551
|
Ito T, Suzuki A, Imai E, Horimoto N, Ohnishi T, Daikuhara Y, Hori M. Tornado extraction: a method to enrich and purify RNA from the nephrogenic zone of the neonatal rat kidney. Kidney Int 2002; 62:763-9. [PMID: 12164857 DOI: 10.1046/j.1523-1755.2002.00533.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Development of the kidney is a complicated and tightly regulated process. Although several genes responsible for the renal development have been identified to date, the precise mechanisms of spatial and temporal regulation remain to be elucidated. Therefore, expanding our knowledge of molecules that are associated with nephrogenesis will be helpful to understand the whole process. METHODS To extract RNA selectively from the nephrogenic zone of the developing kidney, we developed a simple and reliable method. RESULTS This method, named "tornado extraction," enriched RNA of the nephrogenic zone by about 30-fold. In combination with the suppression subtractive hybridization, a considerable number of genes that were differentially expressed in the nephrogenic zone were obtained. These genes included a series of endodermal markers such as albumin and alpha-fetoprotein as well as GDNF (glia-derived neurotrophic factor), osteoblast-specific factor-2 (OSF-2)/periostin and fetuin (one of the major serum proteins in the fetus). CONCLUSION Tornado extraction has great value in studying genes in the nephrogenic zone of the developing kidney. Since the quality of RNA obtained by this method is excellent, tornado extraction is suitable in combination with other techniques including the subtractive hybridization method and DNA microarray analysis.
Collapse
Affiliation(s)
- Takahito Ito
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Box A8, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
552
|
Abstract
The study of maturity-onset diabetes of the young (MODY), an autosomal dominant form of early-onset diabetes mellitus characterised by defective insulin secretion has been extremely successful in two ways. Firstly it has enabled definitive diagnosis for patients. This allows more accurate prediction of disease and treatment requirements. Secondly it has facilitated an increased understanding of the genes and pathways that are crucial for normal beta-cell function. Five of the six MODY genes, TCF1 (encoding HNF-1alpha), TCF2 (encoding HNF-1beta) HNF4A, insulin promoter factor (IPF)1, and NEUROD1, are transcription factors that operate in a complex network of gene regulation. Several genes have been shown to be regulated by the MODY transcription factors in a beta-cell specific manner. This includes the co-regulation of HNF-1alpha and HNF-4alpha by each other. The exact mechanism of how mutations in these transcription factors result in diabetes in humans remains unknown. However, current opinion favours pleiotropic adverse effects on many genes; extensive in vitro and in vivo studies of these genes has highlighted their importance in both glucose sensing-insulin secretion coupling and maintaining the fully differentiated beta-cell phenotype.
Collapse
Affiliation(s)
- Simon M S Mitchell
- Department of Diabetes and Vascular Medicine, University of Exeter, Barrack Road, EX2 5AX, Exeter, UK.
| | | |
Collapse
|
553
|
Bayle JH, Randazzo F, Johnen G, Kaufman S, Nagy A, Rossant J, Crabtree GR. Hyperphenylalaninemia and impaired glucose tolerance in mice lacking the bifunctional DCoH gene. J Biol Chem 2002; 277:28884-91. [PMID: 12011081 DOI: 10.1074/jbc.m201983200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bifunctional protein DCoH (Dimerizing Cofactor for HNF1) acts as an enzyme in intermediary metabolism and as a binding partner of the HNF1 family of transcriptional activators. HNF1 proteins direct the expression of a variety of genes in the liver, kidney, pancreas, and gut and are critical to the regulation of glucose homeostasis. Mutations of the HNF1alpha gene underlie maturity onset diabetes of the young (MODY3) in humans. DCoH acts as a cofactor for HNF1 that stabilizes the dimeric HNF1 complex. DCoH also catalyzes the recycling of tetrahydrobiopterin, a cofactor of aromatic amino acid hydroxylases. To examine the roles of DCoH, a targeted deletion allele of the murine DCoH gene was created. Mice lacking DCoH are viable and fertile but display hyperphenylalaninemia and a predisposition to cataract formation. Surprisingly, HNF1 function in DCoH null mice is only slightly impaired, and mice are mildly glucose-intolerant in contrast to HNF1alpha null mice, which are diabetic. DCoH function as it pertains to HNF1 activity appears to be partially complemented by a newly identified homolog, DCoH2.
Collapse
Affiliation(s)
- J Henri Bayle
- Howard Hughes Medical Institute and the Department Pathology, Beckman Center for Molecular and Genetic Medicine, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
554
|
Abstract
Bile acids derived from cholesterol and oxysterols derived from cholesterol and bile acid synthesis pathways are signaling molecules that regulate cholesterol homeostasis in mammals. Many nuclear receptors play pivotal roles in the regulation of bile acid and cholesterol metabolism. Bile acids activate the farnesoid X receptor (FXR) to inhibit transcription of the gene for cholesterol 7alpha-hydroxylase, and stimulate excretion and transport of bile acids. Therefore, FXR is a bile acid sensor that protects liver from accumulation of toxic bile acids and xenobiotics. Oxysterols activate the liver orphan receptors (LXR) to induce cholesterol 7alpha-hydroxylase and ATP-binding cassette family of transporters and thus promote reverse cholesterol transport from the peripheral tissues to the liver for degradation to bile acids. LXR also induces the sterol response element binding protein-1c that regulates lipogenesis. Therefore, FXR and LXR play critical roles in coordinate control of bile acid, cholesterol, and triglyceride metabolism to maintain lipid homeostasis. Nuclear receptors and bile acid/oxysterol-regulated genes are potential targets for developing drug therapies for lowering serum cholesterol and triglycerides and treating cardiovascular and liver diseases.
Collapse
Affiliation(s)
- John Y L Chiang
- Department of Biochemistry and Molecular Pathology, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272, USA.
| |
Collapse
|
555
|
Abstract
Heterozygous mutations in the genes encoding transcriptional regulators hepatocyte nuclear factor (HNF)-1alpha and HNF-4alpha cause a form of diabetes known as maturity-onset diabetes of the young (MODY). Haploinsufficiency of HNF-1alpha or HNF-4alpha results in MODY because of defective function of pancreatic islet cells. In contrast, homozygous null mutations in mouse models lead to widespread and profound gene expression defects in multiple cell types. Thus, it is not surprising that HNF-1alpha function is now known to have distinct properties in pancreatic beta-cells. It controls a complex tissue-selective genetic network that is activated when pancreatic cells differentiate, and allows these cells to maintain critical specialized functions. The network contains an indispensable core component formed by a positive cross-regulatory feedback circuit between HNF-1alpha and HNF-4alpha. This type of circuit configuration can exhibit a switch-like behavior with two stable states. In the default active state, it can serve to perpetuate network activity in differentiated beta-cells. However, the loss of one HNF-1alpha or HNF-4alpha allele can increase the probability that the feedback circuit is permanently switched off, resulting in decreased expression of all four alleles selectively in beta-cells. Such a model can serve to rationalize key aspects of the pathogenic mechanism in MODY.
Collapse
Affiliation(s)
- Jorge Ferrer
- Department of Endocrinology, Hospital Clínic i Universitari, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| |
Collapse
|
556
|
Abstract
The appreciation that individual susceptibility to type 2 diabetes (T2D) and related components of the dysmetabolic syndrome has a strong inherited component provides a coherent framework within which to develop a molecular understanding of the pathogenesis of T2D. This review focuses on the main approaches currently adopted by researchers seeking to identify the inherited basis of T2D and the present state of our knowledge. One central theme that emerges is that progress in defining the genetic basis of the common, multifactorial forms of T2D is hindered by etiological heterogeneity: T2D is likely to represent the final common pathway of diverse interacting primary disturbances. Such heterogeneity equally compromises efforts to understand the basis for T2D by use of other approaches, such as cellular biochemistry and classical physiology. Analyses that seek to ally sophisticated physiological characterization with measures of genomic variation are likely to provide powerful tools for redressing the loss of power associated with such heterogeneity.
Collapse
Affiliation(s)
- Mark I McCarthy
- Imperial College Faculty of Medicine and Medical Research Council Clinical Sciences Centre, Imperial College, London W12 0NN, United Kingdom.
| | | |
Collapse
|
557
|
Abstract
A patogênese do diabetes mellitus tipo 2 (DM2) é complexa, associando fatores genéticos e fatores ambientais. A hiperglicemia é secundária à combinação de defeitos tanto na sensibilidade à insulina quanto na disfunção das células beta-pancreáticas. Vários estudos estabeleceram claramente a importância dos fatores genéticos na predisposição ao DM2. No momento, conhecemos alguns genes implicados em formas monogênicas de diabetes (MODY, diabetes mitocondrial). No entanto, nas formas mais comuns da doença de caráter poligênico, conhecemos apenas poucos genes que são associados à doença de uma forma reprodutível nos diferentes grupos populacionais estudados. Cada um destes poligenes apresenta um papel isolado muito pequeno, atuando na modulação de fenótipos associados ao diabetes. Nestas formas tardias poligênicas de DM2 é evidente a importância dos fatores ambientais que modulam a expressão clínica da doença. Nesta revisão abordamos os avanços mais relevantes das bases genéticas do DM2.
Collapse
|
558
|
|
559
|
Bartoov-Shifman R, Hertz R, Wang H, Wollheim CB, Bar-Tana J, Walker MD. Activation of the insulin gene promoter through a direct effect of hepatocyte nuclear factor 4 alpha. J Biol Chem 2002; 277:25914-9. [PMID: 11994285 DOI: 10.1074/jbc.m201582200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maturity onset diabetes of the young, subtype 1 (MODY1), is associated with defective glucose-dependent insulin secretion from pancreatic beta cells. MODY1 is caused by mutation in the transcription factor hepatocyte nuclear factor 4 alpha (HNF4 alpha). To understand better the MODY1 phenotype, we tested whether HNF4 alpha was able to modulate directly the insulin gene promoter. Transfection of cultured 293T cells with an HNF4 alpha expression vector led to 10-fold activation of a cotransfected reporter plasmid containing the rat insulin I gene promoter. Computer analysis revealed a potential HNF4 alpha-binding site between nucleotides -57 and -69 of the promoter; mutation of this sequence led to reduced ability of HNF4 alpha to activate the promoter. The ability of HNF4 alpha to bind this sequence was confirmed using gel shift analysis. In transfected INS-1 beta cells, mutation of either the HNF1 alpha site or the HNF4 alpha site in the insulin gene promoter led to 50-75% reduction in reporter gene activity; expression of dominant negative HNF4 alpha led to significant reduction in the activity of wild type and both mutated promoters. Thus, in addition to the previously described indirect action of HNF4 alpha on insulin gene expression mediated through elevated HNF1 alpha levels, HNF4 alpha also activates the insulin gene directly, through a previously unrecognized cis element.
Collapse
Affiliation(s)
- Reut Bartoov-Shifman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
560
|
Abstract
The pancreas is a vital gland of exocrine and endocrine function. It is the target of two main affections: diabetes and pancreatic cancer. We describe the tissue interactions, signaling pathways and intracellular targets that are involved in the emergence of the pancreas primordium and its proliferation, morphogenesis and differentiation. It appears that several genes of developmental relevance have an adult function and are involved in pancreas affections. Embryological experimentation in animals contributed to provide candidate genes for human disease and holds promise for future treatments.
Collapse
Affiliation(s)
- K A Johansson
- Swiss Institute for Experimental Cancer research (ISREC), Chemin des Boveresses 155, Case Postale CH-1066, Epalinges, s/Lausanne, Switzerland
| | | |
Collapse
|
561
|
Bogardus C, Baier L, Permana P, Prochazka M, Wolford J, Hanson R. Identification of susceptibility genes for complex metabolic diseases. Ann N Y Acad Sci 2002; 967:1-6. [PMID: 12079829 DOI: 10.1111/j.1749-6632.2002.tb04257.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are few successful attempts to identify genes for common, non-Mendelian diseases such as diabetes, hyperlipidemia, hypertension, etc. Such common disorders are typically both metabolically and genetically complex and the genetic technologies to identify their underlying susceptibility genes are still in their infancy. Nonetheless, genetic strategies have emerged that, when the technologies are fully developed, should allow similar success rates as for Mendelian diseases.
Collapse
Affiliation(s)
- Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016, USA.
| | | | | | | | | | | |
Collapse
|
562
|
Yang Q, Yamagata K, Fukui K, Cao Y, Nammo T, Iwahashi H, Wang H, Matsumura I, Hanafusa T, Bucala R, Wollheim CB, Miyagawa JI, Matsuzawa Y. Hepatocyte nuclear factor-1alpha modulates pancreatic beta-cell growth by regulating the expression of insulin-like growth factor-1 in INS-1 cells. Diabetes 2002; 51:1785-92. [PMID: 12031966 DOI: 10.2337/diabetes.51.6.1785] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Maturity-onset diabetes of the young type 3 (MODY3) is characterized by impaired insulin secretion. Heterozygous mutations in the gene encoding hepatocyte nuclear factor (HNF)-1alpha are the cause of MODY3. Transgenic mice overexpressing dominant-negative HNF-1alpha mutant in pancreatic beta-cells and HNF-1alpha knockout mice are animal models of MODY3. These mice exhibit defective glucose-stimulated insulin secretion and have reduced beta-cell mass and beta-cell proliferation rate. Here we examined the effect of HNF-1alpha on beta-cell proliferation by overexpressing a human naturally occurring dominant- negative mutation P291fsinsC in INS-1 cells under the control of doxycycline-induction system. INS-1 cells overexpressing P291fsinsC showed apparent growth impairment. The proliferation rate estimated by [(3)H]thymidine incorporation was significantly reduced in P291fsinsC-expressing INS-1 cells compared with noninduced or wild-type HNF-1alpha-overexpressing INS-1 cells. Growth inhibition occurred at the transition from G1 to S cell cycle phase, with reduced expression of cyclin E and upregulation of p27. cDNA array analysis revealed that the expression levels of IGF-1, a major growth factor for beta-cells, and macrophage migration inhibitory factor (MIF), a cytokine expressed in pancreatic beta-cells, were reduced in P291fsinsC-HNF-1alpha-expressing INS-1 cells. Although MIF seemed to have proliferative function, blockade of MIF action by anti-MIF antibody stimulated INS-1 cell proliferation, excluding its direct role in the growth impairment. However, addition of IGF-1 to P291fsinsC-expressing INS-1 cells rescued the growth inhibition. Our data suggest that HNF-1alpha is critical for modulating pancreatic beta-cell growth by regulating IGF-1 expression. IGF-1 might be a potential therapeutic target for the treatment of MODY3.
Collapse
Affiliation(s)
- Qin Yang
- Department of Internal Medicine and Molecular Science, Biomedical Research Center, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
563
|
Abstract
Twin and family studies have demonstrated a strong genetic component to type 2 diabetes mellitus (T2DM), but mapping the susceptibility genes that account for this risk has proved difficult. At least seven single gene defects are known to cause T2DM, often with early onset and insulin deficiency, but these causes account for 5% or less of all T2DM. A large number of candidate genes have been evaluated for typical T2DM, but few have been confirmed in multiple studies, and among these, the effect on individual risk is modest. A large number of genome-wide scans have been published in the last few years, and at least four regions show evidence in multiple studies. However, only NIDDM1 has been mapped to a single gene, and that gene (calpain 10) appears to have a major role only in selected populations. Work is ongoing in many laboratories and multiple populations to map additional regions, but T2DM and other complex diseases have proved recalcitrant to current methodology. In addition to the ongoing progress in completing the genome sequence and in developing a comprehensive map of single nucleotide polymorphisms, new statistical models will be needed to incorporate the multiple loci with modest effect and the known environmental interactions that characterize the susceptibility to T2DM.
Collapse
Affiliation(s)
- Steven C Elbein
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205, USA.
| |
Collapse
|
564
|
Abstract
Wide efforts have taken place with complex metabolic disorders to emulate the success that linkage analysis has had in explaining the nature of monogenic metabolic diseases such as MODY (maturity-onset diabetes of the young) and FH (familial hypercholesterolemia). New linkage methods are being specifically developed and tested for complex disorders since some of the basic assumptions of traditional linkage analysis used with Mendelian traits are not valid. The nature of complex diseases precludes the use of extended families under the hypothesis that the same disease allele acts in most affected individuals throughout a pedigree. Rather, a multitude of genes and of rare and common alleles creates an apparently chaotic pattern of heterogeneity within and between families. Therefore, very simple family structures, in many studies even isolated sibling pairs, form the basis of efforts to compare the inheritance of disease with that of the chromosomal regions under investigation. Also, assumptions about how individual loci contribute to the overall disease inheritance used for the models applied in linkage computation have to be kept to a minimum. The overall effect of this, together with the potentially weak influence of many loci, is a heavy toll on the statistical power to detect individual contributing genes. This may be the reason why very few scans so far have yielded disease loci that meet genome-wide significance criteria. The confirmation of original loci in secondary studies has proven, as predicted, to be very difficult. Nevertheless, the overall emerging picture is very encouraging: one of the genome scans in type 2 diabetes has been carried through to the positional cloning of the underlying genetic variant, namely, the calpain 10-associated polymorphism in type 2 diabetes. Several other loci have been detected repeatedly throughout studies in various human racial groups, such as the chromosome 1q and 20q diabetes loci, and have become the target of collaborative fine-mapping efforts. Modifications to present methodology are in development with the goal to increase statistical power: examples are the use of intermediate traits with potentially increased genetic homogeneity, the investigation of admixed populations, and the study of linkage disequilibrium over wide genomic regions.
Collapse
Affiliation(s)
- S Menzel
- The Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom.
| |
Collapse
|
565
|
Pratley RE, Weyer C. Progression from IGT to type 2 diabetes mellitus: the central role of impaired early insulin secretion. Curr Diab Rep 2002; 2:242-8. [PMID: 12643180 DOI: 10.1007/s11892-002-0090-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Impaired glucose tolerance (IGT) is characterized by plasma glucose responses to an oral glucose challenge that are above normal but not at the level defining diabetes. IGT is a common condition that greatly increases risk for the subsequent development of type 2 diabetes. Individuals with IGT manifest abnormalities in both insulin action and early insulin secretion similar to those seen in patients with type 2 diabetes. These abnormalities not only precede diabetes, they predict it as well. Furthermore, the progression from IGT to diabetes is characterized by a dramatic decline in early insulin secretion. It is now evident that early insulin secretion plays an important role in the rapid and efficient suppression of endogenous glucose production following a meal. Loss of early insulin secretion initially leads to postprandial hyperglycemia which, as the disease progresses, worsens to clinical hyperglycemia. Obesity and a high fat diet may contribute to the development of both insulin resistance and insulin secretory dysfunction in susceptible individuals. Strategies that improve insulin resistance and enhance early insulin secretion may prevent the progression from IGT to diabetes. Already, there is substantial evidence the weight loss and exercise may reduce the risk of developing diabetes by up to 58%. Other trials using pharmacologic agents to decrease insulin resistance and increase early insulin secretion are underway. Prevention remains the best hope for a long-term solutions to the worldwide epidemic of diabetes.
Collapse
Affiliation(s)
- Richard E Pratley
- Novartis Pharmaceuticals Corporation, Clinical Research and Development, Diabetes and Obesity Section, One Health Plaza, East Hanover, NJ 07936, USA.
| | | |
Collapse
|
566
|
Barrio R, Bellanné-Chantelot C, Moreno JC, Morel V, Calle H, Alonso M, Mustieles C. Nine novel mutations in maturity-onset diabetes of the young (MODY) candidate genes in 22 Spanish families. J Clin Endocrinol Metab 2002; 87:2532-9. [PMID: 12050210 DOI: 10.1210/jcem.87.6.8530] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The aims of this study were to estimate the prevalence of major maturity-onset diabetes of the young (MODY) subtypes in Spanish MODY families and to analyze genotype-phenotype correlations. Twenty-two unrelated pediatric MODY patients and 97 relatives were screened for mutations in the coding region of the glucokinase (GCK), hepatic nuclear factor- HNF-1alpha and HNF4alpha genes using PCR-single strand conformation polymorphism and/or direct sequencing. In families carrying GCK mutations, the influence of genetic defects on fetal growth was investigated by comparing the birth weights of 32 offspring discordant for the mutations. Mutations in MODY genes were identified in 64% of the families. GCK/MODY2 mutations were the most frequently found, in 41%: seven novel (R369P, S411F, M298K, C252Y, Y108C, A188E, and S383L) and 2 already described mutations. Four pedigrees (18%) harbored mutations in the HNF-1alpha/MODY3 gene, including a previously unreported change (R271G). One family (4%) carried a novel mutation in the HNF-4alpha gene (IVS5-2delA), representing the first report of a MODY1 pedigree in the Spanish population. The age at diagnosis was prepubertal in MODY2 index patients and pubertal in MODY3 patients. Overt diabetes was rare in MODY2 and was invariably present in MODY3 index patients. Chronic complications of diabetes were absent in the MODY2 population and were present in more than 40% of all relatives of MODY3. Birth weight was lower in the presence of a GCK fetal mutation when the mutation was of paternal origin. The MODY1 patient was diagnosed at 15 yr of age. She developed intermittent microalbuminuria despite good metabolic control, and severe late-onset complications were common within her family. Mutations in the GCK/MODY2 gene are the most common cause of MODY in our population as recruited from pediatric and adolescent index patients. The inheritance of GCK defects by the fetus results in a reduction of birth weight. Clinical expression of MODY3 and MODY1 mutations, the second and third groups of defects found, was more severe, including the frequent development of chronic complications.
Collapse
Affiliation(s)
- R Barrio
- Pediatric Diabetes Unit, Ramón y Cajal Hospital, University of Alcalá, Carretera Comenar Viejo Km. 9.4, 28034 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
567
|
Bartsocas CS, Leslie RDG. Genetics of diabetes mellitus. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 115:1-3. [PMID: 12116170 DOI: 10.1002/ajmg.10337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
568
|
Thameem F, Wolford JK, Wang J, German MS, Bogardus C, Prochazka M. Cloning, expression and genomic structure of human LMX1A, and variant screening in Pima Indians. Gene 2002; 290:217-25. [PMID: 12062816 DOI: 10.1016/s0378-1119(02)00582-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
LIM-homeodomain containing protein LMX1A activates transcription of the insulin gene. The human LMX1A gene maps to 1q22-q23, a region identified as a putative type 2 diabetes mellitus (T2DM) locus in several different populations. We analyzed LMX1A as a positional and biological candidate gene for T2DM in the Pima Indians, in whom a linkage of T2DM to 1q21-q23 has been previously reported. In the present study, we describe the cloning, expression and genomic organization of the LMX1A gene, which is composed of 11 exons spanning approximately 151 kb. In addition to a transcript encoding the predicted full-length protein of 382 amino acids, we identified two truncated cDNA forms produced via additional transcription start sites and alternative splicing. We identified seven single nucleotide polymorphisms (SNPs) throughout the LMX1A locus and determined allele frequency distributions in 150 diabetic and 150 unaffected Pimas. We did not find evidence for association of any LMX1A SNPs with T2DM and conclude that LMX1A does not contribute significantly to T2DM etiology in Pima Indians.
Collapse
Affiliation(s)
- Farook Thameem
- Clinical Diabetes and Nutrition Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA.
| | | | | | | | | | | |
Collapse
|
569
|
Lindgren CM, Widén E, Tuomi T, Li H, Almgren P, Kanninen T, Melander O, Weng J, Lehto M, Groop LC. Contribution of known and unknown susceptibility genes to early-onset diabetes in scandinavia: evidence for heterogeneity. Diabetes 2002; 51:1609-17. [PMID: 11978663 DOI: 10.2337/diabetes.51.5.1609] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In an attempt to identify novel susceptibility genes predisposing to early-onset diabetes (EOD), we performed a genome-wide scan using 433 markers in 222 individuals (119 with diabetes) from 29 Scandinavian families with > or =2 members with onset of diabetes < or =45 years. The highest nonparametric linkage (NPL) score, 2.7 (P < 0.01), was observed on chromosome 1p (D1S473/D1S438). Six other regions on chromosomes 3p, 7q, 11q, 18q, 20q, and 21q showed a nominal P value <0.05. Of the EOD subjects in these 29 families, 20% were GAD antibody positive and 68% displayed type 1 diabetes HLA risk alleles (DQB*02 or 0302). Mutations in maturity-onset diabetes of the young (MODY) 1-5 genes and the A3243G mitochondrial DNA mutation were detected by single-strand conformation polymorphism and direct sequencing. To increase homogeneity, we analyzed a subsample of five families with autosomal dominant inheritance of EOD (greater than or equal to two members with age at diagnosis < or =35 years). The highest NPL scores were found on chromosome 1p (D1S438-D1S1665; NPL 3.0; P < 0.01) and 16q (D16S419; NPL 2.9; P < 0.01). After exclusion of three families with MODY1, MODY3, and mitochondrial mutations, the highest NPL scores were observed on chromosomes 1p (D1S438; NPL 2.6; P < 0.01), 3p (D3S1620; NPL 2.2; P < 0.03), 5q (D5S1465; NPL 2.1; P < 0.03), 7q (D7S820; NPL 2.0; P < 0.03), 18q (D18S535; NPL 1.9; P < 0.04), 20q (D20S195; NPL 2.5; P < 0.02), and 21q (D21S1446; NPL 2.2; P < 0.03). We conclude that considerable heterogeneity exists in Scandinavian subjects with EOD; 24% had MODY or maternally inherited diabetes and deafness, and approximately 60% were GAD antibody positive or had type 1 diabetes-associated HLA genotypes. Our data also point at putative chromosomal regions, which could harbor novel genes that contribute to EOD.
Collapse
Affiliation(s)
- Cecilia M Lindgren
- Department of Endocrinology, Wallenberg laboratory, Malmö University Hospital, Malmö, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
570
|
Ban N, Yamada Y, Someya Y, Miyawaki K, Ihara Y, Hosokawa M, Toyokuni S, Tsuda K, Seino Y. Hepatocyte nuclear factor-1alpha recruits the transcriptional co-activator p300 on the GLUT2 gene promoter. Diabetes 2002; 51:1409-18. [PMID: 11978637 DOI: 10.2337/diabetes.51.5.1409] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutations in the hepatocyte nuclear factor (HNF)-1alpha gene have been linked to subtype 3 of maturity-onset diabetes of the young (MODY), a disease characterized by a primary defect in insulin secretion. Here we show that the human GLUT2 gene is closely regulated by HNF-1alpha via sequences downstream of the transcriptional start site by interaction with transcriptional co-activator p300. The promoter region of the human GLUT2 gene was subcloned into luciferase expression plasmids that were transfected together with HNF-1alpha expression plasmid into a pancreatic beta-cell line, HIT-T15, to evaluate transcriptional activities. HNF-1alpha enhanced human GLUT2 promoter activity sixfold. Site-direct mutagenesis and footprint analyses showed that the HNF-1alpha binding site (+200 to +218) is critical in human GLUT2 gene expression. Furthermore, mammalian two-hybrid and immunoprecipitation studies revealed the transactivation domain of HNF-1alpha (amino acids 391-540) to interact with both the NH(2)-terminal region (amino acids 180-662) and the COOH-terminal region (amino acids 1,818-2,079) of p300. These findings demonstrated that HNF-1alpha binds to the 5'-untranslated region of GLUT2 and that p300 acts as a transcriptional co-activator for HNF-1alpha. In addition, these results provided new insight into the regulatory function of HNF-1alpha by suggesting a molecular basis for human GLUT2 gene expression.
Collapse
Affiliation(s)
- Nobuhiro Ban
- Department of Metabolism and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
571
|
Langmann T, Porsch-Ozcürümez M, Heimerl S, Probst M, Moehle C, Taher M, Borsukova H, Kielar D, Kaminski WE, Dittrich-Wengenroth E, Schmitz G. Identification of sterol-independent regulatory elements in the human ATP-binding cassette transporter A1 promoter: role of Sp1/3, E-box binding factors, and an oncostatin M-responsive element. J Biol Chem 2002; 277:14443-50. [PMID: 11839742 DOI: 10.1074/jbc.m110270200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-binding cassette transporter A1 (ABCA1) shows a differentiation-, cAMP-, and sterol-dependent up-regulation in human monocytes. As part of an ongoing study, we investigated the proximal promoter regions that are highly conserved between the human and murine ABCA1 genes. Using reporter gene assays, we show here that a TATA box 24 bp upstream of the transcription initiation site is essential for promoter activity in RAW 264.7 and HepG2 cells, whereas further enhancement of transcriptional activity is mediated by the -175 bp promoter region. Gel shift assays revealed in vitro binding of Sp1 to a -91 GnC motif as well as binding of Sp1 and Sp3 to a -157 GnC promoter region. In co-transfection experiments using Drosophila S2 cells, we demonstrate that Sp3 competes with Sp1 for binding to the -157 GnC motif and acts as a repressor. On the other hand, overexpression of Sp1 increased ABCA1 mRNA expression in HeLa cells and enhanced cellular cholesterol and phospholipid efflux in RAW 246.7 macrophages. We also show here that the conserved E-box at position -140 binds upstream stimulatory factors 1 and 2 and hepatic nuclear factor 1alpha and that mutagenesis of the E-box enhanced constitutive ABCA1 expression in RAW 264.7 cells, implying a role for this element in silencing ABCA1 expression. Besides the functional importance for basal gene expression, we have identified that the core promoter region (-175 to +224) is also responsible for the induction of ABCA1 by the cytokine oncostatin M, resulting in a rapid increase in ABCA1 mRNA levels in HepG2 cells. Interestingly, this oncostatin M-induced expression is not dependent on the currently known sequence motifs in the ABCA1 promoter. In conclusion, a functional complex of cis-elements within the proximal human ABCA1 promoter associated with the transcription factors Sp1/3, upstream stimulatory factors 1 and 2, and hepatic nuclear factor 1alpha has been characterized, which allows a subtle tissue-specific regulation of ABCA1 gene expression.
Collapse
Affiliation(s)
- Thomas Langmann
- Institute for Clinical Chemistry, University of Regensburg, 93042 Regensburg, Germany, and the Pharma Research Center, Bayer AG, Aprather Wey 18a, D-42096 Wuppertal, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
572
|
Pastier D, Lacorte JM, Chambaz J, Cardot P, Ribeiro A. Two initiator-like elements are required for the combined activation of the human apolipoprotein C-III promoter by upstream stimulatory factor and hepatic nuclear factor-4. J Biol Chem 2002; 277:15199-206. [PMID: 11839757 DOI: 10.1074/jbc.m200227200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human apoC-III (-890/+24) promoter activity is strongly activated by hepatic nuclear factor (HNF)-4 through its binding to the proximal (-87/-72) element B. This site overlaps the binding site for an activity that we identified as the ubiquitously expressed upstream stimulatory factor (USF) (Ribeiro, A., Pastier, D., Kardassis, D., Chambaz, J., and Cardot, P. (1999) J. Biol. Chem. 274, 1216-1225). In the present study, we characterized the relationship between USF and HNF-4 in the activation of human apoC-III transcription. Although USF and HNF-4 binding to element B is mutually exclusive, co-transfection experiments in HepG2 cells surprisingly showed a combined effect of USF and HNF-4 in the transactivation of the (-890/+24) apoC-III promoter. This effect only requires the proximal region (-99/+24) of the apoC-III promoter and depends neither on USF binding to its cognate site in element B nor on a USF-dependent facilitation of HNF-4 binding to its site. By contrast, we found by electrophoretic mobility shift assay and footprinting analysis two USF low affinity binding sites, located within the proximal promoter at positions -58/-31 (element II) and -19/-4 (element I), which are homologous to initiator-like element sequence. Co-transfection experiments in HepG2 cells show that a mutation in element II reduces 2-fold the USF transactivation effect on the proximal promoter of apoC-III and that a mutation in element I inhibits the combined effect of USF and HNF-4. In conclusion, these initiator-like elements are directly involved in the transactivation of the apoC-III promoter by USF and are necessary to the combined effect between USF and HNF-4 for the apoC-III transcription.
Collapse
Affiliation(s)
- Daniele Pastier
- U505 INSERM, Université Pierre et Marie Curie, Institut des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | |
Collapse
|
573
|
Abstract
Maturity-onset diabetes of the young (MODY) are monogenic forms of type 2 diabetes that are characterized by an early disease onset, autosomal-dominant inheritance, and defects in insulin secretion. Genetic studies have identified mutations in at least eight genes associated with different forms of MODY. The majority of the MODY subtypes are caused by mutations in transcription factors that include hepatocyte nuclear factor (HNF)-4 alpha, HNF-1 alpha, PDX-1, HNF-1 beta, and NEURO-DI/BETA-2. In addition, genetic defects in the glucokinase gene, the glucose sensor of the pancreatic beta cells, and the insulin gene also lead to impaired glucose tolerance. Biochemical and genetic studies have demonstrated that the MODY genes are functionally related and form an integrated transcriptional network that is important for many metabolic pathways.
Collapse
Affiliation(s)
- David Q Shih
- Laboratory of Metabolic Diseases, Rockefeller University, 1230 York Avenue, Box 292, New York, NY 10021, USA
| | | |
Collapse
|
574
|
Iwahashi H, Yamagata K, Yoshiuchi I, Terasaki J, Yang Q, Fukui K, Ihara A, Zhu Q, Asakura T, Cao Y, Imagawa A, Namba M, Hanafusa T, Miyagawa JI, Matsuzawa Y. Thyroid hormone receptor interacting protein 3 (trip3) is a novel coactivator of hepatocyte nuclear factor-4alpha. Diabetes 2002; 51:910-4. [PMID: 11916906 DOI: 10.2337/diabetes.51.4.910] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutations of the hepatocyte nuclear factor-4alpha (HNF-4alpha) gene are associated with a subtype of maturity-onset diabetes of the young (MODY1) that is characterized by impaired insulin secretion in response to a glucose load. HNF-4alpha, which is a transcription factor expressed in pancreatic beta-cells, plays an important role in regulating the expression of genes involved in glucose metabolism. Thus, cofactors that interact with HNF-4alpha and modify its transcriptional activity might also play an important role in regulating the metabolic pathways in pancreatic beta-cells, and the genes of such cofactors are plausible candidate genes for MODY. In the present study, we showed, using a yeast two-hybrid screening assay, that thyroid hormone receptor interacting protein 3 (Trip3) interacted with HNF-4alpha, and their interaction was confirmed by the glutathione S-transferase pull-down assay. Human Trip3 cDNA contained an open reading frame for a protein of 155 amino acids, and the gene was expressed in both pancreatic islets and MIN6 cells. Cotransfection experiments indicated that Trip3 could enhance (two- to threefold) the transcription activity of HNF-4alpha in COS-7 cells and MIN6 cells. These results suggest that Trip3 is a coactivator of HNF-4alpha. Mutation screening revealed that variation of the Trip3 gene is not a common cause of MODY/early-onset type 2 diabetes in Japanese individuals. Trip3 may play an important role in glucose metabolism by regulating the transcription activity of HNF-4alpha.
Collapse
Affiliation(s)
- Hiromi Iwahashi
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
575
|
Abstract
Estima-se que perto de 5% dos indivíduos classificados como portadores de diabetes mellitus (DM) tipo 2 e 10% daqueles considerados como tipo 1 (anteriormente classificado como juvenil) sejam, na verdade, portadores de mutações MODY. Nesta forma de DM ocorre uma co-segregação evidente de algumas mutações com a hiperglicemia, fato este reproduzido em inúmeras famílias estudadas em várias populações do mundo. Caracteriza-se por ser uma das poucas causas de DM cujo modo de transmissão da predisposição genética ocorre de uma forma autossômica-dominante, compondo o grupo chamado de DM monogênicos, onde os outros representantes têm uma prevalência bastante rara. As mutações nos genes MODY, mesmo no estado heterozigoto, apresentam um forte impacto no fenótipo (alta penetrância), sendo que 95% dos indivíduos nascidos com alguma mutação MODY serão diabéticos ou apresentarão alterações no âmbito do metabolismo glicídico antes dos 55 anos de idade. Este trabalho objetiva a discussão desta forma de DM, enfatizando suas características clínicas e genéticas mais relevantes. A pesquisa sistemática de mutações MODY começa a ser feita de forma rotineira em vários países, havendo uma tendência de se colocar este recurso diagnóstico como um exame na prática da diabetologia.
Collapse
|
576
|
Benyshek DC, Martin JF, Johnston CS. A reconsideration of the origins of the type 2 diabetes epidemic among Native Americans and the implications for intervention policy. Med Anthropol 2002; 20:25-64. [PMID: 11820766 DOI: 10.1080/01459740.2001.9966186] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 2 diabetes has reached epidemic proportions in many Native American communities in North America. The overwhelming majority of physicians, biomedical researchers, and medical ecologists continue to explain the astoundingly high prevalence rates of diabetes among Native Americans and other high prevalence populations in terms of yet-to-be-identified genetic factors. Recent experimental and epidemiological research, however, has brought to light an etiological alternative to the genetic-predisposition model. This body of research suggests that type 2 diabetes may result initially from fetal malnutrition and, in subsequent generations, be propagated via perturbations in the intrauterine environment. Native American populations at greatest risk for diabetes today are the ones most likely to have endured severe nutritional stress in their recent histories, thus experiencing the conditions that are most conducive to the diabetic developmental sequence. If further substantiated, the implications of the fetal-origin model of diabetes for diabetes intervention programs are profound.
Collapse
Affiliation(s)
- D C Benyshek
- Department of Anthropology and Ethnic Studies, University of Nevada, Las Vegas, 89154-5012, USA
| | | | | |
Collapse
|
577
|
Lindgren CM, Mahtani MM, Widén E, McCarthy MI, Daly MJ, Kirby A, Reeve MP, Kruglyak L, Parker A, Meyer J, Almgren P, Lehto M, Kanninen T, Tuomi T, Groop LC, Lander ES. Genomewide search for type 2 diabetes mellitus susceptibility loci in Finnish families: the Botnia study. Am J Hum Genet 2002; 70:509-16. [PMID: 11791216 PMCID: PMC384923 DOI: 10.1086/338629] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2001] [Accepted: 11/05/2001] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus is a heterogeneous inherited disorder characterized by chronic hyperglycemia resulting from pancreatic beta-cell dysfunction and insulin resistance. Although the pathogenic mechanisms are not fully understood, manifestation of the disease most likely requires interaction between both environmental and genetic factors. In the search for such susceptibility genes, we have performed a genomewide scan in 58 multiplex families (comprising 440 individuals, 229 of whom were affected) from the Botnia region in Finland. Initially, linkage between chromosome 12q24 and impaired insulin secretion had been reported, by Mahtani et al., in a subsample of 26 families. In the present study, we extend the initial genomewide scan to include 32 additional families, update the affectation status, and fine map regions of interest, and we try to replicate the initial stratification analysis. In our analysis of all 58 families, we identified suggestive linkage to one region, chromosome 9p13-q21 (nonparametric linkage [NPL] score 3.9; P<.0002). Regions with nominal P values <.05 include chromosomes 2p11 (NPL score 2.0 [P<.03]), 3p24-p22 (NPL score 2.2 [P<.02]), 4q32-q33 (NPL score 2.5 [P<.01]), 12q24 (NPL score 2.1 [P<.03]), 16p12-11 (NPL score 1.7 [P<.05]), and 17p12-p11 (NPL score 1.9 [P<.03]). When chromosome 12q24 was analyzed in only the 32 additional families, a nominal P value <.04 was observed. Together with data from other published genomewide scans, these findings lend support to the hypothesis that regions on chromosome 9p13-q21 and 12q24 may harbor susceptibility genes for type 2 diabetes.
Collapse
Affiliation(s)
- C M Lindgren
- Department of Endocrinology, Wallenberg Laboratory, Malmö University Hospital, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
578
|
Busfield F, Duffy DL, Kesting JB, Walker SM, Lovelock PK, Good D, Tate H, Watego D, Marczak M, Hayman N, Shaw JTE. A genomewide search for type 2 diabetes-susceptibility genes in indigenous Australians. Am J Hum Genet 2002; 70:349-57. [PMID: 11742441 PMCID: PMC384914 DOI: 10.1086/338626] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2001] [Accepted: 11/07/2001] [Indexed: 01/04/2023] Open
Abstract
The prevalence of type 2 diabetes among Australian residents is 7.5%; however, prevalence rates up to six times higher have been reported for indigenous Australian communities. Epidemiological evidence implicates genetic factors in the susceptibility of indigenous Australians to type 2 diabetes and supports the hypothesis of the "thrifty genotype," but, to date, the nature of the genetic predisposition is unknown. We have ascertained clinical details from a community of indigenous Australian descent in North Stradbroke Island, Queensland. In this population, the phenotype is characterized by severe insulin resistance. We have conducted a genomewide scan, at an average resolution of 10 cM, for type 2 diabetes-susceptibility genes in a large multigeneration pedigree from this community. Parametric linkage analysis undertaken using FASTLINK version 4.1p yielded a maximum two-point LOD score of +2.97 at marker D2S2345. Multipoint analysis yielded a peak LOD score of +3.9 <1 cM from marker D2S2345, with an 18-cM 3-LOD support interval. Secondary peak LOD scores were noted on chromosome 3 (+1.8 at recombination fraction [theta] 0.05, at marker D3S1311) and chromosome 8 (+1.77 at theta=0.0, at marker D8S549). These chromosomal regions are likely to harbor novel susceptibility genes for type 2 diabetes in the indigenous Australian population.
Collapse
Affiliation(s)
- Frances Busfield
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
579
|
Abstract
Type 2 diabetes mellitus represents a heterogeneous group of conditions characterized by impaired glucose homeostasis. The disorder runs in families but the mechanism underlying this is unknown. Many, but not all, studies have suggested that mothers are excessively implicated in the transmission of the disorder. A number of possible genetic phenomena could explain this observation, including the exclusively maternal transmission of mitochondrial DNA (mtDNA). It is now apparent that mutations in mtDNA can indeed result in maternally inherited diabetes. Although several mutations have been implicated, the strongest evidence relates to a point substitution at nucleotide position 3243 (A to G) in the mitochondrial tRNA(leu(UUR)) gene. Mitochondrial diabetes is commonly associated with nerve deafness and often presents with progressive non-autoimmune beta-cell failure. Specific treatment with Coenzyme Q10 or L-carnitine may be beneficial. Several rodent models of mitochondrial diabetes have been developed, including one in which mtDNA is specifically depleted in the pancreatic islets. Apart from severe, pathogenic mtDNA mutations, common polymorphisms in mtDNA may contribute to variations of insulin secretory capacity in normal individuals. Mitochondrial diabetes accounts for less than 1% of all diabetes and other mechanisms must underlie the maternal transmission of Type 2 diabetes. Possibilities include the role of maternally controlled environments, imprinted genes and epigenetic phenomena.
Collapse
Affiliation(s)
- J C Alcolado
- Department of Medicine, University of Wales College of Medicine, Cardiff , Wales, UK.
| | | | | |
Collapse
|
580
|
The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus*. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2002. [DOI: 10.2337/diacare.25.2007.s5] [Citation(s) in RCA: 310] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
581
|
Yamagata K, Nammo T, Moriwaki M, Ihara A, Iizuka K, Yang Q, Satoh T, Li M, Uenaka R, Okita K, Iwahashi H, Zhu Q, Cao Y, Imagawa A, Tochino Y, Hanafusa T, Miyagawa JI, Matsuzawa Y. Overexpression of dominant-negative mutant hepatocyte nuclear fctor-1 alpha in pancreatic beta-cells causes abnormal islet architecture with decreased expression of E-cadherin, reduced beta-cell proliferation, and diabetes. Diabetes 2002; 51:114-23. [PMID: 11756330 DOI: 10.2337/diabetes.51.1.114] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
One subtype of maturity-onset diabetes of the young (MODY)-3 results from mutations in the gene encoding hepatocyte nuclear factor (HNF)-1 alpha. We generated transgenic mice expressing a naturally occurring dominant-negative form of human HNF-1 alpha (P291fsinsC) in pancreatic beta-cells. A progressive hyperglycemia with age was seen in these transgenic mice, and the mice developed diabetes with impaired glucose-stimulated insulin secretion. The pancreatic islets exhibited abnormal architecture with reduced expression of glucose transporter (GLUT2) and E-cadherin. Blockade of E-cadherin-mediated cell adhesion in pancreatic islets abolished the glucose-stimulated increases in intracellular Ca(2+) levels and insulin secretion, suggesting that loss of E-cadherin in beta-cells is associated with impaired insulin secretion. There was also a reduction in beta-cell number (50%), proliferation rate (15%), and pancreatic insulin content (45%) in 2-day-old transgenic mice and a further reduction in 4-week-old animals. Our findings suggest various roles for HNF-1 alpha in normal glucose metabolism, including the regulation of glucose transport, beta-cell growth, and beta-cell-to-beta-cell communication.
Collapse
Affiliation(s)
- Kazuya Yamagata
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
582
|
Abstract
High concentrations of glucose induce insulin resistance, impair insulin secretion, and affect hepatic glucose production in a manner that mirrors Type 2 diabetes, and hexosamines mimic many of these effects. This has led to the hypothesis that cells use hexosamine flux as a glucose- and satiety-sensing pathway. The hexosamine hypothesis for glucose sensing has been validated by overexpressing the rate-limiting enzyme for hexosamine synthesis, glutamine: fructose-6-phosphate amidotransferase (GFA) in several tissues including muscle, liver, fat, and beta cells. With overexpression of GFA in transgenic animals, skeletal muscle becomes insulin resistant, the liver synthesizes excess fatty acid, and the beta cell secretes excess insulin leading to hyperinsulinemia. Thus, excess hexosamine flux leads to a coordinated response whereby fuel is shunted toward long-term storage, mirroring the "thrifty phenotype." Chronically, however, these same adaptive changes result ultimately in obesity, hyperlipidemia, beta cell failure, and Type 2 diabetes. These results suggest a mechanism by which chronic overnutrition leads to the phenotype of Type 2 diabetes.
Collapse
Affiliation(s)
- Donald A McClain
- Department of Internal Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Utah and VA Medical Center, 50 N. Medical Drive, 4C116, Salt Lake City, UT 84132, USA.
| |
Collapse
|
583
|
Sesti G. Searching for type 2 diabetes genes: prospects in pharmacotherapy. THE PHARMACOGENOMICS JOURNAL 2002; 2:25-9. [PMID: 11990377 DOI: 10.1038/sj.tpj.6500078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- G Sesti
- Department of Experimental and Clinical Medicine, University of Catanzaro-Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
584
|
Gerrish K, Cissell MA, Stein R. The role of hepatic nuclear factor 1 alpha and PDX-1 in transcriptional regulation of the pdx-1 gene. J Biol Chem 2001; 276:47775-84. [PMID: 11590182 DOI: 10.1074/jbc.m109244200] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The PDX-1 homeodomain transcription factor regulates pancreatic development and adult islet beta cell function. Expression of the pdx-1 gene is almost exclusively localized to beta cells within the adult endocrine pancreas. Islet beta cell-selective transcription is controlled by evolutionarily conserved subdomain sequences (termed Areas I (-2839 to -2520 base pairs (bp)), II (-2252 to -2023 bp), and III (-1939 to -1664 bp)) found within the 5'-flanking region of the pdx-1 gene. Areas I and II are independently capable of directing beta cell-selective reporter gene activity in transfection assays, with Area I-mediated stimulation dependent upon binding of hepatic nuclear factor 3 beta (HNF3 beta), a key regulator of islet beta cell function. To identify other transactivators of Area I, highly conserved sequence segments within this subdomain were mutagenized, and their effect on activation was determined. Several of the sensitive sites were found by transcription factor data base analysis to potentially bind endodermally expressed transcription factors, including HNF1 alpha (-2758 to -2746 bp, Segment 2), HNF4 (-2742 to -2730 bp, Segment 4; -2683 to -2671 bp, Segment 7-8), and HNF6 (-2727 to -2715 bp, Segment 5). HNF1 alpha, but not HNF4 and HNF6, binds specifically to Area I sequences in vitro. HNF1 alpha was also shown to specifically activate Area I-driven transcription through Segment 2. In addition, PDX-1 itself was found to stimulate Area I activation. The chromatin immunoprecipitation assay performed with PDX-1 antisera also demonstrated that this factor bound to Area I within the endogenous pdx-1 gene in beta cells. Our results indicate that regulatory factors binding to Area I conserved sequences contribute to the selective transcription pattern of the pdx-1 gene and that control is mediated by endodermal regulators like HNF1 alpha, HNF3 beta, and PDX-1.
Collapse
Affiliation(s)
- K Gerrish
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37215, USA
| | | | | |
Collapse
|
585
|
Abstract
The pancreas, as most of the digestive tract, derives from the endoderm. Differentiation of these early gut endoderm cells into the endocrine cells forming the pancreatic islets of Langerhans depends on a cascade of gene activation events. These are controlled by different classes of transcription factors including the homeodomain, the basic helix-loop-helix (bHLH) and the winged helix proteins. Recently, considerable progress has been made delineating this cascade. The present review focuses on the role of the different transcription factors during pancreas development, with a particular emphasis on the newly identified bHLH transcription factor neurogenin3.
Collapse
Affiliation(s)
- V M Schwitzgebel
- Division of Pediatric Endocrinology and Diabetology, Hôpital des Enfants, University of Geneva, 6, rue Willi Donzé, CH-1211 Geneva, Switzerland.
| |
Collapse
|
586
|
Boj SF, Parrizas M, Maestro MA, Ferrer J. A transcription factor regulatory circuit in differentiated pancreatic cells. Proc Natl Acad Sci U S A 2001; 98:14481-6. [PMID: 11717395 PMCID: PMC64707 DOI: 10.1073/pnas.241349398] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in the human genes encoding hepatocyte nuclear factors (HNF) 1alpha, 1beta, 4alpha, and IPF1(PDX1/IDX1/STF1) result in pancreatic beta cell dysfunction and diabetes mellitus. In hepatocytes, hnf4alpha controls the transcription of hnf1alpha, suggesting that this same interaction may operate in beta cells and thus account for the common diabetic phenotype. We show that, in pancreatic islet and exocrine cells, hnf4alpha expression unexpectedly depends on hnf1alpha. This effect is tissue-specific and mediated through direct occupation by hnf1alpha of an alternate promoter located 45.6 kb from the previously characterized hnf4alpha promoter. Hnf1alpha also exerts direct control of pancreatic-specific expression of hnf4gamma and hnf3gamma. Hnf1alpha dependence of hnf4alpha, hnf4gamma, hnf3gamma, and two previously characterized distal targets (glut2 and pklr) is established only after differentiated cells arise during pancreatic embryonic development. These studies define an unexpected hierarchical regulatory relationship between two genes involved in human monogenic diabetes in the cells, which are relevant to its pathophysiology. Furthermore, they indicate that hnf1alpha is an essential component of a transcription factor circuit whose role may be to maintain differentiated functions of pancreatic cells.
Collapse
Affiliation(s)
- S F Boj
- Endocrinology and Hormonal Biochemistry Units, Hospital Clinic Universitari, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Villarroel 170, 08036 Barcelona, Spain
| | | | | | | |
Collapse
|
587
|
Pontoglio M, Pausa M, Doyen A, Viollet B, Yaniv M, Tedesco F. Hepatocyte nuclear factor 1alpha controls the expression of terminal complement genes. J Exp Med 2001; 194:1683-9. [PMID: 11733582 PMCID: PMC2193531 DOI: 10.1084/jem.194.11.1683] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The terminal components of the complement system contribute to host defense by forming the multiprotein membrane attack complex (MAC) which is responsible for cell lysis and several noncytotoxic effects. Most of the complement proteins are synthesized in the liver, but the mechanisms controlling their tissue-specific expression have not been elucidated. In this study we show that mice lacking the hepatic transcription factor hepatocyte nuclear factor 1alpha (HNF1alpha) fail to transcribe C5 and C8A complement genes. In addition, mRNAs encoding for several other terminal complement components or subunits are expressed at lower levels, including C8beta, C8gamma, and C9. We next used a reconstitution assay involving human sera with selective complement deficiencies to assess mouse complement activity. Sera from HNF1alpha-deficient mice showed negligible hemolytic activity of both C5 and C8alpha-gamma subunits. The activity of C8beta was severely affected despite only a 50% reduction in C8beta mRNA levels in the liver. This is reminiscent of C8alpha-gamma-deficient patients who accumulate extremely low levels of the C8beta subunit. Our results demonstrate that HNF1alpha plays a key role in the expression of C5 and C8A genes, two terminal complement component genes that are essential for the assembly of MAC as a result of complement activation.
Collapse
Affiliation(s)
- M Pontoglio
- Unité des Virus Oncogènes, Centre National de la Recherche Scientifique URA 1644, Département de Biotechnologie, Institut Pasteur, 75724 Paris cedex 15, France.
| | | | | | | | | | | |
Collapse
|
588
|
Soskolne WA, Klinger A. The relationship between periodontal diseases and diabetes: an overview. ANNALS OF PERIODONTOLOGY 2001; 6:91-8. [PMID: 11887477 DOI: 10.1902/annals.2001.6.1.91] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus, caused by the malfunction of insulin-dependent glucose and lipid metabolism, presents with the classical triad of symptoms: polydypsia, polyuria, and polyphagia which are often accompanied by chronic fatigue and loss of weight. Complications of diabetes mellitus include retinopathy, nephropathy, neuropathy, and cardiovascular disease. Periodontal diseases are infections affecting the periodontium and resulting in the loss of tooth support. The association between diabetes mellitus and periodontitis has long been discussed with conflicting conclusions. Both of these diseases have a relatively high incidence in the general population (diabetes 1% to 6% and periodontitis 14%) as well as a number of common pathways in their pathogenesis (both diseases are polygenic disorders with some degree of immunoregulatory dysfunction). On the one hand, numerous reports indicate a higher incidence of periodontitis in diabetics compared to healthy controls, while other reports fail to show such a relationship. Clarification of this dilemma is occurring as the diagnostic criteria for periodontitis and diabetes mellitus improve, controlled studies with increased sample sizes are carried out, and the studies take into account major confounding variables that impact on the pathogenesis of both diseases. Current studies tend to support a higher incidence and severity of periodontitis in patients with diabetes mellitus. The overview looks at the bidirectional relationship between periodontitis and diabetes. An analysis of the National Health and Nutrition Examination Survey (NHANES) III data set confirms the previously reported significantly higher prevalence of periodontitis in diabetics than in non-diabetics (17.3% versus 9%). The analysis of the data also shows that the prevalence of diabetes in patients with periodontitis is double that seen in the non-periodontitis patients (12.5% versus 6.3%) and that this difference is also statistically significant. The pathogenesis of the 2 diseases is reviewed with an emphasis on common genetic and immune mechanisms. On the basis of the overview, 2 hypotheses for testing the relationship between periodontitis and diabetes are discussed. The first proposes a direct causal or modifying relationship in which the hyperglycemia and hyperlipidemia of diabetes result in metabolic alterations that may then exacerbate bacteria-induced inflammatory periodontitis. The second hypothesis proposes that a fortuitous combination of genes (gene sets) could result in a host who, under the influence of a variety of environmental stressors, could develop either periodontitis or diabetes or both.
Collapse
Affiliation(s)
- W A Soskolne
- Department of Periodontics, Hebrew University-Hadassah, Faculty of Dental Medicine, Jerusalem, Israel
| | | |
Collapse
|
589
|
Sun Z, Hopkins N. vhnf1, the MODY5 and familial GCKD-associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain. Genes Dev 2001; 15:3217-29. [PMID: 11731484 PMCID: PMC312837 DOI: 10.1101/gad946701] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2001] [Accepted: 10/12/2001] [Indexed: 01/05/2023]
Abstract
Mutations in the homeobox gene vHnf1 are associated with human diseases MODY5 (maturity-onset diabetes of the young, type V) and familial GCKD (glomerulocystic kidney disease). In an insertional mutagenesis screen in zebrafish, we isolated mutant alleles of vhnf1. Phenotypes of these mutants include formation of kidney cysts, underdevelopment of the pancreas and the liver, and reduction in size of the otic vesicles. We show that these abnormalities arise from patterning defects during development. We further provide evidence that vhnf1 regulates the expression of key patterning genes for these organs. vhnf1 is required for the proper expression of pdx1 and shh (sonic hedgehog) in the gut endoderm, pax2 and wt1 in the pronephric primordial, and valentino (val) in the hindbrain. Complementary to the loss-of-function phenotypes, overexpression of vhnf1 induces expansion of the val expression domain in the hindbrain. We propose that vhnf1 controls development of multiple organs through regulating regional specification of organ primordia. The similarity between vhnf1-associated fish phenotypes and human symptoms suggests a correlation between developmental functions of vhnf1 and the molecular etiology of MODY5 and GCKD.
Collapse
Affiliation(s)
- Z Sun
- Biology Department and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
590
|
Shimajiri Y, Sanke T, Furuta H, Hanabusa T, Nakagawa T, Fujitani Y, Kajimoto Y, Takasu N, Nanjo K. A missense mutation of Pax4 gene (R121W) is associated with type 2 diabetes in Japanese. Diabetes 2001; 50:2864-9. [PMID: 11723072 DOI: 10.2337/diabetes.50.12.2864] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pax4 is one of the transcription factors that play an important role in the differentiation of islet beta-cells. We scanned the Pax4 gene in 200 unrelated Japanese type 2 diabetic patients and found a missense mutation (R121W) in 6 heterozygous patients and 1 homozygous patient (mutant allele frequency 2.0%). The mutation was not found in 161 nondiabetic subjects. The R121W mutation was located in the paired domain and was thought to affect its transcription activity through lack of DNA binding. Six of seven patients had family history of diabetes or impaired glucose tolerance, and four of seven had transient insulin therapy at the onset. One of them, a homozygous carrier, had relatively early onset diabetes and slowly fell into an insulin-dependent state without an autoimmune-mediated process. This is the first report of a Pax4 gene mutation that exhibits loss of function and seems to be associated with type 2 diabetes. This work provides significant implications for the Pax4 gene as one of the predisposing genes for type 2 diabetes in the Japanese.
Collapse
Affiliation(s)
- Y Shimajiri
- First Department of Medicine, Wakayama University of Medical Science, Wakayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
591
|
Sano R, Miki T, Suzuki Y, Shimada F, Taira M, Kanatsuka A, Makino H, Hashimoto N, Saito Y. Analysis of the insulin-sensitive phosphodiesterase 3B gene in type 2 diabetes. Diabetes Res Clin Pract 2001; 54:79-88. [PMID: 11640991 DOI: 10.1016/s0168-8227(01)00287-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We screened for mutations in the gene of insulin-sensitive phosphodiesterase 3B (PDE3B), which regulates antilipolytic actions of insulin via reduction of intracellular cyclic AMP levels, in Japanese patients with type 2 diabetes mellitus and lipoatrophic diabetes mellitus using single-stranded conformation polymorphism analysis and Southern analysis and investigated frequencies of variable number of tandem repeats. A silent polymorphism at the Arg463 codon (AGG-->AGA) in exon 4 was identified after examining all 16 exons and exon-intron splicing junctions of the gene. This polymorphism was found in 53 of 100 subjects with type 2 diabetes mellitus, 2 of 5 lipoatrophic diabetic patients and 24 of 50 control subjects, without any significant difference in allele frequency between groups. An EcoRI restriction fragment length polymorphism was identified in patients with type 2 diabetes mellitus and control subjects, again with no differences in occurrence. The allelic distribution of two polymorphic tandem repeats sequences in introns 5 and 12 of the gene did not differ significantly between patients with type 2 diabetes mellitus and control subjects. In conclusion, alterations in the PDE3B gene are unlikely to contribute importantly to the pathogenesis of type 2 diabetes mellitus or lipoatrophic diabetes mellitus in Japan.
Collapse
Affiliation(s)
- R Sano
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
592
|
Shih DQ, Screenan S, Munoz KN, Philipson L, Pontoglio M, Yaniv M, Polonsky KS, Stoffel M. Loss of HNF-1alpha function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism. Diabetes 2001; 50:2472-80. [PMID: 11679424 DOI: 10.2337/diabetes.50.11.2472] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutations in hepatocyte nuclear factor 1alpha (HNF-1alpha) lead to maturity-onset diabetes of the young type 3 as a result of impaired insulin secretory response in pancreatic beta-cells. The expression of 50 genes essential for normal beta-cell function was studied to better define the molecular mechanism underlying the insulin secretion defect in Hnf-1alpha(-/-) mice. We found decreased steady-state mRNA levels of genes encoding glucose transporter 2 (Glut2), neutral and basic amino acid transporter, liver pyruvate kinase (L-Pk), and insulin in Hnf-1alpha(-/-) mice. In addition, we determined that the expression of several islet-enriched transcription factors, including Pdx-1, Hnf-4alpha, and Neuro-D1/Beta-2, was reduced in Hnf-1alpha(-/-) mice. These changes in pancreatic islet mRNA levels were already apparent in newborn animals, suggesting that loss of Hnf-1alpha function rather than chronic hyperglycemia is the primary cause of the altered gene expression. This expression profile was pancreatic islet-specific and distinct from hepatocytes, where we found normal expression of Glut2, L-Pk, and Hnf-4alpha in the liver of Hnf-1alpha(-/-) mice. The expression of small heterodimer partner (Shp-1), an orphan receptor that can heterodimerize with Hnf-4alpha and inhibit its transcriptional activity, was also reduced in Hnf-1alpha(-/-) islets. We characterized a 0.58-kb Shp-1 promoter and determined that the decreased expression of Shp-1 may be indirectly mediated by a downregulation of Hnf-4alpha. We further showed that Shp-1 can repress its own transcriptional activation by inhibiting Hnf-4alpha function, thereby establishing a feedback autoregulatory loop. Our results indicate that loss of Hnf-1alpha function leads to altered expression of genes involved in glucose-stimulated insulin secretion, insulin synthesis, and beta-cell differentiation.
Collapse
Affiliation(s)
- D Q Shih
- Laboratory of Metabolic Diseases, the Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
593
|
Gannon M, Gamer LW, Wright CV. Regulatory regions driving developmental and tissue-specific expression of the essential pancreatic gene pdx1. Dev Biol 2001; 238:185-201. [PMID: 11784003 DOI: 10.1006/dbio.2001.0359] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
pdx1 (pancreatic and duodenal homeobox gene-1), which is expressed broadly in the embryonic pancreas and, later, in a more restricted manner in the mature beta cells in the islets of Langerhans, is essential both for organ formation and beta cell gene expression and function. We carried out a transgenic reporter gene analysis to identify region- and cell type-specific regulatory regions in pdx1. A 14.5-kb pdx1 genomic fragment corrected the glucose intolerance of pdx1(+/-) animals but, moreover, fully rescued the severe gut and pancreas defects in pdx1(-/-) embryos. Sequences sufficient to direct reporter expression to the entire endogenous pdx1 expression domain lie within 4.3 kb of 5' flanking DNA. In this region, we identified two distinct fragments that drive reporter gene expression to different sets of islet neuroendocrine cells. One shows pan-endocrine cell specificity, the other is selectively activated in insulin-producing beta cells. The endocrine-specific regulatory regions overlap a localized region of 5' flanking DNA that is remarkably conserved in sequence between vertebrate pdx1 genes, and which has been associated with beta cell-selective expression in cultured cell lines. This region contains potential binding sites for several transcription factors implicated in endodermal development and the pathogenesis of some forms of type-2 diabetes. These results are consistent with our previous proposal that conserved upstream pdx1 sequences exert control over pdx1 during embryonic organogenesis and islet endocrine cell differentiation. We propose that mutations affecting the expression and/or activity of transcription factors operating via these sequences may predispose towards diabetes, at least in part by direct effects on endocrine pdx1 expression.
Collapse
Affiliation(s)
- M Gannon
- Department of Cell Biology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
594
|
Costi G, Ten S, Maclaren NK. Medical care from childhood to adulthood in type 1 and type 2 diabetes. J Endocrinol Invest 2001; 24:692-707. [PMID: 11716156 DOI: 10.1007/bf03343914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Diabetes mellitus comprises a heterogeneous group of diseases that have in common the development of macro- and microvascular complications. It is now possible to identify subjects at high risk of Type 1 or Type 2 diabetes, especially in the patient's family members. Preventive interventions are quickly becoming available, and can help delay the onset of the disease and thereby reduce complications in these subjects. Furthermore the correct etiological diagnosis of diabetes is fundamental in providing the best treatment for the patient. Maturity-onset diabetes of the young (MODY) syndrome should be suspected in cases of a subtle onset of diabetes and autosomal dominant inheritance. Mitochondrial DNA mutations should be considered when a diabetic patient also suffers from deafness or if there is a family history of this combination in the mother side of the family. Atypical diabetes has to be identified by the physician to avoid mistakes when the patient enters the non-insulin-dependent phase. In the case of Wolfram's syndrome a gene analysis for each family member should be performed to identify heterozygote subjects. Recently, many discoveries in genetics help us better understand the pathogenesis of the diseases and diagnose the monogenic form of diabetes more easily. If all family members are followed in the same center, clues from the family history are readily available for differential diagnosis and preventive interventions can be established more effectively.
Collapse
MESH Headings
- Adolescent
- Adult
- Autoantibodies/blood
- Child
- Child, Preschool
- DNA, Mitochondrial/analysis
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/prevention & control
- Humans
- Infant
- Infant, Newborn
Collapse
Affiliation(s)
- G Costi
- Weill Medical College, Cornell University, New York, NY 10021, USA.
| | | | | |
Collapse
|
595
|
Yoshiuchi I, Yamagata K, Yoshimoto M, Zhu Q, Yang Q, Nammo T, Uenaka R, Kinoshita E, Hanafusa T, Matsuzawa Y. Analysis of a non-functional HNF-1alpha (TCF1) mutation in Japanese subjects with familial type 1 diabetes. Hum Mutat 2001; 18:345-51. [PMID: 11668618 DOI: 10.1002/humu.1196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutations in the transcription factor hepatocyte nuclear factor-1alpha (HNF-1alpha; gene symbol TCF1) cause maturity-onset diabetes of the young type 3 (MODY3), a form of diabetes mellitus characterized by autosomal dominant inheritance, early onset, and pancreatic beta-cell dysfunction. Recent genetic studies, however, also found mutations in patients diagnosed with idiopathic (non-autoimmune based) type 1 diabetes. We identified a novel frameshift mutation (142delG) in the TCF1 gene in a family with a strong family history of type 1 diabetes and examined the functional properties of the mutant HNF 1alpha. The expression of the mutant protein was not detected in COS-7 cells by Western blot analysis after transfection of the mutant cDNA. This is the first case of an unstable mutant HNF-1alpha protein. Reporter gene analysis indicated that the mutant HNF-1alpha had no transactivation activity in HeLa and MIN6 cells. Haploinsufficiency for HNF-1alpha may lead to severe forms of diabetes like type 1 diabetes.
Collapse
Affiliation(s)
- I Yoshiuchi
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
596
|
Vayro S, Wood IS, Dyer J, Shirazi-Beechey SP. Transcriptional regulation of the ovine intestinal Na+/glucose cotransporter SGLT1 gene. Role of HNF-1 in glucose activation of promoter function. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5460-70. [PMID: 11606209 DOI: 10.1046/j.0014-2956.2001.02488.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dietary sugars D-glucose and D-galactose are transported across the intestinal brush-border membrane by the Na+/glucose cotransporter, SGLT1. In various species studied, it has been shown that the activity, and expression, of intestinal SGLT1 is regulated by dietary sugars. We report in this paper that regulation of the intestinal SGLT1 gene by lumenal sugar is due, in part, to an increase in transcription. Using deletion analyses of the -66/+21-bp fragment, we have identified the minimal region of the ovine SGLT1 promoter able to support transcription. Site-directed mutagenesis of the hepatic nuclear factor-1 (HNF-1) consensus motif within this domain eliminates basal promoter function. In addition, we show direct evidence for glucose-induced activation of the -66/+21-bp promoter region. There is a co-ordinated decline in the abundance of ovine intestinal HNF-1 and SGLT1 transcripts during transition from preruminant to adult ruminant. This decline is recovered after glucose infusion of adult sheep intestine. Similarly, as shown using DNA mobility-shift assays, the intensity of the HNF-1-binding complex to the target promoter sequence decreases during maturation of the animal; this is restored after intestinal sugar infusion. These data indicate that HNF-1 plays an important role in the glucose responsiveness of the ovine SGLT1 gene. This is the first report of in vitro glucose-induced activation of the intestinal SGLT1 promoter and identification of a glucose-responsive region of the ovine SGLT1 promoter.
Collapse
Affiliation(s)
- S Vayro
- Epithelial Function and Development Group, Department of Veterinary Preclinical Sciences, University of Liverpool, UK
| | | | | | | |
Collapse
|
597
|
Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 2001; 345:971-80. [PMID: 11575290 DOI: 10.1056/nejmra002168] [Citation(s) in RCA: 673] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S S Fajans
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, USA.
| | | | | |
Collapse
|
598
|
Owen K, Hattersley AT. Maturity-onset diabetes of the young: from clinical description to molecular genetic characterization. Best Pract Res Clin Endocrinol Metab 2001; 15:309-23. [PMID: 11554773 DOI: 10.1053/beem.2001.0148] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Maturity-onset diabetes of the young is a heterogeneous group of autosomal dominantly inherited, young-onset beta-cell disorders. At least two consecutive generations are affected with a family member diagnosed before 25 years of age. Diabetes is caused either by mutations in the glucokinase gene (glucokinase MODY) or by mutations in transcription factors (transcription factor MODY). Glucokinase maturity-onset diabetes of the young is a mild, non-progressive hyperglycaemia caused by a resetting of the pancreatic glucose sensor. It is treated with diet, and complications are rare. Pregnancies affected by glucokinase mutations have specific management strategies and prognosis. Transcription factor maturity-onset diabetes of the young, caused by mutations in the hepatocyte nuclear factor genes HNF-1alpha, HNF-4alpha and HNF-1beta, and in insulin promoter factor-1 results in a progressive beta-cell defect with increasing treatment requirements and diabetic complications. Cystic renal disease is a prominent feature of HNF-1beta mutations. Further maturity-onset diabetes of the young genes remain to be identified. MODY is part of the differential diagnosis of diabetes presenting in the first to third decades of life. Diagnostic molecular genetic testing is available for the more common genes involved.
Collapse
Affiliation(s)
- K Owen
- Centre for Molecular Genetics, School of Postgraduate Medicine and Health Sciences, University of Exeter, Barrack Road, Exeter, EX2 5AX, UK
| | | |
Collapse
|
599
|
Sesti G, Federici M, Lauro D, Sbraccia P, Lauro R. Molecular mechanism of insulin resistance in type 2 diabetes mellitus: role of the insulin receptor variant forms. Diabetes Metab Res Rev 2001; 17:363-73. [PMID: 11747141 DOI: 10.1002/dmrr.225] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Type 2 diabetes is a heterogeneous and polygenic disorder resulting from interaction of genetic factors with environmental influences. Numerous candidate genes for insulin signaling proteins have been screened, but no single major susceptibility gene for type 2 diabetes has been identified. Due to its pivotal role in insulin action, the insulin receptor was considered a plausible candidate gene. The insulin receptor exists in two isoforms differing by the absence (Ex11(-)) or presence (Ex11(+)) of a 12 amino acid sequence in the COOH-terminus of the alpha-subunit, as a consequence of alternative splicing of exon 11. The Ex11(-) binds insulin with two-fold higher affinity than the Ex11(+). This difference is paralleled by a decreased sensitivity for metabolic actions of insulin. Some, but not all, studies have reported that expression of the low-affinity Ex11(+) is increased in target tissues from type 2 diabetic patients, thus suggesting that alterations in abundance of the two isoforms might contribute to insulin resistance. Insulin and type 1 IGF receptors have been shown to form hybrid receptors in tissues co-expressing both molecules. Hybrid receptors bind IGF-I, but not insulin, with high affinity, and behave as IGF-I holoreceptors, rather than insulin receptors, in terms of receptor autophosphorylation, and hormone internalization. It has been shown that the abundance of hybrid receptors is increased in skeletal muscle and adipose tissue from type 2 diabetic patients, and is negatively correlated with in vivo insulin sensitivity. Mutations in the insulin receptor gene have been identified in studies which examined an appropriately sized population of patients with type 2 diabetes. The prevalence of mutations in the insulin receptor gene ranged from 0.4%-7.8%. This review will focus on the structural and functional heterogeneity of the insulin receptor, and will discuss the pathogenetic role of insulin receptor variant forms and polymorphisms in the development of the common form of type 2 diabetes.
Collapse
Affiliation(s)
- G Sesti
- University of Catanzaro-Magna, Graecia, Italy.
| | | | | | | | | |
Collapse
|
600
|
Ueda H, Ikegami H, Kawaguchi Y, Fujisawa T, Nojima K, Babaya N, Yamada K, Shibata M, Yamato E, Ogihara T. Mapping and promoter sequencing of HNF-1beta gene in diabetes-prone and -resistant mice. Diabetes Res Clin Pract 2001; 53:67-71. [PMID: 11403854 DOI: 10.1016/s0168-8227(01)00252-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
By using a novel single nucleotide polymorphism (SNP) in the coding sequence, the chromosomal location of Tcf2, encoding hepatic nuclear factor (HNF)-1beta, was determined in F2 intercrosses between Nagoya-Shibata-Yasuda (NSY) mice, an animal model of type 2 diabetes, and control C3H/He mice. The promoter region of Tcf2 gene was sequenced in NSY, non-obese diabetic (NOD) and control C3H/He mice. Tcf2 was mapped between genetic markers D11MIT320 and D11MIT195 with the following distances: D11MIT320-(7.3 cM)-Tcf2-(0.5 cM)-D11MIT195. A variant with insertion of C between -205 and -204 in the promoter region of Tcf2 was identified in NSY mice, but not NOD and C3H/He mice.
Collapse
Affiliation(s)
- H Ueda
- Department of Geriatric Medicine, Osaka University Medical School, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|