501
|
Genistein inhibits voltage-gated sodium currents in SCG neurons through protein tyrosine kinase-dependent and kinase-independent mechanisms. Pflugers Arch 2008; 456:857-66. [PMID: 18228037 DOI: 10.1007/s00424-008-0444-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/13/2007] [Accepted: 01/02/2008] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels play a crucial role in the initiation and propagation of neuronal action potentials. Genistein, an isoflavone phytoestrogen, has long been used as a broad-spectrum inhibitor of protein tyrosine kinases (PTK). In addition, genistein-induced modulation of ion channels has been described previously in the literature. In this study, we investigated the effect of genistein on voltage-gated sodium channels in rat superior cervical ganglia (SCG) neurons. The results show that genistein inhibits Na(+) currents in a concentration-dependent manner, with a concentration of half-maximal effect (IC(50)) at 9.1 +/- 0.9 microM. Genistein positively shifted the voltage dependence of activation but did not affect inactivation of the Na(+) current. The inactive genistein analog daidzein also inhibited Na(+) currents, but was less effective than genistein. The IC(50) for daidzein-induced inhibition was 20.7 +/- 0.1 microM. Vanadate, an inhibitor of protein tyrosine phosphatases, partially but significantly reversed genistein-induced inhibition of Na(+) currents. Other protein tyrosine kinase antagonists such as tyrphostin 23, an erbstatin analog, and PP2 all had small but significant inhibitory effects on Na(+) currents. Among all active and inactive tyrosine kinase inhibitors tested, genistein was the most potent inhibitor of Na(+) currents. These results suggest that genistein inhibits Na(+) currents in rat SCG neurons through two distinct mechanisms: protein tyrosine kinase-independent, and protein tyrosine kinase-dependent mechanisms. Furthermore, the Src kinase family may be involved in the basal phosphorylation of the Na(+) channel.
Collapse
|
502
|
Morinville A, Fundin B, Meury L, Juréus A, Sandberg K, Krupp J, Ahmad S, O'Donnell D. Distribution of the voltage-gated sodium channel Na(v)1.7 in the rat: expression in the autonomic and endocrine systems. J Comp Neurol 2008; 504:680-9. [PMID: 17722032 DOI: 10.1002/cne.21484] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is generally accepted that the voltage-gated, tetrodotoxin-sensitive sodium channel, Na(V)1.7, is selectively expressed in peripheral ganglia. However, global deletion in mice of Na(V)1.7 leads to death shortly after birth (Nassar et al. [2004] Proc. Natl. Acad. Sci. U. S. A. 101:12706-12711), suggesting that this ion channel might be more widely expressed. To understand better the potential physiological function of this ion channel, we examined Na(V)1.7 expression in the rat by in situ hybridization and immunohistochemistry. As expected, highest mRNA expression levels are found in peripheral ganglia, and the protein is expressed within these ganglion cells and on the projections of these neurons in the central nervous system. Importantly, we found that Na(V)1.7 is present in discrete rat brain regions, and the unique distribution pattern implies a central involvement in endocrine and autonomic systems as well as analgesia. In addition, Na(V)1.7 expression was detected in the pituitary and adrenal glands. These results indicate that Na(V)1.7 is not only involved in the processing of sensory information but also participates in the regulation of autonomic and endocrine systems; more specifically, it could be implicated in such vital functions as fluid homeostasis and cardiovascular control.
Collapse
Affiliation(s)
- Anne Morinville
- Department of Molecular Sciences, AstraZeneca R&D Montreal, Ville-St-Laurent, Quebec, H4S 1Z9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
503
|
Cheng X, Dib-Hajj SD, Tyrrell L, Waxman SG. Mutation I136V alters electrophysiological properties of the Na(v)1.7 channel in a family with onset of erythromelalgia in the second decade. Mol Pain 2008; 4:1. [PMID: 18171466 PMCID: PMC2262064 DOI: 10.1186/1744-8069-4-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 01/02/2008] [Indexed: 12/19/2022] Open
Abstract
Background Primary erythromelalgia is an autosomal dominant pain disorder characterized by burning pain and skin redness in the extremities, with onset of symptoms during the first decade in the families whose mutations have been physiologically studied to date. Several mutations of voltage-gated Na+ channel NaV1.7 have been linked with primary erythromelalgia. Recently, a new substitution NaV1.7/I136V has been reported in a Taiwanese family, in which pain appeared at later ages (9–22 years, with onset at 17 years of age or later in 5 of 7 family members), with relatively slow progression (8–10 years) to involvement of the hands. The proband reported onset of symptoms first in his feet at the age of 11, which then progressed to his hands at the age of 19. The new mutation is located in transmembrane segment 1 (S1) of domain I (DI) in contrast to all NaV1.7 mutations reported to date, which have been localized in the voltage sensor S4, the linker joining segments S4 and S5 or pore-lining segments S5 and S6 in DI, II and III. Results In this study, we characterized the gating and kinetic properties of I136V mutant channels in HEK293 cells using whole-cell patch clamp. I136V shifts the voltage-dependence of activation by -5.7 mV, a smaller shift in activation than the other erythromelalgia mutations that have been characterized. I136V also decreases the deactivation rate, and generates larger ramp currents. Conclusion The I136V substitution in NaV1.7 alters channel gating and kinetic properties. Each of these changes may contribute to increased excitability of nociceptive dorsal root ganglion neurons, which underlies pain in erythromelalgia. The smaller shift in voltage-dependence of activation of NaV1.7, compared to the other reported cases of inherited erythromelalgia, may contribute to the later age of onset and slower progression of the symptoms reported in association with this mutation.
Collapse
Affiliation(s)
- Xiaoyang Cheng
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
504
|
Termin A, Martinborough E, Wilson D. Recent Advances in Voltage-Gated Sodium Channel Blockers: Therapeutic Potential as Drug Targets in the CNS. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1016/s0065-7743(08)00003-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
505
|
Dib‐Hajj SD, Yang Y, Waxman SG. Chapter 4 Genetics and Molecular Pathophysiology of Nav1.7‐Related Pain Syndromes. ADVANCES IN GENETICS 2008; 63:85-110. [DOI: 10.1016/s0065-2660(08)01004-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
506
|
Choi SJ, Kim TH, Shin YK, Lee CS, Park M, Lee HS, Song JH. Effects of a polyacetylene from Panax ginseng on Na+ currents in rat dorsal root ganglion neurons. Brain Res 2008; 1191:75-83. [DOI: 10.1016/j.brainres.2007.11.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 11/22/2007] [Accepted: 11/28/2007] [Indexed: 12/23/2022]
|
507
|
Affiliation(s)
- F B J Young
- Centre for Molecular Medicine and Therapeutics, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
508
|
Abstract
This report describes 2 generations of a family with symptoms of sensory overstimulation that exhibit a potassium sensitivity similar to that seen in hypokalemic periodic paralysis. The sensory overstimulation is characterized by a subjective experience of sensory overload and a relative resistance to lidocaine local anesthesia. The sensory overload is treatable with oral potassium gluconate, with onset of the therapeutic effect in approximately 20 minutes. The effect of potassium is reminiscent of its effect in the channelopathies underlying hypokalemic periodic paralysis, and the resistance to lidocaine applied peripherally suggests a peripheral sensory localization to the abnormality. The phenotype overlaps with that of attention deficit disorder, raising the possibility of subtypes of attention deficit disorder that have a peripheral sensory cause and novel forms of therapy.
Collapse
|
509
|
Williams BS, Felix JP, Priest BT, Brochu RM, Dai K, Hoyt SB, London C, Tang YS, Duffy JL, Parsons WH, Kaczorowski GJ, Garcia ML. Characterization of a New Class of Potent Inhibitors of the Voltage-Gated Sodium Channel Nav1.7. Biochemistry 2007; 46:14693-703. [DOI: 10.1021/bi7018207] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brande S. Williams
- Departments of Ion Channels, Medicinal Chemistry, and Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - John P. Felix
- Departments of Ion Channels, Medicinal Chemistry, and Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - Birgit T. Priest
- Departments of Ion Channels, Medicinal Chemistry, and Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - Richard M. Brochu
- Departments of Ion Channels, Medicinal Chemistry, and Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - Kefei Dai
- Departments of Ion Channels, Medicinal Chemistry, and Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - Scott B. Hoyt
- Departments of Ion Channels, Medicinal Chemistry, and Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - Clare London
- Departments of Ion Channels, Medicinal Chemistry, and Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - Yui S. Tang
- Departments of Ion Channels, Medicinal Chemistry, and Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - Joseph L. Duffy
- Departments of Ion Channels, Medicinal Chemistry, and Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - William H. Parsons
- Departments of Ion Channels, Medicinal Chemistry, and Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - Gregory J. Kaczorowski
- Departments of Ion Channels, Medicinal Chemistry, and Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| | - Maria L. Garcia
- Departments of Ion Channels, Medicinal Chemistry, and Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
| |
Collapse
|
510
|
Misery L, Gréco M, Fleuret C, Firmin D, Mocquard Y, Renault A, Roguedas AM. Severe neurological complications of hereditary erythermalgia. J Eur Acad Dermatol Venereol 2007; 21:1446-7. [DOI: 10.1111/j.1468-3083.2007.02265.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
511
|
Abstract
Damage to nerves at various levels of the peripheral and central nervous systems will lead to sensory loss, but in a significant number of patients this is accompanied by a series of distressing painful signs and symptoms. Although animal models and clinical studies have shed much needed light on the underlying mechanisms that produce this maladaptive plasticity, the presently available drugs do not always fully control the pain. This review covers some of the important mechanisms that include ion channels, central processing through excitatory amino acid and neuropeptide receptors and, finally, the role of monoamine systems that originate in the brain and descend to alter spinal events. The targets for presently licensed and potential novel drugs are covered in this context, as are perspectives on future research priorities.
Collapse
Affiliation(s)
- Lucy A Bee
- University College London, Department of Pharmacology, University College London Gower Street, London, WC1E 6BT, UK
| | - Anthony H Dickenson
- University College London, Department of Pharmacology, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
512
|
Dib-Hajj SD, Cummins TR, Black JA, Waxman SG. From genes to pain: Nav1.7 and human pain disorders. Trends Neurosci 2007; 30:555-63. [DOI: 10.1016/j.tins.2007.08.004] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 06/22/2007] [Accepted: 08/08/2007] [Indexed: 12/19/2022]
|
513
|
Cummins TR, Sheets PL, Waxman SG. The roles of sodium channels in nociception: Implications for mechanisms of pain. Pain 2007; 131:243-257. [PMID: 17766042 PMCID: PMC2055547 DOI: 10.1016/j.pain.2007.07.026] [Citation(s) in RCA: 357] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/20/2007] [Accepted: 07/27/2007] [Indexed: 11/17/2022]
Abstract
Understanding the role of voltage-gated sodium channels in nociception may provide important insights into pain mechanisms. Voltage-gated sodium channels are critically important for electrogenesis and nerve impulse conduction, and a target for important clinically relevant analgesics such as lidocaine. Furthermore, within the last decade studies have shown that certain sodium channel isoforms are predominantly expressed in peripheral sensory neurons associated with pain sensation, and that the expression and functional properties of voltage-gated sodium channels in peripheral sensory neurons can be dynamically regulated following axonal injury or peripheral inflammation. These data suggest that specific voltage-gated sodium channels may play crucial roles in nociception. Experiments with transgenic mice lines have clearly implicated Na(v)1.7, Na(v)1.8 and Na(v)1.9 in inflammatory, and possibly neuropathic, pain. However the most convincing and perhaps most exciting results regarding the role of voltage-gated sodium channels have come out recently from studies on human inherited disorders of nociception. Point mutations in Na(v)1.7 have been identified in patients with two distinct autosomal dominant severe chronic pain syndromes. Electrophysiological experiments indicate that these pain-associated mutations cause small yet significant changes in the gating properties of voltage-gated sodium channels that are likely to contribute substantially to the development of chronic pain. Equally exciting, recent studies indicate that recessive mutations in Na(v)1.7 that eliminate functional current can result in an apparent complete, and possibly specific, indifference to pain in humans, suggesting that isoform specific blockers could be very effective in treating pain. In this review we will examine what is known about the roles of voltage-gated sodium channels in nociception.
Collapse
Affiliation(s)
- Theodore R Cummins
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, 950 West Walnut Street, R2 468, Indianapolis, IN 46202, United States Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, United States Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, United States Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, CT 06516, United States
| | | | | |
Collapse
|
514
|
Chen W, Mi R, Haughey N, Oz M, Höke A. Immortalization and characterization of a nociceptive dorsal root ganglion sensory neuronal line. J Peripher Nerv Syst 2007; 12:121-30. [PMID: 17565537 PMCID: PMC3417147 DOI: 10.1111/j.1529-8027.2007.00131.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Development of neuroprotective strategies for peripheral neuropathies requires high-throughput drug screening assays with appropriate cell types. Currently, immortalized dorsal root ganglion (DRG) sensory neuronal cell lines that maintain nociceptive sensory neuronal properties are not available. We generated immortalized DRG neuronal lines from embryonic day 14.5 rats. Here, we show that one of the immortalized DRG neuronal lines, 50B11, has the properties of a nociceptive neuron. When differentiated in the presence of forskolin, these cells extend long neurites, express neuronal markers, and generate action potentials. They express receptors and markers of small-diameter sensory neurons and upregulate appropriate receptor populations when grown in the presence of glial cell line-derived neurotrophic factor or nerve growth factor. Furthermore, they express capsaicin receptor transient receptor potential vanilloid family-1 (TRPV-1) and respond to capsaicin with increases in intracellular calcium. In a 96-well plate format, these neurons show a decline in ATP levels when exposed to dideoxycytosine (ddC) in a proper time- and dose-dependent manner. This ddC-induced reduction in ATP levels correlates with axonal degeneration. The immortalized DRG neuronal cell line 50B11 can be used for high-throughput drug screening for neuroprotective agents for axonal degeneration and antinociceptive drugs that block TRPV-1.
Collapse
Affiliation(s)
- Weiran Chen
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ruifa Mi
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Norman Haughey
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Murat Oz
- Integrative Neuroscience Section; Intramural Research Program, NIDA, National Institutes of Health, Baltimore, MD, USA
| | - Ahmet Höke
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
515
|
Chopra SS, Watanabe H, Zhong TP, Roden DM. Molecular cloning and analysis of zebrafish voltage-gated sodium channel beta subunit genes: implications for the evolution of electrical signaling in vertebrates. BMC Evol Biol 2007; 7:113. [PMID: 17623065 PMCID: PMC1971062 DOI: 10.1186/1471-2148-7-113] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 07/10/2007] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Action potential generation in excitable cells such as myocytes and neurons critically depends on voltage-gated sodium channels. In mammals, sodium channels exist as macromolecular complexes that include a pore-forming alpha subunit and 1 or more modulatory beta subunits. Although alpha subunit genes have been cloned from diverse metazoans including flies, jellyfish, and humans, beta subunits have not previously been identified in any non-mammalian species. To gain further insight into the evolution of electrical signaling in vertebrates, we investigated beta subunit genes in the teleost Danio rerio (zebrafish). RESULTS We identified and cloned single zebrafish gene homologs for beta1-beta3 (zbeta1-zbeta3) and duplicate genes for beta4 (zbeta4.1, zbeta4.2). Sodium channel beta subunit loci are similarly organized in fish and mammalian genomes. Unlike their mammalian counterparts, zbeta1 and zbeta2 subunit genes display extensive alternative splicing. Zebrafish beta subunit genes and their splice variants are differentially-expressed in excitable tissues, indicating tissue-specific regulation of zbeta1-4 expression and splicing. Co-expression of the genes encoding zbeta1 and the zebrafish sodium channel alpha subunit Nav1.5 in Chinese Hamster Ovary cells increased sodium current and altered channel gating, demonstrating functional interactions between zebrafish alpha and beta subunits. Analysis of the synteny and phylogeny of mammalian, teleost, amphibian, and avian beta subunit and related genes indicated that all extant vertebrate beta subunits are orthologous, that beta2/beta4 and beta1/beta3 share common ancestry, and that beta subunits are closely related to other proteins sharing the V-type immunoglobulin domain structure. Vertebrate sodium channel beta subunit genes were not identified in the genomes of invertebrate chordates and are unrelated to known subunits of the para sodium channel in Drosophila. CONCLUSION The identification of conserved orthologs to all 4 voltage-gated sodium channel beta subunit genes in zebrafish and the lack of evidence for beta subunit genes in invertebrate chordates together indicate that this gene family emerged early in vertebrate evolution, prior to the divergence of teleosts and tetrapods. The evolutionary history of sodium channel beta subunits suggests that these genes may have played a key role in the diversification and specialization of electrical signaling in early vertebrates.
Collapse
Affiliation(s)
- Sameer S Chopra
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Hiroshi Watanabe
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Tao P Zhong
- Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Dan M Roden
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
516
|
Shen Y, Xu Q, Han Z, Liu H, Zhou GB. Analysis of phenotype-genotype connection: the story of dissecting disease pathogenesis in genomic era in China, and beyond. Philos Trans R Soc Lond B Biol Sci 2007; 362:1043-61. [PMID: 17327209 PMCID: PMC2435570 DOI: 10.1098/rstb.2007.2033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA is the ultimate depository of biological complexity. Thus, in order to understand life and gain insights into disease pathogenesis, genetic information embedded in the sequence of DNA base pairs comprising chromosomes should be deciphered. The stories of investigating the association between phenotype and genotype in China and other countries further demonstrate that genomics can serve as a probe for disease biology. We now know that in Mendelian disorders, one gene is not only a dictator of one phenotype but also a dictator of two or more distinct disorders. Dissecting genetic abnormalities of complex diseases, including diabetes, hypertension, mental diseases, coronary heart disease and cancer, may unravel the complicated networks and crosstalks, and help to simplify the complexity of the disease. The transcriptome and proteomic analysis for medicine not only deepen our understanding of disease pathogenesis, but also provide novel diagnostic and therapeutic strategies. Taken together, genomic research offers a new opportunity for determining how diseases occur, by taking advantage of experiments of nature and a growing array of sophisticated research tools to identify the molecular abnormalities underlying disease processes. We should be ready for the advent of genomic medicine, and put the genome into the doctors' bag, so that we can help patients to conquer diseases.
Collapse
Affiliation(s)
- Yan Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences100005 Beijing, People's Republic of China
- Chinese National Human Genome Center at Beijing100176 Beijing, People's Republic of China
- Authors for correspondence () ()
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences100005 Beijing, People's Republic of China
| | - Zeguang Han
- Chinese National Human Genome Center at Shanghai201203 Shanghai, People's Republic of China
| | - Han Liu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology200025 Shanghai, People's Republic of China
| | - Guang-Biao Zhou
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences510663 Guangzhou, People's Republic of China
- Authors for correspondence () ()
| |
Collapse
|
517
|
Firmin D, Roguedas AM, Greco M, Morvan C, Legoupil D, Fleuret C, Misery L. Treatment of familial erythromelalgia with venlafaxine. J Eur Acad Dermatol Venereol 2007; 21:836-7. [PMID: 17567325 DOI: 10.1111/j.1468-3083.2006.02039.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
518
|
Abstract
Skin biopsy has been widely used in recent years for the investigation of small-calibre sensory nerves, including somatic unmyelinated intraepidermal nerve fibres, dermal myelinated nerve fibres, and autonomic nerve fibres in peripheral neuropathies, with different techniques for tissue processing and nerve fibre assessment. Here, we review the techniques for skin biopsy, the processing and assessment of the biopsy sample, their possible uses in different types of peripheral neuropathy, and their use in the follow-up of patients and in clinical trials. We also review the association between morphological measures of skin innervation and function and the limits of this method in the aetiological classification of peripheral neuropathies.
Collapse
Affiliation(s)
- Claudia Sommer
- Department of Neurology, University of Würzburg, Germany.
| | | |
Collapse
|
519
|
Ahmad S, Dahllund L, Eriksson AB, Hellgren D, Karlsson U, Lund PE, Meijer IA, Meury L, Mills T, Moody A, Morinville A, Morten J, O'donnell D, Raynoschek C, Salter H, Rouleau GA, Krupp JJ. A stop codon mutation in SCN9A causes lack of pain sensation. Hum Mol Genet 2007; 16:2114-21. [PMID: 17597096 DOI: 10.1093/hmg/ddm160] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The general lack of pain experience is a rare occurrence in humans, and the molecular causes for this phenotype are not well understood. Here we have studied a Canadian family from Newfoundland with members who exhibit a congenital inability to experience pain. We have mapped the locus to a 13.7 Mb region on chromosome 2q (2q24.3-2q31.1). Screening of candidate genes in this region identified a protein-truncating mutation in SCN9A, which encodes for the voltage-gated sodium channel Na(v)1.7. The mutation is a C-A transversion at nucleotide 984 transforming the codon for tyrosine 328 to a stop codon. The predicted product lacks all pore-forming regions of Na(v)1.7. Indeed, expression of this altered gene in a cell line did not produce functional responses, nor did it cause compensatory effects on endogenous voltage-gated sodium currents when expressed in ND7/23 cells. Because a homozygous knockout of Na(v)1.7 in mice has been shown to be lethal, we explored why a deficiency of Na(v)1.7 is non-lethal in humans. Expression studies in monkey, human, mouse and rat tissue indicated species-differences in the Na(v)1.7 expression profile. Whereas in rodents the channel was strongly expressed in hypothalamic nuclei, only weak mRNA levels were detected in this area in primates. Furthermore, primate pituitary and adrenal glands were devoid of signal, whereas these two glands were mRNA-positive in rodents. This species difference may explain the non-lethality of the observed mutation in humans. Our data further establish Na(v)1.7 as a critical element of peripheral nociception in humans.
Collapse
Affiliation(s)
- Sultan Ahmad
- Department of Molecular Sciences, AstraZeneca R&D Montréal, Ville-St-Laurent, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
520
|
Park SY, Kim TH, Kim HI, Shin YK, Lee CS, Park M, Song JH. Celecoxib inhibits Na+ currents in rat dorsal root ganglion neurons. Brain Res 2007; 1148:53-61. [PMID: 17359944 DOI: 10.1016/j.brainres.2007.02.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 02/09/2007] [Accepted: 02/13/2007] [Indexed: 01/06/2023]
Abstract
Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor used in the treatment of osteoarthritis and rheumatoid arthritis with fewer gastrointestinal toxicities compared to traditional non-steroidal anti-inflammatory drugs. Voltage-gated Na(+) channels in primary sensory neurons play an important role in the pathogenesis of various pain conditions. We examined the effects of celecoxib on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Na(+) currents in acutely dissociated rat dorsal root ganglion neurons. Celecoxib suppressed both currents in dose- and frequency-dependent manner. The apparent dissociation constants (K(d)) for TTX-S and TTX-R Na(+) currents measured at 0 mV from a holding potential of -80 mV were estimated to be 5.6 and 19.5 microM, respectively. Celecoxib slightly slowed inactivation kinetics of TTX-S Na(+) current, but made it much faster in TTX-R Na(+) current. Celecoxib shifted the activation voltage of TTX-S Na(+) current to a depolarizing direction, but not that of TTX-R Na(+) current. Celecoxib caused a hyperpolarizing shift of the steady-state inactivation curve in both Na(+) currents to a great extent. In addition celecoxib reduced the maximal availability of both Na(+) channels. Thus celecoxib appears to bind to both inactivated and resting Na(+) channels. Celecoxib slowed the recovery of both Na(+) channels from inactivation. All these effects combined would suppress the excitability of sensory neurons. Thus, beside COX-2 inhibition, the Na(+) channel inhibition is considered to contribute to celecoxib analgesia.
Collapse
Affiliation(s)
- Soon Yong Park
- Department of Pharmacology, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
521
|
Skinner JR, Chung SK, Nel CA, Shelling AN, Crawford JR, McKenzie N, Pinnock R, French JK, Rees MI. Brugada syndrome masquerading as febrile seizures. Pediatrics 2007; 119:e1206-11. [PMID: 17420262 DOI: 10.1542/peds.2006-2628] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fever can precipitate ventricular tachycardia in adults with Brugada syndrome, but such a link has not been reported in children. A 21-month-old white girl presented repeatedly with decreased conscious level and seizures during fever. During a typical episode, rapid ventricular tachycardia was documented. The resting 12-lead electrocardiogram revealed a Brugada electrocardiogram signature. Resting electrocardiograms of the asymptomatic brother and mother were normal, but fever in the mother and pharmacologic stress with ajmaline in the brother revealed Brugada electrocardiogram features. Genetic testing revealed an SCN5A mutation in the affected family members.
Collapse
Affiliation(s)
- Jonathan Robert Skinner
- Greenlane Paediatric and Congenital Cardiac Services, Starship Children's Hospital, Grafton, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
522
|
Affiliation(s)
- L Misery
- Service de Dermatologie, Hôpital Morvan, CHU de Brest, 5, avenue Foch, 29200 Brest.
| |
Collapse
|
523
|
Novella SP, Hisama FM, Dib-Hajj SD, Waxman SG. A case of inherited erythromelalgia. ACTA ACUST UNITED AC 2007; 3:229-34. [PMID: 17410110 DOI: 10.1038/ncpneuro0425] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/20/2006] [Indexed: 11/08/2022]
Abstract
BACKGROUND A 15-year-old boy presented with recurrent episodes of erythema and burning pain in the distal extremities, which he had experienced since early childhood. The episodes were triggered by heat or exertion. His medical history revealed an extensive six-generation family history of similar symptoms. INVESTIGATIONS Neurological examination, MRI brain scan, electromyography, skin biopsy, laboratory blood testing, and DNA analysis. DIAGNOSIS Juvenile onset primary erythromelalgia. MANAGEMENT Genetic counseling, and symptomatic management of neuropathic pain.
Collapse
Affiliation(s)
- Steven P Novella
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520-8018, USA
| | | | | | | |
Collapse
|
524
|
Abstract
Neuropathic pain occurs as a result of some form of injury to the nervous system. Although the basis of the disease remains to be fully elucidated, numerous studies have suggested a major role for ion channels in the pathogenesis of neuropathic pain. As Na+ channels play a fundamental role in not only the generation but also in the conduction of an action potential, they have received considerable attention in the aetiology of pain sensation and have become important pharmacological targets. In this review, the authors discuss the importance of specific Na+ channel isoforms in the pathophysiology of neuropathic pain and the present use of Na+ channel antagonists in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Nicholas James Hargus
- University of Virginia Health System, Department of Anesthesiology, Neuroscience Graduate Program, 1 Hospital Drive, Old Medical School, Charlottesville, VA 22908, USA
| | | |
Collapse
|
525
|
Sheets PL, Jackson JO, Waxman SG, Dib-Hajj SD, Cummins TR. A Nav1.7 channel mutation associated with hereditary erythromelalgia contributes to neuronal hyperexcitability and displays reduced lidocaine sensitivity. J Physiol 2007; 581:1019-31. [PMID: 17430993 PMCID: PMC2170829 DOI: 10.1113/jphysiol.2006.127027] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in the TTX-sensitive voltage-gated sodium channel subtype Nav1.7 have been implicated in the painful inherited neuropathy, hereditary erythromelalgia. Hereditary erythromelalgia can be difficult to treat and, although sodium channels are targeted by local anaesthetics such as lidocaine (lignocaine), some patients do not respond to treatment with local anaesthetics. This study examined electrophysiological differences in Nav1.7 caused by a hereditary erythromelalgia mutation (N395K) that lies within the local anaesthetic binding site of the channel. The N395K mutation produced a hyperpolarized voltage dependence of activation, slower kinetics of deactivation, and impaired steady-state slow inactivation. Computer simulations indicate that the shift in activation is the major determinant of the hyperexcitability induced by erythromelalgia mutations in sensory neurons, but that changes in slow inactivation can modulate the overall impact on excitability. This study also investigated lidocaine inhibition of the Nav1.7-N395K channel. We show that the N395K mutation attenuates the inhibitory effects of lidocaine on both resting and inactivated Nav1.7. The IC50 for lidocaine was estimated at 500 microM for inactivated wild-type Nav1.7 and 2.8 mM for inactivated Nav1.7-N395K. The N395K mutation also significantly reduced use-dependent inhibition of lidocaine on Nav1.7 current. In contrast, a different hereditary erythromelalgia mutation (F216S), not located in the local anaesthetic binding site, had no effect on lidocaine inhibition of Nav1.7 current. Our observation of reduced lidocaine inhibition on Nav1.7-N395K shows that the residue N395 is critical for lidocaine binding to Nav1.7 and suggests that the response of individuals with hereditary erythromelalgia to lidocaine treatment may be determined, at least in part, by their specific genotype.
Collapse
MESH Headings
- Action Potentials/drug effects
- Anesthetics, Local/metabolism
- Anesthetics, Local/pharmacology
- Anesthetics, Local/therapeutic use
- Binding Sites
- Cell Line
- Computer Simulation
- Dose-Response Relationship, Drug
- Erythromelalgia/drug therapy
- Erythromelalgia/genetics
- Erythromelalgia/metabolism
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Humans
- Ion Channel Gating/drug effects
- Kinetics
- Lidocaine/metabolism
- Lidocaine/pharmacology
- Lidocaine/therapeutic use
- Models, Neurological
- Mutation
- NAV1.7 Voltage-Gated Sodium Channel
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Sodium Channel Blockers/metabolism
- Sodium Channel Blockers/pharmacology
- Sodium Channel Blockers/therapeutic use
- Sodium Channels/drug effects
- Sodium Channels/genetics
- Sodium Channels/metabolism
- Transfection
- Voltage-Gated Sodium Channel beta-2 Subunit
Collapse
Affiliation(s)
- Patrick L Sheets
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, 950 West Walnut St, R2 468, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
526
|
Kawaguchi A, Asano H, Matsushima K, Wada T, Yoshida S, Ichida S. Enhancement of sodium current in NG108-15 cells during neural differentiation is mainly due to an increase in NaV1.7 expression. Neurochem Res 2007; 32:1469-75. [PMID: 17404832 DOI: 10.1007/s11064-007-9334-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Accepted: 03/16/2007] [Indexed: 12/19/2022]
Abstract
It is well known that morphological and functional changes during neural differentiation sometimes accompany the expression of various voltage-gated ion channels. In this work, we investigated whether the enhancement of sodium current in differentiated neuroblastoma x glioma NG108-15 cells treated with dibutyryl cAMP is related to the expression of voltage-gated sodium channels. The results were as follows. (1) Sodium current density on peak voltage in differentiated cells was significantly enhanced compared with that in undifferentiated cells, as detected by the whole-cell patch clamp method. The steady-state inactivation curve in differentiated cells was similar to that for undifferentiated cells, but a hyperpolarized shift in the activation curve for differentiated cells was observed. The sodium currents of differentiated and undifferentiated cells were completely inhibited by 10(-7) M tetrodotoxin (TTX). (2) The only Na(V) mRNA with an increased expression level during neuronal differentiation was that for NaV1.7, as observed by real-time PCR analysis. (3) The increase in the level of NaV1.7 alpha subunit expression during neuronal differentiation was also observed by immunocytochemistry; in particular, the localization of NaV1.7 alpha subunits on the soma, varicosities and growth cone was significant. These results suggest that the enhancement of TTX-sensitive sodium current density in differentiated NG108-15 cells is mainly due to the increase in the expression of the TTX-sensitive voltage-gated Na+ channel, NaV1.7.
Collapse
Affiliation(s)
- Akinori Kawaguchi
- Department of Biological Chemistry, School of Pharmacy, Kinki University , Kowakae 3-4-1, Higasiosaka 577-8502, Japan
| | | | | | | | | | | |
Collapse
|
527
|
Goldberg YP, MacFarlane J, MacDonald ML, Thompson J, Dube MP, Mattice M, Fraser R, Young C, Hossain S, Pape T, Payne B, Radomski C, Donaldson G, Ives E, Cox J, Younghusband HB, Green R, Duff A, Boltshauser E, Grinspan GA, Dimon JH, Sibley BG, Andria G, Toscano E, Kerdraon J, Bowsher D, Pimstone SN, Samuels ME, Sherrington R, Hayden MR. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 2007; 71:311-9. [PMID: 17470132 DOI: 10.1111/j.1399-0004.2007.00790.x] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Congenital indifference to pain (CIP) is a rare condition in which patients have severely impaired pain perception, but are otherwise essentially normal. We identified and collected DNA from individuals from nine families of seven different nationalities in which the affected individuals meet the diagnostic criteria for CIP. Using homozygosity mapping and haplotype sharing methods, we narrowed the CIP locus to chromosome 2q24-q31, a region known to contain a cluster of voltage-gated sodium channel genes. From these prioritized candidate sodium channels, we identified 10 mutations in the SCN9A gene encoding the sodium channel protein Nav1.7. The mutations completely co-segregated with the disease phenotype, and nine of these SCN9A mutations resulted in truncation and loss-of-function of the Nav1.7 channel. These genetic data further support the evidence that Nav1.7 plays an essential role in mediating pain in humans, and that SCN9A mutations identified in multiple different populations underlie CIP.
Collapse
Affiliation(s)
- Y P Goldberg
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G4W8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
528
|
Waxman SG. Channel, neuronal and clinical function in sodium channelopathies: from genotype to phenotype. Nat Neurosci 2007; 10:405-9. [PMID: 17387329 DOI: 10.1038/nn1857] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
What is the relationship between sodium channel function, neuronal function and clinical status in channelopathies of the nervous system? Given the central role of sodium channels in the generation of neuronal activity, channelopathies involving sodium channels might be expected to cause either enhanced sodium channel function and neuronal hyperexcitability associated with positive clinical manifestations such as seizures, or attenuated channel function and neuronal hypoexcitability associated with negative clinical manifestations such as paralysis. In this article, I review observations showing that changes in neuronal function and clinical status associated with channelopathies are not necessarily predictable solely from the altered physiological properties of the mutated channel itself. I discuss evidence showing that cell background acts as a filter that can strongly influence the effects of ion channel mutations.
Collapse
Affiliation(s)
- Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| |
Collapse
|
529
|
Abstract
Neuropathic pain remains a large unmet medical need. A number of therapeutic options exist, but efficacy and tolerability are less than satisfactory. Based on animal models and limited data from human patients, the pain and hypersensitivity that characterize neuropathic pain are associated with spontaneous discharges of normally quiescent nociceptors. Sodium channel blockers inhibit this spontaneous activity, reverse nerve injury-induced pain behavior in animals and alleviate neuropathic pain in humans. Several sodium channel subtypes are expressed primarily in sensory neurons and may contribute to the efficacy of sodium channel blockers. In this report, the authors review the current understanding of the role of sodium channels and of specific sodium channel subtypes in neuropathic pain signaling.
Collapse
Affiliation(s)
- Birgit T Priest
- Merck Research Laboratories, Department of Ion Channels, Rahway, NJ 07065, USA.
| | | |
Collapse
|
530
|
Lee MJ, Yu HS, Hsieh ST, Stephenson DA, Lu CJ, Yang CC. Characterization of a familial case with primary erythromelalgia from Taiwan. J Neurol 2007; 254:210-4. [PMID: 17294067 DOI: 10.1007/s00415-006-0328-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 04/03/2006] [Indexed: 11/29/2022]
Abstract
Familial primary erythromelalgia is a rare autosomal dominant disease characterized by redness and painful episodes of the feet and hands, which is often triggered by heat or exercise. In this report, a Taiwanese family with the characteristic features of erythromelalgia is described. Genetic linkage studies established that the disease locus maps to human chromosome 2. Sequence analysis indicated that the disease segregates with a novel mutation in the alpha subunit of the voltage-gated sodium channel (SCN9A or Na(v)1.7). The change observed is predicted to cause the substitution of a highly conserved isoluecine 136 for a valine within the first segment of the transmembrane domain (D1S1). Using immuno-histochemistry to stain a skin biopsy specimen from the affected region, we demonstrate that there is a significant reduction in the number of small fibers.
Collapse
Affiliation(s)
- Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei 100, Taiwan
| | | | | | | | | | | |
Collapse
|
531
|
Paticoff J, Valovska A, Nedeljkovic SS, Oaklander AL. Defining a Treatable Cause of Erythromelalgia: Acute Adolescent Autoimmune Small-Fiber Axonopathy. Anesth Analg 2007; 104:438-41. [PMID: 17242106 DOI: 10.1213/01.ane.0000252965.83347.25] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Conditions described as "erythromelalgia" and "erythermalgia" are being formally specified by etiological diagnoses that enable the use of disease-modifying as well as symptomatic treatments. We describe an otherwise healthy 20-year-old man with acute-onset erythromelalgia. Severe bilateral distal limb pain and vasodilation persisted despite the use of many antihyperalgesics. Pathological examination of cutaneous nerve endings revealed severe small-fiber predominant axonopathy. Treatment of his apparent autoimmune polyneuropathy with high dose corticosteroids, 4 days of lidocaine infusion, and a prednisone taper cured him. Similarities to other cases allowed us to tentatively characterize a new treatable cause of erythromelalgia; acute adolescent autoimmune small-fiber axonopathy. In this report we evaluate various options for diagnosis and treatment.
Collapse
Affiliation(s)
- Joshua Paticoff
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
532
|
Zhang LL, Lin ZM, Ma ZH, Xu Z, Yang YL, Yang Y. Mutation hotspots of SCN9A in primary erythermalgia. Br J Dermatol 2007; 156:767-9. [PMID: 17263810 DOI: 10.1111/j.1365-2133.2006.07727.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
533
|
Temperature dependence of erythromelalgia mutation L858F in sodium channel Nav1.7. Mol Pain 2007; 3:3. [PMID: 17239250 PMCID: PMC1781932 DOI: 10.1186/1744-8069-3-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 01/19/2007] [Indexed: 01/05/2023] Open
Abstract
Background The disabling chronic pain syndrome erythromelalgia (also termed erythermalgia) is characterized by attacks of burning pain in the extremities induced by warmth. Pharmacological treatment is often ineffective, but the pain can be alleviated by cooling of the limbs. Inherited erythromelalgia has recently been linked to mutations in the gene SCN9A, which encodes the voltage-gated sodium channel Nav1.7. Nav1.7 is preferentially expressed in most nociceptive DRG neurons and in sympathetic ganglion neurons. It has recently been shown that several disease-causing erythromelalgia mutations alter channel-gating behavior in a manner that increases DRG neuron excitability. Results Here we tested the effects of temperature on gating properties of wild type Nav1.7 and mutant L858F channels. Whole-cell voltage-clamp measurements on wild type or L858F channels expressed in HEK293 cells revealed that cooling decreases current density, slows deactivation and increases ramp currents for both mutant and wild type channels. However, cooling differentially shifts the midpoint of steady-state activation in a depolarizing direction for L858F but not for wild type channels. Conclusion The cooling-dependent shift of the activation midpoint of L858F to more positive potentials brings the threshold of activation of the mutant channels closer to that of wild type Nav1.7 at lower temperatures, and is likely to contribute to the alleviation of painful symptoms upon cooling in affected limbs in patients with this erythromelalgia mutation.
Collapse
|
534
|
|
535
|
Abstract
Paroxysmal extreme pain disorder (PEPD), previously known as familial rectal pain (FRP, OMIM 167400), is an inherited disease causing intense burning rectal, ocular, and submandibular pain and flushing. Fertleman et al. (this issue of Neuron) show that mutations in SCN9A, the gene encoding the sodium channel Na(V)1.7 channels, are responsible for this syndrome. Together with earlier work implicating a distinct class of functional mutations in SCN9A in a distinct inherited pain syndrome, these results point to Na(V)1.7 channels as key players in signaling nociceptive information and as a potential target for drug therapy of chronic pain.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
536
|
Harty TP, Dib-Hajj SD, Tyrrell L, Blackman R, Hisama FM, Rose JB, Waxman SG. Na(V)1.7 mutant A863P in erythromelalgia: effects of altered activation and steady-state inactivation on excitability of nociceptive dorsal root ganglion neurons. J Neurosci 2006; 26:12566-75. [PMID: 17135418 PMCID: PMC6674913 DOI: 10.1523/jneurosci.3424-06.2006] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inherited erythromelalgia/erythermalgia (IEM) is a neuropathy characterized by pain and redness of the extremities that is triggered by warmth. IEM has been associated with missense mutations of the voltage-gated sodium channel Na(V)1.7, which is preferentially expressed in most nociceptive dorsal root ganglia (DRGs) and sympathetic ganglion neurons. Several mutations occur in cytoplasmic linkers of Na(V)1.7, with only two mutations in segment 4 (S4) and S6 of domain I. We report here a simplex case with an alanine 863 substitution by proline (A863P) in S5 of domain II of Na(V)1.7. The functional effect of A863P was investigated by voltage-clamp analysis in human embryonic kidney 293 cells and by current-clamp analysis to determine the effects of A863P on firing properties of small DRG neurons. Activation of mutant channels was shifted by -8 mV, whereas steady-state fast inactivation was shifted by +10 mV, compared with wild-type (WT) channels. There was a marked decrease in the rate of deactivation of mutant channels, and currents elicited by slow ramp depolarizations were 12 times larger than for WT. These results suggested that A863P could render DRG neurons hyperexcitable. We tested this hypothesis by studying properties of rat DRG neurons transfected with either A863P or WT channels. A863P depolarized resting potential of DRG neurons by +6 mV compared with WT channels, reduced the threshold for triggering single action potentials to 63% of that for WT channels, and increased firing frequency of neurons when stimulated with suprathreshold stimuli. Thus, A863P mutant channels produce hyperexcitability in DRG neurons, which contributes to the pathophysiology of IEM.
Collapse
Affiliation(s)
- T. Patrick Harty
- Department of Neurology and
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Sulayman D. Dib-Hajj
- Department of Neurology and
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Lynda Tyrrell
- Department of Neurology and
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Rachael Blackman
- Department of Neurology and
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | | | - John B. Rose
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Stephen G. Waxman
- Department of Neurology and
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| |
Collapse
|
537
|
Dick IE, Brochu RM, Purohit Y, Kaczorowski GJ, Martin WJ, Priest BT. Sodium channel blockade may contribute to the analgesic efficacy of antidepressants. THE JOURNAL OF PAIN 2006; 8:315-24. [PMID: 17175203 DOI: 10.1016/j.jpain.2006.10.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 09/11/2006] [Accepted: 10/08/2006] [Indexed: 11/16/2022]
Abstract
UNLABELLED Sodium channel blockers such as lidocaine, lamotrigine, and carbamazepine can be effective in the treatment of neuropathic pain. Though not approved for neuropathic pain indications, tricyclic antidepressants are often considered first-line treatment for conditions such as post-herpetic neuralgia and diabetic neuropathy. Several tricyclic antidepressants have been shown to block peripheral nerve sodium channels, which may contribute to their antihyperalgesic efficacy. In this study, we compared the sodium channel-blocking potency of a number of antidepressants, including tricyclic antidepressants and selective serotonin reuptake inhibitors. All compounds tested inhibited Na(V)1.7 in a state- and use-dependent manner, with affinities for the inactivated state ranging from 0.24 micromol/L for amitriptyline to 11.6 micromol/L for zimelidine. The tricyclic antidepressants were more potent blockers of Na(V)1.7. Moreover, IC(50)s for block of the inactivated state for amitriptyline, nortriptyline, imipramine, desipramine, and maprotiline were in the range of therapeutic plasma concentrations for both the treatment of depression as well as neuropathic pain. By contrast, fluoxetine, paroxetine, mianserine, and zimelidine had IC(50)s for Na(V)1.7 outside their therapeutic concentration ranges and generally were not efficacious against post-herpetic neuralgia or diabetic neuropathy. These results suggest that block of peripheral nerve sodium channels may contribute to the antihyperalgesic efficacy of certain antidepressants. PERSPECTIVE Tricyclic antidepressants are often considered first-line treatment for neuropathic pain. Some tricyclic antidepressants block sodium channels, which may contribute to their antihyperalgesic efficacy. In the current study, we compared the potency of peripheral sodium channel blockade for several tricyclic antidepressants and selective serotonin reuptake inhibitors with their therapeutic efficacy.
Collapse
Affiliation(s)
- Ivy E Dick
- Department of Ion Channels, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA
| | | | | | | | | | | |
Collapse
|
538
|
Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y, Al-Gazali L, Hamamy H, Valente EM, Gorman S, Williams R, McHale DP, Wood JN, Gribble FM, Woods CG. An SCN9A channelopathy causes congenital inability to experience pain. Nature 2006; 444:894-8. [PMID: 17167479 PMCID: PMC7212082 DOI: 10.1038/nature05413] [Citation(s) in RCA: 1120] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 11/03/2006] [Indexed: 12/13/2022]
Abstract
The complete inability to sense pain in an otherwise healthy individual is a very rare phenotype. In three consanguineous families from northern Pakistan, we mapped the condition as an autosomal-recessive trait to chromosome 2q24.3. This region contains the gene SCN9A, encoding the alpha-subunit of the voltage-gated sodium channel, Na(v)1.7, which is strongly expressed in nociceptive neurons. Sequence analysis of SCN9A in affected individuals revealed three distinct homozygous nonsense mutations (S459X, I767X and W897X). We show that these mutations cause loss of function of Na(v)1.7 by co-expression of wild-type or mutant human Na(v)1.7 with sodium channel beta(1) and beta(2) subunits in HEK293 cells. In cells expressing mutant Na(v)1.7, the currents were no greater than background. Our data suggest that SCN9A is an essential and non-redundant requirement for nociception in humans. These findings should stimulate the search for novel analgesics that selectively target this sodium channel subunit.
Collapse
Affiliation(s)
- James J Cox
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Cambridge CB2 0XY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
539
|
Rush AM, Cummins TR, Waxman SG. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol 2006; 579:1-14. [PMID: 17158175 PMCID: PMC2075388 DOI: 10.1113/jphysiol.2006.121483] [Citation(s) in RCA: 333] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dorsal root ganglion neurons express an array of sodium channel isoforms allowing precise control of excitability. An increasing body of literature indicates that regulation of firing behaviour in these cells is linked to their patterns of expression of specific sodium channel isoforms, which have been discovered to possess distinct biophysical characteristics. The pattern of expression of sodium channels differs in different subclasses of DRG neurons and is not fixed but, on the contrary, changes in response to a variety of disease insults. Moreover, modulation of channels by their environment has been found to play an important role in the response of these neurons to stimuli. In this review we illustrate how excitability can be finely tuned to provide contrasting firing templates in different subclasses of DRG neurons by selective deployment of various sodium channel isoforms, by plasticity of expression of these proteins, and by interactions of these sodium channel isoforms with each other and with other modulatory molecules.
Collapse
|
540
|
Fertleman CR, Baker MD, Parker KA, Moffatt S, Elmslie FV, Abrahamsen B, Ostman J, Klugbauer N, Wood JN, Gardiner RM, Rees M. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 2006; 52:767-74. [PMID: 17145499 DOI: 10.1016/j.neuron.2006.10.006] [Citation(s) in RCA: 562] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 03/21/2006] [Accepted: 10/03/2006] [Indexed: 11/28/2022]
Abstract
Paroxysmal extreme pain disorder (PEPD), previously known as familial rectal pain (FRP, or OMIM 167400), is an inherited condition characterized by paroxysms of rectal, ocular, or submandibular pain with flushing. A genome-wide linkage search followed by mutational analysis of the candidate gene SCN9A, which encodes hNa(v)1.7, identified eight missense mutations in 11 families and 2 sporadic cases. Functional analysis in vitro of three of these mutant Na(v)1.7 channels revealed a reduction in fast inactivation, leading to persistent sodium current. Other mutations in SCN9A associated with more negative activation thresholds are known to cause primary erythermalgia (PE). Carbamazepine, a drug that is effective in PEPD, but not PE, showed selective block of persistent current associated with PEPD mutants, but did not affect the negative activation threshold of a PE mutant. PEPD and PE are allelic variants with distinct underlying biophysical mechanisms and represent a separate class of peripheral neuronal sodium channelopathy.
Collapse
Affiliation(s)
- Caroline R Fertleman
- Department of Paediatrics and Child Health, Royal Free and University College Medical School, University College London, 5 University Street, London WC1E 6JJ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
541
|
Lampert A, Dib-Hajj SD, Tyrrell L, Waxman SG. Size Matters: Erythromelalgia Mutation S241T in Nav1.7 Alters Channel Gating. J Biol Chem 2006; 281:36029-35. [PMID: 17008310 DOI: 10.1074/jbc.m607637200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Nav1.7 sodium channel is preferentially expressed in most nociceptive dorsal root ganglion neurons and in sympathetic neurons. Inherited erythromelalgia (IEM, also known as erythermalgia), an autosomal dominant neuropathy characterized by burning pain in the extremities in response to mild warmth, has been linked to mutations in Nav1.7. Recently, a substitution of Ser-241 by threonine (S241T) in the domain I S4-S5 linker of Nav1.7 was identified in a family with IEM. To investigate the possible causative role of this mutation in the pathophysiology of IEM, we used whole-cell voltage-clamp analysis to study the effects of S241T on Nav1.7 gating in HEK293 cells. We found a hyperpolarizing shift of activation midpoint by 8.4 mV, an accelerated time to peak, slowing of deactivation, and an increase in the current in response to small, slow depolarizations. Additionally, S241T produced an enhancement of slow inactivation, shifting the midpoint by -12.3 mV. Because serine and threonine have similar biochemical properties, the S241T substitution suggested that the size of the side chain at this position affected channel gating. To test this hypothesis, we investigated the effect of S241A and S241L substitutions on the gating properties of Nav1.7. Although S241A did not alter the properties of the channel, S241L mimicked the effects of S241T. We conclude that the linker between S4 and S5 in domain I of Nav1.7 modulates gating of this channel, and that a larger side chain at position 241 interferes with its gating mechanisms.
Collapse
Affiliation(s)
- Angelika Lampert
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
542
|
|
543
|
Affiliation(s)
- Neeraj Kumar
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
544
|
Sheets PL, Gerner P, Wang CF, Wang SY, Wang GK, Cummins TR. Inhibition of Nav1.7 and Nav1.4 sodium channels by trifluoperazine involves the local anesthetic receptor. J Neurophysiol 2006; 96:1848-59. [PMID: 16807347 DOI: 10.1152/jn.00354.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The calmodulin (CaM) inhibitor trifluoperazine (TFP) can produce analgesia when given intrathecally to rats; however, the mechanism is not known. We asked whether TFP could modulate the Na(v)1.7 sodium channel, which is highly expressed in the peripheral nervous system and plays an important role in nociception. We show that 500 nM and 2 muM TFP induce major decreases in Na(v)1.7 and Na(v)1.4 current amplitudes and that 2 muM TFP causes hyperpolarizing shifts in the steady-state inactivation of Na(v)1.7 and Na(v)1.4. CaM can bind to the C-termini of voltage-gated sodium channels and modulate their functional properties; therefore we investigated if TFP modulation of sodium channels was due to CaM inhibition. However, the TFP inhibition was not replicated by whole cell dialysis of a calmodulin inhibitory peptide, indicating that major effects of TFP do not involve a disruption of CaM-channel interactions. Rather, our data show that TFP inhibition is state dependent and that the majority of the TFP inhibition depends on specific amino-acid residues in the local anesthetic receptor site in sodium channels. TFP was also effective in vivo in causing motor and sensory blockade after subfascial injection to the rat sciatic nerve. The state-dependent block of Na(v)1.7 channels with nanomolar concentrations of TFP raises the possibility that TFP, or TFP analogues, might be useful for regional anesthesia and pain management and could be more potent than traditional local anesthetics.
Collapse
Affiliation(s)
- Patrick L Sheets
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
545
|
Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA, Waxman SG. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc Natl Acad Sci U S A 2006; 103:8245-50. [PMID: 16702558 PMCID: PMC1472458 DOI: 10.1073/pnas.0602813103] [Citation(s) in RCA: 309] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disease-producing mutations of ion channels are usually characterized as producing hyperexcitability or hypoexcitability. We show here that a single mutation can produce hyperexcitability in one neuronal cell type and hypoexcitability in another neuronal cell type. We studied the functional effects of a mutation of sodium channel Nav1.7 associated with a neuropathic pain syndrome, erythermalgia, within sensory and sympathetic ganglion neurons, two cell types where Nav1.7 is normally expressed. Although this mutation depolarizes resting membrane potential in both types of neurons, it renders sensory neurons hyperexcitable and sympathetic neurons hypoexcitable. The selective presence, in sensory but not sympathetic neurons, of the Nav1.8 channel, which remains available for activation at depolarized membrane potentials, is a major determinant of these opposing effects. These results provide a molecular basis for the sympathetic dysfunction that has been observed in erythermalgia. Moreover, these findings show that a single ion channel mutation can produce opposing phenotypes (hyperexcitability or hypoexcitability) in the different cell types in which the channel is expressed.
Collapse
Affiliation(s)
- Anthony M. Rush
- *Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare Center, West Haven, CT 06516; and
| | - Sulayman D. Dib-Hajj
- *Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare Center, West Haven, CT 06516; and
| | - Shujun Liu
- *Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare Center, West Haven, CT 06516; and
| | - Theodore R. Cummins
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Joel A. Black
- *Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare Center, West Haven, CT 06516; and
| | - Stephen G. Waxman
- *Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare Center, West Haven, CT 06516; and
- To whom correspondence should be addressed at:
Department of Neurology, LCI 707, Yale Medical School, P.O. Box 208018, New Haven, CT 06520. E-mail:
| |
Collapse
|
546
|
Amir R, Argoff CE, Bennett GJ, Cummins TR, Durieux ME, Gerner P, Gold MS, Porreca F, Strichartz GR. The Role of Sodium Channels in Chronic Inflammatory and Neuropathic Pain. THE JOURNAL OF PAIN 2006; 7:S1-29. [PMID: 16632328 DOI: 10.1016/j.jpain.2006.01.444] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 01/13/2006] [Accepted: 01/20/2006] [Indexed: 11/25/2022]
Abstract
UNLABELLED Clinical and experimental data indicate that changes in the expression of voltage-gated sodium channels play a key role in the pathogenesis of neuropathic pain and that drugs that block these channels are potentially therapeutic. Clinical and experimental data also suggest that changes in voltage-gated sodium channels may play a role in inflammatory pain, and here too sodium-channel blockers may have therapeutic potential. The sodium-channel blockers of interest include local anesthetics, used at doses far below those that block nerve impulse propagation, and tricyclic antidepressants, whose analgesic effects may at least partly be due to blockade of sodium channels. Recent data show that local anesthetics may have pain-relieving actions via targets other than sodium channels, including neuronal G protein-coupled receptors and binding sites on immune cells. Some of these actions occur with nanomolar drug concentrations, and some are detected only with relatively long-term drug exposure. There are 9 isoforms of the voltage-gated sodium channel alpha-subunit, and several of the isoforms that are implicated in neuropathic and inflammatory pain states are expressed by somatosensory primary afferent neurons but not by skeletal or cardiovascular muscle. This restricted expression raises the possibility that isoform-specific drugs might be analgesic and lacking the cardiotoxicity and neurotoxicity that limit the use of current sodium-channel blockers. PERSPECTIVE Changes in the expression of neuronal voltage-gated sodium channels may play a key role in the pathogenesis of both chronic neuropathic and chronic inflammatory pain conditions. Drugs that block these channels may have therapeutic efficacy with doses that are far below those that impair nerve impulse propagation or cardiovascular function.
Collapse
Affiliation(s)
- Ron Amir
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
547
|
Brinkman RR, Dubé MP, Rouleau GA, Orr AC, Samuels ME. Human monogenic disorders — a source of novel drug targets. Nat Rev Genet 2006; 7:249-60. [PMID: 16534513 DOI: 10.1038/nrg1828] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The decrease in new drug applications and approvals over the past several years results from an underlying crisis in drug target identification and validation. Model organisms are being used to address this problem, in combination with novel approaches such as the International HapMap Project. What has been underappreciated is that discovery of new drug targets can also be revived by traditional Mendelian genetics. A large fraction of the human gene repertoire remains phenotypically uncharacterized, and is likely to encode many unanticipated and novel phenotypes that will be of interest to pharmaceutical and biotechnological drug developers.
Collapse
Affiliation(s)
- Ryan R Brinkman
- British Columbia Cancer Research Centre, University of British Columbia, Vancouver, British Columbia V5Z 1C3, Canada
| | | | | | | | | |
Collapse
|
548
|
Brochu RM, Dick IE, Tarpley JW, McGowan E, Gunner D, Herrington J, Shao PP, Ok D, Li C, Parsons WH, Stump GL, Regan CP, Lynch JJ, Lyons KA, McManus OB, Clark S, Ali Z, Kaczorowski GJ, Martin WJ, Priest BT. Block of peripheral nerve sodium channels selectively inhibits features of neuropathic pain in rats. Mol Pharmacol 2006; 69:823-32. [PMID: 16301337 DOI: 10.1124/mol.105.018127] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several sodium channel blockers are used clinically to treat neuropathic pain. However, many patients fail to achieve adequate pain relief from these highly brain-penetrant drugs because of dose-limiting central nervous system side effects. Here, we describe the functional properties of trans-N-{[2'-(aminosulfonyl)biphenyl-4-yl]methyl}-N-methyl-N'-[4-(trifluoromethoxy)benzyl]cyclopentane-1,2-dicarboxamide (CDA54), a peripherally acting sodium channel blocker. In whole-cell electrophysiological assays, CDA54 blocked the inactivated states of hNa(V)1.7 and hNa(V)1.8, two channels of the peripheral nervous system implicated in nociceptive transmission, with affinities of 0.25 and 0.18 microM, respectively. CDA54 displayed similar affinities for the tetrodotoxin-resistant Na+ current in small-diameter mouse dorsal root ganglion neurons. Peripheral nerve injury causes spontaneous electrical activity in normally silent sensory neurons. CDA54 inhibited these injury-induced spontaneous action potentials at concentrations 10-fold lower than those required to block normal A- and C-fiber conduction. Consistent with the selective inhibition of injury-induced firing, CDA54 (10 mg/kg p.o.) significantly reduced behavioral signs of neuropathic pain in two nerve injury models, whereas the same dose of CDA54 did not affect acute nociception or motor coordination. In anesthetized dogs, CDA54, at plasma concentrations of 6.7 microM, had no effect on cardiac electrophysiological parameters including conduction. Thus, the peripheral nerve sodium channel blocker CDA54 selectively inhibits sensory nerve signaling associated with neuropathic pain.
Collapse
Affiliation(s)
- Richard M Brochu
- Department of Ion Channels, Merck Research Laboratories, Rahway, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
549
|
Han C, Rush AM, Dib-Hajj SD, Li S, Xu Z, Wang Y, Tyrrell L, Wang X, Yang Y, Waxman SG. Sporadic onset of erythermalgia: A gain-of-function mutation in Nav1.7. Ann Neurol 2006; 59:553-8. [PMID: 16392115 DOI: 10.1002/ana.20776] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Inherited erythermalgia (erythromelalgia) is an autosomal dominant disorder in which patients experience severe burning pain in the extremities, in response to mild thermal stimuli and exercise. Although mutations in sodium channel Na(v)1.7 have been shown to underlie erythermalgia in several multigeneration families with the disease that have been investigated to date, the molecular basis of erythermalgia in sporadic cases is enigmatic. We investigated the role of Na(v)1.7 in a sporadic case of erythermalgia in a Chinese family. METHODS Genomic DNA from patients and their asymptomatic family members were sequenced to identify mutations in Na(v)1.7. Whole-cell patch clamp analysis was used to characterize biophysical properties of wild-type and mutant Na(v)1.7 channels in mammalian cells. RESULTS A single amino acid substitution in the DIIS4-S5 linker of Na(v)1.7 was present in two children whose parents were asymptomatic. The asymptomatic father was genetically mosaic for the mutation. This mutation produces a hyperpolarizing shift in channel activation and an increase in amplitude of the response to slow, small depolarizations. INTERPRETATION Founder mutations in Na(v)1.7, which can confer hyperexcitability on peripheral sensory neurons, can underlie sporadic erythermalgia.
Collapse
Affiliation(s)
- Chongyang Han
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
550
|
Kim TH, Kim HI, Song JH. Effects of nordihydroguaiaretic acid on Na+ currents in rat dorsal root ganglion neurons. Brain Res 2006; 1072:62-71. [PMID: 16423329 DOI: 10.1016/j.brainres.2005.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 11/30/2005] [Accepted: 12/05/2005] [Indexed: 11/15/2022]
Abstract
Nordihydroguaiaretic acid (NDGA) is a lipoxygenase (LO) inhibitor with a strong antioxidant activity. It attenuates nociceptive responses produced by various stimuli, which has been ascribed to its LO inhibition. Primary sensory neurons express multiple Na+ channels that are important in processing normal and abnormal nociception. We examined the effects of NDGA on tetrodotoxin-sensitive and tetrodotoxin-resistant Na+ currents in rat dorsal root ganglion neurons. NDGA inhibited both types of Na+ currents concentration dependently and reversibly. Both activation and inactivation time courses were slowed by NDGA, which were not reversible. NDGA produced a hyperpolarizing shift of the steady-state inactivation curves and reduced the maximal availability of both Na+ currents, indicating that it blocks both inactivated and resting Na+ channels. NDGA shifted the conductance-voltage curves of both Na+ currents toward a depolarizing direction and increased the slope factors of the curves. The recovery of Na+ channels from inactivation was retarded by NDGA. All these effects will reduce the excitability of sensory neurons and should be taken into account when it comes to the antinociceptive effects of NDGA.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Pharmacology, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756, Republic of Korea
| | | | | |
Collapse
|