551
|
Chung NS, Wasan KM. Potential role of the low-density lipoprotein receptor family as mediators of cellular drug uptake. Adv Drug Deliv Rev 2004; 56:1315-34. [PMID: 15109771 DOI: 10.1016/j.addr.2003.12.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Accepted: 12/20/2003] [Indexed: 12/12/2022]
Abstract
We highlight the importance of the low-density lipoprotein (LDL) receptor family and its pharmaceutical implications in the field of drug delivery. The members of the LDL receptor family are a group of cell surface receptors that transport a number of macromolecules into cells through a process called receptor-mediated endocytosis. This process involves the receptor recognizing a ligand from the extracellular membrane (ECM), internalizing it through clathrin-coated pits and degrading it upon fusion with lysosomes. There are nine members of the receptor family, which include the LDL receptor, low-density lipoprotein-related protein (LRP), megalin, very low-density lipoprotein (VLDL) receptor, apoER2 and sorLA/LRP11, LRP1b, MEGF7, LRP5/6; the former six having been identified in humans. Each member is expressed in a number of different tissues and has a wide range of different ligands, not specific to the recognition of the LDL particle. Thus, rather than the original hypothesis that the receptor is only a mediator of cholesterol uptake, it may also be involved in a number of other physiological functions, including the progression of certain disease states and, potentially, cellular drug uptake. A number of studies have suggested that the LDL receptors are involved in endocytosis of drugs and drug formulations including aminoglycosides, anionic liposomes and cyclosporine A (CsA). This article reviews the importance of lipoproteins as a drug delivery system and how LDL receptors are relevant to the design and targeting of specific drugs.
Collapse
Affiliation(s)
- Nancy S Chung
- Faculty of Pharmaceutical Sciences, Division of Pharmaceutics and Biopharmaceutics, University of British Columbia, 2146 East Mall Ave., Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
552
|
Yang Y. Wnts and wing: Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis. ACTA ACUST UNITED AC 2004; 69:305-17. [PMID: 14745971 DOI: 10.1002/bdrc.10026] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the past twenty years, secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development from hydra to human. In the developing vertebrate limb, Wnt signaling is required for limb bud initiation, early limb patterning (which is governed by several well-characterized signaling centers), and, finally, late limb morphogenesis events. Wnt ligands are unique, in that they can activate several different receptor-mediated signal transduction pathways. The most extensively studied Wnt pathway is the canonical Wnt pathway, which controls gene expression by stabilizing beta-catenin in regulating a diverse array of biological processes. Recently, more attention has been given to the noncanonical Wnt pathway, which is beta-catenin-independent. The noncanonical Wnt pathway signals through activating Ca(2+) flux, JNK activation, and both small and heterotrimeric G proteins, to induce changes in gene expression, cell adhesion, migration, and polarity. Abnormal Wnt signaling leads to developmental defects and human diseases affecting either tissue development or homeostasis. Further understanding of the biological function and signaling mechanism of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. This review provides a critical perspective on how Wnt signaling regulates different developmental processes. As Wnt signaling in tumor formation has been reviewed extensively elsewhere, this part is not included in the review of the clinical significance of Wnt signaling.
Collapse
Affiliation(s)
- Yingzi Yang
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA.
| |
Collapse
|
553
|
Lammi L, Arte S, Somer M, Järvinen H, Lahermo P, Thesleff I, Pirinen S, Nieminen P. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 2004; 74:1043-50. [PMID: 15042511 PMCID: PMC1181967 DOI: 10.1086/386293] [Citation(s) in RCA: 479] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 02/13/2004] [Indexed: 12/11/2022] Open
Abstract
Wnt signaling regulates embryonic pattern formation and morphogenesis of most organs. Aberrations of regulation of Wnt signaling may lead to cancer. Here, we have used positional cloning to identify the causative mutation in a Finnish family in which severe permanent tooth agenesis (oligodontia) and colorectal neoplasia segregate with dominant inheritance. Eleven members of the family lacked at least eight permanent teeth, two of whom developed only three permanent teeth. Colorectal cancer or precancerous lesions of variable types were found in eight of the patients with oligodontia. We show that oligodontia and predisposition to cancer are caused by a nonsense mutation, Arg656Stop, in the Wnt-signaling regulator AXIN2. In addition, we identified a de novo frameshift mutation 1994-1995insG in AXIN2 in an unrelated young patient with severe tooth agenesis. Both mutations are expected to activate Wnt signaling. The results provide the first evidence of the importance of Wnt signaling for the development of dentition in humans and suggest that an intricate control of Wnt-signal activity is necessary for normal tooth development, since both inhibition and stimulation of Wnt signaling may lead to tooth agenesis. Our findings introduce a new gene for hereditary colorectal cancer and suggest that tooth agenesis may be an indicator of cancer susceptibility.
Collapse
Affiliation(s)
- Laura Lammi
- Institutes of Dentistry and Biotechnology and Finnish Genome Center, University of Helsinki; Departments of Oral and Maxillofacial Diseases and Surgery, Helsinki University Central Hospital; and Family Federation of Finland, Helsinki
| | - Sirpa Arte
- Institutes of Dentistry and Biotechnology and Finnish Genome Center, University of Helsinki; Departments of Oral and Maxillofacial Diseases and Surgery, Helsinki University Central Hospital; and Family Federation of Finland, Helsinki
| | - Mirja Somer
- Institutes of Dentistry and Biotechnology and Finnish Genome Center, University of Helsinki; Departments of Oral and Maxillofacial Diseases and Surgery, Helsinki University Central Hospital; and Family Federation of Finland, Helsinki
| | - Heikki Järvinen
- Institutes of Dentistry and Biotechnology and Finnish Genome Center, University of Helsinki; Departments of Oral and Maxillofacial Diseases and Surgery, Helsinki University Central Hospital; and Family Federation of Finland, Helsinki
| | - Päivi Lahermo
- Institutes of Dentistry and Biotechnology and Finnish Genome Center, University of Helsinki; Departments of Oral and Maxillofacial Diseases and Surgery, Helsinki University Central Hospital; and Family Federation of Finland, Helsinki
| | - Irma Thesleff
- Institutes of Dentistry and Biotechnology and Finnish Genome Center, University of Helsinki; Departments of Oral and Maxillofacial Diseases and Surgery, Helsinki University Central Hospital; and Family Federation of Finland, Helsinki
| | - Sinikka Pirinen
- Institutes of Dentistry and Biotechnology and Finnish Genome Center, University of Helsinki; Departments of Oral and Maxillofacial Diseases and Surgery, Helsinki University Central Hospital; and Family Federation of Finland, Helsinki
| | - Pekka Nieminen
- Institutes of Dentistry and Biotechnology and Finnish Genome Center, University of Helsinki; Departments of Oral and Maxillofacial Diseases and Surgery, Helsinki University Central Hospital; and Family Federation of Finland, Helsinki
| |
Collapse
|
554
|
Cong F, Schweizer L, Varmus H. Casein kinase Iepsilon modulates the signaling specificities of dishevelled. Mol Cell Biol 2004; 24:2000-11. [PMID: 14966280 PMCID: PMC350543 DOI: 10.1128/mcb.24.5.2000-2011.2004] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Wnt signaling is critical to many aspects of development, and aberrant activation of the Wnt signaling pathway can cause cancer. Dishevelled (Dvl) protein plays a central role in this pathway by transducing the signal from the Wnt receptor complex to the beta-catenin destruction complex. Dvl also plays a pivotal role in the planar cell polarity pathway that involves the c-Jun N-terminal kinase (JNK). How functions of Dvl are regulated in these two distinct pathways is not clear. We show that deleting the C-terminal two-thirds of Dvl, which includes the PDZ and DEP domains and is essential for Dvl-induced JNK activation, rendered the molecule a much more potent activator of the beta-catenin pathway. We also found that casein kinase Iepsilon (CKIepsilon), a previously identified positive regulator of Wnt signaling, stimulated Dvl activity in the Wnt pathway, but dramatically inhibited Dvl activity in the JNK pathway. Consistent with this, overexpression of CKIepsilon in Drosophila melanogaster stimulated Wnt signaling and disrupted planar cell polarity. We also observed a correlation between the localization and the signaling activity of Dvl in the beta-catenin pathway and the JNK pathway. Furthermore, by using RNA interference, we demonstrate that the Drosophila CKIepsilon homologue Double time positively regulates the beta-catenin pathway through Dvl and negatively regulates the Dvl-induced JNK pathway. We suggest that CKIepsilon functions as a molecular switch to direct Dvl from the JNK pathway to the beta-catenin pathway, possibly by altering the conformation of the C terminus of Dvl.
Collapse
Affiliation(s)
- Feng Cong
- Program in Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | |
Collapse
|
555
|
Hoang BH, Kubo T, Healey JH, Sowers R, Mazza B, Yang R, Huvos AG, Meyers PA, Gorlick R. Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer 2004; 109:106-11. [PMID: 14735475 DOI: 10.1002/ijc.11677] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Wingless-type (Wnt) family of proteins and its coreceptor LRP5 have recently been implicated in human skeletal development. Wnt pathway modulates cell fate and cell proliferation during embryonic development and carcinogenesis through activation of receptor-mediated signaling. Osteosarcoma (OS) is a bone-forming tumor of mesenchymal origin whose growth control has been linked to autocrine or paracrine stimulation by several growth factor families. We examined 4 OS cell lines for WNT1, WNT4, WNT5A, WNT7A, WNT11, FZD1-10 and LRP5 expression by reverse transcription polymerase chain reaction (RT-PCR). In addition, RT-PCR for LRP5 expression was performed in 44 OS patient samples and the findings were correlated with clinical data. Expression profiling of Wnts and their receptors revealed the presence of several isoforms in OS cell lines. Overall, 22/44 (50%) of OS patient samples showed evidence of LRP5 expression. Presence of LRP5 correlated significantly with tumor metastasis (p = 0.005) and the chondroblastic subtype of OS (p = 0.045). In addition, patients whose tumors were positive for LRP5 showed a trend toward decreased event-free survival (p = 0.066). No significant association was found between LRP5 expression and age, gender, site of disease, site of metastasis or degree of chemotherapy-induced tumor necrosis. Sequencing of exon 3 of LRP5 in 10 OS patient-derived cell cultures showed no activating mutation of LRP5. These results showed that expression of LRP5 is a common event in OS and strongly suggest a role for LRP and Wnt signaling in the pathobiology and progression of this disease.
Collapse
Affiliation(s)
- Bang H Hoang
- Department of Surgery, Orthopaedic Surgery Service, affiliated with Weill Medical College of Cornell University, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
556
|
Cong F, Varmus H. Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of beta-catenin. Proc Natl Acad Sci U S A 2004; 101:2882-7. [PMID: 14981260 PMCID: PMC365714 DOI: 10.1073/pnas.0307344101] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Wnt signaling regulates many aspects of development by increasing the signaling activity of beta-catenin. Axin is a negative regulator of the Wnt signaling pathway, and it is responsible for the formation of the beta-catenin degradation complex. Genetic studies with Drosophila suggest that Axin promotes cytoplasmic localization of beta-catenin independent of Axin's known role of enhancing degradation of beta-catenin. Here, we show that Axin is a nuclear-cytoplasmic shuttling protein. Nuclear export of Axin depends on the chromosome maintenance region 1 nuclear receptor; treatment with the chromosome maintenance region 1 inhibitor leptomycin B induces nuclear accumulation of ectopically expressed or endogenous Axin. Functional nuclear localization and nuclear export signals have been mapped within Axin. Significantly, overexpression of an Axin fragment shifts coexpressed stabilized beta-catenin to the cytoplasm, and this effect requires shuttling of Axin between the cytoplasm and the nucleus. Our results suggest that Axin functions as a molecular chaperone for beta-catenin and that nuclear-cytoplasmic shuttling of Axin regulates the nuclear-cytoplasmic distribution of beta-catenin.
Collapse
Affiliation(s)
- Feng Cong
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
557
|
Abstract
The Wnt signaling pathway provides key information during development of vertebrates and invertebrates, and mutations in this pathway lead to various forms of cancer. Wnt binding to its receptor causes the stabilization and nuclear localization of beta-catenin. Nuclear beta-catenin then functions to activate transcription in conjunction with the transcription factor TCF. A recent report has challenged this basic precept of the Wnt signaling field, arguing that the nuclear localization of beta-catenin may be unrelated to its function and that beta-catenin functions at the plasma membrane to activate this signaling pathway. Here we present evidence that the pathway in fact does depend on the nuclear localization of beta-catenin. We reexamine the functionality of various truncations of beta-catenin and find that only the most severe truncations are true signaling-null mutations. Further, we define a signaling-null condition and use it to show that membrane-tethered beta-catenin is insufficient to activate transcription. We also define two novel loss-of-function mutations that are not truncations, but are missense point mutations that retain protein stability. These alleles allow us to show that the membrane-bound form of activated beta-catenin does indeed depend on the endogenous protein. Further, this activity is dependent on the presence of the C-terminus-specific negative regulator Chibby. Our data clearly show that nuclear localization of beta-catenin is in fact necessary for Wnt pathway activation.
Collapse
Affiliation(s)
- Nicholas S Tolwinski
- 1Howard Hughes Medical Institute, Department of Molecular BiologyPrinceton University, Princeton, New JerseyUnited States of America
| | - Eric Wieschaus
- 1Howard Hughes Medical Institute, Department of Molecular BiologyPrinceton University, Princeton, New JerseyUnited States of America
| |
Collapse
|
558
|
Nunnally AP, Parr BA. Analysis of Fz10 expression in mouse embryos. Dev Genes Evol 2004; 214:144-8. [PMID: 14758554 DOI: 10.1007/s00427-004-0386-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 12/24/2003] [Indexed: 10/26/2022]
Abstract
Wnt signaling molecules regulate the development of multiple organs in vertebrate embryos. We have isolated cDNA clones for frizzled10 (Fz10), which encodes a putative Wnt receptor, to further characterize the mechanisms of Wnt signaling in mouse embryos. Interestingly, Fz10 is expressed in the same regions as Wnt7a in the neural tube, limb buds, and Müllerian duct.
Collapse
Affiliation(s)
- Amy P Nunnally
- MCD Biology, University of Colorado, 347 UCB, Boulder, CO 80309-0347, USA
| | | |
Collapse
|
559
|
Zilberberg A, Yaniv A, Gazit A. The low density lipoprotein receptor-1, LRP1, interacts with the human frizzled-1 (HFz1) and down-regulates the canonical Wnt signaling pathway. J Biol Chem 2004; 279:17535-42. [PMID: 14739301 DOI: 10.1074/jbc.m311292200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Members of the low density lipoprotein receptor family (LDLR), LRP5/6, were shown to interact with the Frizzled (Fz) receptors and to function as Wnt coreceptors. Here we show that mLRP4T100, a minireceptor of LRP1, another member of the LDLR family, interacts with the human Fz-1 (HFz1), previously shown to serve as a receptor transmitting the canonical Wnt-3a-induced signaling cascade. However, in contrast to LRP5/6, mLRP4T100, as well as the full-length LRP1, did not cooperate with HFz1 in transmitting the Wnt-3a signaling but rather repressed it. mLRP4T100 inhibitory effect was displayed also by endocytosis-defective mLRP4T100 mutants, suggesting that LRP1 repressive effect is not attributable to LRP1-mediated enhanced HFz1 internalization and subsequent degradation. Enforced expression of mLRP4T100 decreased the capacity of HFz1 cysteine-rich domain (CRD) to interact with LRP6, in contrast to HFz1-CRD/Wnt-3a interaction that was not disrupted by overexpressing mLRP4T100. These data suggest that LRP1, by sequestering HFz1, disrupts the receptor/coreceptor complex formation, leading to the repression of the canonical Wnt signaling. Thus, this study implies that the ability to interact with Fz receptors is shared by several members of the LDLR family. However, whereas some members of the LDLR family, such as LRP5/6, interact with Fz and serve as Wnt coreceptors, others negatively regulate Wnt signaling, presumably by sequestering Fz.
Collapse
Affiliation(s)
- Alona Zilberberg
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
560
|
Fujimuro M, Hayward SD. Manipulation of glycogen-synthase kinase-3 activity in KSHV-associated cancers. J Mol Med (Berl) 2004; 82:223-31. [PMID: 14991150 DOI: 10.1007/s00109-003-0519-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 11/26/2003] [Indexed: 12/12/2022]
Abstract
The Kaposi's sarcoma-associated herpesvirus, KSHV, is associated with cancers that have increased incidence in patients who are also HIV positive or who have undergone organ transplantation. It has recently been observed that beta-catenin is overexpressed in two KSHV-associated cancers, Kaposi's sarcoma and primary effusion lymphoma. Investigation of the underlying defect in beta-catenin regulation revealed that the KSHV-encoded LANA protein stabilizes beta-catenin by binding to the negative regulator GSK-3, causing a cell-cycle-dependent nuclear accumulation of GSK-3. Thus, redistribution of GSK-3 has been identified as yet another mechanism through which beta-catenin can be dysregulated and contribute to human cancer.
Collapse
Affiliation(s)
- Masahiro Fujimuro
- Viral Oncology Program, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, 1650 Orleans St, Baltimore, MD 21231, USA
| | | |
Collapse
|
561
|
Nusse R. Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development 2004; 130:5297-305. [PMID: 14530294 DOI: 10.1242/dev.00821] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review compares the signaling mechanisms of the Wnt and the Hedgehog proteins. Although Wnts and Hedgehogs are unrelated proteins, they are both modified by lipids, possibly through the action of enzymes that are related to each other. At the surface of target cells, the reception of Wnt and Hedgehog signals is regulated by several molecules, some of which, in particular the Frizzled and Smoothened receptors, are related to each other. Several other aspects of Wnt and Hedgehog transport and signaling are discussed, as well as the possible origin of these pathways.
Collapse
Affiliation(s)
- Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, Beckman Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
562
|
Shibamoto S, Winer J, Williams M, Polakis P. A blockade in Wnt signaling is activated following the differentiation of F9 teratocarcinoma cells. Exp Cell Res 2004; 292:11-20. [PMID: 14720502 DOI: 10.1016/j.yexcr.2003.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aberrant activation of the Wnt signaling pathway is a common event in human tumor progression. Wnt signaling has also been implicated in maintaining a variety of adult and embryonic stem cells by imposing a restraint to differentiation. To understand the effect of Wnt signaling on the differentiation of epithelial cells, we used mouse teratocarcinoma F9 cells as a model. The F9 cells can be differentiated into visceral endoderm (VE) resembling absorptive columnar epithelial cells. We performed comparative gene expression analysis on retinoic acid-differentiated and undifferentiated F9 cells and confirmed that markers of VE and intestinal epithelium were induced upon differentiation. The induction of these markers by retinoic acid was reduced in the presence of Wnt, although Wnt alone did not change their expression. This suggests that Wnt signaling inhibited the differentiation of F9 cells by altering gene expression. This inhibition was also reflected in the morphology of the F9 cells as their apical-basal polarity was disrupted by inclusion of Wnt during differentiation. These results support a model in which Wnt modulates the expression of genes required for normal terminal differentiation of the stem cells. However, it follows that progenitor cells must escape from Wnt signaling to attain the differentiated state. Accordingly, we found that differentiated F9 cells no longer responded to Wnt and that a blockade in Wnt signaling occurred upstream of Axin. Consistent with this, Wnt negative regulators, such as Dickkopf-1 and Disabled-2, were induced upon the differentiation of F9 cells. We propose that a similar system to produce Wnt inhibitors regulates homeostasis of certain stem cell compartments in vivo.
Collapse
Affiliation(s)
- Sayumi Shibamoto
- Departments of Molecular Oncology and Molecular Biology, Genentech, Inc, South San Francisco, CA 94080-4918, USA
| | | | | | | |
Collapse
|
563
|
Abstract
Signaling through the highly conserved Wingless/Wnt pathway plays a crucial role in a diverse array of developmental processes, many of which depend upon the precise regulation of Wingless/Wnt signaling levels. Recent evidence has indicated that the intracellular trafficking of Wingless/Wnt signaling components can result in significant changes in the level of signaling. Here, we examine three mechanisms through which intracellular trafficking might regulate Wingless signaling--the degradation of Wingless, its transport and the transduction of its signal. The intracellular trafficking of several Wingless/Wnt signaling components, including LRP5, LRP6, Dishevelled and Axin, as well as the functional implications of protein localization on Wingless/Wnt signaling, will be discussed.
Collapse
Affiliation(s)
- Elaine S Seto
- Program in Developmental Biology, Department of Molecular and Human Genetics, Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
564
|
Michiue T, Fukui A, Yukita A, Sakurai K, Danno H, Kikuchi A, Asashima M. XIdax, an inhibitor of the canonical Wnt pathway, is required for anterior neural structure formation inXenopus. Dev Dyn 2004; 230:79-90. [PMID: 15108311 DOI: 10.1002/dvdy.20037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wnt signaling pathways are involved during various stages in the development of many species. In Xenopus, the accumulation of beta-catenin on the dorsal side of embryo is required for induction of the organizer, while the head structure formation requires inhibition of Wnt signaling. Here, we report a role for xIdax, a negative regulator of Wnt signaling. XIdax is expressed in neural tissues at the neurula stage, and in the restricted region of the tadpole brain. Ectopic expression of xIdax inhibits the target gene expression, suggesting that xIdax can inhibit canonical Wnt signaling. To examine the function of xIdax, a morpholino oligo for xIdax (xIdaxMO) was designed. An injection into an animal pole cell caused a loss of forebrain. The anterior neural marker expression is decreased in xIdaxMO-injected embryo, suggesting that xIdax is required for anterior neural development. Moreover, a negative regulator that acts downstream of xIdax rescued this defect. We propose that Idax functions are dependent on the canonical Wnt pathway and are crucial for the anterior neural development.
Collapse
Affiliation(s)
- Tatsuo Michiue
- Department of Life Science (Biology), Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
565
|
Abstract
LDL receptor related proteins 5 and 6 (LRP5/6) and their Drosophila homolog Arrow are single-span transmembrane proteins essential for Wnt/beta-catenin signaling, likely via acting as Wnt coreceptors. How Wnt activates LRP5/6/Arrow to initiate signal transduction is not well defined. Here we show that a PPPSP motif, which is reiterated five times in the LRP5/6/Arrow intracellular domain, is necessary and sufficient to trigger Wnt/beta-catenin signaling. A single PPPSP motif, upon transfer to the LDL receptor, fully activates the Wnt pathway, inducing complete axis duplication in Xenopus and TCF/beta-catenin-responsive transcription in human cells. We further show that Wnt signal-ing stimulates, and requires, phosphorylation of the PPPSP motif, which creates an inducible docking site for Axin, a scaffolding protein controlling beta-catenin stability. Our study identifies a critical signaling module and a key phosphorylation-dependent activation step of the Wnt receptor complex and reveals a unifying logic for transmembrane signaling by Wnts, growth factors, and cytokines.
Collapse
Affiliation(s)
- Keiko Tamai
- Division of Neuroscience, Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
566
|
Jia J, Tong C, Jiang J. Smoothened transduces Hedgehog signal by physically interacting with Costal2/Fused complex through its C-terminal tail. Genes Dev 2003; 17:2709-20. [PMID: 14597665 PMCID: PMC280620 DOI: 10.1101/gad.1136603] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Hedgehog (Hh) family of secreted proteins controls many aspects of growth and patterning in animal development. The seven-transmembrane protein Smoothened (Smo) transduces the Hh signal in both vertebrates and invertebrates; however, the mechanism of its action remains unknown. We found that Smo lacking its C-terminal tail (C-tail) is inactive, whereas membrane-tethered Smo C-tail has constitutive albeit low levels of Hh signaling activity. Smo physically interacts with Costal2 (Cos2) and Fused (Fu) through its C-tail. Deletion of the Cos2/Fu-binding domain from Smo abolishes its signaling activity. Moreover, overexpressing Cos2 mutants that fail to bind Fu and Ci but retain Smo-binding activity blocks Hh signaling. Taken together, our results suggest that Smo transduces the Hh signal by physically interacting with the Cos2/Fu protein complex.
Collapse
Affiliation(s)
- Jianhang Jia
- Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133, USA.
| | | | | |
Collapse
|
567
|
Roman-Roman S, Shi DL, Stiot V, Haÿ E, Vayssière B, Garcia T, Baron R, Rawadi G. Murine Frizzled-1 behaves as an antagonist of the canonical Wnt/beta-catenin signaling. J Biol Chem 2003; 279:5725-33. [PMID: 14627707 DOI: 10.1074/jbc.m309233200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Activation of the Wnt signaling cascade provides key signals during development and in disease. Wnt signals are transduced by seven-transmembrane Frizzleds (Fzs) and the single transmembrane low density lipoprotein receptor-related proteins 5 or 6. In the course of the analysis of genes regulated by bone morphogenetic protein 2 in mesenchymal cells we found a significant induction of murine Frizzled-1 (mFz1) gene expression. Unexpectedly overexpression of mFz1 dramatically repressed the induction of alkaline phosphatase mediated by either bone morphogenetic protein 2 or Wnt3a in these cells. Moreover mFz1 overexpression significantly repressed both beta-catenin translocation into the nucleus and T cell factor signaling mediated by Wnt3a. Importantly microinjection of mFz1 transcript in Xenopus embryo inhibited the ability of Wnt1 to induce the expression of the Wnt/beta-catenin target gene Siamois in animal cap assay and secondary axis formation in whole embryo. By using chimeric constructs in which N- and C-terminal segments of mFz1 were replaced by the corresponding parts of Xfz3 we demonstrated that the antagonistic activity resides in the cysteine-rich domain of the N-terminal part. The antagonist activity of mFz1 could be prevented by overexpression of Galphaq-(305-359), which specifically uncouples Gq-coupled receptors, suggesting that Galphaq signaling contributes to the inhibition of Wnt/beta-catenin pathway by mFz1. This is the first time that a Frizzled receptor has been reported to antagonize Wnt/beta-catenin.
Collapse
Affiliation(s)
- Sergio Roman-Roman
- ProSkelia Pharmaceuticals, 102 route de Noisy, 93230 Romainville, France
| | | | | | | | | | | | | | | |
Collapse
|
568
|
Roelen BAJ, Dijke PT. Controlling mesenchymal stem cell differentiation by TGFBeta family members. J Orthop Sci 2003; 8:740-8. [PMID: 14557946 DOI: 10.1007/s00776-003-0702-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells can differentiate into various tissue types including bone, cartilage, fat, and muscle. Transforming growth factor-Beta (TGFBeta) family members, including TGFBetas and bone morphogenetic proteins (BMPs), play important roles in directing fate decisions for mesenchymal stem cells. TGFBeta can provide competence for early stages of chondroblastic and osteoblastic differentiation, but it inhibits myogenesis, adipogenesis, and late-stage osteoblast differentiation. BMPs also inhibit adipogenesis and myogenesis, but they strongly promote osteoblast differentiation. TGFBeta family members signal via specific serine/threonine kinase receptors and their nuclear effectors, termed Smad proteins. In this review we discuss recent advances in our understanding of the molecular mechanisms by which TGFBeta family members control mesenchymal stem cell differentiation.
Collapse
Affiliation(s)
- Bernard A J Roelen
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, The Netherlands
| | | |
Collapse
|
569
|
Affiliation(s)
- Olav M Andersen
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | |
Collapse
|
570
|
Hsieh M, Mulders SM, Friis RR, Dharmarajan A, Richards JS. Expression and localization of secreted frizzled-related protein-4 in the rodent ovary: evidence for selective up-regulation in luteinized granulosa cells. Endocrinology 2003; 144:4597-606. [PMID: 12960062 DOI: 10.1210/en.2003-0048] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Secreted frizzled-related protein-4 (sFRP-4) belongs to a family of soluble proteins that have a Frizzled-like cysteine-rich domain and function as modulators of Wnt-Frizzled (Fz) signals. As several Wnts and Fz are expressed at defined stages of follicular development in rodent ovaries, these studies were undertaken to evaluate the hormone-regulated expression and localization of sFRP-4. In the mouse ovary, the expression of sFRP-4 mRNA was up-regulated in granulosa cells of large antral follicles after human chorionic gonadotropin administration and was also elevated in corpora lutea, as determined by RT-PCR and in situ hybridization analyses. In hypophysectomized rat ovaries, sFRP-4 expression was similarly induced by human chorionic gonadotropin and further up-regulated by PRL. PRL also stimulated the secretion of sFRP-4 protein from luteinized rat granulosa cells in culture. Therefore, regulation of sFRP-4 by LH and PRL may be important for modulating Fz-1, which is known to be expressed in periovulatory follicles, and Wnt-4/Fz-4, which are expressed in corpora lutea.
Collapse
Affiliation(s)
- Minnie Hsieh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
571
|
Luo W, Ng WW, Jin LH, Ye Z, Han J, Lin SC. Axin utilizes distinct regions for competitive MEKK1 and MEKK4 binding and JNK activation. J Biol Chem 2003; 278:37451-8. [PMID: 12878610 DOI: 10.1074/jbc.m305277200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Axin is a multidomain protein that plays a critical role in Wnt signaling, serving as a scaffold for down-regulation of beta-catenin. It also activates the JNK mitogen-activated protein kinase by binding to MEKK1. However, it is intriguing that Axin requires several additional elements for JNK activation, including a requirement for homodimerization, sumoylation at the extreme C-terminal sites, and a region in the protein phosphatase 2A-binding domain. In our present study, we have shown that another MEKK family member, MEKK4, also binds to Axin in vivo and mediates Axin-induced JNK activation. Surprisingly MEKK4 binds to a region distinct from the MEKK1-binding site. Dominant negative mutant of MEKK4 attenuates the JNK activation by Axin. Activation of JNK by Axin in MEKK1-/- mouse embryonic fibroblast cells supports the idea that another MEKK can mediate Axin-induced JNK activation. Expression of specific small interfering RNA against MEKK4 effectively attenuates JNK activation by the MEKK1 binding-defective Axin mutant in 293T cells and inhibits JNK activation by wild-type Axin in MEKK1-/- cells, confirming that MEKK4 is indeed another mitogen-activated protein kinase kinase kinase that is specifically involved in Axin-mediated JNK activation independently of MEKK1. We have also identified an additional domain between MEKK1- and MEKK4-binding sites as being required for JNK activation by Axin. MEKK1 and MEKK4 compete for Axin binding even though they bind to sites far apart, suggesting that Axin may selectively bind to MEKK1 or MEKK4 depending on distinct signals or cellular context. Our findings will provide new insights into how scaffold proteins mediate ultimate activation of different mitogen-activated protein kinase kinase kinases.
Collapse
Affiliation(s)
- Wen Luo
- Department of Biology, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | | | |
Collapse
|
572
|
Abstract
We have identified two Xenopus mRNAs that encode proteins homologous to a component of the Wnt/beta-catenin transcriptional machinery known as Pygopus. The predicted proteins encoded by both mRNAs share the same structural properties with human Pygo-2, but with Xpygo-2alpha having an additional 21 N-terminal residues. Xpygo-2alpha messages accumulate in the prospective anterior neural plate after gastrulation and then are localized to the nervous system, rostral to and including the hindbrain. Xpygo-2beta mRNA is expressed in oocytes and early embryos but declines in level before and during gastrulation. In late neurula, Xpygo-2beta mRNA is restricted to the retinal field, including eye primordia and prospective forebrain. A C-terminal truncated mutant of Xpygo-2 containing the N-terminal Homology Domain (NHD) caused both axis duplication when injected at the 2-cell stage and inhibition of anterior neural development when injected in the prospective head, mimicking the previously described effects of Wnt-signaling activators. Inhibition of Xpygo-2alpha and Xpygo-2beta by injection of gene-specific antisense morpholino oligonucleotides into prospective anterior neurectoderm caused brain defects that were prevented by coinjection of Xpygo-2 mRNA. Both Xpygo-2alpha and Xpygo-2beta morpholinos reduced the eye and forebrain markers Xrx-1, Xpax-6, and XBF-1, while the Xpygo-2alpha morpholino also eliminated expression of the mid-hindbrain marker En-2. The differential expression and regulatory activities of Xpygo-2alpha/beta in rostral neural tissue indicate that they represent essential components of a novel mechanism for Wnt signaling in regionalization of the brain.
Collapse
Affiliation(s)
- Blue B Lake
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6 Newfoundland, Canada.
| | | |
Collapse
|
573
|
Liu G, Bafico A, Harris VK, Aaronson SA. A novel mechanism for Wnt activation of canonical signaling through the LRP6 receptor. Mol Cell Biol 2003; 23:5825-35. [PMID: 12897152 PMCID: PMC166321 DOI: 10.1128/mcb.23.16.5825-5835.2003] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LDL receptor-related protein 6 (LRP6) is a Wnt coreceptor in the canonical signaling pathway, which plays essential roles in embryonic development. We demonstrate here that wild-type LRP6 forms an inactive dimer through interactions mediated by epidermal growth factor repeat regions within the extracellular domain. A truncated LRP6 comprising its transmembrane and cytoplasmic domains is expressed as a constitutively active monomer whose signaling ability is inhibited by forced dimerization. Conversely, Wnts are shown to activate canonical signaling through LRP6 by inducing an intracellular conformational switch which relieves allosteric inhibition imposed on the intracellular domains. Thus, Wnt canonical signaling through LRP6 establishes a novel mechanism for receptor activation which is opposite to the general paradigm of ligand-induced receptor oligomerization.
Collapse
Affiliation(s)
- Guizhong Liu
- Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
574
|
Gregory CA, Singh H, Perry AS, Prockop DJ. The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J Biol Chem 2003; 278:28067-78. [PMID: 12740383 DOI: 10.1074/jbc.m300373200] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Adult human mesenchymal stem cells from bone marrow stroma (hMSCs) differentiate into numerous mesenchymal tissue lineages and are attractive candidates for cell and gene therapy. When early passage hMSCs are plated or replated at low density, the cultures display a lag phase of 3-5 days, a phase of rapid exponential growth, and then enter a stationary phase without the cultures reaching confluence. We found that as the cultures leave the lag phase, they secrete high levels of dickkopf-1 (Dkk-1), an inhibitor of the canonical Wnt signaling pathway. The addition of recombinant Dkk-1 toward the end of the lag period increased proliferation and decreased the cellular concentration of beta-catenin. The addition of antibodies to Dkk-1 in the early log phase decreased proliferation. Also, expression of Dkk-1 in hMSCs decreased during cell cycle arrest induced by serum starvation. The results indicated that high levels of Dkk-1 allow the cells to reenter the cell cycle by inhibiting the canonical Wnt/beta-catenin signaling pathway. Since antibodies to Dkk-1 also increased the lag phase of an osteosarcoma line that expressed the gene, Dkk-1 may have a similar role in some other cell systems.
Collapse
Affiliation(s)
- Carl A Gregory
- Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
575
|
Stump RJW, Ang S, Chen Y, von Bahr T, Lovicu FJ, Pinson K, de Iongh RU, Yamaguchi TP, Sassoon DA, McAvoy JW. A role for Wnt/beta-catenin signaling in lens epithelial differentiation. Dev Biol 2003; 259:48-61. [PMID: 12812787 DOI: 10.1016/s0012-1606(03)00179-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The differentiation of epithelial cells and fiber cells from the anterior and posterior compartments of the lens vesicle, respectively, give the mammalian lens its distinctive polarity. While much progress has been made in understanding the molecular basis of fiber differentiation, little is known about factors that govern the differentiation of the epithelium. Members of the Wnt growth factor family appear to be key regulators of epithelial differentiation in various organ systems. Wnts are ligands for Frizzled receptors and can activate several signaling pathways, of which the best understood is the Wnt/beta-catenin pathway. The presence of LDL-related protein coreceptors (LRPs) 5 or 6 has been shown to be a requirement for Wnt signaling through the beta-catenin pathway. To access the role of this signaling pathway in the lens, we analyzed mice with a null mutation of lrp6. These mice had small eyes and aberrant lenses, characterized by an incompletely formed anterior epithelium resulting in extrusion of the lens fibers into the overlying corneal stroma. We also showed that multiple Wnts, including 5a, 5b, 7a, 7b, 8a, 8b, and Frizzled receptors 1, 2, 3, 4, and 6, were detected in the lens. Expression of these molecules was generally present throughout the lens epithelium and extended into the transitional zone, where early fiber elongation occurs. In addition to both LRP5 and LRP6, we also showed the expression of other molecules involved in Wnt signaling and its regulation, including Dishevelleds, Dickkopfs, and secreted Frizzled-related proteins. Taken together, these results indicate a role for Wnt signaling in regulating the differentiation and behavior of lens cells.
Collapse
Affiliation(s)
- Richard J W Stump
- Save Sight Institute, The University of Sydney, Sydney Hospital & Eye Hospital, GPO Box 4337, NSW 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
576
|
Abstract
The extracellular antagonists of the Wnt signalling pathway can be divided into two broad classes. Both classes of molecule prevent ligand-receptor interactions, but by different mechanisms: members of the first class, which include the sFRP (secreted Frizzled-related protein) family, WIF (Wnt inhibitory factor)-1 and Cerberus, primarily bind to Wnt proteins; the second class comprises certain members of the Dickkopf (Dkk) family, which bind to one subunit of the Wnt receptor complex. In addition, there are other protein interactions that contribute to Wnt antagonist function. Moreover, certain sFRPs and Dkks do not antagonise Wnt function, which suggests that these families have as-yet-undiscovered functions.
Collapse
Affiliation(s)
- Yoshiaki Kawano
- Department of Cancer Cell Biology, Division of Medicine, Imperial College, London W12 0NN, UK
| | | |
Collapse
|
577
|
Twells RCJ, Mein CA, Payne F, Veijola R, Gilbey M, Bright M, Timms A, Nakagawa Y, Snook H, Nutland S, Rance HE, Carr P, Dudbridge F, Cordell HJ, Cooper J, Tuomilehto-Wolf E, Tuomilehto J, Phillips M, Metzker M, Hess JF, Todd JA. Linkage and association mapping of the LRP5 locus on chromosome 11q13 in type 1 diabetes. Hum Genet 2003; 113:99-105. [PMID: 12700977 DOI: 10.1007/s00439-003-0940-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Accepted: 02/04/2003] [Indexed: 11/28/2022]
Abstract
Linkage of chromosome 11q13 to type 1 diabetes (T1D) was first reported from genome scans (Davies et al. 1994; Hashimoto et al. 1994) resulting in P <2.2 x 10(-5) (Luo et al. 1996) and designated IDDM4 ( insulin dependent diabetes mellitus 4). Association mapping under the linkage peak using 12 polymorphic microsatellite markers suggested some evidence of association with a two-marker haplotype, D11S1917*03-H0570POLYA*02, which was under-transmitted to affected siblings and over-transmitted to unaffected siblings ( P=1.5 x 10(-6)) (Nakagawa et al. 1998). Others have reported evidence for T1D association of the microsatellite marker D11S987, which is approximately 100 kb proximal to D11S1917 (Eckenrode et al. 2000). We have sequenced a 400-kb interval surrounding these loci and identified four genes, including the low-density lipoprotein receptor related protein (LRP5) gene, which has been considered as a functional candidate gene for T1D (Hey et al. 1998; Twells et al. 2001). Consequently, we have developed a comprehensive SNP map of the LRP5 gene region, and identified 95 SNPs encompassing 269 kb of genomic DNA, characterised the LD in the region and haplotypes (Twells et al. 2003). Here, we present our refined linkage curve of the IDDM4 region, comprising 32 microsatellite markers and 12 SNPs, providing a peak MLS=2.58, P=5 x 10(-4), at LRP5 g.17646G>T. The disease association data, largely focused in the LRP5 region with 1,106 T1D families, provided no further evidence for disease association at LRP5 or at D11S987. A second dataset, comprising 1,569 families from Finland, failed to replicate our previous findings at LRP5. The continued search for the variants of the putative IDDM4 locus will greatly benefit from the future development of a haplotype map of the genome.
Collapse
Affiliation(s)
- Rebecca C J Twells
- Department of Medical Genetics, JDRF/WT Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge CB2 2XY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
578
|
Richards JS. Delivery of the oocyte from the follicle to the oviduct: a time of vulnerability. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2003:43-62. [PMID: 12402539 DOI: 10.1007/978-3-662-04960-0_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The multiplicity of genes regulated by the actions of LH in specific granulosa cell and cumulus cell microenvironments of the follicle during ovulation has now revealed how complex and finely tuned the ovulation process is. Although many proteases are expressed in the ovary and are hormonally regulated, the novel proteases ADAMTS-1 and cathepsin L, rather than the MMPs, have gained particular recognition. These may play critical roles in the eventual rupture of the follicle at the ovarian surface. Rupture is only one part of ovulation. Another important aspect is the actual release of the oocyte from the ovulation pore. Several recent studies have shown that the production of the matrix that is evidenced by cumulus expansion is somehow critical for extrusion to occur and for the oocyte to travel into the oviduct. At any point the oocyte may be trapped within a non-ovulating structure. Lastly, if the events of ovulation fail to occur before the events of luteinization are complete, oocytes are destined to degenerate within the non-ovulating structures.
Collapse
Affiliation(s)
- J S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
579
|
Abstract
Negative regulation of Wingless/Wnt signaling plays an important role in embryonic patterning and is also needed for tumor suppression in adult tissues. New findings in Drosophila reveal a novel mechanism for down-regulating the activity of the Wingless/Wnt pathway.
Collapse
Affiliation(s)
- Whitney M Jones
- Department of Biology, Duke University, B336 LSRC, Research Drive, Durham, North Carolina 27708, USA
| | | |
Collapse
|
580
|
Carron C, Pascal A, Djiane A, Boucaut JC, Shi DL, Umbhauer M. Frizzled receptor dimerization is sufficient to activate the Wnt/beta-catenin pathway. J Cell Sci 2003; 116:2541-50. [PMID: 12734397 DOI: 10.1242/jcs.00451] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Wnt signaling has an important role in cell-fate determination, tissue patterning and tumorigenesis. Wnt proteins signal through seven-pass transmembrane receptors of the frizzled family to activate beta-catenin-dependent transcription of target genes. Using early Xenopus embryos, we show that frizzled receptors can dimerize and that dimerization is correlated with activation of the Wnt/beta-catenin pathway. Co-immunoprecipitation studies revealed that the receptor Xfz3 exists as a dimer when expressed in Xenopus embryos, and it has been shown to activate the Wnt/beta-catenin pathway as revealed by expression of the target gene siamois. Xfz3 dimerization requires intramolecular and/or intermolecular disulfide linkages, and the N-terminal extracellular region of the receptor, including the cysteine-rich domain (CRD), is sufficient for dimerization. The receptor Xfz7 behaves differently from Xfz3 when overexpressed in the embryo as Xfz7 is monomeric and is unable to directly activate the Wnt/beta-catenin pathway. However, activation of this pathway can be achieved by artificially forcing Xfz7 dimerization. These results provide the first direct evidence for the dimerization of frizzled receptors and suggest that dimerization contributes to transducing the Wnt/beta-catenin signal.
Collapse
Affiliation(s)
- Clémence Carron
- Laboratoire de Biologie du Développement, Groupe de Biologie Expérimentale, UMR CNRS 7622, Université Paris VI, 9 quai Saint-Bernard, France
| | | | | | | | | | | |
Collapse
|
581
|
Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1653:1-24. [PMID: 12781368 DOI: 10.1016/s0304-419x(03)00005-2] [Citation(s) in RCA: 636] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Wnt signaling pathway, named for its most upstream ligands, the Wnts, is involved in various differentiation events during embryonic development and leads to tumor formation when aberrantly activated. Molecular studies have pinpointed activating mutations of the Wnt signaling pathway as the cause of approximately 90% of colorectal cancer (CRC), and somewhat less frequently in cancers at other sites, such as hepatocellular carcinoma (HCC). Ironically, Wnts themselves are only rarely involved in the activation of the pathway during carcinogenesis. Mutations mimicking Wnt stimulation-generally inactivating APC mutations or activating beta-catenin mutations-result in nuclear accumulation of beta-catenin which subsequently complexes with T-cell factor/lymphoid enhancing factor (TCF/LEF) transcription factors to activate gene transcription. Recent data identifying target genes has revealed a genetic program regulated by beta-catenin/TCF controlling the transcription of a suite of genes promoting cellular proliferation and repressing differentiation during embryogenesis, carcinogenesis, and in the post-embryonic regulation of cell positioning in the intestinal crypts. This review considers the spectra of tumors arising from active Wnt signaling and attempts to place perspective on recent data that begin to elucidate the mechanisms prompting uncontrolled cell growth following induction of Wnt signaling.
Collapse
Affiliation(s)
- Rachel H Giles
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| | | | | |
Collapse
|
582
|
Abstract
A recent Juan March Foundation workshop on "wnt genes and Wnt signaling" brought developmental and cancer biologists together to share some of the latest advances in Wnt research. Discussion topics included molecular, genetic, and genomic dissections of wnt genes in embryogenesis and cancer, Wnt signaling components and downstream targets, interactions with other signaling pathways, cell biological aspects of Wnt signaling, and a first glimpse of a purified Wnt protein.
Collapse
Affiliation(s)
- Xi He
- Division of Neuroscience, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
583
|
Babij P, Zhao W, Small C, Kharode Y, Yaworsky PJ, Bouxsein ML, Reddy PS, Bodine PVN, Robinson JA, Bhat B, Marzolf J, Moran RA, Bex F. High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 2003; 18:960-74. [PMID: 12817748 DOI: 10.1359/jbmr.2003.18.6.960] [Citation(s) in RCA: 386] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A unique mutation in LRP5 is associated with high bone mass in man. Transgenic mice expressing this LRP5 mutation have a similar phenotype with high bone mass and enhanced strength. These results underscore the importance of LRP5 in skeletal regulation and suggest targets for therapies for bone disease. A mutation (G171V) in the low-density lipoprotein receptor related protein 5 (LRP5) has been associated with high bone mass (HBM) in two independent human kindreds. To validate the role of the mutation, several lines of transgenic mice were created expressing either the human LRP5 G171V substitution or the wildtype LRP5 gene in bone. Volumetric bone mineral density (vBMD) analysis by pQCT showed dramatic increases in both total vBMD (30-55%) and trabecular vBMD (103-250%) of the distal femoral metaphysis and increased cortical size of the femoral diaphysis in mutant G171V transgenics at 5, 9, 17, 26, and 52 weeks of age (p < 0.01 for all). In addition, high-resolution microcomputed tomography (microCT) analysis of the distal femorae and lumbar vertebrae revealed an increase (110-232%) in trabecular bone volume fraction caused by both increased trabecular number (41-74%) and increased trabecular thickness (34-46%; p < 0.01 for all) in the mutant G171V mice. The increased bone mass was associated with significant increases in vertebral compressive strength (80-140%) and the increased cortical size with significant increases in femoral bending strength (50-130%). There were no differences in osteoclast number at 17 weeks of age. However, compared with littermate controls, the mutant G171V transgenic mice showed an increase in actively mineralizing bone surface, enhanced alkaline phosphatase staining in osteoblasts, and a significant reduction in the number of TUNEL-positive osteoblasts and osteocytes. These results suggest that the increased bone mineral density in mutant G171V mice was caused by increased numbers of active osteoblasts, which could in part be because of their increased functional lifespan. While slight bone anabolic activity was observed from overexpression of the wildtype LRP5 gene, it is clear that the G171V mutation, rather than overexpression of the receptor itself, is primarily responsible for the dramatic HBM bone effects. Together, these findings establish the importance of this novel and unexpected role of a lipoprotein receptor in regulating bone mass and afford a new model to explore LRP5 and its recent association with Wnt signaling in bone biology.
Collapse
Affiliation(s)
- Philip Babij
- Genomics, Wyeth Research, Andover, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
584
|
Cliffe A, Hamada F, Bienz M. A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling. Curr Biol 2003; 13:960-6. [PMID: 12781135 DOI: 10.1016/s0960-9822(03)00370-1] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Wnt signaling causes changes in gene transcription that are pivotal for normal and malignant development. A key effector of the canonical Wnt pathway is beta-catenin, or Drosophila Armadillo. In the absence of Wnt ligand, beta-catenin is phosphorylated by the Axin complex, which earmarks it for rapid degradation by the ubiquitin system. Axin acts as a scaffold in this complex, to assemble beta-catenin substrate and kinases (casein kinase I [CKI] and glycogen synthase kinase 3 beta [GSK3]). The Adenomatous polyposis coli (APC) tumor suppressor also binds to the Axin complex, thereby promoting the degradation of beta-catenin. In Wnt signaling, this complex is inhibited; as a consequence, beta-catenin accumulates and binds to TCF proteins to stimulate the transcription of Wnt target genes. Wnt-induced inhibition of the Axin complex depends on Dishevelled (Dsh), a cytoplasmic protein that can bind to Axin, but the mechanism of this inhibition is not understood. Here, we show that Wingless signaling causes a striking relocation of Drosophila Axin from the cytoplasm to the plasma membrane. This relocation depends on Dsh. It may permit the subsequent inactivation of the Axin complex by Wingless signaling.
Collapse
Affiliation(s)
- Adam Cliffe
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, United Kingdom
| | | | | |
Collapse
|
585
|
Abstract
The skeleton is an efficient 'servo' (feedback-controlled/steady-state) system that continuously integrates signals and responses which sustain its functions of delivering calcium while maintaining strength. In many individuals, bone mass homeostasis starts failing in midlife, leading to bone loss, osteoporosis and debilitating fractures. Recent advances, spearheaded by genetic information, offer the opportunity to stop or reverse this downhill course.
Collapse
Affiliation(s)
- Shun-ichi Harada
- Department of Bone Biology & Osteoporosis Research, Merck Research Laboratories, West Point, Pennsylvania 19002, USA
| | | |
Collapse
|
586
|
Nakamura T, Sano M, Songyang Z, Schneider MD. A Wnt- and beta -catenin-dependent pathway for mammalian cardiac myogenesis. Proc Natl Acad Sci U S A 2003; 100:5834-9. [PMID: 12719544 PMCID: PMC156287 DOI: 10.1073/pnas.0935626100] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acquisition of a cardiac fate by embryonic mesodermal cells is a fundamental step in heart formation. Heart development in frogs and avians requires positive signals from adjacent endoderm, including bone morphogenic proteins, and is antagonized by a second secreted signal, Wnt proteins, from neural tube. By contrast, mechanisms of mesodermal commitment to create heart muscle in mammals are largely unknown. In addition, Wnt-dependent signals can involve either a canonical beta-catenin pathway or other, alternative mediators. Here, we tested the involvement of Wnts and beta-catenin in mammalian cardiac myogenesis by using a pluripotent mouse cell line (P19CL6) that recapitulates early steps for cardiac specification. In this system, early and late cardiac genes are up-regulated by 1% DMSO, and spontaneous beating occurs. Notably, Wnt3A and Wnt8A were induced days before even the earliest cardiogenic transcription factors. DMSO induced biochemical mediators of Wnt signaling (decreased phosphorylation and increased levels of beta-catenin), which were suppressed by Frizzled-8Fc, a soluble Wnt antagonist. DMSO provoked T cell factor-dependent transcriptional activity; thus, induction of Wnt proteins by DMSO was functionally coupled. Frizzled-8Fc inhibited the induction of cardiogenic transcription factors, cardiogenic growth factors, and sarcomeric myosin heavy chains. Likewise, differentiation was blocked by constitutively active glycogen synthase kinase 3beta, an intracellular inhibitor of the Wntbeta-catenin pathway. Conversely, lithium chloride, which inhibits glycogen synthase kinase 3beta, and Wnt3A-conditioned medium up-regulated early cardiac markers and the proportion of differentiated cells. Thus, Wntbeta-catenin signaling is activated at the inception of mammalian cardiac myogenesis and is indispensable for cardiac differentiation, at least in this pluripotent model system.
Collapse
Affiliation(s)
- Teruya Nakamura
- Center for Cardiovascular Development and Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
587
|
Yamazaki H, Yanagawa SI. Axin and the Axin/Arrow-binding protein DCAP mediate glucose-glycogen metabolism. Biochem Biophys Res Commun 2003; 304:229-35. [PMID: 12711303 DOI: 10.1016/s0006-291x(03)00582-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Axin was found as a negative regulator of the canonical Wnt pathway. Human LRP5 was originally found as a candidate gene of insulin dependent diabetes mellitus (IDDM), but its Drosophila homolog, Arrow, works as a co-receptor of the canonical Wnt signal. In our previous paper, we found a new Drosophila Axin (Daxin)-binding SH3 protein, DCAP, a homolog of mammalian CAV family protein. Among the subtypes, DCAPL3 shows significant homology with CAP, an essential component of glucose transport in insulin signal. Further binding assay revealed that DCAP binds to not only Axin but also Arrow, and Axin binds to not only GSK3beta but also Arrow. However, overexpression and RNAi experiments of DCAP do not affect the canonical Wnt pathway. As DCAP is expressed predominantly in insulin-target organs, and as RNAi of DCAP disrupts the pattern of endogenous glycogen accumulation in late stage embryos, we suggest that DCAP is also involved in glucose transport. Moreover, early stage embryos lacking maternal Axin show significant delay of initial glycogen decomposition, and RNAi of Axin in S2 cells revealed quite increase of endogenous glycogen level as well as GSK3beta. These results suggest that Axin and DCAP mediate glucose-glycogen metabolism in embryo. In addition, the interaction among Axin, Arrow, and DCAP implies a possible cross-talk between Wnt signal and insulin signal.
Collapse
Affiliation(s)
- Hiroto Yamazaki
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
588
|
Schweizer L, Varmus H. Wnt/Wingless signaling through beta-catenin requires the function of both LRP/Arrow and frizzled classes of receptors. BMC Cell Biol 2003; 4:4. [PMID: 12729465 PMCID: PMC156895 DOI: 10.1186/1471-2121-4-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Accepted: 05/02/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wnt/Wingless (Wg) signals are transduced by seven-transmembrane Frizzleds (Fzs) and the single-transmembrane LDL-receptor-related proteins 5 or 6 (LRP5/6) or Arrow. The aminotermini of LRP and Fz were reported to associate only in the presence of Wnt, implying that Wnt ligands form a trimeric complex with two different receptors. However, it was recently reported that LRPs activate the Wnt/beta-catenin pathway by binding to Axin in a Dishevelled--independent manner, while Fzs transduce Wnt signals through Dishevelled to stabilize beta-catenin. Thus, it is possible that Wnt proteins form separate complexes with Fzs and LRPs, transducing Wnt signals separately, but converging downstream in the Wnt/beta-catenin pathway. The question then arises whether both receptors are absolutely required to transduce Wnt signals. RESULTS We have established a sensitive luciferase reporter assay in Drosophila S2 cells to determine the level of Wg--stimulated signaling. We demonstrate here that Wg can synergize with DFz2 and function cooperatively with LRP to activate the beta-catenin/Armadillo signaling pathway. Double-strand RNA interference that disrupts the synthesis of either receptor type dramatically impairs Wg signaling activity. Importantly, the pronounced synergistic effect of adding Wg and DFz2 is dependent on Arrow and Dishevelled. The synergy requires the cysteine-rich extracellular domain of DFz2, but not its carboxyterminus. Finally, mammalian LRP6 and its activated forms, which lack most of the extracellular domain of the protein, can activate the Wg signaling pathway and cooperate with Wg and DFz2 in S2 cells. We also show that the aminoterminus of LRP/Arr is required for the synergy between Wg and DFz2. CONCLUSION Our study indicates that Wg signal transduction in S2 cells depends on the function of both LRPs and DFz2, and the results are consistent with the proposal that Wnt/Wg signals through the aminoterminal domains of its dual receptors, activating target genes through Dishevelled.
Collapse
Affiliation(s)
- Liang Schweizer
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10021, USA
| | - Harold Varmus
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10021, USA
| |
Collapse
|
589
|
Abstract
Low-density lipoprotein receptor-related proteins (LRPs) are evolutionarily ancient cell-surface receptors with diverse biological functions. All are expressed in the central nervous system and, for most receptors, animal models have shown that they are indispensable for successful neurodevelopment. The mechanisms by which they regulate the formation of the nervous system are varied and include the transduction of extracellular signals and the modulation of intracellular signal propagation, as well as cargo transport, the function most commonly attributed to this gene family. Here, we will summarize recent advances in our understanding of the molecular basis on which these receptors function during development.
Collapse
Affiliation(s)
- Petra May
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | | |
Collapse
|
590
|
Twells RCJ, Mein CA, Phillips MS, Hess JF, Veijola R, Gilbey M, Bright M, Metzker M, Lie BA, Kingsnorth A, Gregory E, Nakagawa Y, Snook H, Wang WYS, Masters J, Johnson G, Eaves I, Howson JMM, Clayton D, Cordell HJ, Nutland S, Rance H, Carr P, Todd JA. Haplotype structure, LD blocks, and uneven recombination within the LRP5 gene. Genome Res 2003; 13:845-55. [PMID: 12727905 PMCID: PMC430919 DOI: 10.1101/gr.563703] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Patterns of linkage disequilibrium (LD) in the human genome are beginning to be characterized, with a paucity of haplotype diversity in "LD blocks," interspersed by apparent "hot spots" of recombination. Previously, we cloned and physically characterized the low-density lipoprotein-receptor-related protein 5 (LRP5) gene. Here, we have extensively analysed both LRP5 and its flanking three genes, spanning 269 kb, for single nucleotide polymorphisms (SNPs), and we present a comprehensive SNP map comprising 95 polymorphisms. Analysis revealed high levels of recombination across LRP5, including a hot-spot region from intron 1 to intron 7 of LRP5, where there are 109 recombinants/Mb (4882 meioses), in contrast to flanking regions of 14.6 recombinants/Mb. This region of high recombination could be delineated into three to four hot spots, one within a 601-bp interval. For LRP5, three haplotype blocks were identified, flanked by the hot spots. Each LD block comprised over 80% common haplotypes, concurring with a previous study of 14 genes that showed that common haplotypes account for at least 80% of all haplotypes. The identification of hot spots in between these LD blocks provides additional evidence that LD blocks are separated by areas of higher recombination.
Collapse
Affiliation(s)
- Rebecca C J Twells
- JDRF/WT Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
591
|
Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol 2003; 129:199-221. [PMID: 12707770 DOI: 10.1007/s00432-003-0431-0] [Citation(s) in RCA: 395] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Accepted: 02/27/2003] [Indexed: 01/23/2023]
Abstract
Cancer development depends on the aberrant activation of signal transduction pathways that control cell growth and survival and play important roles in normal embryonic development. This review will focus on one of the most powerful pathways, the canonical Wnt signal transduction cascade, which has been originally described in vertebrate and non-vertebrate embryogenesis and subsequently associated with the development of a multitude of different tumor types, mainly of gastrointestinal origin. In recent years, a variety of novel interacting components and functions have been identified in the Wnt pathway revealing not only the complexity of Wnt signaling but also its potency. Here we will concentrate on the role of the Wnt pathway in cancer development with emphasis placed on the molecular defects known to promote neoplastic transformation in humans and in animal models.
Collapse
Affiliation(s)
- B Lustig
- Klinik für Abdominal- Endokrine- und Thoraxchirurgie, Klinikum Nürnberg, Nürnberg, Germany
| | | |
Collapse
|
592
|
Abstract
Skeletal homeostasis is determined by systemic hormones and local factors. Bone morphogenetic proteins (BMP) are unique because they induce the differentiation of mesenchymal cells toward cells of the osteoblastic lineage and also enhance the differentiated function of the osteoblast. However, the activity of BMPs needs to be tempered by intracellular and extracellular antagonists. BMPs bind to specific receptors and signal by phosphorylating the cytoplasmic proteins mothers against decapentaplegic (Smad) 1 and 5, which form heterodimers with Smad 4, and after nuclear translocation regulate transcription. BMP antagonists can be categorized as pseudoreceptors that compete with signaling receptors, inhibitory Smads that block signaling, intracellular binding proteins that bind Smad 1 and 5, and factors that induce ubiquitination and proteolysis of signaling Smads. In addition, a large number of extracellular proteins that bind BMPs and prevent their binding to signaling receptors have emerged. They are the components of the Spemann organizer, noggin, chordin, and follistatin, members of the Dan/Cerberus family, and twisted gastrulation. The antagonists tend to be specific for BMPs and are regulated by BMPs, indicating the existence and need of local feedback mechanisms to temper BMP cellular activities.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA.
| | | | | |
Collapse
|
593
|
Magoori K, Kang MJ, Ito MR, Kakuuchi H, Ioka RX, Kamataki A, Kim DH, Asaba H, Iwasaki S, Takei YA, Sasaki M, Usui S, Okazaki M, Takahashi S, Ono M, Nose M, Sakai J, Fujino T, Yamamoto TT. Severe hypercholesterolemia, impaired fat tolerance, and advanced atherosclerosis in mice lacking both low density lipoprotein receptor-related protein 5 and apolipoprotein E. J Biol Chem 2003; 278:11331-6. [PMID: 12509421 DOI: 10.1074/jbc.m211987200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LDL receptor-related protein 5 (LRP5) plays multiple roles, including embryonic development and bone accrual development. Recently, we demonstrated that LRP5 is also required for normal cholesterol metabolism and glucose-induced insulin secretion. To further define the role of LRP5 in the lipoprotein metabolism, we compared plasma lipoproteins in mice lacking LRP5, apolipoprotein E (apoE), or both (apoE;LRP5 double knockout). On a normal chow diet, the apoE;LRP5 double knockout mice (older than 4 months of age) had approximately 60% higher plasma cholesterol levels compared with the age-matched apoE knockout mice. In contrast, LRP5 deficiency alone had no significant effects on the plasma cholesterol levels. High performance liquid chromatography analysis of plasma lipoproteins revealed that cholesterol levels in the very low density lipoprotein and low density lipoprotein fractions were markedly increased in the apoE;LRP5 double knockout mice. There were no apparent differences in the pattern of apoproteins between the apoE knockout mice and the apoE;LRP5 double knockout mice. The plasma clearance of intragastrically loaded triglyceride was markedly impaired by LRP5 deficiency. The atherosclerotic lesions of the apoE;LRP5 double knockout mice aged 6 months were approximately 3-fold greater than those in the age-matched apoE-knockout mice. Furthermore, histological examination revealed highly advanced atherosclerosis, with remarkable accumulation of foam cells and destruction of the internal elastic lamina in the apoE;LRP5 double knockout mice. These data suggest that LRP5 mediates both apoE-dependent and apoE-independent catabolism of plasma lipoproteins.
Collapse
Affiliation(s)
- Kenta Magoori
- Tohoku University Gene Research Center, Aoba, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
594
|
Kikuchi A. Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci 2003; 94:225-9. [PMID: 12824913 PMCID: PMC11160305 DOI: 10.1111/j.1349-7006.2003.tb01424.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2002] [Accepted: 01/17/2003] [Indexed: 01/22/2023] Open
Abstract
The genetics of development and cancer have converged in the identification of intra- and extra-cellular signaling pathways that are aberrantly regulated in cancer, and are also central to embryonic patterning. The Wnt signaling pathway has provided an outstanding example of this. The genes for beta-catenin, APC, and Axin in the Wnt signaling pathway are often mutated in human cancers. In all such cases, the common denominator is the activation of gene transcription by beta-catenin. The resulting gene expression profile should provide a significant clue to the developmental mechanisms of cancers carrying defects in the Wnt signaling pathway. In this review, the functions of beta-catenin, APC and Axin, and the alterations of the three genes in human cancers are described.
Collapse
Affiliation(s)
- Akira Kikuchi
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University.
| |
Collapse
|
595
|
Tolwinski NS, Wehrli M, Rives A, Erdeniz N, DiNardo S, Wieschaus E. Wg/Wnt signal can be transmitted through arrow/LRP5,6 and Axin independently of Zw3/Gsk3beta activity. Dev Cell 2003; 4:407-18. [PMID: 12636921 DOI: 10.1016/s1534-5807(03)00063-7] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Activation of the Wnt signaling cascade provides key signals during development and in disease. Here we provide evidence, by designing a Wnt receptor with ligand-independent signaling activity, that physical proximity of Arrow (LRP) to the Wnt receptor Frizzled-2 triggers the intracellular signaling cascade. We have uncovered a branch of the Wnt pathway in which Armadillo activity is regulated concomitantly with the levels of Axin protein. The intracellular pathway bypasses Gsk3beta/Zw3, the kinase normally required for controlling beta-catenin/Armadillo levels, suggesting that modulated degradation of Armadillo is not required for Wnt signaling. We propose that Arrow (LRP) recruits Axin to the membrane, and that this interaction leads to Axin degradation. As a consequence, Armadillo is no longer bound by Axin, resulting in nuclear signaling by Armadillo.
Collapse
|
596
|
van Es JH, Barker N, Clevers H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev 2003; 13:28-33. [PMID: 12573432 DOI: 10.1016/s0959-437x(02)00012-6] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The highly regulated Wnt signaling cascade plays a decisive role during embryonic patterning and cell-fate determination. The inappropriate expression of Wnt target genes, resulting from deregulation of this pathway, is also implicated in tumorigenesis. Thus, regulation of this pathway is of paramount importance. The Wnt signals are extracellularly regulated by a diverse group of antagonists, cofactors and coreceptors. In the cytoplasm, beta-catenin, a key effector of the Wnt signaling cascade, is highly regulated by a large and fascinating complex of proteins. In the nucleus, activation of target genes is regulated by a complex interplay of activators, repressors and other proteins. Recently, new factors in this pathway have been identified and the interplay and mechanisms of action of key players have been better characterized. Collectively, this represents an important step forward in our understanding of the role of Wnt signaling in development and oncogenesis.
Collapse
Affiliation(s)
- Johan H van Es
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands.
| | | | | |
Collapse
|
597
|
Fujino T, Asaba H, Kang MJ, Ikeda Y, Sone H, Takada S, Kim DH, Ioka RX, Ono M, Tomoyori H, Okubo M, Murase T, Kamataki A, Yamamoto J, Magoori K, Takahashi S, Miyamoto Y, Oishi H, Nose M, Okazaki M, Usui S, Imaizumi K, Yanagisawa M, Sakai J, Yamamoto TT. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad Sci U S A 2003; 100:229-34. [PMID: 12509515 PMCID: PMC140935 DOI: 10.1073/pnas.0133792100] [Citation(s) in RCA: 306] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A Wnt coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) plays an essential role in bone accrual and eye development. Here, we show that LRP5 is also required for normal cholesterol and glucose metabolism. The production of mice lacking LRP5 revealed that LRP5 deficiency led to increased plasma cholesterol levels in mice fed a high-fat diet, because of the decreased hepatic clearance of chylomicron remnants. In addition, when fed a normal diet, LRP5-deficient mice showed a markedly impaired glucose tolerance. The LRP5-deficient islets had a marked reduction in the levels of intracellular ATP and Ca(2+) in response to glucose, and thereby glucose-induced insulin secretion was decreased. The intracellular inositol 1,4,5-trisphosphate (IP3) production in response to glucose was also reduced in LRP5-- islets. Real-time PCR analysis revealed a marked reduction of various transcripts for genes involved in glucose sensing in LRP5-- islets. Furthermore, exposure of LRP5++ islets to Wnt-3a and Wnt-5a stimulates glucose-induced insulin secretion and this stimulation was blocked by the addition of a soluble form of Wnt receptor, secreted Frizzled-related protein-1. In contrast, LRP5-deficient islets lacked the Wnt-3a-stimulated insulin secretion. These data suggest that WntLRP5 signaling contributes to the glucose-induced insulin secretion in the islets.
Collapse
Affiliation(s)
- Takahiro Fujino
- Gene Research Center and Division of Nephrology, Endocrinology, and Vascular Medicine, Department of Medicine, Tohoku University, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
598
|
Wharton KA. Runnin' with the Dvl: proteins that associate with Dsh/Dvl and their significance to Wnt signal transduction. Dev Biol 2003; 253:1-17. [PMID: 12490194 DOI: 10.1006/dbio.2002.0869] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Wnt proteins transmit myriad intercellular signals crucial for the development and homeostasis of metazoan animals from Hydra to human. Abnormal Wnt signaling causes a growing number of diseases, including cancer and osteoporosis. Depending on the context, a given Wnt signal may denote: cell proliferation or apoptosis; cell fate determination, differentiation, or stem cell maintenance; a variety of changes in cell behavior; and/or coordinated interactions with its neighbors. Which event(s) occur in Wnt-responsive cells depends critically on the ability of Dishevelled (Dsh)/Dvl proteins to interpret distinct types of intracellular, receptor-generated stimuli and transmit them to at least two distinct sets of effector molecules, all while apparently ignoring a third type of Wnt-generated Ca(2+) signal. The three conserved domains present in Dsh/Dvl proteins uniquely function in each Wnt pathway, in part by association with 18 (and counting) Dsh/Dvl-associated proteins. The latest data suggest that Dsh/Dvl proteins organize dynamic, pathway-specific subcellular signaling complexes that ensure correct information routing, signal amplification, and dynamic control through feedback regulation. The biochemical and cell biological mechanisms by which Dsh/Dvl proteins accomplish these remarkable tasks remain obscure.
Collapse
Affiliation(s)
- Keith A Wharton
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9072, USA.
| |
Collapse
|
599
|
Heisenberg CP, Tada M. Zebrafish gastrulation movements: bridging cell and developmental biology. Semin Cell Dev Biol 2002; 13:471-9. [PMID: 12468250 DOI: 10.1016/s1084952102001003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During vertebrate gastrulation, large cellular rearrangements lead to the formation of the three germ layers, ectoderm, mesoderm and endoderm. Zebrafish offer many genetic and experimental advantages for studying vertebrate gastrulation movements. For instance, several mutants, including silberblick, knypek and trilobite, exhibit defects in morphogenesis during gastrulation. The identification of the genes mutated in these lines together with the analysis of the mutant phenotypes has provided new insights into the molecular and cellular mechanisms that underlie vertebrate gastrulation movements.
Collapse
Affiliation(s)
- Carl Philipp Heisenberg
- Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.
| | | |
Collapse
|
600
|
Abstract
The low-density-lipoprotein (LDL) receptor family is an evolutionarily ancient gene family of structurally closely related cell-surface receptors. Members of the family are involved in the cellular uptake of extracellular ligands and regulate diverse biological processes including lipid and vitamin metabolism and cell-surface protease activity. Some members of the family also participate in cellular signaling and regulate the development and functional maintenance of the nervous system. Here we review the roles of this family of multifunctional receptors in the nervous system and focus on recent advances toward the understanding of the mechanisms by which lipoprotein receptors and their ligands transmit and modulate signals in the brain.
Collapse
Affiliation(s)
- Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA.
| | | |
Collapse
|