551
|
Jiang Y, Liao H, Zhang X, Cao S, Hu X, Yang Z, Fang Y, Wang H. IL-33 synergistically promotes the proliferation of lung cancer cells in vitro by inducing antibacterial peptide LL-37 and proinflammatory cytokines in macrophages. Immunobiology 2020; 225:152025. [PMID: 33190003 DOI: 10.1016/j.imbio.2020.152025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/30/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Lung cancer is the primary cause of cancer-related deaths, and the persistent inflammation is inextricably linked with the lung cancer tumorigenesis. Pro-inflammatory cytokine interleukin-33 (IL-33) is able to serve as a potent modulator of cancer. Mounting evidence indicates IL-33 has significant effect on lung cancer progression by regulating host immune response, but the current opinions about the function and mechanism of IL-33 in lung cancer are still controversial. Meanwhile, antibacterial peptide LL-37 also exerts a momentous effect on immune responses to lung cancer. LL-37 is regarded as versatile, including antimicrobial activities, chemotaxis and immunoregulation. However, the immunomodulatory mechanism of IL-33 and LL-37 in lung cancer remains thoroughly not defined. Here, we determined the secretion of LL-37 was up-regulated in lung cancer serum samples. Similarly, the expression of CRAMP was enhancive in macrophages after co-cultured with lung cancer cells. Moreover, we expounded that IL-33 could up-regulate LL-37 secretion in macrophages, resulting in the massive releases of IL-6 and IL-1β. Additionally, LL-37 cooperated with IL-33 to increase the phosphorylation of p38 MAPK and NF-κB p65 pathways, and augmented IL-6 and IL-1β secretion, which resulting in the proliferation of lung cancer cells in vitro. In conclusion, our study identified that IL-33 aggravated the inflammation of lung cancer by increasing LL-37 expression in macrophages, thereby promoting lung cancer cell proliferation in vitro. It is contributed to our present understanding of the immunomodulatory relationship between pro-inflammatory cytokines and antibacterial peptides in the tumor immune response, and offer a novel perspective for controlling the progress of lung cancer.
Collapse
Affiliation(s)
- Yinting Jiang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongyi Liao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China; Department of Clinical Laboratory Medicine, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Sijia Cao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuexue Hu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zihan Yang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuting Fang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
552
|
Hicks JA, Yoo D, Liu HC. Transcriptional Immune Signatures of Alveolar Macrophages and the Impact of the NLRP3 Inflammasome on Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Replication. Viruses 2020; 12:v12111299. [PMID: 33198300 PMCID: PMC7696364 DOI: 10.3390/v12111299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) is a contagious viral (PRRSV) disease in pigs characterized by poor reproductive health, increased mortality, and reductions in growth rates. PRRSV is known to implement immuno-antagonistic mechanisms to evade detection and mute host responses to infection. To better understand the cellular immunosignature of PRRSV we have undertaken transcriptome and immunomodulatory studies in PRRSV-infected porcine alveolar macrophages (PAMs). We first used genome-wide transcriptome profiling (RNA-seq) to elucidate PRRSV-induced changes in the PAM transcriptome in response to infection. We found a number of cellular networks were altered by PRRSV infection, including many associated with innate immunity, such as, the NLRP3 inflammasome. To further explore the role(s) of innate immune networks in PRRSV-infected PAMs, we used an NLRP3-specific inhibitor, MCC950, to identify the potential functionality of the inflammasome during PRRSV replication. We found that PRRSV does quickly induce expression of inflammasome-associated genes in PAMs. Treatment of PAMs with MCC950 suggests NLRP3 inflammasome activation negatively impacts viral replication. Treatment of PAMs with cell culture supernatants from macrophages subjected to NLRP3 inflammasome activation (via polyinosinic-polycytidylic acid (poly I:C) transfection), prior to PRRSV infection resulted in significantly reduced viral RNA levels compared to PAMs treated with cell culture supernatants from macrophages subjected to NLRP3 inflammasome inhibition (MCC950 treatment/poly I:C transfection). This further supports a role for NLRP3 inflammasome activation in the innate macrophagic anti-PRRSV immune response and suggests that PRRSV is sensitive to the effects of NLRP3 inflammasome activity. Taken together, these transcriptome and immunoregulatory data highlight the complex changes PRRSV infection induces in the molecular immune networks of its cellular host.
Collapse
Affiliation(s)
- Julie A. Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC 27607, USA;
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27607, USA;
- Correspondence: ; Tel.: +1-919-515-4024; Fax: +1-919-515-6884
| |
Collapse
|
553
|
Montarello NJ, Nguyen MT, Wong DTL, Nicholls SJ, Psaltis PJ. Inflammation in Coronary Atherosclerosis and Its Therapeutic Implications. Cardiovasc Drugs Ther 2020; 36:347-362. [PMID: 33170943 DOI: 10.1007/s10557-020-07106-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerotic coronary artery disease has a complex pathogenesis which extends beyond cholesterol intimal infiltration. It involves chronic inflammation of the coronary artery wall driven by systemic and local activation of both the adaptive and innate immune systems, which can ultimately result in the rupture or erosion of atherosclerotic plaque, leading to thrombosis and myocardial infarction (MI). Despite current best practice care, including the widespread use of cholesterol-lowering statins, atherothrombotic cardiovascular events recur at alarming rates post-MI. To a large extent, this reflects residual inflammation that is not adequately controlled by contemporary treatment. Consequently, there has been increasing interest in the pharmacological targeting of inflammation to improve outcomes in atherosclerotic cardiovascular disease. This has comprised both novel pathway-specific agents, most notably the anti-interleukin-1 beta monoclonal antibody, canakinumab, and the repurposing of established, broad-acting drugs, such as colchicine, that are already approved for the management of other inflammatory conditions. Here we discuss the importance of inflammation in mediating atherosclerosis and its complications and provide a timely update on "new" and "old" anti-inflammatory therapies currently being investigated to target it.
Collapse
Affiliation(s)
- Nicholas J Montarello
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia
| | - Mau T Nguyen
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia
| | - Dennis T L Wong
- Monash Cardiovascular Research Centre, Monash University, Clayton, Australia
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Clayton, Australia
| | - Peter J Psaltis
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia.
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA, 5001, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
554
|
Gong Q, Lin Y, Lu Z, Xiao Z. Microglia-Astrocyte Cross Talk through IL-18/IL-18R Signaling Modulates Migraine-like Behavior in Experimental Models of Migraine. Neuroscience 2020; 451:207-215. [PMID: 33137409 DOI: 10.1016/j.neuroscience.2020.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Interleukin-18 (IL-18) is an important regulator of innate and immune responses, and is involved in the pain process, including neuropathic and cancer pain. The current study demonstrated that inflammatory soup (IS) dural infusions elicited the activation of microglia and astrocytes. In comparison, IS dural infusions induced the upregulation of IL-18 and IL-18R in microglia and astrocytes, respectively. Blocking the IL-18 signaling pathway attenuated nociceptive behavior. In comparison, blocking IL-18 signaling also suppressed the activation of astrocytes and nuclear factor-kappa B (NF-κB). IL-18 dural infusions induced nociceptive behavior and glia activation. IL-18 is a product of the activation of microglial toll-like receptor 4 (TLR4), and it acted on IL-18R expressed in astrocytes. Subsequently, it stimulated the activation of nuclear factor-kappa B (NF-κB), leading to the activation of astrocytes. In conclusion, IL-18-mediated microglia/astrocyte interactions in the medullary dorsal horn likely contribute to the development of hyperpathia or allodynia induced by migraines.
Collapse
Affiliation(s)
- Qiaoyu Gong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yao Lin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
555
|
Azimzadeh Irani M, Ejtehadi MR. Glycan-mediated functional assembly of IL-1RI: structural insights into completion of the current description for immune response. J Biomol Struct Dyn 2020; 40:2575-2585. [PMID: 33124956 DOI: 10.1080/07391102.2020.1841027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interleukin 1 Receptor type I (IL-1RI) is a multi-domain transmembrane receptor that triggers the inflammatory response. Understanding its detailed mechanism of action is crucial for treating immune disorders. IL-1RI is activated upon formation of its functional assembly that occurs by binding of the IL-1 cytokine and the accessory protein (Il-1RAcP) to it. X-ray crystallography, small-Angle X-ray Scattering and molecular dynamics simulation studies showed that IL-1RI adopts two types of 'compact' and 'extended' conformational states in its dynamical pattern. Furthermore, glycosylation has shown to play a critical role in its activation process. Here, classical and accelerated atomistic molecular dynamics were carried out to examine the role of full glycosylation of IL-1RI and IL-1RAcP in arrangement of the functional assembly. Simulations showed that the 'compact' and 'extended' IL-1RI form two types of 'cytokine-inaccessible-non-signaling' and 'cytokine-accessible-signaling' assemblies with the IL-1RacP, respectively that are both abiding in the presence of glycans. Suggesting that the cytokine binding to IL-1RI is not required for the formation of IL-1RI-IL-1RAcP complex and the 'compact' complex could act as a down-regulatory mechanism. The 'extended' complex is maintained by formation of several persistent hydrogen bonds between the IL-1RI-IL-1RAcP inter-connected glycans. Taken together, it was shown that full glycosylation regulates formation of the IL-1RI functional assembly and play critical role in cytokine biding and triggering the IL-1RI involved downstream pathways in the cell.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maryam Azimzadeh Irani
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
556
|
Etayash H, Qian Y, Pletzer D, Zhang Q, Xie J, Cui R, Dai C, Ma P, Qi F, Liu R, Hancock REW. Host Defense Peptide-Mimicking Amphiphilic β-Peptide Polymer (Bu:DM) Exhibiting Anti-Biofilm, Immunomodulatory, and in Vivo Anti-Infective Activity. J Med Chem 2020; 63:12921-12928. [PMID: 33126797 DOI: 10.1021/acs.jmedchem.0c01321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Therapeutic options to treat multidrug resistant bacteria, especially when present in biofilms, are limited due to their high levels of antibiotic resistance. Here, we report the anti-biofilm and immunomodulatory activities of the host defense peptide (HDP)-mimicking β-peptide polymer (20:80 Bu:DM) and investigated its activity in vivo. The polymer outperformed antibiotics in the removal and reduction of the viability of established biofilms, achieving a maximum activity of around 80% reduction in viability. Interestingly the polymer also exhibited HDP-like immunomodulation in inducing chemokines and anti-inflammatory cytokines and suppressing lipopolysaccharide-induced proinflammatory cytokines. When tested in a murine, high-density skin infection model using P. aeruginosa LESB58, the polymer was effective in diminishing abscess size and reducing bacterial load. This study demonstrates the dual functionality of HDP-mimicking β-peptide polymers in inhibiting biofilms and modulating innate immunity, as well as reducing tissue dermonecrosis.
Collapse
Affiliation(s)
- Hashem Etayash
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yuxin Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Qiang Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayang Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ruxin Cui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengzhi Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengcheng Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Qi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
557
|
Complementary regulation of caspase-1 and IL-1β reveals additional mechanisms of dampened inflammation in bats. Proc Natl Acad Sci U S A 2020; 117:28939-28949. [PMID: 33106404 DOI: 10.1073/pnas.2003352117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bats have emerged as unique mammalian vectors harboring a diverse range of highly lethal zoonotic viruses with minimal clinical disease. Despite having sustained complete genomic loss of AIM2, regulation of the downstream inflammasome response in bats is unknown. AIM2 sensing of cytoplasmic DNA triggers ASC aggregation and recruits caspase-1, the central inflammasome effector enzyme, triggering cleavage of cytokines such as IL-1β and inducing GSDMD-mediated pyroptotic cell death. Restoration of AIM2 in bat cells led to intact ASC speck formation, but intriguingly resulted in a lack of caspase-1 or consequent IL-1β activation. We further identified two residues undergoing positive selection pressures in Pteropus alecto caspase-1 that abrogate its enzymatic function and are crucial in human caspase-1 activity. Functional analysis of another bat lineage revealed a targeted mechanism for loss of Myotis davidii IL-1β cleavage and elucidated an inverse complementary relationship between caspase-1 and IL-1β, resulting in overall diminished signaling across bats of both suborders. Thus we report strategies that additionally undermine downstream inflammasome signaling in bats, limiting an overactive immune response against pathogens while potentially producing an antiinflammatory state resistant to diseases such as atherosclerosis, aging, and neurodegeneration.
Collapse
|
558
|
Central and local controls of monocytopoiesis influence the outcome of Leishmania infection. Cytokine 2020; 147:155325. [PMID: 33039254 DOI: 10.1016/j.cyto.2020.155325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Leishmaniases represent a complex of tropical and subtropical diseases caused by an intracellular protozoon of the genus Leishmania. The principal cells controlling the interaction between the host and the parasite Leishmania are monocytes and macrophages, as these cells play a decisive role in establishing the pathogenesis or cure. These cells are involved in controlling the growth of Leishmania and in modulating the adaptive immune responses. The heterogeneity and extensive plasticity of monocytes allow these cells to adjust their functional phenotypes in response to the pathogen-directed immunological cues. In Leishmania-infected host, the rate of myelopoiesis is augmented by enhanced monocytic lineage commitment and proliferation of myeloid progenitor cells both in the BM and at the site of infection. These newly generated monocytes play as "safe haven" for the parasite and also as the antigen-presenting cells for T cells to cause deregulated cytokine production. This altered monocytopoiesis is characterized by tissue-specific immune responses, spatiotemporal dynamics of immunoregulation and functional heterogeneity. In the presence of Th1 cytokines, monocytes exhibit a pro-inflammatory phenotype that protects the host from Leishmania. By contrast, in an environment of Th2 cytokines, monocytes display anti-inflammatory phenotype with pro-parasitic functions. In this review, we summarize the involvement of cytokines in the regulation of monocytopoiesis and differentiation of macrophages during leishmanial infection. Understanding the role of cytokines in regulating interactions between Leishmania and the host monocytes is key to developing new therapeutic interventions against leishmaniases.
Collapse
|
559
|
Yasmeen F, Seo H, Javaid N, Kim MS, Choi S. Therapeutic Interventions into Innate Immune Diseases by Means of Aptamers. Pharmaceutics 2020; 12:pharmaceutics12100955. [PMID: 33050544 PMCID: PMC7600108 DOI: 10.3390/pharmaceutics12100955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 12/25/2022] Open
Abstract
The immune system plays a crucial role in the body's defense system against various pathogens, such as bacteria, viruses, and parasites, as well as recognizes non-self- and self-molecules. The innate immune system is composed of special receptors known as pattern recognition receptors, which play a crucial role in the identification of pathogen-associated molecular patterns from diverse microorganisms. Any disequilibrium in the activation of a particular pattern recognition receptor leads to various inflammatory, autoimmune, or immunodeficiency diseases. Aptamers are short single-stranded deoxyribonucleic acid or ribonucleic acid molecules, also termed "chemical antibodies," which have tremendous specificity and affinity for their target molecules. Their features, such as stability, low immunogenicity, ease of manufacturing, and facile screening against a target, make them preferable as therapeutics. Immune-system-targeting aptamers have a great potential as a targeted therapeutic strategy against immune diseases. This review summarizes components of the innate immune system, aptamer production, pharmacokinetic characteristics of aptamers, and aptamers related to innate-immune-system diseases.
Collapse
|
560
|
Wong CC, Baum J, Silvestro A, Beste MT, Bharani-Dharan B, Xu S, Wang YA, Wang X, Prescott MF, Krajkovich L, Dugan M, Ridker PM, Martin AM, Svensson EC. Inhibition of IL1β by Canakinumab May Be Effective against Diverse Molecular Subtypes of Lung Cancer: An Exploratory Analysis of the CANTOS Trial. Cancer Res 2020; 80:5597-5605. [DOI: 10.1158/0008-5472.can-19-3176] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
|
561
|
Shani O, Vorobyov T, Monteran L, Lavie D, Cohen N, Raz Y, Tsarfaty G, Avivi C, Barshack I, Erez N. Fibroblast-Derived IL33 Facilitates Breast Cancer Metastasis by Modifying the Immune Microenvironment and Driving Type 2 Immunity. Cancer Res 2020; 80:5317-5329. [PMID: 33023944 DOI: 10.1158/0008-5472.can-20-2116] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
Lungs are one of the main sites of breast cancer metastasis. The metastatic microenvironment is essential to facilitate growth of disseminated tumor cells. Cancer-associated fibroblasts (CAF) are prominent players in the microenvironment of breast cancer. However, their role in the formation of a permissive metastatic niche is unresolved. Here we show that IL33 is upregulated in metastases-associated fibroblasts in mouse models of spontaneous breast cancer metastasis and in patients with breast cancer with lung metastasis. Upregulation of IL33 instigated type 2 inflammation in the metastatic microenvironment and mediated recruitment of eosinophils, neutrophils, and inflammatory monocytes to lung metastases. Importantly, targeting of IL33 in vivo resulted in inhibition of lung metastasis and significant attenuation of immune cell recruitment and type 2 immunity. These findings demonstrate a key function of IL33 in facilitating lung metastatic relapse by modulating the immune microenvironment. Our study shows a novel interaction axis between CAF and immune cells and reveals the central role of CAF in establishing a hospitable inflammatory niche in lung metastasis. SIGNIFICANCE: This study elucidates a novel role for fibroblast-derived IL33 in facilitating breast cancer lung metastasis by modifying the immune microenvironment at the metastatic niche toward type 2 inflammation.
Collapse
Affiliation(s)
- Ophir Shani
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tatiana Vorobyov
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lea Monteran
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dor Lavie
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Cohen
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Raz
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tsarfaty
- Department of Diagnostic Imaging, Chaim Sheba Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Camila Avivi
- Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
562
|
Zhou T, Su TT, Mudianto T, Wang J. Immune asynchrony in COVID-19 pathogenesis and potential immunotherapies. J Exp Med 2020; 217:e20200674. [PMID: 32910820 PMCID: PMC7481961 DOI: 10.1084/jem.20200674] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) is an unprecedented global health crisis. Tissue and peripheral blood analysis indicate profound, aberrant myeloid cell activation, cytokine storm, and lymphopenia, with unknown immunopathological mechanisms. Spatiotemporal control of the quality and quantity of the antiviral immune responses involves synchronized cellular and molecular cascades and cross-talk between innate and adaptive immunity. Dysregulated responses in immunity, such as at the stages of immune sensing, alarming, polarization, and resolution, may contribute to disease pathology. Herein, we approach SARS-CoV-2 through an immunomodulatory lens, discussing possible mechanisms of the asynchronized antiviral immune response and proposing potential therapeutic strategies to correct the dysregulation.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Tina Tianjiao Su
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Tenny Mudianto
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY
| |
Collapse
|
563
|
Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 2020; 9:cells9092044. [PMID: 32906785 PMCID: PMC7563346 DOI: 10.3390/cells9092044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
The interleukin 23 (IL-23) is a key pro-inflammatory cytokine in the development of chronic inflammatory diseases, such as psoriasis, inflammatory bowel diseases, multiple sclerosis, or rheumatoid arthritis. The pathological consequences of excessive IL-23 signaling have been linked to its ability to promote the production of inflammatory mediators, such as IL-17, IL-22, granulocyte-macrophage colony-stimulating (GM-CSF), or the tumor necrosis factor (TNFα) by target populations, mainly Th17 and IL-17-secreting TCRγδ cells (Tγδ17). Due to their pivotal role in inflammatory diseases, IL-23 and its downstream effector molecules have emerged as attractive therapeutic targets, leading to the development of neutralizing antibodies against IL-23 and IL-17 that have shown efficacy in different inflammatory diseases. Despite the success of monoclonal antibodies, there are patients that show no response or partial response to these treatments. Thus, effective therapies for inflammatory diseases may require the combination of multiple immune-modulatory drugs to prevent disease progression and to improve quality of life. Alternative strategies aimed at inhibiting intracellular signaling cascades using small molecule inhibitors or interfering peptides have not been fully exploited in the context of IL-23-mediated diseases. In this review, we discuss the current knowledge about proximal signaling events triggered by IL-23 upon binding to its membrane receptor to bring to the spotlight new opportunities for therapeutic intervention in IL-23-mediated pathologies.
Collapse
|
564
|
Interleukin-36 Cytokine/Receptor Signaling: A New Target for Tissue Fibrosis. Int J Mol Sci 2020; 21:ijms21186458. [PMID: 32899668 PMCID: PMC7556029 DOI: 10.3390/ijms21186458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Tissue fibrosis is a major unresolved medical problem, which impairs the function of various systems. The molecular mechanisms involved are poorly understood, which hinders the development of effective therapeutic strategies. Emerging evidence from recent studies indicates that interleukin 36 (IL-36) and the corresponding receptor (IL-36R), a newly-characterized cytokine/receptor signaling complex involved in immune-inflammation, play an important role in the pathogenesis of fibrosis in multiple tissues. This review focuses on recent experimental findings, which implicate IL-36R and its associated cytokines in different forms of organ fibrosis. Specifically, it outlines the molecular basis and biological function of IL-36R in normal cells and sums up the pathological role in the development of fibrosis in the lung, kidney, heart, intestine, and pancreas. We also summarize the new progress in the IL-36/IL-36R-related mechanisms involved in tissue fibrosis and enclose the potential of IL-36R inhibition as a therapeutic strategy to combat pro-fibrotic pathologies. Given its high association with disease, gaining new insight into the immuno-mechanisms that contribute to tissue fibrosis could have a significant impact on human health.
Collapse
|
565
|
Li S, Xu Y, Zhang Y, Nie L, Ma Z, Ma L, Fang X, Ma X. Mendelian randomization analyses of genetically predicted circulating levels of cytokines with risk of breast cancer. NPJ Precis Oncol 2020; 4:25. [PMID: 32923685 PMCID: PMC7462857 DOI: 10.1038/s41698-020-00131-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
To determine whether genetically predicted circulating levels of cytokines are associated with risk of overall breast cancer (BC), estrogen receptor (ER)-positive and ER-negative BC, we conducted two-sample MR analyses using data from the most comprehensive genome-wide association studies (GWAS) on cytokines in 8293 Finnish participants and the largest BC GWAS from the Breast Cancer Association Consortium (BCAC) with totally 122,977 BC cases and 105,974 healthy controls. We systematically screened 41 cytokines (of which 24 cytokines have available instruments) and identified that genetically predicted circulating levels (1-SD increase) of MCP1 (OR: 1.08; 95% CIs: 1.03–1.12; P value: 3.55 × 10−4), MIP1b (OR: 1.02; 95% CIs: 1.01–1.04; P value: 2.70 × 10−3) and IL13 (OR: 1.06; 95% CIs: 1.03–1.10; P value: 3.33 × 10−4) were significantly associated with increased risk of overall BC, as well as ER-positive BC. In addition, higher levels of MIP1b and IL13 were also significantly associated with increased risk of ER-negative BC. These findings suggest the crucial role of cytokines in BC carcinogenesis and potential of targeting specific inflammatory cytokines for BC prevention.
Collapse
Affiliation(s)
- Shen Li
- The second clinical college, Chongqing Medical University, Chongqing, China
| | - Yan Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yao Zhang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lili Nie
- Student Brigade, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Zhihua Ma
- Department of Anaesthesia, The first affiliated hospital of Third Military medical University, Chongqing, China
| | - Ling Ma
- Banan People's hospital of Chongqing, Chongqing, China
| | - Xiaoyu Fang
- College of public health, Southwest medical University, Luzhou, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
566
|
Liu FY, Fang BQ, Sun LM, Zhang XZ, Liu JL, Yang Y, Zhang WH, Wang XL, Ding YC. The Role of the NOD1/Rip2 Signaling Pathway in Myocardial Remodeling in Spontaneously Hypertensive Rats. Med Sci Monit 2020; 26:e924748. [PMID: 32855380 PMCID: PMC7477929 DOI: 10.12659/msm.924748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/20/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Chronic hypertension changes the function and structure of the heart and blood vessels. This study aimed to explore the role of the NOD1/Rip2 (nucleotide-binding oligomerization domain 1/receptor-interacting protein 2) signaling pathway in myocardial remodeling in spontaneously hypertensive rats (SHRs). MATERIAL AND METHODS Blood pressure was measured using a tail cuff. The cardiac structure was observed using echocardiography. Slices of the myocardium were stained with hematoxylin and eosin. The expression of NOD1 and Rip2 was detected using real-time polymerase chain reaction, western blot, and immunohistochemistry. The content and distribution of collagen in the myocardium were observed using Van Gieson staining. Enzyme-linked immunosorbent assay was used to detect the interleukin-1 (IL-1) concentrations. SHRs were treated with the NOD1 agonist iE-DAP and NOD1 inhibitor ML130. RESULTS The NOD1 agonist increased blood pressure in SHRs, and the NOD1 inhibitor decreased blood pressure; the interventricular septum thickness (IVST) and left ventricular posterior wall thickness (LVPWT) of the agonist-treated group were thicker than those of the control group, and the antagonist exerted the opposite effects. The levels of the NOD1 and Rip2 mRNAs and proteins, serum IL-1 concentration, and myocardial collagen volume fraction (CVF%) increased in SHRs in the NOD1 agonist group, but the levels of NOD1 and Rip2, serum IL-1 concentration, and myocardial collagen volume fraction (CVF%) decreased in SHRs in the NOD1 inhibitor group. CONCLUSIONS NOD1/Rip2 expression increased during the progression of myocardial remodeling in SHRs. The NOD1 agonist increased NOD1 expression and promoted myocardial remodeling, while the NOD1 antagonist reduced NOD1/Rip2 expression and protected against myocardial remodeling.
Collapse
Affiliation(s)
- Feng-Yi Liu
- Department of Cardiology V, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Bing-Qian Fang
- Department of Cardiology V, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
- Department of Internal Medicine, Shaoxing Central Hospital, Shaoxing, Zhejiang, P.R. China
| | - Ling-Min Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiu-Zhen Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Jin-Li Liu
- Department of Cardiology V, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Yun Yang
- Department of Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Wen-Hua Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiu-Li Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Yan-Chun Ding
- Department of Cardiology V, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| |
Collapse
|
567
|
Wang L, Sun L, Byrd KM, Ko CC, Zhao Z, Fang J. AIM2 Inflammasome's First Decade of Discovery: Focus on Oral Diseases. Front Immunol 2020; 11:1487. [PMID: 32903550 PMCID: PMC7438472 DOI: 10.3389/fimmu.2020.01487] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/08/2020] [Indexed: 02/05/2023] Open
Abstract
A common feature of many acute and chronic oral diseases is microbial-induced inflammation. Innate immune responses are the first line of defense against pathogenic microorganisms and are initiated by pattern recognition receptors (PRRs) that specifically recognize pathogen-associated molecular patterns and danger-associated molecular patterns. The activation of certain PRRs can lead to the assembly of macromolecular oligomers termed inflammasomes, which are responsible for pro-inflammatory cytokine maturation and secretion and thus activate host inflammatory responses. About 10 years ago, the absent in melanoma 2 (AIM2) was independently discovered by four research groups, and among the “canonical” inflammasomes [including AIM2, NLR family pyrin domain (NLRP)1, NLRP3, NLR family apoptosis inhibitory protein (NAIP)/NLR family, caspase activation and recruitment domain (CARD) containing (NLRC)4, and pyrin], AIM2 so far is the only one that simultaneously acts as a cytosolic DNA sensor due to its DNA-binding ability. Undoubtedly, such a double-faceted role gives AIM2 greater mission and more potential in the mediation of innate immune responses. Therefore, AIM2 has garnered much attention from the broad scientific community during its first 10 years of discovery (2009–2019). How the AIM2 inflammasome is related to oral diseases has aroused debate over the past few years and is under active investigation. AIM2 inflammasome may potentially be a key link between oral diseases and innate immunity. In this review, we highlight the current knowledge of the AIM2 inflammasome and its critical role in the pathogenesis of various oral diseases, which might offer future possibilities for disease prevention and targeted therapy utilizing this continued understanding.
Collapse
Affiliation(s)
- Lufei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Lu Sun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Kevin M Byrd
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Ching-Chang Ko
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, United States
| | - Zhenxing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
568
|
Wang X, Jiang M, He X, Zhang B, Peng W, Guo L. N‑acetyl cysteine inhibits the lipopolysaccharide‑induced inflammatory response in bone marrow mesenchymal stem cells by suppressing the TXNIP/NLRP3/IL‑1β signaling pathway. Mol Med Rep 2020; 22:3299-3306. [PMID: 32945495 PMCID: PMC7453581 DOI: 10.3892/mmr.2020.11433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
N-acetyl cysteine (NAC) has been used to inhibit lipopolysaccharide (LPS)-induced inflammation. However, the molecular mechanism underlying its anti-inflammatory effects remains to be elucidated. The present study aimed to determine the effect of NAC on the LPS-induced inflammatory response in bone marrow mesenchymal stem cells (BMSCs) and elucidate the underlying molecular mechanism. First, BMSCs were stimulated by LPS following pretreatment with NAC (0, 0.1, 0.5, 1 or 2 mM). A Cell Counting Kit 8 assay was used to determine the number of viable cells and 1 mM NAC was selected as the experimental concentration. Then, the secretion of inflammatory factors, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α was evaluated by enzyme-linked immunosorbent assay. Finally, the expression levels of mRNA and proteins, including apoptosis-associated speck-like protein containing a CARD (ASC), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), caspase-1, thioredoxin-interacting protein (TXNIP), and thioredoxin (TRX), were evaluated by reverse transcription-quantitative PCR and western blot analysis, respectively. The results demonstrated that the secretion of inflammatory factors, which was increased by the administration of LPS, was reduced by pretreatment with NAC. Furthermore, NAC reduced the expression of ASC, NLRP3, caspase-1 and TXNIP, but enhanced that of TRX. To conclude, NAC had anti-inflammatory effects on LPS-stimulated BMSCs, which was closely associated with the TXNIP/NLRP3/IL-1β signaling pathway. Thus, NAC may be a promising treatment to attenuate the inflammatory response in LPS-induced BMSCs.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Mengyi Jiang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoping He
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Bo Zhang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Peng
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ling Guo
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
569
|
Wentzel AS, Petit J, van Veen WG, Fink IR, Scheer MH, Piazzon MC, Forlenza M, Spaink HP, Wiegertjes GF. Transcriptome sequencing supports a conservation of macrophage polarization in fish. Sci Rep 2020; 10:13470. [PMID: 32778701 PMCID: PMC7418020 DOI: 10.1038/s41598-020-70248-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Mammalian macrophages can adopt polarization states that, depending on the exact stimuli present in their extracellular environment, can lead to very different functions. Although these different polarization states have been shown primarily for macrophages of humans and mice, it is likely that polarized macrophages with corresponding phenotypes exist across mammals. Evidence of functional conservation in macrophages from teleost fish suggests that the same, or at least comparable polarization states should also be present in teleosts. However, corresponding transcriptional profiles of marker genes have not been reported thus far. In this study we confirm that macrophages from common carp can polarize into M1- and M2 phenotypes with conserved functions and corresponding transcriptional profiles compared to mammalian macrophages. Carp M1 macrophages show increased production of nitric oxide and a transcriptional profile with increased pro-inflammatory cytokines and mediators, including il6, il12 and saa. Carp M2 macrophages show increased arginase activity and a transcriptional profile with increased anti-inflammatory mediators, including cyr61, timp2b and tgm2b. Our RNA sequencing approach allowed us to list, in an unbiased manner, markers discriminating between M1 and M2 macrophages of teleost fish. We discuss the importance of our findings for the evaluation of immunostimulants for aquaculture and for the identification of gene targets to generate transgenic zebrafish for detailed studies on M1 and M2 macrophages. Above all, we discuss the striking degree of evolutionary conservation of macrophage polarization in a lower vertebrate.
Collapse
Affiliation(s)
- Annelieke S Wentzel
- Cell Biology and Immunology Group, Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Jules Petit
- Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Wouter G van Veen
- Experimental Zoology Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Inge Rosenbek Fink
- Cell Biology and Immunology Group, Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Marleen H Scheer
- Cell Biology and Immunology Group, Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain
| | - Maria Forlenza
- Cell Biology and Immunology Group, Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2332 CC, Leiden, The Netherlands
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands.
| |
Collapse
|
570
|
Lappano R, Talia M, Cirillo F, Rigiracciolo DC, Scordamaglia D, Guzzi R, Miglietta AM, De Francesco EM, Belfiore A, Sims AH, Maggiolini M. The IL1β-IL1R signaling is involved in the stimulatory effects triggered by hypoxia in breast cancer cells and cancer-associated fibroblasts (CAFs). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:153. [PMID: 32778144 PMCID: PMC7418191 DOI: 10.1186/s13046-020-01667-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Background Hypoxia plays a relevant role in tumor-related inflammation toward the metastatic spread and cancer aggressiveness. The pro-inflammatory cytokine interleukin-1β (IL-β) and its cognate receptor IL1R1 contribute to the initiation and progression of breast cancer determining pro-tumorigenic inflammatory responses. The transcriptional target of the hypoxia inducible factor-1α (HIF-1α) namely the G protein estrogen receptor (GPER) mediates a feedforward loop coupling IL-1β induction by breast cancer-associated fibroblasts (CAFs) to IL1R1 expression by breast cancer cells toward the regulation of target genes and relevant biological responses. Methods In order to ascertain the correlation of IL-β with HIF-1α and further hypoxia-related genes in triple-negative breast cancer (TNBC) patients, a bioinformatics analysis was performed using the information provided by The Invasive Breast Cancer Cohort of The Cancer Genome Atlas (TCGA) project and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) datasets. Gene expression correlation, statistical analysis and gene set enrichment analysis (GSEA) were carried out with R studio packages. Pathway enrichment analysis was evaluated with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. TNBC cells and primary CAFs were used as model system. The molecular mechanisms implicated in the regulation of IL-1β by hypoxia toward a metastatic gene expression profile and invasive properties were assessed performing gene and protein expression studies, PCR arrays, gene silencing and immunofluorescence analysis, co-immunoprecipitation and ChiP assays, ELISA, cell spreading, invasion and spheroid formation. Results We first determined that IL-1β expression correlates with the levels of HIF-1α as well as with a hypoxia-related gene signature in TNBC patients. Next, we demonstrated that hypoxia triggers a functional liaison among HIF-1α, GPER and the IL-1β/IL1R1 signaling toward a metastatic gene signature and a feed-forward loop of IL-1β that leads to proliferative and invasive responses in TNBC cells. Furthermore, we found that the IL-1β released in the conditioned medium of TNBC cells exposed to hypoxic conditions promotes an invasive phenotype of CAFs. Conclusions Our data shed new light on the role of hypoxia in the activation of the IL-1β/IL1R1 signaling, which in turn triggers aggressive features in both TNBC cells and CAFs. Hence, our findings provide novel evidence regarding the mechanisms through which the hypoxic tumor microenvironment may contribute to breast cancer progression and suggest further targets useful in more comprehensive therapeutic strategies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | | | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Rita Guzzi
- Department of Physics, University of Calabria, 87036, Rende, Italy
| | | | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Andrew H Sims
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
571
|
Costantini C, Puccetti M, Pariano M, Renga G, Stincardini C, D'Onofrio F, Bellet MM, Cellini B, Giovagnoli S, Romani L. Selectively targeting key inflammatory pathways in cystic fibrosis. Eur J Med Chem 2020; 206:112717. [PMID: 32823008 DOI: 10.1016/j.ejmech.2020.112717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 01/04/2023]
Abstract
Cystic fibrosis (CF) is a rare genetic disorder caused by a defect in the ion channel Cystic Fibrosis Transmembrane conductance Regulator (CFTR), resulting in ionic imbalance of surface fluid. Although affecting multiple organs, the progressive deterioration of respiratory function by recurrent infections and chronic inflammation represents the main cause of morbidity and mortality in CF patients. The development of modulators targeting the basic defect of CFTR has represented a major breakthrough in CF therapy, but the impact on inflammation has remained enigmatic. The emerging scenario taking hold in the field points to inflammation as a major, somehow missed, therapeutic target for prevention of lung decline. Not surprisingly, the development of anti-inflammatory drugs is taking its share in the drug development pipeline. But the path is not straightforward and targeting inflammation should be balanced with the increased risk of infection. The strategy to restore the homeostatic regulation of inflammation to efficiently respond to infection while preventing lung damage needs to be based on identifying and targeting endogenous immunoregulatory pathways that are defective in CF. We herein provide an overview of anti-inflammatory drugs currently approved or under investigation in CF patients, and present our recent studies on how the knowledge on defective immune pathways in CF may translate into innovative and selective anti-inflammatory therapeutics. Through the discovery of naturally occurring molecules or their synthetic mimics, this review emphasizes the critical importance of selectively targeting key inflammatory pathways to preserve immunocompetence in CF patients.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, Perugia, 06132, Italy
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Claudia Stincardini
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Fiorella D'Onofrio
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Marina M Bellet
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Science, University of Perugia, Perugia, 06132, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.
| |
Collapse
|
572
|
Papathanasiou E, Conti P, Carinci F, Lauritano D, Theoharides TC. IL-1 Superfamily Members and Periodontal Diseases. J Dent Res 2020; 99:1425-1434. [PMID: 32758110 DOI: 10.1177/0022034520945209] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Periodontitis is a complex, multifactorial chronic disease involving continuous interactions among bacteria, host immune/inflammatory responses, and modifying genetic and environmental factors. More than any other cytokine family, the interleukin (IL)-1 family includes key signaling molecules that trigger and perpetuate periodontal inflammation. Over the years, the IL-1 family expanded to include 11 members of cytokines, some with agonist activity (IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, and IL-36γ), receptor antagonists (IL-1Ra, IL-36Ra), and 2 anti-inflammatory cytokines (IL-37, IL-38). The IL-1 receptor antagonist (IL-1Ra) has emerged as a pivotal player in the defense against periodontitis. IL-33 primarily induces the production of Th2-associated cytokines but acts as an "alarmin" via stimulation of mast cells. The IL-36 subclass of cytokines may be important in regulating mucosal inflammation and homeostasis. IL-37 suppresses innate and acquired immune responses. IL-38 is the most recent member of the IL-1 superfamily and has anti-inflammatory properties similar to those of IL-37 but through different receptors. However, limited evidence exists regarding the role of IL-37 and IL-38 in periodontitis. Despite the development of IL-1 blocking agents, therapeutic blockade of select IL-1 family members for periodontitis has only been partially investigated in preclinical and clinical research, while the development of IL-37 and IL-38 as novel anti-inflammatory drugs has not been considered adequately. Here, we review the key properties of the IL-1 family members and provide insights into targeting or promoting select cytokines as new therapeutic agents.
Collapse
Affiliation(s)
- E Papathanasiou
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, USA.,Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, USA
| | - P Conti
- Immunology Division, Postgraduate Medical School, University of Chieti, Pescara, Italy
| | - F Carinci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - D Lauritano
- Department of Medicine and Surgery, Centre of Neuroscience of Milan, University of Milano-Bicocca, Milan, Italy
| | - T C Theoharides
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA.,School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.,Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
573
|
Florian MC, Leins H, Gobs M, Han Y, Marka G, Soller K, Vollmer A, Sakk V, Nattamai KJ, Rayes A, Zhao X, Setchell K, Mulaw M, Wagner W, Zheng Y, Geiger H. Inhibition of Cdc42 activity extends lifespan and decreases circulating inflammatory cytokines in aged female C57BL/6 mice. Aging Cell 2020; 19:e13208. [PMID: 32755011 PMCID: PMC7511875 DOI: 10.1111/acel.13208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/27/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cdc42 is a small RhoGTPase regulating multiple functions in eukaryotic cells. The activity of Cdc42 is significantly elevated in several tissues of aged mice, while the Cdc42 gain‐of‐activity mouse model presents with a premature aging‐like phenotype and with decreased lifespan. These data suggest a causal connection between elevated activity of Cdc42, aging, and reduced lifespan. Here, we demonstrate that systemic treatment of aged (75‐week‐old) female C57BL/6 mice with a Cdc42 activity‐specific inhibitor (CASIN) for 4 consecutive days significantly extends average and maximum lifespan. Moreover, aged CASIN‐treated animals displayed a youthful level of the aging‐associated cytokines IL‐1β, IL‐1α, and INFγ in serum and a significantly younger epigenetic clock as based on DNA methylation levels in blood cells. Overall, our data show that systemic administration of CASIN to reduce Cdc42 activity in aged mice extends murine lifespan.
Collapse
Affiliation(s)
- Maria Carolina Florian
- Program of Regenerative Medicine, IDIBELL, Barcelona, Spain.,Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Hanna Leins
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Michael Gobs
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Yang Han
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Gina Marka
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Karin Soller
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Angelika Vollmer
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Kalpana J Nattamai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ahmad Rayes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Xueheng Zhao
- Division of Pathology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kenneth Setchell
- Division of Pathology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Medhanie Mulaw
- Institute of Experimental Cancer Research, Medical Faculty, University of Ulm, Ulm, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hartmut Geiger
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| |
Collapse
|
574
|
Lin X, Twelkmeyer T, Wang SY, Xu RN, Wang FS, Zhang C, Tang H. An immunopathogenic perspective of interleukin-1 signaling. Cell Mol Immunol 2020; 17:892-893. [PMID: 32467618 PMCID: PMC7471464 DOI: 10.1038/s41423-020-0475-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- Xinwen Lin
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- IPS-GWCMC Joint Center for Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Trix Twelkmeyer
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- IPS-GWCMC Joint Center for Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Si-Yu Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruo-Nan Xu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
| | - Hong Tang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
- IPS-GWCMC Joint Center for Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
- Pasteurien College, Suzhou University, Jiangsu, China.
| |
Collapse
|
575
|
Burns SS, Kapur R. Putative Mechanisms Underlying Cardiovascular Disease Associated with Clonal Hematopoiesis of Indeterminate Potential. Stem Cell Reports 2020; 15:292-306. [PMID: 32735822 PMCID: PMC7419714 DOI: 10.1016/j.stemcr.2020.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Characterized by the expansion of somatic mutations in the hematopoietic lineages of aging individuals, clonal hematopoiesis of indeterminate potential (CHIP) is a common condition that increases the risk of developing hematological malignancies and cardiovascular disease (CVD). The presence of CHIP-associated mutations in hematopoietic stem and progenitor cells (HSPCs) suggests that these mutations may alter the functions of the diverse hematopoietic lineages, many of which influence the pathogenesis of CVD. Inflammation may be a potential pathogenic mechanism, linking both CVD and hematological malignancy. However, it remains unknown whether CHIP-associated CVD and hematological malignancy are features of a common disease spectrum. The contributions of CHIP-associated mutations to both CVD and hematological malignancy underscore the importance of stem cell biology in pathogenesis and treatment. This review discusses possible mechanisms underlying the contributions of multiple hematopoietic lineages to CHIP-associated CVD and the putative pathogenic links between CHIP-associated CVD and hematological malignancy.
Collapse
Affiliation(s)
- Sarah S Burns
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Reuben Kapur
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Molecular Biology and Biochemistry, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
576
|
The soluble glycoprotein NMB (GPNMB) produced by macrophages induces cancer stemness and metastasis via CD44 and IL-33. Cell Mol Immunol 2020; 18:711-722. [PMID: 32728200 DOI: 10.1038/s41423-020-0501-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
In cancer, myeloid cells have tumor-supporting roles. We reported that the protein GPNMB (glycoprotein nonmetastatic B) was profoundly upregulated in macrophages interacting with tumor cells. Here, using mouse tumor models, we show that macrophage-derived soluble GPNMB increases tumor growth and metastasis in Gpnmb-mutant mice (DBA/2J). GPNMB triggers in the cancer cells the formation of self-renewing spheroids, which are characterized by the expression of cancer stem cell markers, prolonged cell survival and increased tumor-forming ability. Through the CD44 receptor, GPNMB mechanistically activates tumor cells to express the cytokine IL-33 and its receptor IL-1R1L. We also determined that recombinant IL-33 binding to IL-1R1L is sufficient to induce tumor spheroid formation with features of cancer stem cells. Overall, our results reveal a new paracrine axis, GPNMB and IL-33, which is activated during the cross talk of macrophages with tumor cells and eventually promotes cancer cell survival, the expansion of cancer stem cells and the acquisition of a metastatic phenotype.
Collapse
|
577
|
Wang LY, Liu ZX, Zhao LM, Huang LX, Qin YX, Su YQ, Zheng WQ, Wang F, Yan QP. Dual RNA-seq provides novel insight into the roles of dksA from Pseudomonas plecoglossicida in pathogen-host interactions with large yellow croakers ( Larimichthys crocea). Zool Res 2020; 41:410-422. [PMID: 32521576 PMCID: PMC7340521 DOI: 10.24272/j.issn.2095-8137.2020.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas plecoglossicida is a rod-shaped, gram-negative bacterium with flagella. It causes visceral white spot disease and high mortality in Larimichthys crocea during culture, resulting in serious economic loss. Analysis of transcriptome and quantitative real-time polymerase chain reaction (PCR) data showed that dksA gene expression was significantly up-regulated after 48 h of infection with Epinephelus coioides (log 2FC=3.12, P<0.001). RNAi of five shRNAs significantly reduced the expression of dksA in P. plecoglossicida, and the optimal silencing efficiency was 96.23%. Compared with wild-type strains, the symptoms of visceral white spot disease in L. crocea infected with RNAi strains were reduced, with time of death delayed by 48 h and mortality reduced by 25%. The dksA silencing led to a substantial down-regulation in cellular component-, flagellum-, and ribosome assembly-related genes in P. plecoglossicida, and the significant up-regulation of fliC may be a way in which virulence is maintained in P. plecoglossicida. The GO and KEGG results showed that RNAi strain infection in L. crocea led to the down-regulation of inflammatory factor genes in immune-related pathways, which were associated with multiple immune response processes. Results also showed that dksA was a virulence gene in P. plecoglossicida. Compared with the wild-type strains, RNAi strain infection induced a weaker immune response in L. crocea.
Collapse
Affiliation(s)
- Lu-Ying Wang
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Zi-Xu Liu
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Ling-Min Zhao
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Li-Xing Huang
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Ying-Xue Qin
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Yong-Quan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian 352000, China
| | - Wei-Qiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian 352000, China
| | - Fan Wang
- Fujian Provincial Fishery Technical Extension Center, Fuzhou, Fujian 350003, China
| | - Qing-Pi Yan
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian 352000, China. E-mail:
| |
Collapse
|
578
|
Ter Haar NM, Jansen MHA, Frenkel JF, Vastert SJ. How autoinflammation may turn into autoimmune inflammation: Insights from monogenetic and complex IL-1 mediated auto-inflammatory diseases. Clin Immunol 2020; 219:108538. [PMID: 32681980 DOI: 10.1016/j.clim.2020.108538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 06/14/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
IL-1 mediated auto-inflammatory diseases are characterised by episodes of unexplained fever, generalized and localized inflammation. The characteristic symptoms predominantly result from exaggerated activation of innate immune pathways. However, in some patients with typical IL-1 mediated diseases, chronic disease manifestations develop in the absence of acute inflammation, suggesting the involvement of adaptive immune pathways. We discuss clinical observations as well as novel insights in how chronic activation of innate immune pathways can lead to auto-immune disease features in patients with auto-inflammatory diseases and how we need to better understand these sequelae in order to improve treatment strategies.
Collapse
Affiliation(s)
- N M Ter Haar
- Department of Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Center for Translational Immunology (CTI), University Medical Center Utrecht, Utrecht, the Netherlands
| | - M H A Jansen
- Department of Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J F Frenkel
- Department of Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - S J Vastert
- Department of Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Center for Translational Immunology (CTI), University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
579
|
Chan AH, Schroder K. Inflammasome signaling and regulation of interleukin-1 family cytokines. J Exp Med 2020; 217:jem.20190314. [PMID: 31611248 PMCID: PMC7037238 DOI: 10.1084/jem.20190314] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/02/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022] Open
Abstract
Specific IL-1 family cytokines are initially expressed as inactive, cytosolic pro-forms. Chan and Schroder review inflammasome signaling and cell death decisions, mechanisms underpinning IL-1α, IL-1β, IL-18, and IL-37 maturation and release, and the functions of these cytokines in protective and pathological inflammation. Specific IL-1 family cytokines are expressed by cells as cytosolic pro-forms that require cleavage for their activity and cellular release. IL-1β, IL-18, and IL-37 maturation and secretion is governed by inflammatory caspases within signaling platforms called inflammasomes. By inducing pyroptosis, inflammasomes can also drive the release of the alarmin IL-1α. Recent advances have transformed our mechanistic understanding of inflammasome signaling, cell death decisions, and cytokine activation and secretion. Here, we provide an updated view of inflammasome signaling; mechanisms underpinning IL-1α, IL-1β, IL-18, and IL-37 maturation and release; and the functions of these cytokines in protective and pathological inflammation.
Collapse
Affiliation(s)
- Amy H Chan
- Institute for Molecular Bioscience and Institute for Molecular Bioscience Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience and Institute for Molecular Bioscience Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
580
|
Migliorini P, Italiani P, Pratesi F, Puxeddu I, Boraschi D. The IL-1 family cytokines and receptors in autoimmune diseases. Autoimmun Rev 2020; 19:102617. [PMID: 32663626 DOI: 10.1016/j.autrev.2020.102617] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022]
Abstract
The role of the cytokines and receptors of the IL-1 family in inflammation is well known. Several cytokines of the family have a powerful inflammatory activity, with IL-1β being the best-characterized factor. The inflammatory activity of IL-1 cytokines is regulated by other factors of the family, including receptor antagonists, soluble receptors and anti-inflammatory cytokines. The causative role of IL-1β is well-established in autoinflammatory diseases, mainly due to gain-of-function mutations in genes encoding the IL-1β-maturing inflammasome. Exaggerated production of IL-1β and IL-18 correlates with disease and disease severity also in several autoimmune and chronic inflammatory and degenerative pathologies, although it is not clear whether they have a causative role or are only involved in the downstream disease symptoms. A better understanding of the pathological role of IL-1 family cytokines in autoimmunity involves a deeper evaluation, in the pathological situations, of the possible anomalies in the feed-back anti-inflammatory mechanisms that in physiological reactions control and dump IL-1-mediated inflammation. Thus, we expect that IL-1 cytokines may be pathogenic only when, in addition to enhanced production, there is a concomitant failure of their control mechanisms. In this review we will examine the current knowledge on the role of IL-1 family cytokines in autoimmune and chronic inflammatory and degenerative diseases, with a particular focus on their endogenous control mechanisms, mainly based on soluble receptors/inhibitors and receptor antagonists. This will allow us to formulate a knowledge-based hypothesis on the involvement of IL-1 cytokines in the pathogenesis vs. the clinical features of these diseases.
Collapse
Affiliation(s)
- Paola Migliorini
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Federico Pratesi
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Ilaria Puxeddu
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
581
|
Italiani P, Mosca E, Della Camera G, Melillo D, Migliorini P, Milanesi L, Boraschi D. Profiling the Course of Resolving vs. Persistent Inflammation in Human Monocytes: The Role of IL-1 Family Molecules. Front Immunol 2020; 11:1426. [PMID: 32754155 PMCID: PMC7365847 DOI: 10.3389/fimmu.2020.01426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 06/03/2020] [Indexed: 12/18/2022] Open
Abstract
Monocytes and macrophages have a central role in all phases of an inflammatory reaction. To understanding the regulation of monocyte activation during a physiological or pathological inflammation, we propose two in vitro models that recapitulate the different phases of the reaction (recruitment, initiation, development, and resolution vs. persistence of inflammation), based on human primary blood monocytes exposed to sequential modifications of microenvironmental conditions. These models exclusively describe the functional development of blood-derived monocytes that first enter an inflammatory site. All reaction phases were profiled by RNA-Seq, and the two models were validated by studying the modulation of IL-1 family members. Genes were differentially modulated, and distinct clusters were identified during the various phases of inflammation. Pathway analysis revealed that both models were enriched in pathways involved in innate immune activation. We observe that monocytes acquire an M1-like profile during early inflammation, and switch to a deactivated M2-like profile during both the resolving and persistent phases. However, during persistent inflammation they partially maintain an M1 profile, although they lose the ability to produce inflammatory cytokines compared to M1 cells. The production of IL-1 family molecules by ELISA reflected the transcriptomic profiles in the distinct phases of the two inflammatory reactions. Based on the results, we hypothesize that persistence of inflammatory stimuli cannot maintain the M1 activated phenotype of incoming monocytes for long, suggesting that the persistent presence of M1 cells and effects in a chronically inflamed tissue is mainly due to activation of newly incoming cells. Moreover, being IL-1 family molecules mainly expressed and secreted by monocytes during the early stages of the inflammatory response (within 4-14 h), and the rate of their production decreasing during the late phase of both resolving and persistent inflammation, we suppose that IL-1 factors are key regulators of the acute defensive innate inflammatory reaction that precedes establishment of longer-term adaptive immunity, and are mainly related to the presence of recently recruited blood monocytes. The well-described role of IL-1 family cytokines and receptors in chronic inflammation is therefore most likely dependent on the continuous influx of blood monocytes into a chronically inflamed site.
Collapse
Affiliation(s)
- Paola Italiani
- Institute of Protein Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Ettore Mosca
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Giacomo Della Camera
- Institute of Protein Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Melillo
- Institute of Protein Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Diana Boraschi
- Institute of Protein Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
582
|
Pinteaux E, Abdulaal WH, Mufazalov IA, Humphreys NE, Simonsen-Jackson M, Francis S, Müller W, Waisman A. Cell-specific conditional deletion of interleukin-1 (IL-1) ligands and its receptors: a new toolbox to study the role of IL-1 in health and disease. J Mol Med (Berl) 2020; 98:923-930. [PMID: 32468079 PMCID: PMC7343756 DOI: 10.1007/s00109-020-01928-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023]
Abstract
The pro-inflammatory cytokine interleukin-1 (IL-1) plays a key role in many physiological processes and during the inflammatory and immune response to most common diseases. IL-1 exists as two agonists, IL-1α and IL-1β that bind to the only signaling IL-1 type 1 receptor (IL-1R1), while a second decoy IL-1 type 2 receptor (IL-1R2) binds both forms of IL-1 without inducing cell signaling. The field of immunology and inflammation research has, over the past 35 years, unraveled many mechanisms of IL-1 actions, through in vitro manipulation of the IL-1 system or by using genetically engineered mouse models that lack either member of the IL-1 family in ubiquitous constitutive manner. However, the limitation of global mouse knockout technology has significantly hampered our understanding of the precise mechanisms of IL-1 actions in animal models of disease. Here we report and review the recent generation of new conditional mouse mutants in which exons of Il1a, Il1b, Il1r1, and Il1r2 genes flanked by loxP sites (fl/fl) can be deleted in cell-/tissue-specific constitutive or inducible manner by Cre recombinase expression. Hence, IL-1αfl/fl, IL-1βfl/fl, IL-1R1fl/fl, and IL-1R2fl/fl mice constitute a new toolbox that will provide a step change in our understanding of the cell-specific role of IL-1 and its receptor in health and disease and the potential development of targeted IL-1 therapies.
Collapse
Affiliation(s)
- Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom.
| | - Wesam H Abdulaal
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, P.O.BOX 80203, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Ilgiz A Mufazalov
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University of Mainz, Langenbeckstrasse 1, Building 308A, 55131, Mainz, Germany
| | - Neil E Humphreys
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
- Epigenetics and Neurobiology Unit, Adriano Buzzati-Traverso Campus, EMBL-Rome, Via Ramarini, 3200015, Monterotondo, RM, Italy
| | - Maj Simonsen-Jackson
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Sheila Francis
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, University of Sheffield, S10 2RX, Sheffield, United Kingdom
| | - Werner Müller
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University of Mainz, Langenbeckstrasse 1, Building 308A, 55131, Mainz, Germany
| |
Collapse
|
583
|
Donnelly CR, Andriessen AS, Chen G, Wang K, Jiang C, Maixner W, Ji RR. Central Nervous System Targets: Glial Cell Mechanisms in Chronic Pain. Neurotherapeutics 2020; 17:846-860. [PMID: 32820378 PMCID: PMC7609632 DOI: 10.1007/s13311-020-00905-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Interactions between central glial cells and neurons in the pain circuitry are critical contributors to the pathogenesis of chronic pain. In the central nervous system (CNS), two major glial cell types predominate: astrocytes and microglia. Injuries or pathological conditions which evoke pain are concurrently associated with the presence of a reactive microglia or astrocyte state, which is characterized by a variety of changes in the morphological, molecular, and functional properties of these cells. In this review, we highlight the changes that reactive microglia and astrocytes undergo following painful injuries and insults and discuss the critical and interactive role these two cell types play in the initiation and maintenance of chronic pain. Additionally, we focus on several crucial mechanisms by which microglia and astrocytes contribute to chronic pain and provide commentary on the therapeutic promise of targeting these pathways. In particular, we discuss how the inflammasome in activated microglia drives maturation and release of key pro-inflammatory cytokines, which drive pain through neuronal- and glial regulations. Moreover, we highlight several potentially-druggable hemichannels and proteases produced by reactive microglia and astrocytes in pain states and discuss how these pathways regulate distinct phases during pain pathogenesis. We also review two emerging areas in chronic pain research: 1) sexually dimorphic glial cell signaling and 2) the role of oligodendrocytes. Finally, we highlight important considerations for potential pain therapeutics targeting glial cell mediators as well as questions that remain in our conceptual understanding of glial cell activation in pain states.
Collapse
Affiliation(s)
- Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Amanda S Andriessen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Gang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Kaiyuan Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - William Maixner
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
584
|
Transcriptome Based Profiling of the Immune Cell Gene Signature in Rat Experimental Colitis and Human IBD Tissue Samples. Biomolecules 2020; 10:biom10070974. [PMID: 32610492 PMCID: PMC7407160 DOI: 10.3390/biom10070974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic intestinal inflammation is characteristic of Inflammatory Bowel Disease (IBD) that is associated with the exaggerated infiltration of immune cells. A complex interplay of inflammatory mediators and different cell types in the colon are responsible for the maintenance of tissue homeostasis and affect pathological conditions. Gene expression alteration of colon biopsies from IBD patients and an in vivo rat model of colitis were examined by RNA-Seq and QPCR, while we used in silico methods, such as Ingenuity Pathway Analysis (IPA) application and the Immune Gene Signature (ImSig) package of R, to interpret whole transcriptome data and estimate immune cell composition of colon tissues. Transcriptome profiling of in vivo colitis model revealed the most significant activation of signaling pathways responsible for leukocyte recruitment and diapedesis. We observed significant alteration of genes related to glycosylation or sensing of danger signals and pro- and anti-inflammatory cytokines and chemokines, as well as adhesion molecules. We observed the elevated expression of genes that implies the accumulation of monocytes, macrophages, neutrophils and B cells in the inflamed colon tissue. In contrast, the rate of T-cells slightly decreased in the inflamed regions. Interestingly, natural killer and plasma cells do not show enrichment upon colon inflammation. In general, whole transcriptome analysis of the in vivo experimental model of colitis with subsequent bioinformatics analysis provided a better understanding of the dynamic changes in the colon tissue of IBD patients.
Collapse
|
585
|
Nasonov EL. IMMUNOPATHOLOGY AND IMMUNOPHARMACOTHERAPY OF CORONAVIRUS DISEASE 2019 (COVID-19): FOCUS ON INTERLEUKIN 6. RHEUMATOLOGY SCIENCE AND PRACTICE 2020. [DOI: 10.14412/1995-4484-2020-245-261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has drawn closer attention than ever before to the problems of the immunopathology of human diseases, many of which have been reflected when studying immune-mediated inflammatory rheumatic diseases (IIRDs). The hyperimmune response called a cytokine storm, the pathogenetic subtypes of which include hemophagocytic lymphohistiocytosis, macrophage activation syndrome, and cytokine release syndrome, is among the most serious complications of IIRDs or treatment for malignant neoplasms and may be a stage of COVID-19 progression. A premium is placed to interleukin-6 (IL-6) in the spectrum of cytokines involved in the pathogenesis of the cytokine storm syndrome. The clinical introduction of monoclonal antibodies (mAbs) that inhibit the activity of this cytokine (tocilizumab, sarilumab, etc.) is one of the major advances in the treatment of IIRDs and critical conditions within the cytokine storm syndrome in COVID-19. The review discusses data on the clinical and prognostic value of IL-6 and the effectiveness of anti-IL-6 receptor and anti-IL-6 mAbs, as well as prospects for personalized therapy of the cytokine storm syndrome in COVID-19.
Collapse
Affiliation(s)
- E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology; I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| |
Collapse
|
586
|
IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 2020; 583:609-614. [PMID: 32581358 PMCID: PMC7381364 DOI: 10.1038/s41586-020-2422-6] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Cytokines were the first modern immunotherapies to produce durable
responses in advanced cancer, but their application has been hampered by modest
efficacy and limited tolerability1,2. In an effort to
identify alternative cytokine pathways for immunotherapy, we found that
components of the Interleukin-18 (IL-18) pathway are upregulated on tumor
infiltrating lymphocytes (TIL), suggesting that IL-18 therapy could enhance
anti-tumor immunity. However, recombinant IL-18 previously failed to demonstrate
efficacy in clinical trials3.
Here we show that IL-18BP, a high-affinity IL-18 decoy receptor, is frequently
upregulated in diverse human and murine tumors and limits the anti-tumor
activity of IL-18 in mice. Using directed evolution, we engineered a
‘decoy-resistant’ IL-18 (DR-18), which maintains signaling
potential, but is impervious to inhibition by IL-18BP. In contrast to wild-type
IL-18, DR-18 exhibits potent anti-tumor efficacy in mouse tumor models by
promoting the development of poly-functional effector CD8+ T cells,
decreasing the prevalence of exhausted CD8+ T cells expressing TOX,
and expanding the pool of stem-like TCF1+ precursor CD8+ T
cells. DR-18 also enhances NK cell activity and maturation to effectively treat
anti-PD-1 resistant tumors that have lost MHC class I surface expression. These
results highlight the potential of the IL-18 pathway for immunotherapeutic
intervention and implicate IL-18BP as a major therapeutic barrier.
Collapse
|
587
|
Freeman TL, Swartz TH. Targeting the NLRP3 Inflammasome in Severe COVID-19. Front Immunol 2020; 11:1518. [PMID: 32655582 PMCID: PMC7324760 DOI: 10.3389/fimmu.2020.01518] [Citation(s) in RCA: 310] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/09/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the genus Betacoronavirus within the family Coronaviridae. It is an enveloped single-stranded positive-sense RNA virus. Since December of 2019, a global expansion of the infection has occurred with widespread dissemination of coronavirus disease 2019 (COVID-19). COVID-19 often manifests as only mild cold-like symptomatology, but severe disease with complications occurs in 15% of cases. Respiratory failure occurs in severe disease that can be accompanied by a systemic inflammatory reaction characterized by inflammatory cytokine release. In severe cases, fatality is caused by the rapid development of severe lung injury characteristic of acute respiratory distress syndrome (ARDS). Although ARDS is a complication of SARS-CoV-2 infection, it is not viral replication or infection that causes tissue injury; rather, it is the result of dysregulated hyperinflammation in response to viral infection. This pathology is characterized by intense, rapid stimulation of the innate immune response that triggers activation of the Nod-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome pathway and release of its products including the proinflammatory cytokines IL-6 and IL-1β. Here we review the literature that describes the pathogenesis of severe COVID-19 and NLRP3 activation and describe an important role in targeting this pathway for the treatment of severe COVID-19.
Collapse
MESH Headings
- Animals
- Betacoronavirus/metabolism
- COVID-19
- Coronavirus Infections/complications
- Coronavirus Infections/drug therapy
- Coronavirus Infections/metabolism
- Coronavirus Infections/virology
- Cytokine Release Syndrome/drug therapy
- Cytokine Release Syndrome/metabolism
- Furans
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Heterocyclic Compounds, 4 or More Rings/therapeutic use
- Humans
- Immunity, Innate
- Indenes
- Inflammasomes/antagonists & inhibitors
- Inflammasomes/metabolism
- Interleukin 1 Receptor Antagonist Protein/pharmacology
- Interleukin 1 Receptor Antagonist Protein/therapeutic use
- Interleukin-1beta/antagonists & inhibitors
- Interleukin-1beta/metabolism
- Mice
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Pandemics
- Pneumonia, Viral/complications
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/metabolism
- Pneumonia, Viral/virology
- Pyroptosis/drug effects
- Respiratory Distress Syndrome/drug therapy
- Respiratory Distress Syndrome/etiology
- Respiratory Distress Syndrome/metabolism
- SARS-CoV-2
- Sesquiterpenes, Guaiane/pharmacology
- Sesquiterpenes, Guaiane/therapeutic use
- Sulfonamides
- Sulfones/pharmacology
- Sulfones/therapeutic use
Collapse
Affiliation(s)
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
588
|
Hatami S, White CW, Qi X, Buchko M, Ondrus M, Kinnear A, Himmat S, Sergi C, Nagendran J, Freed DH. Immunity and Stress Responses Are Induced During Ex Situ Heart Perfusion. Circ Heart Fail 2020; 13:e006552. [PMID: 32498623 DOI: 10.1161/circheartfailure.119.006552] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ex situ heart perfusion (ESHP) preserves the donated heart in a perfused, beating condition preventing cold storage-related ischemia and provides a platform to evaluate myocardial viability during preservation. However, myocardial function declines gradually during ESHP. Extracorporeal circulation systems are associated with the induction of systemic inflammatory and stress responses. Our aim was to evaluate the incidence of inflammation and induction of endoplasmic reticulum stress responses during an extended period of ESHP. METHODS Cardiac function, myocardial tissue injury, markers of inflammation, oxidative stress, and endoplasmic reticulum stress were assessed in healthy pig hearts, perfused for 12 hours either in nonworking mode (non-WM=7) or working mode (WM, n=6). RESULTS Cardiac function declined during ESHP but was significantly better preserved in the hearts perfused in WM (median 11-hour cardiac index/1-hour cardiac index: WM=27% versus non-WM=9.5%, P=0.022). Myocardial markers of endoplasmic reticulum stress were expressed higher in ESHP hearts compared with in vivo samples. The proinflammatory cytokines and oxidized low-density lipoprotein significantly increased in the perfusate throughout the perfusion in both perfusion groups. The left ventricular expression of the cytokines and malondialdehyde was induced in non-WM, whereas it was not different between WM and in vivo. CONCLUSIONS Myocardial function declines during ESHP regardless of perfusion mode. However, ESHP in WM may lead to superior preservation of myocardial function and viability. Both inflammation and endoplasmic reticulum stress responses are significantly induced during ESHP and may contribute to the myocardial functional decline, representing a potential therapeutic target to improve the clinical donor heart preservation.
Collapse
Affiliation(s)
- Sanaz Hatami
- Departments of Surgery (S. Hatami, X.Q., M.B., M.O., A.K., S. Himmat, J.N., D.H.F.), University of Alberta, Edmonton, Canada.,Canadian Transplant Research Program (S. Hatami, X.Q., S. Himmat, J.N., D.H.F.)
| | | | - Xiao Qi
- Departments of Surgery (S. Hatami, X.Q., M.B., M.O., A.K., S. Himmat, J.N., D.H.F.), University of Alberta, Edmonton, Canada.,Canadian Transplant Research Program (S. Hatami, X.Q., S. Himmat, J.N., D.H.F.)
| | - Max Buchko
- Departments of Surgery (S. Hatami, X.Q., M.B., M.O., A.K., S. Himmat, J.N., D.H.F.), University of Alberta, Edmonton, Canada
| | - Martin Ondrus
- Departments of Surgery (S. Hatami, X.Q., M.B., M.O., A.K., S. Himmat, J.N., D.H.F.), University of Alberta, Edmonton, Canada
| | - Alexandra Kinnear
- Departments of Surgery (S. Hatami, X.Q., M.B., M.O., A.K., S. Himmat, J.N., D.H.F.), University of Alberta, Edmonton, Canada
| | - Sayed Himmat
- Departments of Surgery (S. Hatami, X.Q., M.B., M.O., A.K., S. Himmat, J.N., D.H.F.), University of Alberta, Edmonton, Canada.,Canadian Transplant Research Program (S. Hatami, X.Q., S. Himmat, J.N., D.H.F.)
| | - Consolato Sergi
- Laboratory Medicine and Pathology (C.S.), University of Alberta, Edmonton, Canada
| | - Jayan Nagendran
- Departments of Surgery (S. Hatami, X.Q., M.B., M.O., A.K., S. Himmat, J.N., D.H.F.), University of Alberta, Edmonton, Canada.,Alberta Transplant Institute, Edmonton, Canada (J.N., D.N.F.).,Canadian Transplant Research Program (S. Hatami, X.Q., S. Himmat, J.N., D.H.F.)
| | - Darren H Freed
- Departments of Surgery (S. Hatami, X.Q., M.B., M.O., A.K., S. Himmat, J.N., D.H.F.), University of Alberta, Edmonton, Canada.,Physiology (D.H.F.), University of Alberta, Edmonton, Canada.,Biomedical Engineering (D.H.F.), University of Alberta, Edmonton, Canada.,Alberta Transplant Institute, Edmonton, Canada (J.N., D.N.F.).,Canadian Transplant Research Program (S. Hatami, X.Q., S. Himmat, J.N., D.H.F.)
| |
Collapse
|
589
|
Hypomethylation of IL1RN and NFKB1 genes is linked to the dysbalance in IL1β/IL-1Ra axis in female patients with type 2 diabetes mellitus. PLoS One 2020; 15:e0233737. [PMID: 32470060 PMCID: PMC7259508 DOI: 10.1371/journal.pone.0233737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation has received considerable attention in the pathogenesis of type 2 diabetes mellitus (T2DM). Supporting this concept, enhanced expression of interleukin (IL)-1β and increased infiltration of macrophages are observed in pancreatic islets of patients with T2DM. Although IL-1 receptor antagonist (IL-1Ra) plays a major role in controlling of IL-1β-mediated inflammation, its counteraction effects and epigenetic alterations in T2DM are less studied. Thus, we aimed to analyze the DNA methylation status in IL1RN, RELA (p65) and NFKB1 (p50) genes in peripheral blood mononuclear cells (PBMCs) from treated T2DM patients (n = 35) and age-/sex- matched healthy controls (n = 31). Production of IL-1β and IL-1Ra was analyzed in plasma and supernatants from LPS-induced PBMCs. Immunomodulatory effects of IL-1β and IL-1Ra were studied on THP-1 cells. Average DNA methylation level of IL1RN and NFKB1 gene promoters was significantly decreased in T2DM patients in comparison with healthy controls (P< 0.05), which was associated with the increased IL-1Ra (P< 0.001) and IL-1β (P = 0.039) plasma levels in T2DM patients. Negative association between average methylation of IL1RN gene and IL-1Ra plasma levels were observed in female T2DM patients. Methylation of NFKB1 gene was negatively correlated with IL-1Ra levels in the patients and positively with IL-1β levels in female patients. LPS-stimulated PBMCs from female patients failed to raise IL-1β production, while the cells from healthy females increased IL-1β production in comparison with unstimulated cells (P< 0.001). Taken together, the findings suggest that hypomethylation of IL1RN and NFKB1 gene promoters may promote the increased IL-1β/IL-1Ra production and regulate chronic inflammation in T2DM. Further studies are necessary to elucidate the causal direction of these associations and potential role of IL-1Ra in anti-inflammatory processes in treated patients with T2DM.
Collapse
|
590
|
Abstract
PURPOSE OF REVIEW IL-18 is a pleiotropic cytokine involved in the regulation of innate and adaptive immune responses. IL-18 pro-inflammatory activities are finely regulated in vivo by the inhibitory effects of the soluble IL-18-binding protein (IL-18BP). The elevation of circulating levels of IL-18 has been described in children with systemic juvenile idiopathic arthritis (sJIA). In the recent years, the role of IL-18 in the pathogenesis of secondary haemophagocytic lymphohistiocytosis (sHLH), also referred to as macrophage activation syndrome (MAS), in the context of autoinflammatory diseases, including sJIA, is emerging. RECENT FINDINGS A large number of studies in patients and animal models pointed to the imbalance in IL-18/IL-18BP levels, causing increased systemic levels of free bioactive IL-18, as a predisposing factor in the development of MAS. Although the exact mechanisms involved in the development of MAS are not clearly understood, increasing evidence demonstrate the role of IL-18 in upregulating the production of interferon (IFN)-γ. SUMMARY On the basis of the first emerging data on the possibility of blocking IL-18, we here discuss the scientific rationale for neutralizing the IL-18/IFNγ axis in the prevention and treatment of sHLH and MAS.
Collapse
|
591
|
Warm Gutta-Percha Techniques Regulate Cell Viability, Heat Shock, and Mineralized Tissue-associated Proteins of Cementoblasts. J Endod 2020; 46:957-963. [PMID: 32439225 DOI: 10.1016/j.joen.2020.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/21/2020] [Accepted: 04/03/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The aim of this study was to determine the effect of the continuous wave of condensation technique (CWCT) and the thermoplastic gutta-percha injection (TGI) technique on the messenger RNA (mRNA) expressions of heat shock proteins (HSPs) and mineralized tissue-associated proteins of the immortalized mouse cementoblasts (OCCM.30). METHODS Crowns of human premolar teeth with single and straight canals were removed. The root canals were prepared up to the ProTaper Next X5 file (Dentsply Maillefer, Ballaigues, Switzerland) in combination with 2 mL 2.5% sodium hypochlorite solution. Roots (12 ± 2 mm height) were sterilized (121°C for 20 minutes) and placed vertically to the cell culture dishes using a tissue culture insert by opening holes according to the root diameter after the removal of 1 mm from the apex for appropriate adaptation to the petri dish surfaces. Six groups were created: control 1 (without teeth), control 2 (with teeth), AH Plus (Dentsply DeTrey, Konstanz, Germany), single-cone obturation (SC), CWCT, and thermoplastic gutta-percha injection technique (TGI). The viability of the OCCM.30 cells was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability experiments at 24 and 96 hours. The mRNA expression of HSP27, HSP70, and HSP90 and mineralized tissue markers (bone sialoprotein, osteocalcin, runt-related transcription factor 2, type I collagen, and alkaline phosphatase) was evaluated by real-time polymerase chain reaction. RESULTS Reduced OCCM.30 cell viability was observed in all groups except the control groups. When the SC technique and CWCT and TGI groups were compared, it was observed that heat had a significant negative effect on cell viability (P < .05). A reduction in the mRNA expressions of HSP27, HSP70, and HSP90 was recognized in all test groups when compared with the control 1 group (P < .01). When the warm gutta-percha techniques were compared with the SC technique, a decrease in mRNA expression of HSP27 and HSP90 was noted (P < .01). The HSP70 transcript was similar in the CWCT group and the SC group. Higher HSP70 mRNA expression was observed in the TGI group compared with the SC group. In all groups except the control 1 group, bone sialoprotein, osteocalcin, runt-related transcription factor 2, type I collagen, and alkaline phosphatase mineralized tissue markers were affected, but this negative effect was higher in the heat-treated groups (P < .05). CONCLUSIONS Within the limitations of this study, it was concluded that warm gutta-percha techniques reduced the mRNA expressions of the genes for HSPs and mineralized tissue-associated proteins of cementoblasts. Further animal studies are needed to clarify the effect of heat on the behavior of cementoblasts histologically in short- and long-term periods.
Collapse
|
592
|
Sorbaria kirilowii Ethanol Extract Exerts Anti-Inflammatory Effects In Vitro and In Vivo by Targeting Src/Nuclear Factor (NF)-κB. Biomolecules 2020; 10:biom10050741. [PMID: 32397672 PMCID: PMC7277364 DOI: 10.3390/biom10050741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a fundamental process for defending against foreign antigens that involves various transcriptional regulatory processes as well as molecular signaling pathways. Despite its protective roles in the human body, the activation of inflammation may also convey various diseases including autoimmune disease and cancer. Sorbaria kirilowii is a plant originating from Asia, with no anti-inflammatory activity reported. In this paper, we discovered an anti-inflammatory effect of S. kirilowii ethanol extract (Sk-EE) both in vivo and in vitro. In vitro effects of Sk-EE were determined with lipopolysaccharide (LPS)-stimulated RAW264.7 cells, while ex vivo analysis was performed using peritoneal macrophages of thioglycollate (TG)-induced mice. Sk-EE significantly reduced the nitric oxide (NO) production of induced macrophages and inhibited the expression of inflammation-related cytokines and the activation of transcription factors. Moreover, treatment with Sk-EE also decreased the activation of proteins involved in nuclear factor (NF)-κB signaling cascade; among them, Src was a prime target of Sk-EE. For in vivo assessment of the anti-inflammatory effect of Sk-EE, HCl/EtOH was given by the oral route to mice for gastritis induction. Sk-EE injection dose-dependently reduced the inflammatory lesion area of the stomach in gastritis-induced mice. Taking these results together, Sk-EE exerts its anti-inflammatory activity by regulating intracellular NF-κB signaling pathways and also shows an authentic effect on reducing gastric inflammation.
Collapse
|
593
|
Ni S, Shen Z, Zhang P, Liu G. Enhanced performance of an electrochemical aptasensor for real-time detection of vascular endothelial growth factor (VEGF) by nanofabrication and ratiometric measurement. Anal Chim Acta 2020; 1121:74-82. [PMID: 32493592 DOI: 10.1016/j.aca.2020.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Achieving a biosensing interface without baseline drift caused by variables in matrix samples is essential for real-time detection of analytes. In this study, we developed a molecular beacon based electrochemical aptasensor to realize the ratiometric signal quantification of VEGF in serum by surface modification of nanocomposites of graphene oxide/methylene blue (GO/MB) and AuNPs followed by the attachment of ferrocene-labeled aptamer (aptamer-Fc) against VEGF. The presence of VEGF can trigger the configuration change of aptamer-Fc, resulting in the redox probe Fc being far away from the electrode surface to attenuate the electrochemical communication between electrode and Fc. Meanwhile, signal of MB also decreased due to the impediment of aptamer-Fc to electron transfer passage. The achieved GC-rGO/MB-AuNPs-aptamer-Fc sensing interface was successfully used for the sensitive detection of VEGF in real-time with a linear detection range 2-500 pg mL-1 and detection limit of 0.1 pg mL-1 based on ratiometric dual signal (Fc and MB) read-out. It was observed loading MB and AuNPs to the GO based sensing interface was favorable to enhance the analytical performance in terms of sensitivity and capability to effectively eliminate background interference. This electrochemical aptasensor provides a universal and reliable biosensing platform which is potential for real-time and sensitive tracking of various cytokines in vivo.
Collapse
Affiliation(s)
- Shengnan Ni
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Zhuping Shen
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guozhen Liu
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China; Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, 2052, Australia; Australian Centre for NanoMedicine and UNSW Digital Grid Futures Institute, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
594
|
Alterations in Serum Adropin, Adiponectin, and Proinflammatory Cytokine Levels in OSAS. Can Respir J 2020; 2020:2571283. [PMID: 32454912 PMCID: PMC7225856 DOI: 10.1155/2020/2571283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 01/12/2023] Open
Abstract
Objective The present study was planned to examine the relationships between obstructive sleep apnea syndrome (OSAS) and the newly revealed adipokines adropin and adiponectin concentrations that display significant metabolic and cardiovascular functions and the levels of proinflammatory cytokine levels. Method A total of 166 overweight and obese male patients with a body mass index (BMI) >27 kg/m2 were included in the study. Among study participants, 84 were recently diagnosed with OSAS by polysomnography with an apnea-hypopnea index (AHI) ≥5, and 82 were nonapneic with normal polysomnography (AHI<5) findings. The serum adropin and adiponectin levels of all cases were analyzed via the enzyme-linked immunosorbent assay method. Serum interleukin-1 (IL-1) beta and tumor necrotizing factor-alpha (TNF-alpha) levels were determined using Luminex cytokine multiplex analyses. Results The mean age of the OSAS patients was 50.9 ± 5.7 years and BMI was 32.4 ± 6.0 kg/m2, and there was no statistically significant difference determined with the control group (49.3 ± 5.8 years and 30.6 ± 5, 6 kg/m2) (p > 0.05). There were no statistically significant differences between the OSAS and control groups concerning total cholesterol, triglyceride, low-density lipoprotein (LDL), high-density lipoprotein (HDL), and glucose levels. Adiponectin was lower in the OSAS group at a statistically significant level in comparison with the control group and was related at a statistically significant level to OSAS intensity. Adropin concentration was determined to be higher in the OSAS group at a statistically significant level in comparison with the control group. Conclusion The results of our study suggest that increased adropin concentration may be an indicator of endothelium dysfunction in OSAS patients. Serum adropin and adiponectin levels may be new bioindicators used for diagnosis and risk assessment in OSAS patients.
Collapse
|
595
|
Kathamuthu GR, Munisankar S, Banurekha VV, Nair D, Sridhar R, Babu S. Filarial Coinfection Is Associated With Higher Bacterial Burdens and Altered Plasma Cytokine and Chemokine Responses in Tuberculous Lymphadenitis. Front Immunol 2020; 11:706. [PMID: 32373129 PMCID: PMC7186434 DOI: 10.3389/fimmu.2020.00706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Abstract
Filarial infections are known to modulate cytokine responses in pulmonary tuberculosis by their propensity to induce Type 2 and regulatory cytokines. However, very little is known about the effect of filarial infections on extra-pulmonary forms of tuberculosis. Thus, we have examined the effect of filarial infections on the plasma levels of various families of (IL-1, IL-12, γC, and regulatory) cytokines and (CC and CXC) chemokines in tuberculous lymphadenitis coinfection. We also measured lymph node culture grades in order to assess the burden of Mycobacterium tuberculosis in the two study groups [Fil+ (n = 67) and Fil– (n = 109)]. Our data reveal that bacterial burden was significantly higher in Fil+ compared to Fil– individuals. Plasma levels of IL-1 family (IL-1α, IL-β, IL-18) cytokines were significantly lower with the exception of IL-33 in Fil+ compared to Fil– individuals. Similarly, plasma levels of IL-12 family cytokines -IL-12 and IL-23 were significantly reduced, while IL-35 was significantly elevated in Fil+ compared to Fil– individuals. Filarial infection was also associated with diminished levels of IL-2, IL-9 and enhanced levels of IL-4, IL-10, and IL-1Ra. Similarly, the Fil+ individuals were linked to elevated levels of different CC (CCL-1, CCL-2, CCL-3, CCL-11) and CXC (CXCL-2, CXCL-8, CXCL-9, CXCL-11) chemokines. Therefore, we conclude that filarial infections exert powerful bystander effects on tuberculous lymphadenitis, effects including modulation of protective cytokines and chemokines with a direct impact on bacterial burdens.
Collapse
Affiliation(s)
- Gokul Raj Kathamuthu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India.,National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Saravanan Munisankar
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | | | - Dina Nair
- National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | | | - Subash Babu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
596
|
Skuland T, Låg M, Gutleb AC, Brinchmann BC, Serchi T, Øvrevik J, Holme JA, Refsnes M. Pro-inflammatory effects of crystalline- and nano-sized non-crystalline silica particles in a 3D alveolar model. Part Fibre Toxicol 2020; 17:13. [PMID: 32316988 PMCID: PMC7175518 DOI: 10.1186/s12989-020-00345-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/07/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Silica nanoparticles (SiNPs) are among the most widely manufactured and used nanoparticles. Concerns about potential health effects of SiNPs have therefore risen. Using a 3D tri-culture model of the alveolar lung barrier we examined effects of exposure to SiNPs (Si10) and crystalline silica (quartz; Min-U-Sil) in the apical compartment consisting of human alveolar epithelial A549 cells and THP-1-derived macrophages, as well as in the basolateral compartment with Ea.hy926 endothelial cells. Inflammation-related responses were measured by ELISA and gene expression. RESULTS Exposure to both Si10 and Min-U-Sil induced gene expression and release of CXCL8, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α) and interleukin-1β (IL-1β) in a concentration-dependent manner. Cytokine/chemokine expression and protein levels were highest in the apical compartment. Si10 and Min-U-Sil also induced expression of adhesion molecules ICAM-1 and E-selectin in the apical compartment. In the basolateral endothelial compartment we observed marked, but postponed effects on expression of all these genes, but only at the highest particle concentrations. Geneexpressions of heme oxygenase-1 (HO-1) and the metalloproteases (MMP-1 and MMP-9) were less affected. The IL-1 receptor antagonist (IL-1RA), markedly reduced effects of Si10 and Min-U-Sil exposures on gene expression of cytokines and adhesion molecules, as well as cytokine-release in both compartments. CONCLUSIONS Si10 and Min-U-Sil induced gene expression and release of pro-inflammatory cytokines/adhesion molecules at both the epithelial/macrophage and endothelial side of a 3D tri-culture. Responses in the basolateral endothelial cells were only induced at high concentrations, and seemed to be mediated by IL-1α/β released from the apical epithelial cells and macrophages.
Collapse
Affiliation(s)
- Tonje Skuland
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway.
| | - Marit Låg
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Grand Duchy of Luxembourg, Luxembourg
| | - Bendik C Brinchmann
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Grand Duchy of Luxembourg, Luxembourg
| | - Johan Øvrevik
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Jørn A Holme
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway
| | - Magne Refsnes
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway
| |
Collapse
|
597
|
Li W, Ding F, Zhai Y, Tao W, Bi J, Fan H, Yin N, Wang Z. IL-37 is protective in allergic contact dermatitis through mast cell inhibition. Int Immunopharmacol 2020; 83:106476. [PMID: 32278131 DOI: 10.1016/j.intimp.2020.106476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/20/2022]
Abstract
Allergic contact dermatitis (ACD), characterized predominantly by erythema, vesiculation, and pruritus, is a T cell-mediated skin inflammatory condition. Among immune cells involved in ACD, mast cells (MCs) play an essential role in its pathogenesis. As an inhibitor of proinflammatory IL-1 family members, interleukin 37 (IL-37) has been shown to ameliorate inflammatory responses in various allergic diseases. In this study, we assessed the immunomodulatory effect of IL-37 on allergic inflammation using a 2,4-dinitrofluorobenzene (DNFB)-induced ACD rat model and isolated rat peritoneal mast cells (RPMCs). Systematic application of IL-37 significantly relieved ear swelling, reduced inflammatory cell infiltration, decreased inflammatory cytokine production (TNF-α, IL-1β, IFN-γ, and IL-13), inhibited MC recruitment, lowered IgE levels, and reduced IL-33 production in the local ear tissues with DNFB challenge. Additionally, RPMCs isolated from ACD rats with IL-37 intervention showed downregulation of IL-6, TNF-α, IL-13, and MCP-1 production following IL-33 stimulation, and reduction of β-hexosaminidase and histamine release under DNP-IgE/HSA treatment. Moreover, IL-37 treatment also significantly restrained NF-κB activation and P38 phosphorylation in ACD RPMCs. SIS3, a specific Smad3 inhibitor, abolished the suppressive effects of IL-37 on MC-mediated allergic inflammation, suggesting the participation of Smad3 in the anti-ACD effect of IL-37. These findings indicated that IL-37 protects against IL-33-regulated MC inflammatory responses via inhibition of NF-κB and P38 MAPK activation accompanying the regulation of Smad3 in rats with ACD.
Collapse
Affiliation(s)
- Weihua Li
- Department of Cardiology, Affiliated Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Fengmin Ding
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yi Zhai
- Department of Cardiology, Affiliated Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Wenting Tao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jing Bi
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hong Fan
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Nina Yin
- Department of Anatomy, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhigang Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
598
|
Zhang M, Liu L, Lin X, Wang Y, Li Y, Guo Q, Li S, Sun Y, Tao X, Zhang D, Lv X, Zheng L, Ge L. A Translocation Pathway for Vesicle-Mediated Unconventional Protein Secretion. Cell 2020; 181:637-652.e15. [PMID: 32272059 DOI: 10.1016/j.cell.2020.03.031] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/22/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Many cytosolic proteins lacking a signal peptide, called leaderless cargoes, are secreted through unconventional secretion. Vesicle trafficking is a major pathway involved. It is unclear how leaderless cargoes enter into the vesicle. Here, we find a translocation pathway regulating vesicle entry and secretion of leaderless cargoes. We identify TMED10 as a protein channel for the vesicle entry and secretion of many leaderless cargoes. The interaction of TMED10 C-terminal region with a motif in the cargo accounts for the selective release of the cargoes. In an in vitro reconstitution assay, TMED10 directly mediates the membrane translocation of leaderless cargoes into the liposome, which is dependent on protein unfolding and enhanced by HSP90s. In the cell, TMED10 localizes on the endoplasmic reticulum (ER)-Golgi intermediate compartment and directs the entry of cargoes into this compartment. Furthermore, cargo induces the formation of TMED10 homo-oligomers which may act as a protein channel for cargo translocation.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qing Guo
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuxin Sun
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuan Tao
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Di Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiachen Lv
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Zheng
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
599
|
Mitochondrial Damage and Necroptosis in Aging Cochlea. Int J Mol Sci 2020; 21:ijms21072505. [PMID: 32260310 PMCID: PMC7177801 DOI: 10.3390/ijms21072505] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Age-related hearing loss (ARHL) is an irreversible, progressive neurodegenerative disorder and is presently untreatable. Previous studies using animal models have suggested mitochondrial damage and programmed cell death to be involved with ARHL. Thus, we further investigated the pathophysiologic role of mitochondria and necroptosis in aged C57BL/6J male mice. Aged mice (20 months old) exhibited a significant loss of hearing, number of hair cells, neuronal fibers, and synaptic ribbons compared to young mice. Ultrastructural analysis of aged cochleae revealed damaged mitochondria with absent or disorganized cristae. Aged mice also showed significant decrease in cochlear blood flow, and exhibited increase in gene expression of proinflammatory cytokines (IL-1β, IL-6, and TNF-α), receptor-interacting serine/threonine-protein kinase 1 and 3 (RIPK1 and RIPK3) and the pseudokinase mixed-lineage kinase domain-like (MLKL). Immunofluorescence (IF) assays of cytochrome C oxidase I (COX1) confirmed mitochondrial dysfunction in aged cochleae, which correlated with the degree of mitochondrial morphological damage. IF assays also revealed localization and increased expression of RIPK3 in sensorineural tissues that underwent significant necroptosis (inner and outer hair cells and stria vascularis). Together, our data shows that the aging cochlea exhibits damaged mitochondria, enhanced synthesis of proinflammatory cytokines, and provides new evidence of necroptosis in the aging cochlea in in vivo.
Collapse
|
600
|
Sanchez‐Garrido J, Slater SL, Clements A, Shenoy AR, Frankel G. Vying for the control of inflammasomes: The cytosolic frontier of enteric bacterial pathogen-host interactions. Cell Microbiol 2020; 22:e13184. [PMID: 32185892 PMCID: PMC7154749 DOI: 10.1111/cmi.13184] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
Enteric pathogen-host interactions occur at multiple interfaces, including the intestinal epithelium and deeper organs of the immune system. Microbial ligands and activities are detected by host sensors that elicit a range of immune responses. Membrane-bound toll-like receptors and cytosolic inflammasome pathways are key signal transducers that trigger the production of pro-inflammatory molecules, such as cytokines and chemokines, and regulate cell death in response to infection. In recent years, the inflammasomes have emerged as a key frontier in the tussle between bacterial pathogens and the host. Inflammasomes are complexes that activate caspase-1 and are regulated by related caspases, such as caspase-11, -4, -5 and -8. Importantly, enteric bacterial pathogens can actively engage or evade inflammasome signalling systems. Extracellular, vacuolar and cytosolic bacteria have developed divergent strategies to subvert inflammasomes. While some pathogens take advantage of inflammasome activation (e.g. Listeria monocytogenes, Helicobacter pylori), others (e.g. E. coli, Salmonella, Shigella, Yersinia sp.) deploy a range of virulence factors, mainly type 3 secretion system effectors, that subvert or inhibit inflammasomes. In this review we focus on inflammasome pathways and their immune functions, and discuss how enteric bacterial pathogens interact with them. These studies have not only shed light on inflammasome-mediated immunity, but also the exciting area of mammalian cytosolic immune surveillance.
Collapse
Affiliation(s)
| | | | | | - Avinash R. Shenoy
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| | - Gad Frankel
- Department of Life SciencesImperial College LondonLondonUK
| |
Collapse
|