstract
The Banting Medal for Scientific Achievement is the highest scientific award of the American Diabetes Association (ADA). Given in memory of Sir Frederick Banting, one of the key investigators in the discovery of insulin, the Banting Medal is awarded annually for scientific excellence, recognizing significant long-term contributions to the understanding, treatment, or prevention of diabetes. Philipp E. Scherer, PhD, of the Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX, received the prestigious award at the ADA's 75th Scientific Sessions, 5-9 June 2015, in Boston, MA. He presented the Banting Lecture, "The Multifaceted Roles of Adipose Tissue-Therapeutic Targets for Diabetes and Beyond," on Sunday, 7 June 2015.A number of different cell types contribute to the cellular architecture of adipose tissue. Although the adipocyte is functionally making important contributions to systemic metabolic homeostatis, several additional cell types contribute a supportive role to bestow maximal flexibility on the tissue with respect to many biosynthetic and catabolic processes, depending on the metabolic state. These cells include vascular endothelial cells, a host of immune cells, and adipocyte precursor cells and fibroblasts. Combined, these cell types give rise to a tissue with remarkable flexibility with respect to expansion and contraction, while optimizing the ability of the tissue to act as an endocrine organ through the release of many protein factors, critically influencing systemic lipid homeostasis and biochemically contributing many metabolites. Using an example from each of these categories-adiponectin as a key adipokine, sphingolipids as critical mediators of insulin sensitivity, and uridine as an important metabolite contributed by the adipocyte to the systemic pool-I will discuss the emerging genesis of the adipocyte over the past 20 years from metabolic bystander to key driver of metabolic flexibility.
Collapse
Affiliation(s)
- Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
518
|
Li X, Li J, Wang L, Li A, Qiu Z, Qi LW, Kou J, Liu K, Liu B, Huang F. The role of metformin and resveratrol in the prevention of hypoxia-inducible factor 1α accumulation and fibrosis in hypoxic adipose tissue. Br J Pharmacol 2016; 173:2001-15. [PMID: 27059094 DOI: 10.1111/bph.13493] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Hypoxic activation of hypoxia-inducible factor 1α (HIF-1α) and fibrosis in adipose tissue contribute to adipose dysfunction. This study was designed to investigate the effects of metformin and resveratrol on the regulation of HIF-1α and fibrosis in hypoxic adipose tissue. EXPERIMENTAL APPROACH Mice were fed a high-fat diet to induce hypoxia and fibrosis in adipose tissue; adipose tissue incubated in vitro in 1% O2 showed a similar change. The effects of metformin and resveratrol on hypoxia, HIF-1α accumulation, endoplasmic reticulum stress and gene expressions of extracellular matrix components and pro-inflammatory cytokines were examined. KEY RESULTS Oral administration of metformin or resveratrol prevented hypoxia and reduced HIF-1α accumulation with dephosphorylation of inositol-requiring enzyme 1α and eukaryotic initiation factor 2α, indicative of suppression of hypoxic HIF-1α activation and endoplasmic reticulum stress. Metformin and resveratrol down-regulated gene expressions of Col3α, Col6α, elastin and lysyl oxidase and thereby reduced collagen deposition in adipose tissue. The increased gene expressions of TNF-α, IL-6, monocyte chemoattractant protein 1 and F4/80 were also down-regulated by metformin and resveratrol. Metformin and resveratrol had similar effects in adipose tissue exposed to 1% O2 . Metformin reduced ATP production and prevented the reduction in oxygen tension in 3T3-L1 cells, suggesting that it prevented hypoxia by limiting oxygen consumption, whereas resveratrol reduced HIF-1α accumulation by promoting its proteasomal degradation via the regulation of AMPK/SIRT1. CONCLUSION AND IMPLICATIONS Hypoxia and fibrosis are early causes of adipose dysfunction in obesity. Both metformin and resveratrol effectively inhibited HIF-1α activation-induced fibrosis and inflammation in adipose tissue, although by different mechanisms.
Collapse
Affiliation(s)
- Xiaole Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Jia Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lulu Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Aiyun Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Junping Kou
- State Key Laboratory of Natural Medicines, Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TMAC-CM, China Pharmaceutical University, Nanjing, China
| | - Kang Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Baolin Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Fang Huang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
519
|
Lin D, Chun TH, Kang L. Adipose extracellular matrix remodelling in obesity and insulin resistance. Biochem Pharmacol 2016; 119:8-16. [PMID: 27179976 DOI: 10.1016/j.bcp.2016.05.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
Abstract
The extracellular matrix (ECM) of adipose tissues undergoes constant remodelling to allow adipocytes and their precursor cells to change cell shape and function in adaptation to nutritional cues. Abnormal accumulation of ECM components and their modifiers in adipose tissues has been recently demonstrated to cause obesity-associated insulin resistance, a hallmark of type 2 diabetes. Integrins and other ECM receptors (e.g. CD44) that are expressed in adipose tissues have been shown to regulate insulin sensitivity. It is well understood that a hypoxic response is observed in adipose tissue expansion during obesity progression and that hypoxic response accelerates fibrosis and inflammation in white adipose tissues. The expansion of adipose tissues should require angiogenesis; however, the excess deposition of ECM limits the angiogenic response of white adipose tissues in obesity. While recent studies have focused on the metabolic consequences and the mechanisms of adipose tissue expansion and remodelling, little attention has been paid to the role played by the interaction between peri-adipocyte ECM and their cognate cell surface receptors. This review will address what is currently known about the roles played by adipose ECM, their modifiers, and ECM receptors in obesity and insulin resistance. Understanding how excess ECM deposition in the adipose tissue deteriorates insulin sensitivity would provide us hints to develop a new therapeutic strategy for the treatment of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- De Lin
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
| | - Tae-Hwa Chun
- Division of Metabolism, Endocrinology & Diabetes (MEND), Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Li Kang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
520
|
Chusyd DE, Wang D, Huffman DM, Nagy TR. Relationships between Rodent White Adipose Fat Pads and Human White Adipose Fat Depots. Front Nutr 2016; 3:10. [PMID: 27148535 PMCID: PMC4835715 DOI: 10.3389/fnut.2016.00010] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/26/2016] [Indexed: 01/09/2023] Open
Abstract
The objective of this review was to compare and contrast the physiological and metabolic profiles of rodent white adipose fat pads with white adipose fat depots in humans. Human fat distribution and its metabolic consequences have received extensive attention, but much of what has been tested in translational research has relied heavily on rodents. Unfortunately, the validity of using rodent fat pads as a model of human adiposity has received less attention. There is a surprisingly lack of studies demonstrating an analogous relationship between rodent and human adiposity on obesity-related comorbidities. Therefore, we aimed to compare known similarities and disparities in terms of white adipose tissue (WAT) development and distribution, sexual dimorphism, weight loss, adipokine secretion, and aging. While the literature supports the notion that many similarities exist between rodents and humans, notable differences emerge related to fat deposition and function of WAT. Thus, further research is warranted to more carefully define the strengths and limitations of rodent WAT as a model for humans, with a particular emphasis on comparable fat depots, such as mesenteric fat.
Collapse
Affiliation(s)
- Daniella E Chusyd
- Department of Nutrition Science, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Donghai Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tim R Nagy
- Department of Nutrition Science, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
521
|
Cabia B, Andrade S, Carreira MC, Casanueva FF, Crujeiras AB. A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis. Obes Rev 2016; 17:361-76. [PMID: 26914773 DOI: 10.1111/obr.12377] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
Obesity, a pandemic disease, is caused by an excessive accumulation of fat that can have detrimental effects on health. Adipose tissue plays a very important endocrine role, secreting different molecules that affect body physiology. In obesity, this function is altered, leading to a dysfunctional production of several factors, known as adipocytokines. This process has been linked to various comorbidities associated with obesity, such as carcinogenesis. In fact, several classical adipocytokines with increased levels in obesity have been demonstrated to exert a pro-carcinogenic role, including leptin, TNF-α, IL-6 and resistin, whereas others like adiponectin, with decreased levels in obesity, might have an anti-carcinogenic function. In this expanding field, new proteomic techniques and approaches have allowed the identification of novel adipocytokines, a number of which exhibit an altered production in obesity and type 2 diabetes and thus are related to adiposity. Many of these novel adipocytokines have also been identified in various tumour types, such as that of the breast, liver or endometrium, thereby increasing the list of potential contributors to carcinogenesis. This review is focused on the regulation of these novel adipocytokines by obesity, including apelin, endotrophin, FABP4, lipocalin 2, omentin-1, visfatin, chemerin, ANGPTL2 or osteopontin, emphasizing its involvement in tumorigenesis.
Collapse
Affiliation(s)
- B Cabia
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - S Andrade
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - M C Carreira
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - F F Casanueva
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - A B Crujeiras
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| |
Collapse
|
522
|
Lawler HM, Underkofler CM, Kern PA, Erickson C, Bredbeck B, Rasouli N. Adipose Tissue Hypoxia, Inflammation, and Fibrosis in Obese Insulin-Sensitive and Obese Insulin-Resistant Subjects. J Clin Endocrinol Metab 2016; 101:1422-8. [PMID: 26871994 PMCID: PMC4880157 DOI: 10.1210/jc.2015-4125] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/10/2016] [Indexed: 12/19/2022]
Abstract
CONTEXT A substantial number of obese individuals are relatively insulin sensitive and the etiology for this variation remains unknown. OBJECTIVE The primary objective was to detect factors in adipose tissue differentiating obese insulin-sensitive (OBIS) from obese insulin-resistant (OBIR) individuals and investigate whether adipose tissue hypoxia is a contributing factor in the pathogenesis of insulin resistance. DESIGN AND SETTING This was a cross-sectional study in the general community. PARTICIPANTS Subjects consisted of nondiabetic OBIS and OBIR subjects with similar body mass index, age, and total body fat but different insulin sensitivity index as well as lean insulin-sensitive subjects. INTERVENTIONS(S) There were no interventions. MAIN OUTCOME MEASURE(S) We examined adipocytokines and the expression of candidate genes regulating hypoxia, inflammation, and lipogenesis in adipose tissue and adipose tissue oxygenation. RESULTS OBIS subjects had increased plasma adiponectin but similar plasma TNFα and leptin levels as compared with OBIR subjects. Genes regulating inflammation (CD68, MCP1, scavenger receptor A, and oxidized LDL receptor 1) were increased by 40%–60% (P < .05) in OBIR vs OBIS cohorts. In addition, genes involved in extracellular matrix formation such as collagen VI and MMP7 were up-regulated by 43% and 78% (P < .05), respectively, in OBIR vs OBIS. The expression of HIF1α and VEGF gene expression was increased by 37% and 52%, respectively, in OBIR vs OBIS (P < .01). Despite the differential expression in hypoxia-related genes, adipose tissue oxygenation measured by a Licox oxygen probe was not different between OBIS and OBIR subjects, but it was higher in lean subjects as compared with obese subjects. CONCLUSIONS We confirmed that adipose tissue inflammation and fibrosis play an important role in the pathogenesis of insulin resistance independent of obesity in humans. Whether hypoxia is simply a consequence of adipose tissue expansion or is related to the pathogenesis of obesity-induced insulin resistance is yet to be understood.
Collapse
Affiliation(s)
- Helen M Lawler
- Division of Endocrinology, Metabolism, and Diabetes (H.M.L., C.M.U., C.E., B.B., N.R.), University of Colorado, School of Medicine, Aurora, Colorado 80045; University of Kentucky and the Barnstable Brown Diabetes and Obesity Center (P.A.K.), Lexington, Kentucky 40536; and Veterans Affairs Eastern Colorado Health Care System (N.R.), Denver, Colorado 80262
| | - Chantal M Underkofler
- Division of Endocrinology, Metabolism, and Diabetes (H.M.L., C.M.U., C.E., B.B., N.R.), University of Colorado, School of Medicine, Aurora, Colorado 80045; University of Kentucky and the Barnstable Brown Diabetes and Obesity Center (P.A.K.), Lexington, Kentucky 40536; and Veterans Affairs Eastern Colorado Health Care System (N.R.), Denver, Colorado 80262
| | - Philip A Kern
- Division of Endocrinology, Metabolism, and Diabetes (H.M.L., C.M.U., C.E., B.B., N.R.), University of Colorado, School of Medicine, Aurora, Colorado 80045; University of Kentucky and the Barnstable Brown Diabetes and Obesity Center (P.A.K.), Lexington, Kentucky 40536; and Veterans Affairs Eastern Colorado Health Care System (N.R.), Denver, Colorado 80262
| | - Christopher Erickson
- Division of Endocrinology, Metabolism, and Diabetes (H.M.L., C.M.U., C.E., B.B., N.R.), University of Colorado, School of Medicine, Aurora, Colorado 80045; University of Kentucky and the Barnstable Brown Diabetes and Obesity Center (P.A.K.), Lexington, Kentucky 40536; and Veterans Affairs Eastern Colorado Health Care System (N.R.), Denver, Colorado 80262
| | - Brooke Bredbeck
- Division of Endocrinology, Metabolism, and Diabetes (H.M.L., C.M.U., C.E., B.B., N.R.), University of Colorado, School of Medicine, Aurora, Colorado 80045; University of Kentucky and the Barnstable Brown Diabetes and Obesity Center (P.A.K.), Lexington, Kentucky 40536; and Veterans Affairs Eastern Colorado Health Care System (N.R.), Denver, Colorado 80262
| | - Neda Rasouli
- Division of Endocrinology, Metabolism, and Diabetes (H.M.L., C.M.U., C.E., B.B., N.R.), University of Colorado, School of Medicine, Aurora, Colorado 80045; University of Kentucky and the Barnstable Brown Diabetes and Obesity Center (P.A.K.), Lexington, Kentucky 40536; and Veterans Affairs Eastern Colorado Health Care System (N.R.), Denver, Colorado 80262
| |
Collapse
|
523
|
Ipragliflozin Improves Hepatic Steatosis in Obese Mice and Liver Dysfunction in Type 2 Diabetic Patients Irrespective of Body Weight Reduction. PLoS One 2016; 11:e0151511. [PMID: 26977813 PMCID: PMC4792392 DOI: 10.1371/journal.pone.0151511] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/29/2016] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with a high incidence of non-alcoholic fatty liver disease (NAFLD) related to obesity and insulin resistance. Currently, medical interventions for NAFLD have focused on diet control and exercise to reduce body weight, and there is a requirement for effective pharmacological therapies. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are oral antidiabetic drugs that promote the urinary excretion of glucose by blocking its reabsorption in renal proximal tubules. SGLT2 inhibitors lower blood glucose independent of insulin action and are expected to reduce body weight because of urinary calorie loss. Here we show that an SGLT2 inhibitor ipragliflozin improves hepatic steatosis in high-fat diet-induced and leptin-deficient (ob/ob) obese mice irrespective of body weight reduction. In the obese mice, ipragliflozin-induced hyperphagia occurred to increase energy intake, attenuating body weight reduction with increased epididymal fat mass. There is an inverse correlation between weights of liver and epididymal fat in ipragliflozin-treated obese mice, suggesting that ipragliflozin treatment promotes normotopic fat accumulation in the epididymal fat and prevents ectopic fat accumulation in the liver. Despite increased adiposity, ipragliflozin ameliorates obesity-associated inflammation and insulin resistance in epididymal fat. Clinically, ipragliflozin improves liver dysfunction in patients with T2DM irrespective of body weight reduction. These findings provide new insight into the effects of SGLT2 inhibitors on energy homeostasis and fat accumulation and indicate their potential therapeutic efficacy in T2DM-associated hepatic steatosis.
Collapse
|
524
|
Isoliquiritigenin Attenuates Adipose Tissue Inflammation in vitro and Adipose Tissue Fibrosis through Inhibition of Innate Immune Responses in Mice. Sci Rep 2016; 6:23097. [PMID: 26975571 PMCID: PMC4791553 DOI: 10.1038/srep23097] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/01/2016] [Indexed: 01/11/2023] Open
Abstract
Isoliquiritigenin (ILG) is a flavonoid derived from Glycyrrhiza uralensis and potently suppresses NLRP3 inflammasome activation resulting in the improvement of diet-induced adipose tissue inflammation. However, whether ILG affects other pathways besides the inflammasome in adipose tissue inflammation is unknown. We here show that ILG suppresses adipose tissue inflammation by affecting the paracrine loop containing saturated fatty acids and TNF-α by using a co-culture composed of adipocytes and macrophages. ILG suppressed inflammatory changes induced by the co-culture through inhibition of NF-κB activation. This effect was independent of either inhibition of inflammasome activation or activation of peroxisome proliferator-activated receptor-γ. Moreover, ILG suppressed TNF-α-induced activation of adipocytes, coincident with inhibition of IκBα phosphorylation. Additionally, TNF-α-mediated inhibition of Akt phosphorylation under insulin signaling was alleviated by ILG in adipocytes. ILG suppressed palmitic acid-induced activation of macrophages, with decreasing the level of phosphorylated Jnk expression. Intriguingly, ILG improved high fat diet-induced fibrosis in adipose tissue in vivo. Finally, ILG inhibited TLR4- or Mincle-stimulated expression of fibrosis-related genes in stromal vascular fraction from obese adipose tissue and macrophages in vitro. Thus, ILG can suppress adipose tissue inflammation by both inflammasome-dependent and -independent manners and attenuate adipose tissue fibrosis by targeting innate immune sensors.
Collapse
|
525
|
Luo Y, Burrington CM, Graff EC, Zhang J, Judd RL, Suksaranjit P, Kaewpoowat Q, Davenport SK, O'Neill AM, Greene MW. Metabolic phenotype and adipose and liver features in a high-fat Western diet-induced mouse model of obesity-linked NAFLD. Am J Physiol Endocrinol Metab 2016; 310:E418-39. [PMID: 26670487 PMCID: PMC4796265 DOI: 10.1152/ajpendo.00319.2015] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/04/2015] [Indexed: 12/15/2022]
Abstract
nonalcoholic fatty liver disease (NAFLD), an obesity and insulin resistance associated clinical condition - ranges from simple steatosis to nonalcoholic steatohepatitis. To model the human condition, a high-fat Western diet that includes liquid sugar consumption has been used in mice. Even though liver pathophysiology has been well characterized in the model, little is known about the metabolic phenotype (e.g., energy expenditure, activity, or food intake). Furthermore, whether the consumption of liquid sugar exacerbates the development of glucose intolerance, insulin resistance, and adipose tissue dysfunction in the model is currently in question. In our study, a high-fat Western diet (HFWD) with liquid sugar [fructose and sucrose (F/S)] induced acute hyperphagia above that observed in HFWD-fed mice, yet without changes in energy expenditure. Liquid sugar (F/S) exacerbated HFWD-induced glucose intolerance and insulin resistance and impaired the storage capacity of epididymal white adipose tissue (eWAT). Hepatic TG, plasma alanine aminotransferase, and normalized liver weight were significantly increased only in HFWD+F/S-fed mice. HFWD+F/S also resulted in increased hepatic fibrosis and elevated collagen 1a2, collagen 3a1, and TGFβ gene expression. Furthermore, HWFD+F/S-fed mice developed more profound eWAT inflammation characterized by adipocyte hypertrophy, macrophage infiltration, a dramatic increase in crown-like structures, and upregulated proinflammatory gene expression. An early hypoxia response in the eWAT led to reduced vascularization and increased fibrosis gene expression in the HFWD+F/S-fed mice. Our results demonstrate that sugary water consumption induces acute hyperphagia, limits adipose tissue expansion, and exacerbates glucose intolerance and insulin resistance, which are associated with NAFLD progression.
Collapse
Affiliation(s)
- Yuwen Luo
- Department of Nutrition, Auburn University, Auburn, Alabama
| | | | - Emily C Graff
- College of Veterinary Medicine, Auburn University, Auburn, Alabama; and
| | - Jian Zhang
- Department of Nutrition, Auburn University, Auburn, Alabama
| | - Robert L Judd
- College of Veterinary Medicine, Auburn University, Auburn, Alabama; and Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama
| | - Promporn Suksaranjit
- Department of Internal Medicine, Bassett Medical Center, Cooperstown, New York, and
| | | | | | | | - Michael W Greene
- Department of Nutrition, Auburn University, Auburn, Alabama; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama; Bassett Research Institute, Bassett Medical Center, Cooperstown, New York;
| |
Collapse
|
526
|
Astaxanthin inhibits inflammation and fibrosis in the liver and adipose tissue of mouse models of diet-induced obesity and nonalcoholic steatohepatitis. J Nutr Biochem 2016; 43:27-35. [PMID: 28193580 DOI: 10.1016/j.jnutbio.2016.01.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/12/2015] [Accepted: 01/21/2016] [Indexed: 02/06/2023]
Abstract
The objective of this study was to determine if astaxanthin (ASTX), a xanthophyll carotenoid, can prevent obesity-associated metabolic abnormalities, inflammation and fibrosis in diet-induced obesity (DIO) and nonalcoholic steatohepatitis (NASH) mouse models. Male C57BL/6J mice were fed a low-fat (6% fat, w/w), a high-fat/high-sucrose control (HF/HS; 35% fat, 35% sucrose, w/w), or a HF/HS containing ASTX (AHF/HS; 0.03% ASTX, w/w) for 30 weeks. To induce NASH, another set of mice was fed a HF/HS diet containing 2% cholesterol (HF/HS/HC) a HF/HS/HC with 0.015% ASTX (AHF/HS/HC) for 18 weeks. Compared to LF, HF/HS significantly increased plasma total cholesterol, triglyceride and glucose, which were lowered by ASTX. ASTX decreased hepatic mRNA levels of markers of macrophages and fibrosis in both models. The effect of ASTX was more prominent in NASH than DIO mice. In epididymal fat, ASTX also decreased macrophage infiltration and M1 macrophage marker expression, and inhibited hypoxia-inducible factor 1-α and its downstream fibrogenic genes in both mouse models. ASTX significantly decreased tumor necrosis factor α mRNA in the splenocytes from DIO mice upon lipopolysaccharides stimulation compared with those from control mice fed an HF/HS diet. Additionally, ASTX significantly elevated the levels of genes that regulate fatty acid β-oxidation and mitochondrial biogenesis in the skeletal muscle compared with control obese mice, whereas no differences were noted in adipose lipogenic genes. Our results indicate that ASTX inhibits inflammation and fibrosis in the liver and adipose tissue and enhances the skeletal muscle's capacity for mitochondrial fatty acid oxidation in obese mice.
Collapse
|
527
|
Xu F, Zheng X, Lin B, Liang H, Cai M, Cao H, Ye J, Weng J. Diet-induced obesity and insulin resistance are associated with brown fat degeneration in SIRT1-deficient mice. Obesity (Silver Spring) 2016; 24:634-42. [PMID: 26916242 DOI: 10.1002/oby.21393] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/08/2015] [Accepted: 10/16/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Recent studies have revealed that SIRT1 gain-of-function could promote adipose tissue browning for the adaptive thermogenesis under normal diet. This study investigated the role of SIRT1 loss-of-function in diet-induced obesity and insulin resistance and the mechanism involved in adipose tissue thermogenesis. METHODS Male SIRT1(+/-) and wild-type (WT) mice were fed with a high-fat diet (HFD) for 16 weeks to induce obesity and insulin resistance, while mice on a chow diet were used as lean controls. The phenotype data were collected, and different adipose tissue depots were used for mechanism research. RESULTS Compared with WT mice, SIRT1(+/-) mice exhibited increased adiposity and more severe insulin resistance with less thermogenesis under HFD challenge. Strikingly, SIRT1(+/-) mice displayed an exacerbated brown adipose tissue (BAT) degeneration phenotype, which was characterized by lower thermogenic activity, aggravated mitochondrial dysfunction, and more mitochondrial loss. In addition, SIRT1(+/-) mice showed aggravated inflammation and dysfunction in epididymal adipose tissue after HFD intervention, which also contributed to the systemic insulin resistance. CONCLUSIONS Diet-induced obesity and insulin resistance are associated with BAT degeneration in SIRT1-deficient mice, which further underlined the beneficial role of SIRT1 in obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Fen Xu
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China
| | - Xiaobin Zheng
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China
| | - Beisi Lin
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China
| | - Hua Liang
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China
| | - Mengyin Cai
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China
| | - Huanyi Cao
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China
| | - Jianping Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Jianping Weng
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China
| |
Collapse
|
528
|
Wolf RM, Lei X, Yang ZC, Nyandjo M, Tan SY, Wong GW. CTRP3 deficiency reduces liver size and alters IL-6 and TGFβ levels in obese mice. Am J Physiol Endocrinol Metab 2016; 310:E332-45. [PMID: 26670485 PMCID: PMC4773650 DOI: 10.1152/ajpendo.00248.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/08/2015] [Indexed: 12/15/2022]
Abstract
C1q/TNF-related protein 3 (CTRP3) is a secreted metabolic regulator whose circulating levels are reduced in human and rodent models of obesity and diabetes. Previously, we showed that CTRP3 infusion lowers blood glucose by suppressing gluconeogenesis and that transgenic overexpression of CTRP3 protects mice against diet-induced hepatic steatosis. Here, we used a genetic loss-of-function mouse model to further address whether CTRP3 is indeed required for metabolic homeostasis under normal and obese states. Both male and female mice lacking CTRP3 had similar weight gain when fed a control low-fat (LFD) or high-fat diet (HFD). Regardless of diet, no differences were observed in adiposity, food intake, metabolic rate, energy expenditure, or physical activity levels between wild-type (WT) and Ctrp3-knockout (KO) animals of either sex. Contrary to expectations, loss of CTRP3 in LFD- or HFD-fed male and female mice also had minimal or no impact on whole body glucose metabolism, insulin sensitivity, and fasting-induced hepatic gluconeogenesis. Unexpectedly, the liver sizes of HFD-fed Ctrp3-KO male mice were markedly reduced despite a modest increase in triglyceride content. Furthermore, liver expression of fat oxidation genes was upregulated in the Ctrp3-KO mice. Whereas the liver and adipose expression of profibrotic TGFβ1, as well as its serum levels, was suppressed in HFD-fed KO mice, circulating proinflammatory IL-6 levels were markedly increased; these changes, however, were insufficient to affect systemic metabolic outcome. We conclude that, although it is dispensable for physiological control of energy balance, CTRP3 plays a previously unsuspected role in modulating liver size and circulating cytokine levels in response to obesity.
Collapse
Affiliation(s)
- Risa M Wolf
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xia Lei
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhi-Chun Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China; and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maeva Nyandjo
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stefanie Y Tan
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
529
|
Asterholm IW, Scherer PE. Fibrosis-streaks and splatters: Some things are not always what they seem to be. Obesity (Silver Spring) 2016; 24:552-3. [PMID: 26916237 PMCID: PMC4778565 DOI: 10.1002/oby.21430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Ingrid Wernstedt Asterholm
- Department of Metabolic Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine, Dallas, TX 75390, USA
- Cell Biology University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
530
|
Batista ML, Henriques FS, Neves RX, Olivan MR, Matos-Neto EM, Alcântara PSM, Maximiano LF, Otoch JP, Alves MJ, Seelaender M. Cachexia-associated adipose tissue morphological rearrangement in gastrointestinal cancer patients. J Cachexia Sarcopenia Muscle 2016; 7:37-47. [PMID: 27066317 PMCID: PMC4799865 DOI: 10.1002/jcsm.12037] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/11/2015] [Accepted: 03/30/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND AIMS Cachexia is a syndrome characterized by marked involuntary loss of body weight. Recently, adipose tissue (AT) wasting has been shown to occur before the appearance of other classical cachexia markers. We investigated the composition and rearrangement of the extracellular matrix, adipocyte morphology and inflammation in the subcutaneous AT (scAT) pad of gastrointestinal cancer patients. METHODS Surgical biopsies for scAT were obtained from gastrointestinal cancer patients, who were signed up into the following groups: cancer cachexia (CC, n = 11), weight-stable cancer (WSC, n = 9) and weight-stable control (non-cancer) (control, n = 7). The stable weight groups were considered as those with no important weight change during the last year and body mass index <25 kg/m(2). Subcutaneous AT fibrosis was quantified and characterized by quantitative PCR, histological analysis and immunohistochemistry. RESULTS The degree of fibrosis and the distribution and collagen types (I and III) were different in WSC and CC patients. CC patients showed more pronounced fibrosis in comparison with WSC. Infiltrating macrophages surrounding adipocytes and CD3 Ly were found in the fibrotic areas of scAT. Subcutaneous AT fibrotic areas demonstrated increased monocyte chemotactic protein 1 (MCP-1) and Cluster of Differentiation (CD)68 gene expression in cancer patients. CONCLUSIONS Our data indicate architectural modification consisting of fibrosis and inflammatory cell infiltration in scAT as induced by cachexia in gastrointestinal cancer patients. The latter was characterized by the presence of macrophages and lymphocytes, more evident in the fibrotic areas. In addition, increased MCP-1 and CD68 gene expression in scAT from cancer patients may indicate an important role of these markers in the early phases of cancer.
Collapse
Affiliation(s)
- Miguel L Batista
- Laboratory of Adipose Tissue Biology, Integrated Group of Biotechnology University of Mogi das Cruzes Mogi das Cruzes Brazil; Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo São Paulo Brazil
| | - Felipe S Henriques
- Laboratory of Adipose Tissue Biology, Integrated Group of Biotechnology University of Mogi das Cruzes Mogi das Cruzes Brazil
| | - Rodrigo X Neves
- Laboratory of Adipose Tissue Biology, Integrated Group of Biotechnology University of Mogi das Cruzes Mogi das Cruzes Brazil; Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo São Paulo Brazil
| | - Mireia R Olivan
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo São Paulo Brazil
| | - Emídio M Matos-Neto
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo São Paulo Brazil
| | - Paulo S M Alcântara
- Department of Clinical Surgery, University Hospital University of São Paulo São Paulo Brazil
| | - Linda F Maximiano
- Department of Clinical Surgery, University Hospital University of São Paulo São Paulo Brazil
| | - José P Otoch
- Department of Clinical Surgery, University Hospital University of São Paulo São Paulo Brazil
| | - Michele J Alves
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo São Paulo Brazil
| | - Marília Seelaender
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo São Paulo Brazil
| |
Collapse
|
531
|
Berryman DE, Henry B, Hjortebjerg R, List EO, Kopchick JJ. Developments in our understanding of the effects of growth hormone on white adipose tissue from mice: implications to the clinic. Expert Rev Endocrinol Metab 2016; 11:197-207. [PMID: 28435436 PMCID: PMC5397118 DOI: 10.1586/17446651.2016.1147950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Adipose tissue (AT) is a well-established target of growth hormone (GH) and is altered in clinical conditions associated with excess, deficiency and absence of GH action. Due to the difficulty in collecting AT from clinical populations, genetically modified mice have been useful in better understanding how GH affects this tissue. Recent findings in mice would suggest that the impact of GH on AT is beyond alterations of lipolysis, lipogenesis or proliferation/ differentiation. AT depot-specific alterations in immune cells, extracellular matrix, adipokines, and senescence indicate an expanded role for GH in AT physiology. This mouse data will guide additional studies necessary to evaluate the therapeutic potential and safety of GH for conditions associated with altering AT, such as obesity. In this review, we introduce several relatively new intricacies of GH's effect on AT, focusing on recent studies in mice. Finally, we summarize the clinical implications of these findings.
Collapse
Affiliation(s)
- Darlene E Berryman
- Executive Director, The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, (740) 593-9661 - phone, (740) 593-4795 - fax
| | - Brooke Henry
- 108 Konneker Research Labs, Ohio University, (740) 593-9665
| | - Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Noerrebrogade 44, 8000 Aarhus C, Denmark, +45 6166 8045 - phone, +45 7846 2150 - fax
| | - Edward O List
- Senior Scientist, 218 Konneker Research Labs, Edison Biotechnology Institute, Ohio University, (740) 593-4620 - phone, (740) 593-4795 - fax
| | - John J Kopchick
- Distinguished Professor, Goll Ohio Eminent Scholar, 172 Water Tower Drive, Ohio University, (740) 593-4534 - phone, (740) 593-4795 - fax
| |
Collapse
|
532
|
Machado MV, Michelotti GA, Jewell ML, Pereira TA, Xie G, Premont RT, Diehl AM. Caspase-2 promotes obesity, the metabolic syndrome and nonalcoholic fatty liver disease. Cell Death Dis 2016; 7:e2096. [PMID: 26890135 PMCID: PMC5399190 DOI: 10.1038/cddis.2016.19] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/18/2023]
Abstract
Obesity and its resulting metabolic disturbances are major health threats. In response to energy surplus, overtaxed adipocytes release fatty acids and pro-inflammatory factors into the circulation, promoting organ fat accumulation (including nonalcoholic fatty liver disease), insulin resistance and the metabolic syndrome. Recently, caspase-2 was linked to lipoapoptosis, so we hypothesized that caspase-2 might be a critical determinant of metabolic syndrome pathogenesis. Caspase-2-deficient and wild-type mice were fed a Western diet (high-fat diet, enriched with saturated fatty acids and 0.2% cholesterol, supplemented with fructose and glucose in the drinking water) for 16 weeks. Metabolic and hepatic outcomes were evaluated. In vitro studies assessed the role of caspase-2 in adipose tissue proliferative properties and susceptibility for lipoapoptosis. Caspase-2-deficient mice fed a Western diet were protected from abdominal fat deposition, diabetes mellitus, dyslipidemia and hepatic steatosis. Adipose tissue in caspase-2-deficient mice was more proliferative, upregulated mitochondrial uncoupling proteins consistent with browning, and was resistant to cell hypertrophy and cell death. The liver was protected from steatohepatitis through a decrease in circulating fatty acids and more efficient hepatic fat metabolism, and from fibrosis as a consequence of reduced fibrogenic stimuli from fewer lipotoxic hepatocytes. Caspase-2 deficiency protected mice from diet-induced obesity, metabolic syndrome and nonalcoholic fatty liver disease. Further studies are necessary to assess caspase-2 as a therapeutic target for those conditions.
Collapse
Affiliation(s)
- M V Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Gastroenterology Department, Hospital de Santa Maria, Lisbon, Portugal
| | - G A Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - M L Jewell
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - T A Pereira
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - G Xie
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - R T Premont
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - A M Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
533
|
Senol-Cosar O, Flach RJR, DiStefano M, Chawla A, Nicoloro S, Straubhaar J, Hardy OT, Noh HL, Kim JK, Wabitsch M, Scherer PE, Czech MP. Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion. Nat Commun 2016; 7:10686. [PMID: 26880110 PMCID: PMC4757769 DOI: 10.1038/ncomms10686] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022] Open
Abstract
Proper regulation of energy storage in adipose tissue is crucial for maintaining insulin sensitivity and molecules contributing to this process have not been fully revealed. Here we show that type II transmembrane protein tenomodulin (TNMD) is upregulated in adipose tissue of insulin-resistant versus insulin-sensitive individuals, who were matched for body mass index (BMI). TNMD expression increases in human preadipocytes during differentiation, whereas silencing TNMD blocks adipogenesis. Upon high-fat diet feeding, transgenic mice overexpressing Tnmd develop increased epididymal white adipose tissue (eWAT) mass, and preadipocytes derived from Tnmd transgenic mice display greater proliferation, consistent with elevated adipogenesis. In Tnmd transgenic mice, lipogenic genes are upregulated in eWAT, as is Ucp1 in brown fat, while liver triglyceride accumulation is attenuated. Despite expanded eWAT, transgenic animals display improved systemic insulin sensitivity, decreased collagen deposition and inflammation in eWAT, and increased insulin stimulation of Akt phosphorylation. Our data suggest that TNMD acts as a protective factor in visceral adipose tissue to alleviate insulin resistance in obesity. Expansion of visceral adipose tissue is usually associated with insulin resistance and metabolic disease. Here, the authors show that the membrane protein TNMD is upregulated in visceral fat of insulin resistant obese individuals and promotes healthy adipose tissue expansion through increasing adipogenesis.
Collapse
Affiliation(s)
- Ozlem Senol-Cosar
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Rachel J Roth Flach
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Marina DiStefano
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Anil Chawla
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Sarah Nicoloro
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Juerg Straubhaar
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Olga T Hardy
- Department of Internal Medicine, Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.,Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.,Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany
| | - Philipp E Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
534
|
Michaud A, Laforest S, Pelletier M, Nadeau M, Simard S, Daris M, Lebœuf M, Vidal H, Géloën A, Tchernof A. Abdominal adipocyte populations in women with visceral obesity. Eur J Endocrinol 2016; 174:227-39. [PMID: 26578637 DOI: 10.1530/eje-15-0822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/16/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Visceral obesity is independently related to numerous cardiometabolic alterations, with adipose tissue dysfunction as a central feature. OBJECTIVE To examine whether omental (OM) and subcutaneous (SC) adipocyte size populations in women relate to visceral obesity, cardiometabolic risk factors and adipocyte lipolysis independent of total adiposity. DESIGN AND METHODS OM and SC fat samples were obtained during gynecological surgery in 60 women (mean age, 46.1±5.9 years; mean BMI, 27.1±4.5 kg/m² (range, 20.3-41. kg/m²)). Fresh samples were treated with osmium tetroxide and were analyzed with a Multisizer Coulter. Cell size distributions were computed for each sample with exponential and Gaussian function fits. RESULTS Computed tomography-measured visceral fat accumulation was the best predictor of larger cell populations as well as the percentage of small cells in both OM and SC fat (P<0.0001 for all). Accordingly, women with visceral obesity had larger cells in the main population and higher proportion of small adipocytes independent of total adiposity (P≤0.05). Using linear regression analysis, we found that women characterized by larger-than-predicted adipocytes in either OM or SC adipose tissue presented higher visceral adipose tissue area, increased percentage of small cells and homeostasis model assessment insulin resistance index as well as higher OM adipocyte isoproterenol-, forskolin- and dbcAMP-stimulated lipolysis compared to women with smaller-than-predicted adipocytes, independent of total adiposity (P≤0.05). CONCLUSION Excess visceral adipose tissue accumulation is a strong marker of both adipocyte hypertrophy and increased number of small cells in either fat compartment, which relates to higher insulin resistance index and lipolytic response, independent of total adiposity.
Collapse
Affiliation(s)
- Andréanne Michaud
- Endocrinology and NephrologyCHU de Quebec-Laval University, 2705 Laurier Blvd. (R-4779), Quebec City, Quebec, Canada, G1V 4G2School of NutritionLaval University, Quebec City, Quebec, CanadaInstitut universitaire de cardiologie et de pneumologie de QuébecQuebec City, Quebec, CanadaGynecology UnitCHU de Québec-Laval University, Quebec City, Quebec, CanadaUniversity of LyonCARMEN INSERM U1060, INSA-Lyon, F-69621, Lyon, France Endocrinology and NephrologyCHU de Quebec-Laval University, 2705 Laurier Blvd. (R-4779), Quebec City, Quebec, Canada, G1V 4G2School of NutritionLaval University, Quebec City, Quebec, CanadaInstitut universitaire de cardiologie et de pneumologie de QuébecQuebec City, Quebec, CanadaGynecology UnitCHU de Québec-Laval University, Quebec City, Quebec, CanadaUniversity of LyonCARMEN INSERM U1060, INSA-Lyon, F-69621, Lyon, France Endocrinology and NephrologyCHU de Quebec-Laval University, 2705 Laurier Blvd. (R-4779), Quebec City, Quebec, Canada, G1V 4G2School of NutritionLaval University, Quebec City, Quebec, CanadaInstitut universitaire de cardiologie et de pneumologie de QuébecQuebec City, Quebec, CanadaGynecology UnitCHU de Québec-Laval University, Quebec City, Quebec, CanadaUniversity of LyonCARMEN INSERM U1060, INSA-Lyon, F-69621, Lyon, France
| | - Sofia Laforest
- Endocrinology and NephrologyCHU de Quebec-Laval University, 2705 Laurier Blvd. (R-4779), Quebec City, Quebec, Canada, G1V 4G2School of NutritionLaval University, Quebec City, Quebec, CanadaInstitut universitaire de cardiologie et de pneumologie de QuébecQuebec City, Quebec, CanadaGynecology UnitCHU de Québec-Laval University, Quebec City, Quebec, CanadaUniversity of LyonCARMEN INSERM U1060, INSA-Lyon, F-69621, Lyon, France Endocrinology and NephrologyCHU de Quebec-Laval University, 2705 Laurier Blvd. (R-4779), Quebec City, Quebec, Canada, G1V 4G2School of NutritionLaval University, Quebec City, Quebec, CanadaInstitut universitaire de cardiologie et de pneumologie de QuébecQuebec City, Quebec, CanadaGynecology UnitCHU de Québec-Laval University, Quebec City, Quebec, CanadaUniversity of LyonCARMEN INSERM U1060, INSA-Lyon, F-69621, Lyon, France Endocrinology and NephrologyCHU de Quebec-Laval University, 2705 Laurier Blvd. (R-4779), Quebec City, Quebec, Canada, G1V 4G2School of NutritionLaval University, Quebec City, Quebec, CanadaInstitut universitaire de cardiologie et de pneumologie de QuébecQuebec City, Quebec, CanadaGynecology UnitCHU de Québec-Laval University, Quebec City, Quebec, CanadaUniversity of LyonCARMEN INSERM U1060, INSA-Lyon, F-69621, Lyon, France
| | - Mélissa Pelletier
- Endocrinology and NephrologyCHU de Quebec-Laval University, 2705 Laurier Blvd. (R-4779), Quebec City, Quebec, Canada, G1V 4G2School of NutritionLaval University, Quebec City, Quebec, CanadaInstitut universitaire de cardiologie et de pneumologie de QuébecQuebec City, Quebec, CanadaGynecology UnitCHU de Québec-Laval University, Quebec City, Quebec, CanadaUniversity of LyonCARMEN INSERM U1060, INSA-Lyon, F-69621, Lyon, France
| | - Mélanie Nadeau
- Endocrinology and NephrologyCHU de Quebec-Laval University, 2705 Laurier Blvd. (R-4779), Quebec City, Quebec, Canada, G1V 4G2School of NutritionLaval University, Quebec City, Quebec, CanadaInstitut universitaire de cardiologie et de pneumologie de QuébecQuebec City, Quebec, CanadaGynecology UnitCHU de Québec-Laval University, Quebec City, Quebec, CanadaUniversity of LyonCARMEN INSERM U1060, INSA-Lyon, F-69621, Lyon, France
| | - Serge Simard
- Endocrinology and NephrologyCHU de Quebec-Laval University, 2705 Laurier Blvd. (R-4779), Quebec City, Quebec, Canada, G1V 4G2School of NutritionLaval University, Quebec City, Quebec, CanadaInstitut universitaire de cardiologie et de pneumologie de QuébecQuebec City, Quebec, CanadaGynecology UnitCHU de Québec-Laval University, Quebec City, Quebec, CanadaUniversity of LyonCARMEN INSERM U1060, INSA-Lyon, F-69621, Lyon, France
| | - Marleen Daris
- Endocrinology and NephrologyCHU de Quebec-Laval University, 2705 Laurier Blvd. (R-4779), Quebec City, Quebec, Canada, G1V 4G2School of NutritionLaval University, Quebec City, Quebec, CanadaInstitut universitaire de cardiologie et de pneumologie de QuébecQuebec City, Quebec, CanadaGynecology UnitCHU de Québec-Laval University, Quebec City, Quebec, CanadaUniversity of LyonCARMEN INSERM U1060, INSA-Lyon, F-69621, Lyon, France
| | - Mathieu Lebœuf
- Endocrinology and NephrologyCHU de Quebec-Laval University, 2705 Laurier Blvd. (R-4779), Quebec City, Quebec, Canada, G1V 4G2School of NutritionLaval University, Quebec City, Quebec, CanadaInstitut universitaire de cardiologie et de pneumologie de QuébecQuebec City, Quebec, CanadaGynecology UnitCHU de Québec-Laval University, Quebec City, Quebec, CanadaUniversity of LyonCARMEN INSERM U1060, INSA-Lyon, F-69621, Lyon, France
| | - Hubert Vidal
- Endocrinology and NephrologyCHU de Quebec-Laval University, 2705 Laurier Blvd. (R-4779), Quebec City, Quebec, Canada, G1V 4G2School of NutritionLaval University, Quebec City, Quebec, CanadaInstitut universitaire de cardiologie et de pneumologie de QuébecQuebec City, Quebec, CanadaGynecology UnitCHU de Québec-Laval University, Quebec City, Quebec, CanadaUniversity of LyonCARMEN INSERM U1060, INSA-Lyon, F-69621, Lyon, France
| | - Alain Géloën
- Endocrinology and NephrologyCHU de Quebec-Laval University, 2705 Laurier Blvd. (R-4779), Quebec City, Quebec, Canada, G1V 4G2School of NutritionLaval University, Quebec City, Quebec, CanadaInstitut universitaire de cardiologie et de pneumologie de QuébecQuebec City, Quebec, CanadaGynecology UnitCHU de Québec-Laval University, Quebec City, Quebec, CanadaUniversity of LyonCARMEN INSERM U1060, INSA-Lyon, F-69621, Lyon, France
| | - André Tchernof
- Endocrinology and NephrologyCHU de Quebec-Laval University, 2705 Laurier Blvd. (R-4779), Quebec City, Quebec, Canada, G1V 4G2School of NutritionLaval University, Quebec City, Quebec, CanadaInstitut universitaire de cardiologie et de pneumologie de QuébecQuebec City, Quebec, CanadaGynecology UnitCHU de Québec-Laval University, Quebec City, Quebec, CanadaUniversity of LyonCARMEN INSERM U1060, INSA-Lyon, F-69621, Lyon, France Endocrinology and NephrologyCHU de Quebec-Laval University, 2705 Laurier Blvd. (R-4779), Quebec City, Quebec, Canada, G1V 4G2School of NutritionLaval University, Quebec City, Quebec, CanadaInstitut universitaire de cardiologie et de pneumologie de QuébecQuebec City, Quebec, CanadaGynecology UnitCHU de Québec-Laval University, Quebec City, Quebec, CanadaUniversity of LyonCARMEN INSERM U1060, INSA-Lyon, F-69621, Lyon, France Endocrinology and NephrologyCHU de Quebec-Laval University, 2705 Laurier Blvd. (R-4779), Quebec City, Quebec, Canada, G1V 4G2School of NutritionLaval University, Quebec City, Quebec, CanadaInstitut universitaire de cardiologie et de pneumologie de QuébecQuebec City, Quebec, CanadaGynecology UnitCHU de Québec-Laval University, Quebec City, Quebec, CanadaUniversity of LyonCARMEN INSERM U1060, INSA-Lyon, F-69621, Lyon, France
| |
Collapse
|
535
|
Jura M, Kozak LP. Obesity and related consequences to ageing. AGE (DORDRECHT, NETHERLANDS) 2016; 38:23. [PMID: 26846415 PMCID: PMC5005878 DOI: 10.1007/s11357-016-9884-3] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/26/2016] [Indexed: 04/17/2023]
Abstract
Obesity has become a major public health problem. Given the current increase in life expectancy, the prevalence of obesity also raises steadily among older age groups. The increase in life expectancy is often accompanied with additional years of susceptibility to chronic ill health associated with obesity in the elderly. Both obesity and ageing are conditions leading to serious health problems and increased risk for disease and death. Ageing is associated with an increase in abdominal obesity, a major contributor to insulin resistance and the metabolic syndrome. Obesity in the elderly is thus a serious concern and comprehension of the key mechanisms of ageing and age-related diseases has become a necessary matter. Here, we aimed to identify similarities underlying mechanisms related to both obesity and ageing. We bring together evidence that age-related changes in body fat distribution and metabolism might be key factors of a vicious cycle that can accelerate the ageing process and onset of age-related diseases.
Collapse
Affiliation(s)
- Magdalena Jura
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, ul. Tuwima 10, 10-748, Olsztyn, Poland.
| | - Leslie P Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, ul. Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
536
|
de Greef JC, Hamlyn R, Jensen BS, O'Campo Landa R, Levy JR, Kobuke K, Campbell KP. Collagen VI deficiency reduces muscle pathology, but does not improve muscle function, in the γ-sarcoglycan-null mouse. Hum Mol Genet 2016; 25:1357-69. [PMID: 26908621 PMCID: PMC4787905 DOI: 10.1093/hmg/ddw018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/18/2016] [Indexed: 01/19/2023] Open
Abstract
Muscular dystrophy is characterized by progressive skeletal muscle weakness and dystrophic muscle exhibits degeneration and regeneration of muscle cells, inflammation and fibrosis. Skeletal muscle fibrosis is an excessive deposition of components of the extracellular matrix including an accumulation of Collagen VI. We hypothesized that a reduction of Collagen VI in a muscular dystrophy model that presents with fibrosis would result in reduced muscle pathology and improved muscle function. To test this hypothesis, we crossed γ-sarcoglycan-null mice, a model of limb-girdle muscular dystrophy type 2C, with a Col6a2-deficient mouse model. We found that the resulting γ-sarcoglycan-null/Col6a2Δex5 mice indeed exhibit reduced muscle pathology compared with γ-sarcoglycan-null mice. Specifically, fewer muscle fibers are degenerating, fiber size varies less, Evans blue dye uptake is reduced and serum creatine kinase levels are lower. Surprisingly, in spite of this reduction in muscle pathology, muscle function is not significantly improved. In fact, grip strength and maximum isometric tetanic force are even lower in γ-sarcoglycan-null/Col6a2Δex5 mice than in γ-sarcoglycan-null mice. In conclusion, our results reveal that Collagen VI-mediated fibrosis contributes to skeletal muscle pathology in γ-sarcoglycan-null mice. Importantly, however, our data also demonstrate that a reduction in skeletal muscle pathology does not necessarily lead to an improvement of skeletal muscle function, and this should be considered in future translational studies.
Collapse
Affiliation(s)
- Jessica C de Greef
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology and Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Rebecca Hamlyn
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology and Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Braden S Jensen
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology and Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Raul O'Campo Landa
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology and Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jennifer R Levy
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology and Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kazuhiro Kobuke
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology and Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology and Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
537
|
Macchi V, Porzionato A, Sarasin G, Petrelli L, Guidolin D, Rossato M, Fontanella CG, Natali A, De Caro R. The Infrapatellar Adipose Body: A Histotopographic Study. Cells Tissues Organs 2016; 201:220-31. [DOI: 10.1159/000442876] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 11/19/2022] Open
Abstract
The infrapatellar fat pad (IFP) can be regarded as a peculiar form of fibro-adipose tissue localized close to the synovial membrane and articular cartilage. The aims of the present study were to analyze the microscopic anatomy of the IFP through histological and ultrastructural methods, comparing it with that of the subcutaneous tissue of the abdomen and of the knee. Ten specimens of IFP were sampled from bodies of the Donation Program of the University of Padua without a history of osteoarthritis. The IFP consisted of white adipose tissue, of lobular type, with lobules delimited by thin connective septa. The IFP lobule areas were smaller (p < 0.05) and the interlobular septa were thicker (p > 0.05) than those of subcutaneous tissues of the abdomen, whereas the IFP lobule areas were larger (p < 0.05) and the interlobular septa were thinner than those of the subcutaneous tissue of the knee (p < 0.05). The IFP adipocytes present a mean area of 3,708 ± 976 µm2 with a large intercellular space, whereas the mean area of the abdominal tissues was greater (6,082 ± 628 µm2; p < 0.05). At scanning electron microscopy the IFP adipocytes were covered by thick fibrillary sheaths, creating a basket around the adipocytes. The structural characteristics of the IFP (lobular aspect of the adipose tissue, thickness of the septa with scarce elastic fibers) could act as a plastic portion aimed at the absorption of pressure variation during knee articular activity. The extensive distribution of nerves suggests a possible role of the IFP as a mechanoreceptor, corresponding to a tridimensional connective mesh working in the proprioceptive regulation of the activity of the knee joint.
Collapse
|
538
|
Zheng Z, Zheng F. Immune Cells and Inflammation in Diabetic Nephropathy. J Diabetes Res 2016; 2016:1841690. [PMID: 26824038 PMCID: PMC4707326 DOI: 10.1155/2016/1841690] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes. At its core, DN is a metabolic disorder which can also manifest itself in terms of local inflammation in the kidneys. Such inflammation can then drive the classical markers of fibrosis and structural remodeling. As a result, resolution of immune-mediated inflammation is critical towards achieving a cure for DN. Many immune cells play a part in DN, including key members of both the innate and adaptive immune systems. While these cells were classically understood to primarily function against pathogen insult, it has also become increasingly clear that they also serve a major role as internal sensors of damage. In fact, damage sensing may serve as the impetus for much of the inflammation that occurs in DN, in a vicious positive feedback cycle. Although direct targeting of these proinflammatory cells may be difficult, new approaches that focus on their metabolic profiles may be able to alleviate DN significantly, especially since dysregulation of the local metabolic environment may well be responsible for triggering inflammation to begin with. In this review, the authors consider the metabolic profile of several relevant immune types and discuss their respective roles.
Collapse
Affiliation(s)
- Zihan Zheng
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Feng Zheng
- Department of Nephrology, Advanced Institute for Medical Sciences, Second Hospital, Dalian Medical University, Dalian 116023, China
- Department of Nephrology and Basic Science Laboratory, Fujian Medical University, Fuzhou 350002, China
- *Feng Zheng:
| |
Collapse
|
539
|
Fu RH, Weinstein AL, Chang MM, Argenziano M, Ascherman JA, Rohde CH. Risk factors of infected sternal wounds versus sterile wound dehiscence. J Surg Res 2016; 200:400-7. [DOI: 10.1016/j.jss.2015.07.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 11/24/2022]
|
540
|
Kruglikov IL, Scherer PE. Dermal Adipocytes: From Irrelevance to Metabolic Targets? Trends Endocrinol Metab 2016; 27:1-10. [PMID: 26643658 PMCID: PMC4698208 DOI: 10.1016/j.tem.2015.11.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/12/2023]
Abstract
Dermal white adipose tissue (dWAT) has received little appreciation in the past as a distinct entity from the better recognized subcutaneous white adipose tissue (sWAT). However, recent work has established dWAT as an important contributor to a multitude of processes, including immune response, wound healing and scarring, hair follicle (HF) growth, and thermoregulation. Unique metabolic contributions have also been attributed to dWAT, at least in part due to its thermic insulation properties and response to cold exposure. Dermal adipocytes can also undergo an adipocyte-myofibroblast transition (AMT), a process that is suspected to have an important role in several pathophysiological processes within the skin. Here, we discuss emerging concepts regarding dWAT physiology and its significance to a variety of cellular processes.
Collapse
Affiliation(s)
| | - Philipp E Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
541
|
Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders. Front Endocrinol (Lausanne) 2016; 7:30. [PMID: 27148161 PMCID: PMC4829583 DOI: 10.3389/fendo.2016.00030] [Citation(s) in RCA: 724] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/31/2016] [Indexed: 12/12/2022] Open
Abstract
The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.
Collapse
Affiliation(s)
- Sung Sik Choe
- Department of Biological Sciences, National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jin Young Huh
- Department of Biological Sciences, National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - In Jae Hwang
- Department of Biological Sciences, National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jong In Kim
- Department of Biological Sciences, National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Department of Biological Sciences, National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
- *Correspondence: Jae Bum Kim,
| |
Collapse
|
542
|
Rapid Alterations in Perirenal Adipose Tissue Transcriptomic Networks with Cessation of Voluntary Running. PLoS One 2015; 10:e0145229. [PMID: 26678390 PMCID: PMC4683046 DOI: 10.1371/journal.pone.0145229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022] Open
Abstract
In maturing rats, the growth of abdominal fat is attenuated by voluntary wheel running. After the cessation of running by wheel locking, a rapid increase in adipose tissue growth to a size that is similar to rats that have never run (i.e. catch-up growth) has been previously reported by our lab. In contrast, diet-induced increases in adiposity have a slower onset with relatively delayed transcriptomic responses. The purpose of the present study was to identify molecular pathways associated with the rapid increase in adipose tissue after ending 6 wks of voluntary running at the time of puberty. Age-matched, male Wistar rats were given access to running wheels from 4 to 10 weeks of age. From the 10th to 11th week of age, one group of rats had continued wheel access, while the other group had one week of wheel locking. Perirenal adipose tissue was extracted, RNA sequencing was performed, and bioinformatics analyses were executed using Ingenuity Pathway Analysis (IPA). IPA was chosen to assist in the understanding of complex ‘omics data by integrating data into networks and pathways. Wheel locked rats gained significantly more fat mass and significantly increased body fat percentage between weeks 10–11 despite having decreased food intake, as compared to rats with continued wheel access. IPA identified 646 known transcripts differentially expressed (p < 0.05) between continued wheel access and wheel locking. In wheel locked rats, IPA revealed enrichment of transcripts for the following functions: extracellular matrix, macrophage infiltration, immunity, and pro-inflammatory. These findings suggest that increases in visceral adipose tissue that accompanies the cessation of pubertal physical activity are associated with the alteration of multiple pathways, some of which may potentiate the development of pubertal obesity and obesity-associated systemic low-grade inflammation that occurs later in life.
Collapse
|
543
|
Lee SE, West KP, Cole RN, Schulze KJ, Christian P, Wu LSF, Yager JD, Groopman J, Ruczinski I. Plasma Proteome Biomarkers of Inflammation in School Aged Children in Nepal. PLoS One 2015; 10:e0144279. [PMID: 26636573 PMCID: PMC4670104 DOI: 10.1371/journal.pone.0144279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 11/13/2015] [Indexed: 11/25/2022] Open
Abstract
Inflammation is a condition stemming from complex host defense and tissue repair mechanisms, often simply characterized by plasma levels of a single acute reactant. We attempted to identify candidate biomarkers of systemic inflammation within the plasma proteome. We applied quantitative proteomics using isobaric mass tags (iTRAQ) tandem mass spectrometry to quantify proteins in plasma of 500 Nepalese children 6–8 years of age. We evaluated those that co-vary with inflammation, indexed by α-1-acid glycoprotein (AGP), a conventional biomarker of inflammation in population studies. Among 982 proteins quantified in >10% of samples, 99 were strongly associated with AGP at a family-wise error rate of 0.1%. Magnitude and significance of association varied more among proteins positively (n = 41) than negatively associated (n = 58) with AGP. The former included known positive acute phase proteins including C-reactive protein, serum amyloid A, complement components, protease inhibitors, transport proteins with anti-oxidative activity, and numerous unexpected intracellular signaling molecules. Negatively associated proteins exhibited distinct differences in abundance between secretory hepatic proteins involved in transporting or binding lipids, micronutrients (vitamin A and calcium), growth factors and sex hormones, and proteins of largely extra-hepatic origin involved in the formation and metabolic regulation of extracellular matrix. With the same analytical approach and the significance threshold, seventy-two out of the 99 proteins were commonly associated with CRP, an established biomarker of inflammation, suggesting the validity of the identified proteins. Our findings have revealed a vast plasma proteome within a free-living population of children that comprise functional biomarkers of homeostatic and induced host defense, nutrient metabolism and tissue repair, representing a set of plasma proteins that may be used to assess dynamics and extent of inflammation for future clinical and public health application.
Collapse
Affiliation(s)
- Sun Eun Lee
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Keith P. West
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Kerry J. Schulze
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Parul Christian
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Lee Shu-Fune Wu
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - James D. Yager
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - John Groopman
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
544
|
Bapat SP, Myoung Suh J, Fang S, Liu S, Zhang Y, Cheng A, Zhou C, Liang Y, LeBlanc M, Liddle C, Atkins AR, Yu RT, Downes M, Evans RM, Zheng Y. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 2015; 528:137-41. [PMID: 26580014 PMCID: PMC4670283 DOI: 10.1038/nature16151] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 10/28/2015] [Indexed: 12/16/2022]
Abstract
Age-associated insulin resistance (IR) and obesity-associated IR are two physiologically distinct forms of adult-onset diabetes. While macrophage-driven inflammation is a core driver of obesity-associated IR, the underlying mechanisms of the obesity-independent yet highly prevalent age-associated IR are largely unexplored. Here we show, using comparative adipo-immune profiling in mice, that fat-resident regulatory T cells, termed fTreg cells, accumulate in adipose tissue as a function of age, but not obesity. Supporting the existence of two distinct mechanisms underlying IR, mice deficient in fTreg cells are protected against age-associated IR, yet remain susceptible to obesity-associated IR and metabolic disease. By contrast, selective depletion of fTreg cells via anti-ST2 antibody treatment increases adipose tissue insulin sensitivity. These findings establish that distinct immune cell populations within adipose tissue underlie ageing- and obesity-associated IR, and implicate fTreg cells as adipo-immune drivers and potential therapeutic targets in the treatment of age-associated IR.
Collapse
Affiliation(s)
- Sagar P Bapat
- Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jae Myoung Suh
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Graduate School of Medical Science and Engineering, KAIST 34141, South Korea
| | - Sungsoon Fang
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Department of Biotechnology, College of Life Sciences, Sejong University, Seoul 143-747, South Korea
| | - Sihao Liu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Yang Zhang
- Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Albert Cheng
- Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Carmen Zhou
- Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Yuqiong Liang
- Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Mathias LeBlanc
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Millennium Institute, Sydney Medical School, University of Sydney, Sydney 2145, Australia
| | - Annette R Atkins
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Ruth T Yu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Michael Downes
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Ronald M Evans
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Ye Zheng
- Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
545
|
Li ZY, Song J, Zheng SL, Fan MB, Guan YF, Qu Y, Xu J, Wang P, Miao CY. Adipocyte Metrnl Antagonizes Insulin Resistance Through PPARγ Signaling. Diabetes 2015; 64:4011-22. [PMID: 26307585 DOI: 10.2337/db15-0274] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/04/2015] [Indexed: 11/13/2022]
Abstract
Adipokines play important roles in metabolic homeostasis and disease. We have recently identified a novel adipokine Metrnl, also known as Subfatin, for its high expression in subcutaneous fat. Here, we demonstrate a prodifferentiation action of Metrnl in white adipocytes. Adipocyte-specific knockout of Metrnl exacerbates insulin resistance induced by high-fat diet (HFD), whereas adipocyte-specific transgenic overexpression of Metrnl prevents insulin resistance induced by HFD or leptin deletion. Body weight and adipose content are not changed by adipocyte Metrnl. Consistently, no correlation is found between serum Metrnl level and BMI in humans. Metrnl promotes white adipocyte differentiation, expandability, and lipid metabolism and inhibits adipose inflammation to form functional fat, which contributes to its activity against insulin resistance. The insulin sensitization of Metrnl is blocked by PPARγ inhibitors or knockdown. However, Metrnl does not drive white adipose browning. Acute intravenous injection of recombinant Metrnl has no hypoglycemic effect, and 1-week intravenous administration of Metrnl is unable to rescue insulin resistance exacerbated by adipocyte Metrnl deficiency. Our results suggest adipocyte Metrnl controls insulin sensitivity at least via its local autocrine/paracrine action through the PPARγ pathway. Adipocyte Metrnl is an inherent insulin sensitizer and may become a therapeutic target for insulin resistance.
Collapse
Affiliation(s)
- Zhi-Yong Li
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Jie Song
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Si-Li Zheng
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Mao-Bing Fan
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Yun-Feng Guan
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Yi Qu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Jian Xu
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Pei Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
546
|
Kang M, Vaughan RA, Paton CM. FDP-E induces adipocyte inflammation and suppresses insulin-stimulated glucose disposal: effect of inflammation and obesity on fibrinogen Bβ mRNA. Am J Physiol Cell Physiol 2015; 309:C767-74. [DOI: 10.1152/ajpcell.00101.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/02/2015] [Indexed: 11/22/2022]
Abstract
Obesity is associated with increased fibrinogen production and fibrin formation, which produces fibrin degradation products (FDP-E and FDP-D). Fibrin and FDPs both contribute to inflammation, which would be expected to suppress glucose uptake and insulin signaling in adipose tissue, yet the effect of FDP-E and FDP-D on adipocyte function and glucose disposal is completely unknown. We tested the effects of FDPs on inflammation in 3T3-L1 adipocytes and primary macrophages and adipocyte glucose uptake in vitro. High-fat-fed mice increased hepatic fibrinogen mRNA expression ninefold over chow-fed mice, with concomitant increases in plasma fibrinogen protein levels. Obese mice also displayed increased fibrinogen content of epididymal fat pads. We treated cultured 3T3-L1 adipocytes and primary macrophages with FDP-E, FDP-D, or fibrinogen degradation products (FgnDP-E). FDP-D and FgnDP-E had no effect on inflammation or glucose uptake. Cytokine mRNA expression in RAW264.7 macrophage-like cells and 3T3-L1 adipocytes treated with FDP-E induced inflammation with maximal effects at 100 nM and 6 h. Insulin-stimulated 2-deoxy-d-[3H]glucose uptake was reduced by 71% in adipocytes treated with FDP-E. FDP-E, but not FDP-D or FgnDP-E, induces inflammation in macrophages and adipocytes and decreases glucose uptake in vitro. FDP-E may contribute toward obesity-associated acute inflammation and glucose intolerance, although its chronic role in obesity remains to be elucidated.
Collapse
Affiliation(s)
- Minsung Kang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas
| | - Roger A. Vaughan
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas
- Department of Exercise Science, High Point University, High Point, North Carolina; and
| | - Chad M. Paton
- Department of Food Science and Technology & Foods and Nutrition, University of Georgia, Athens, Georgia
| |
Collapse
|
547
|
Li X, Yang M, Li Z, Xue M, Shangguan Z, Ou Z, Liu M, Liu S, Yang S, Li X. Fructus xanthii improves lipid homeostasis in the epididymal adipose tissue of rats fed a high-fat diet. Mol Med Rep 2015; 13:787-95. [PMID: 26648271 PMCID: PMC4686102 DOI: 10.3892/mmr.2015.4628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 11/06/2015] [Indexed: 12/15/2022] Open
Abstract
High fat diet (HFD)-induced obesity triggers common features of human metabolic syndrome in rats. Our previous study showed that Fructus xanthii (FX) attenuates HFD-induced hepatic steatosis. The present study was designed to investigate the effects of FX on lipid metabolism in epididymal fat (EF), and examine its underlying mechanisms. Aqueous extraction fractions of FX or vehicle were orally administered by gavage for 6 weeks to rats fed either a HFD or a normal chow diet (NCD). The levels of circulating free fatty acid (FFA) were determined in plasma, and the expression levels of lipid metabolism- and inflammation-associated genes in the EF were measured using reverse transcription-quantitative polymerase chain reaction analysis. The general morphology, size and number of adipocytes in the EF, and the levels of macrophage infiltration were evaluated using hematoxylin and eosin staining or immunohistochemical staining. FX decreased circulating levels of FFA, increased the expression levels of sterol-regulatory-element-binding protein-1c, FAS, acetyl coenzyme A carboxylase, diacylglycerol acyltransferase and lipoprotein lipase lipogenic genes in the EF. FX increased the numbers of adipocytes in the EF, and featured a shift towards smaller adipocyte size. Compared with the vehicle-treated rats, positive staining of F4/80 was more dispersed in the FX-treated rats, and the percentage of F4/80 positive cells was significantly decreased. FX attenuated HFD-induced lipid dyshomeostasis in the epididymal adipose tissue.
Collapse
Affiliation(s)
- Xiumin Li
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Mingxing Yang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhipeng Li
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Mei Xue
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhaoshui Shangguan
- Central Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhimin Ou
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Ming Liu
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Suhuan Liu
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Shuyu Yang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Xuejun Li
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
548
|
Wensveen FM, Valentić S, Šestan M, Wensveen TT, Polić B. Interactions between adipose tissue and the immune system in health and malnutrition. Semin Immunol 2015; 27:322-33. [PMID: 26603491 DOI: 10.1016/j.smim.2015.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023]
Abstract
Adipose tissue provides the body with a storage depot of nutrients that is drained during times of starvation and replenished when food sources are abundant. As such, it is the primary sensor for nutrient availability in the milieu of an organism, which it communicates to the body through the excretion of hormones. Adipose tissue regulates a multitude of body functions associated with metabolism, such as gluconeogenesis, feeding and nutrient uptake. The immune system forms a vital layer of protection against micro-organisms that try to gain access to the nutrients contained in the body. Because infections need to be resolved as quickly as possible, speed is favored over energy-efficiency in an immune response. Especially when immune cells are activated, they switch to fast, but energy-inefficient anaerobic respiration to fulfill their energetic needs. Despite the necessity for an effective immune system, it is not given free rein in its energy expenditure. Signals derived from adipose tissue limit immune cell numbers and activity under conditions of nutrient shortage, whereas they allow proper immune cell activity when food sources are sufficiently available. When excessive fat accumulation occurs, such as in diet-induced obesity, adipose tissue becomes the site of pathological immune cell activation, causing chronic low-grade systemic inflammation. Obesity is therefore associated with a number of disorders in which the immune system plays a central role, such as atherosclerosis and non-alcoholic steatohepatitis. In this review, we will discuss the way in which adipose tissue regulates activity of the immune system under healthy and pathological conditions.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Histology & Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia; Department of Experimental Immunology, Amsterdam Medical Centre, Amsterdam, The Netherlands
| | - Sonja Valentić
- Department of Histology & Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marko Šestan
- Department of Histology & Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Bojan Polić
- Department of Histology & Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
549
|
Adipocyte-Specific Hypoxia-Inducible Factor 2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation. Mol Cell Biol 2015; 36:376-93. [PMID: 26572826 PMCID: PMC4719429 DOI: 10.1128/mcb.00430-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 11/05/2015] [Indexed: 12/04/2022] Open
Abstract
Angiogenesis is a central regulator for white (WAT) and brown (BAT) adipose tissue adaptation in the course of obesity. Here we show that deletion of hypoxia-inducible factor 2α (HIF2α) in adipocytes (by using Fabp4-Cre transgenic mice) but not in myeloid or endothelial cells negatively impacted WAT angiogenesis and promoted WAT inflammation, WAT dysfunction, hepatosteatosis, and systemic insulin resistance in obesity. Importantly, adipocyte HIF2α regulated vascular endothelial growth factor (VEGF) expression and angiogenesis of obese BAT as well as its thermogenic function. Consistently, obese adipocyte-specific HIF2α-deficient mice displayed BAT dysregulation, associated with reduced levels of uncoupling protein 1 (UCP1) and a dysfunctional thermogenic response to cold exposure. VEGF administration reversed WAT and BAT inflammation and BAT dysfunction in adipocyte HIF2α-deficient mice. Together, our findings show that adipocyte HIF2α is protective against maladaptation to obesity and metabolic dysregulation by promoting angiogenesis in both WAT and BAT and by counteracting obesity-mediated BAT dysfunction.
Collapse
|
550
|
Kilroy G, Carter LE, Newman S, Burk DH, Manuel J, Möller A, Bowtell DD, Mynatt RL, Ghosh S, Floyd ZE. The ubiquitin ligase Siah2 regulates obesity-induced adipose tissue inflammation. Obesity (Silver Spring) 2015; 23:2223-32. [PMID: 26380945 PMCID: PMC4633373 DOI: 10.1002/oby.21220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation was examined. METHODS Wild-type and Siah2KO mice were fed a low- or high-fat diet for 16 weeks. Indirect calorimetry, body composition, and glucose and insulin tolerance were assayed along with glucose and insulin levels. Gene and protein expression, immunohistochemistry, adipocyte size distribution, and lipolysis were also analyzed. RESULTS Enlarged adipocytes in obese Siah2KO mice were not associated with obesity-induced insulin resistance. Proinflammatory gene expression, stress kinase signaling, fibrosis, and crown-like structures were reduced in the Siah2KO adipose tissue, and Siah2KO adipocytes were more responsive to insulin-dependent inhibition of lipolysis. Loss of Siah2 increased expression of PPARγ target genes involved in lipid metabolism and decreased expression of proinflammatory adipokines regulated by PPARγ. CONCLUSIONS Siah2 links adipocyte hypertrophy with adipocyte dysfunction and recruitment of proinflammatory immune cells to adipose tissue. Selective regulation of PPARγ activity is a Siah2-mediated mechanism contributing to obesity-induced adipose tissue inflammation.
Collapse
Affiliation(s)
- Gail Kilroy
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | | | - Susan Newman
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - David H. Burk
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Justin Manuel
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Andreas Möller
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - David D. Bowtell
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | - Sujoy Ghosh
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
- Cardiovascular and Metabolic Disease Program and Center for Computational Biology, Duke-NUS Graduate Medical School, Singapore
| | - Z. Elizabeth Floyd
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
- Corresponding author: Elizabeth Floyd, PhD, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808, Phone: 225-763-2724, FAX: 225-763-0273,
| |
Collapse
|