551
|
Petit D, Mir AM, Petit JM, Thisse C, Delannoy P, Oriol R, Thisse B, Harduin-Lepers A. Molecular phylogeny and functional genomics of beta-galactoside alpha2,6-sialyltransferases that explain ubiquitous expression of st6gal1 gene in amniotes. J Biol Chem 2010; 285:38399-414. [PMID: 20855889 DOI: 10.1074/jbc.m110.163931] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sialyltransferases are key enzymes in the biosynthesis of sialoglycoconjugates that catalyze the transfer of sialic residue from its activated form to an oligosaccharidic acceptor. β-Galactoside α2,6-sialyltransferases ST6Gal I and ST6Gal II are the two unique members of the ST6Gal family described in higher vertebrates. The availability of genome sequences enabled the identification of more distantly related invertebrates' st6gal gene sequences and allowed us to propose a scenario of their evolution. Using a phylogenomic approach, we present further evidence of an accelerated evolution of the st6gal1 genes both in their genomic regulatory sequences and in their coding sequence in reptiles, birds, and mammals known as amniotes, whereas st6gal2 genes conserve an ancestral profile of expression throughout vertebrate evolution.
Collapse
Affiliation(s)
- Daniel Petit
- Unité de Génétique Moléculaire Animale, Université de Limoges Faculté des Sciences et Techniques, INRA UMR 1061, 123 Avenue Albert Thomas, 87060 Limoges, France
| | | | | | | | | | | | | | | |
Collapse
|
552
|
Galuska SP, Geyer H, Weinhold B, Kontou M, Röhrich RC, Bernard U, Gerardy-Schahn R, Reutter W, Münster-Kühnel A, Geyer R. Quantification of nucleotide-activated sialic acids by a combination of reduction and fluorescent labeling. Anal Chem 2010; 82:4591-8. [PMID: 20429516 DOI: 10.1021/ac100627e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sialic acids usually represent the terminal monosaccharide of glycoconjugates and are directly involved in many biological processes. The cellular concentration of their nucleotide-activated form is one pacemaker for the highly variable sialylation of glycoconjugates. Hence, the determination of CMP-sialic acid levels is an important factor to understand the complex glycosylation machinery of cells and to standardize the production of glycotherapeutics. We have established a highly sensitive strategy to quantify the concentration of nucleotide-activated sialic acid by a combination of reduction and fluorescent labeling using the fluorophore 1,2-diamino-4,5-methylenedioxybenzene (DMB). The labeling with DMB requires free keto as well as carboxyl groups of the sialic acid molecule. Reduction of the keto group prior to the labeling process precludes the labeling of nonactivated sialic acids. Since the keto group is protected against reduction by the CMP-substitution, labeling of nucleotide-activated sialic acids is still feasible after reduction. Subsequent combination of the DMB-high-performance liquid chromatography (HPLC) application with mass spectrometric approaches, such as matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry (MALDI-TOF-MS) and electrospray-ionization (ESI)-MS, allows the unambiguous identification of both natural and modified CMP-sialic acids and localization of potential substituents. Thus, the described strategy offers a sensitive detection, identification, and quantification of nucleotide-activated sialic acid derivatives in the femtomole range without the need for nucleotide-activated standards.
Collapse
Affiliation(s)
- Sebastian P Galuska
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
553
|
Pérez-Garay M, Arteta B, Pagès L, de Llorens R, de Bolòs C, Vidal-Vanaclocha F, Peracaula R. alpha2,3-sialyltransferase ST3Gal III modulates pancreatic cancer cell motility and adhesion in vitro and enhances its metastatic potential in vivo. PLoS One 2010; 5. [PMID: 20824144 PMCID: PMC2931708 DOI: 10.1371/journal.pone.0012524] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/31/2010] [Indexed: 01/15/2023] Open
Abstract
Background Cell surface sialylation is emerging as an important feature of cancer cell metastasis. Sialyltransferase expression has been reported to be altered in tumours and may account for the formation of sialylated tumour antigens. We have focused on the influence of alpha-2,3-sialyltransferase ST3Gal III in key steps of the pancreatic tumorigenic process. Methodology/Principal Findings ST3Gal III overexpressing pancreatic adenocarcinoma cell lines Capan-1 and MDAPanc-28 were generated. They showed an increase of the tumour associated antigen sialyl-Lewisx. The transfectants' E-selectin binding capacity was proportional to cell surface sialyl-Lewisx levels. Cellular migration positively correlated with ST3Gal III and sialyl-Lewisx levels. Moreover, intrasplenic injection of the ST3Gal III transfected cells into athymic nude mice showed a decrease in survival and higher metastasis formation when compared to the mock cells. Conclusion In summary, the overexpression of ST3Gal III in these pancreatic adenocarcinoma cell lines underlines the role of this enzyme and its product in key steps of tumour progression such as adhesion, migration and metastasis formation.
Collapse
Affiliation(s)
- Marta Pérez-Garay
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Beatriz Arteta
- Department of Cell Biology and Histology, School of Medicine and Dentistry, Basque Country University, Leioa, Spain
| | - Lluís Pagès
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Rafael de Llorens
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Carme de Bolòs
- Cancer Research Program, IMIM-Hospital del Mar, Barcelona, Spain
| | - Fernando Vidal-Vanaclocha
- Department of Cell Biology and Histology, School of Medicine and Dentistry, Basque Country University, Leioa, Spain
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
- * E-mail:
| |
Collapse
|
554
|
Fogel AI, Li Y, Giza J, Wang Q, Lam TT, Modis Y, Biederer T. N-glycosylation at the SynCAM (synaptic cell adhesion molecule) immunoglobulin interface modulates synaptic adhesion. J Biol Chem 2010; 285:34864-74. [PMID: 20739279 DOI: 10.1074/jbc.m110.120865] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.
Collapse
Affiliation(s)
- Adam I Fogel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
555
|
Bovine colostrum is superior to enriched formulas in stimulating intestinal function and necrotising enterocolitis resistance in preterm pigs. Br J Nutr 2010; 105:44-53. [DOI: 10.1017/s0007114510003168] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Milk contains immunomodulatory compounds that may be important to protect the immature intestine in preterm neonates from harmful inflammatory reactions involved in disorders like necrotising enterocolitis (NEC). We hypothesised that bovine colostrum and milk formulas enriched with sialic acids (SL), gangliosides (Gang) or osteopontin (OPN) would improve gastrointestinal function and NEC resistance in preterm neonates. Forty-seven caesarean-delivered preterm pigs were given total parenteral nutrition for 2 d followed by 1·5 d of enteral feeding. In Expt 1, a control formula was compared with an OPN-enriched formula (n 13), while Expt 2 compared a control formula with bovine colostrum or formulas enriched with Gang or SL (n 4–6). OPN enrichment decreased NEC severity relative to control formula (P < 0·01), without any significant effects on NEC incidence, digestive enzyme activities and hexose absorption. Neither SL- nor Gang-enriched formulas improved NEC resistance or digestive functions, while all the intestinal functional parameters were significantly improved in pigs fed bovine colostrum, relative to formula. The effects in vivo were supported in vitro by bacteria- and dose-dependent modulation by colostrum whey of the cytokine response from bacteria-stimulated murine bone marrow-derived dendritic cells (DC). In conclusion, OPN had only moderate NEC-protective effects, while formulas enriched with Gang or SL were ineffective. The observed modulation of DC cytokine response by bovine colostrum whey in vitro may be due to a synergistic action of various milk bioactives, and it may explain its beneficial effects on NEC development and intestinal function in a piglet model of preterm infants.
Collapse
|
556
|
Kim S, Oh DB, Kwon O, Kang HA. Construction of an in vitro trans-sialylation system: surface display of Corynebacterium diphtheriae sialidase on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010; 88:893-903. [DOI: 10.1007/s00253-010-2812-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/22/2010] [Accepted: 07/30/2010] [Indexed: 11/24/2022]
|
557
|
Nozaki H, Yanagida M, Koide KI, Shiotani K, Kinoshita M, Kobayashi Y, Watarai S, Nakamura K, Suzuki A, Ariga T, Kushi Y. Production and characterization of monoclonal antibodies specific to lactotriaosylceramide. Glycobiology 2010; 20:1631-42. [PMID: 20693232 DOI: 10.1093/glycob/cwq117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have established hybridoma cell lines producing monoclonal antibodies (mAbs) directed to N-acetylglucosaminylβ1-3galactose (GlcNAcβ1-3Gal) residue by immunizing BALB/c mice with lactotriaosylceramide (Lc(3)Cer). These obtained hybridoma cells, specific to Lc(3)Cer, were dual immunoglobulin (Ig)-producing cells which secreted both IgM and IgG molecules as antibodies. The established mAbs are able to react with not only Lc(3)Cer but also GlcNAcβ1-3-terminal glycosphingolipids (GSLs) despite branching or lactosamine chain lengths and human transferrin with terminal GlcNAc residues. Comparison of the variable regions of the cloned IgM and IgG by reversed transcription-polymerase chain reaction analysis confirmed that the variable regions determine the specificity, the other amino acids are conserved, and these mAbs are encoded by J558 and Vκ-21family genes. Furthermore, we have analyzed the expression of GSLs with GlcNAcβ1-3 epitope in acute leukemia cell lines and mouse fetal tissues using these mAbs, in which antigens were distributed comparatively. These mAbs are useful for studying the precise distribution of GlcNAcβ1-3Gal-terminating GSL expression in tissues as well as for detecting GSLs carrying terminal GlcNAcβ1-3Gal carbohydrate structure.
Collapse
Affiliation(s)
- Hirofumi Nozaki
- Department of Agriculture and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
558
|
Stevens J, Chen LM, Carney PJ, Garten R, Foust A, Le J, Pokorny BA, Manojkumar R, Silverman J, Devis R, Rhea K, Xu X, Bucher DJ, Paulson J, Cox NJ, Klimov A, Donis RO. Receptor specificity of influenza A H3N2 viruses isolated in mammalian cells and embryonated chicken eggs. J Virol 2010; 84:8287-99. [PMID: 20519409 PMCID: PMC2916524 DOI: 10.1128/jvi.00058-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/18/2010] [Indexed: 11/20/2022] Open
Abstract
Isolation of human subtype H3N2 influenza viruses in embryonated chicken eggs yields viruses with amino acid substitutions in the hemagglutinin (HA) that often affect binding to sialic acid receptors. We used a glycan array approach to analyze the repertoire of sialylated glycans recognized by viruses from the same clinical specimen isolated in eggs or cell cultures. The binding profiles of whole virions to 85 sialoglycans on the microarray allowed the categorization of cell isolates into two groups. Group 1 cell isolates displayed binding to a restricted set of alpha2-6 and alpha2-3 sialoglycans, whereas group 2 cell isolates revealed receptor specificity broader than that of their egg counterparts. Egg isolates from group 1 showed binding specificities similar to those of cell isolates, whereas group 2 egg isolates showed a significantly reduced binding to alpha2-6- and alpha2-3-type receptors but retained substantial binding to specific O- and N-linked alpha2-3 glycans, including alpha2-3GalNAc and fucosylated alpha2-3 glycans (including sialyl Lewis x), both of which may be important receptors for H3N2 virus replication in eggs. These results revealed an unexpected diversity in receptor binding specificities among recent H3N2 viruses, with distinct patterns of amino acid substitution in the HA occurring upon isolation and/or propagation in eggs. These findings also suggest that clinical specimens containing viruses with group 1-like receptor binding profiles would be less prone to undergoing receptor binding or antigenic changes upon isolation in eggs. Screening cell isolates for appropriate receptor binding properties might help focus efforts to isolate the most suitable viruses in eggs for production of antigenically well-matched influenza vaccines.
Collapse
Affiliation(s)
- James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Li-Mei Chen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Paul J. Carney
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Rebecca Garten
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Angie Foust
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Jianhua Le
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Barbara A. Pokorny
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Ramanunninair Manojkumar
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Jeanmarie Silverman
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Rene Devis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Karen Rhea
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Xiyan Xu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Doris J. Bucher
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - James Paulson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Nancy J. Cox
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Alexander Klimov
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Ruben O. Donis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
559
|
Ghaderi D, Taylor RE, Padler-Karavani V, Diaz S, Varki A. Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 2010; 28:863-7. [PMID: 20657583 DOI: 10.1038/nbt.1651] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 05/24/2010] [Indexed: 12/22/2022]
Abstract
Recombinant glycoprotein therapeutics produced in nonhuman mammalian cell lines and/or with animal serum are often modified with the nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc; refs. 1,2). This documented contamination has generally been ignored in drug development because healthy individuals were not thought to react to Neu5Gc (ref. 2). However, recent findings indicate that all humans have Neu5Gc-specific antibodies, sometimes at high levels. Working with two monoclonal antibodies in clinical use, we demonstrate the presence of covalently bound Neu5Gc in cetuximab (Erbitux) but not panitumumab (Vectibix). Anti-Neu5Gc antibodies from healthy humans interact with cetuximab in a Neu5Gc-specific manner and generate immune complexes in vitro. Mice with a human-like defect in Neu5Gc synthesis generate antibodies to Neu5Gc after injection with cetuximab, and circulating anti-Neu5Gc antibodies can promote drug clearance. Finally, we show that the Neu5Gc content of cultured human and nonhuman cell lines and their secreted glycoproteins can be reduced by adding a human sialic acid to the culture medium. Our findings may be relevant to improving the half-life, efficacy and immunogenicity of glycoprotein therapeutics.
Collapse
Affiliation(s)
- Darius Ghaderi
- Glycobiology Research and Training Center, Department of Medicine and Cellular & Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
560
|
Regueiro-Figueroa M, Djanashvili K, Esteban-Gómez D, Chauvin T, Tóth E, de Blas A, Rodríguez-Blas T, Platas-Iglesias C. Molecular recognition of sialic acid by lanthanide(III) complexes through cooperative two-site binding. Inorg Chem 2010; 49:4212-23. [PMID: 20373796 DOI: 10.1021/ic902461g] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein we report two new ligands, 1,4,7-tris(carboxymethyl)-10-[2-(dihydroxyboranyl)benzyl]-1,4,7,10-tetraazacyclododecane (L(1)) and 1,4,7-tris(carboxymethyl)-10-[3-(dihydroxyboranyl)benzyl]-1,4,7,10-tetraazacyclododecane (L(2)), which contain a phenylboronic acid (PBA) function and a 1,4,7,10-tetraazacyclododecane-1,4,7-triacetate cage for complexation of lanthanide ions in an aqueous solution. The pK(a) of the PBA function amounts to 4.6 in [Gd(L(1))] and 8.9 in [Gd(L(2))], with the value of the L(2) analogue being very similar to that of PBA (8.8). These results are explained by the coordination of the PBA function of L(1) to the Gd(III) ion, which results in a dramatic lowering of its pK(a). As a consequence, [Gd(L(1))] does not bind to saccharides at physiological pH. The nuclear magnetic relaxation dispersion profiles recorded for [Gd(L(1))] and [Gd(L(2))] confirm that the phenylboronate function is coordinated to the metal ion in the L(1) derivative, which results in a q = 0 complex. The interaction of the [Gd(L(2))] complex with 5-acetylneuraminic acid (Neu5Ac) and 2-alpha-O-methyl-5-acetylneuraminic acid (MeNeu5Ac) has been investigated by means of spectrophotometric titrations in an aqueous solution (pH 7.4, 0.1 M 3-(N-morpholino)propanesulfonic acid buffer). Furthermore, we have also investigated the binding of these receptors with competing monosaccharides such as D-(+)-glucose, D-fructose, D-mannose, D-galactose, methyl alpha-D-galactoside, and methyl alpha-D-mannoside. The binding constants obtained indicate an important selectivity of [Gd(L(2))] for Neu5Ac (K(eq) = 151) over D-(+)-glucose (K(eq) = 12.3), D-mannose (K(eq) = 21.9), and D-galactose (K(eq) = 24.5). Furthermore, a very weak binding affinity was observed in the case of methyl alpha-D-galactoside and methyl alpha-D-mannoside. An 8-fold increase of the binding constant of [Gd(L(2))] with Neu5Ac is observed when compared to that of PBA determined under the same conditions (K(eq) = 19). (13)C NMR spectroscopy and density functional theory calculations performed at the B3LYP/6-31G(d) level show that this is due to a cooperative two-site binding of Neu5Ac through (1) ester formation by interaction on the PBA function of the receptor and (2) coordination of the carboxylate group of Neu5Ac to the Gd(III) ion. The emission lifetime of the (5)D(4) level of Tb(III) in [Tb(L(2))] increases upon Neu5Ac binding, in line with the displacement of inner-sphere water molecules due to coordination of Neu5Ac to the metal ion.
Collapse
Affiliation(s)
- Martín Regueiro-Figueroa
- Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira, Alejandro de la Sota 1, 15008 A Coruña, Spain
| | | | | | | | | | | | | | | |
Collapse
|
561
|
Mutational deglycosylation of the Fc portion of immunoglobulin G causes O-sulfation of tyrosine adjacently preceding the originally glycosylated site. FEBS Lett 2010; 584:3474-9. [PMID: 20621099 DOI: 10.1016/j.febslet.2010.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/02/2010] [Indexed: 01/11/2023]
Abstract
Mutagenesis directed to a specific glycosylation site has been widely used to examine biological roles of individual glycans. However, occurrence of any post-translational modification on such deglycosylated mutants has not yet been well characterized. Here we performed mass spectrometric analyses of the Fc fragment of an unglycosylated mutant of mouse immunoglobulin G2b, whose conserved N-glycosylation site, i.e. Asn297, was substituted with alanine. We found that a major part of this mutant is sulfated at Tyr296, which adjacently precedes the originally glycosylated site. Our findings demonstrate that mutational deglycosylation can induce an unexpected post-translational modification in the protein.
Collapse
|
562
|
Bond MR, Whitman CM, Kohler JJ. Metabolically incorporated photocrosslinking sialic acid covalently captures a ganglioside-protein complex. MOLECULAR BIOSYSTEMS 2010; 6:1796-9. [PMID: 20625600 DOI: 10.1039/c0mb00069h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
When photoirradiated, an unnatural sialic acid analog can covalently capture the complex formed by ganglioside GM1 and cholera toxin subunit B.
Collapse
Affiliation(s)
- Michelle R Bond
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9185, USA.
| | | | | |
Collapse
|
563
|
Magnetic nanoparticle-based isolation of endocytic vesicles reveals a role of the heat shock protein GRP75 in macromolecular delivery. Proc Natl Acad Sci U S A 2010; 107:13342-7. [PMID: 20624969 DOI: 10.1073/pnas.1002622107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An increased understanding of cellular uptake mechanisms of macromolecules remains an important challenge in cell biology with implications for viral infection and macromolecular drug delivery. Here, we report a strategy based on antibody-conjugated magnetic nanoparticles for the isolation of endocytic vesicles induced by heparan sulfate proteoglycans (HSPGs), key cell-surface receptors of macromolecular delivery. We provide evidence for a role of the glucose-regulated protein (GRP)75/PBP74/mtHSP70/mortalin (hereafter termed "GRP75") in HSPG-mediated endocytosis of macromolecules. GRP75 was found to be a functional constituent of intracellular vesicles of a nonclathrin-, noncaveolin-dependent pathway that was sensitive to membrane cholesterol depletion and that showed colocalization with the membrane raft marker cholera toxin subunit B. We further demonstrate a functional role of the RhoA GTPase family member CDC42 in this transport pathway; however, the small GTPase dynamin appeared not to be involved. Interestingly, we provide evidence of a functional role of GRP75 using RNAi-mediated down-regulation of GRP75 and GRP75-blocking antibodies, both of which inhibited macromolecular endocytosis. We conclude that GRP75, a chaperone protein classically found in the endoplasmic reticulum and mitochondria, is a functional constituent of noncaveolar, membrane raft-associated endocytic vesicles. Our data provide proof of principle of a strategy that should be generally applicable in the molecular characterization of selected endocytic pathways involved in macromolecular uptake by mammalian cells.
Collapse
|
564
|
Honoré C, Rørvig S, Hummelshøj T, Skjoedt MO, Borregaard N, Garred P. Tethering of Ficolin-1 to cell surfaces through recognition of sialic acid by the fibrinogen-like domain. J Leukoc Biol 2010; 88:145-58. [PMID: 20400674 DOI: 10.1189/jlb.1209802] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Three Ficolins have been identified in humans: Ficolin-1 (M-Ficolin), Ficolin-2 (L-Ficolin), and Ficolin-3 (H-Ficolin). Ficolin-1 is the least-described of the Ficolins and is expressed by monocytes, granulocytes, and in the lungs. Ficolin-1 is found circulating at low concentrations in serum but is regarded primarily as a secretory molecule that exerts its function locally in inflamed tissues. Ficolin-1 has been reported on the surface of monocytes and granulocytes and was suggested originally to function as a phagocytic receptor. However, the molecule does not contain any obvious transmembrane domain, and no binding partners have been identified. To gain further insight in the physiological role of Ficolin-1, we sought to identify the molecular mechanism responsible for the membrane association of Ficolin-1 to monocytes and granulocytes. We demonstrate that expression of Ficolin-1 on the cell surface is restricted to monocytes and granulocytes. Ficolin-1 is tethered to the cell surface of these cells through its fibrinogen-like domain, and the ligand involved in the binding of Ficolin-1 is shown to be sialic acid. Moreover, rFicolin-1 bound activated but not resting T lymphocytes. Together, these results demonstrate a novel self-recognition mechanism of leukocytes mediated by the fibrinogen-like domain of Ficolin-1.
Collapse
Affiliation(s)
- Christian Honoré
- Department of Clinical Immunology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
565
|
Hashimoto R, Hirose K, Sato T, Fukushima N, Miura N, Nishimura SI. Functional network of glycan-related molecules: glyco-net in glycoconjugate data bank. BMC SYSTEMS BIOLOGY 2010; 4:91. [PMID: 20584338 PMCID: PMC2907334 DOI: 10.1186/1752-0509-4-91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 06/29/2010] [Indexed: 11/28/2022]
Abstract
Background Glycans are involved in a wide range of biological process, and they play an essential role in functions such as cell differentiation, cell adhesion, pathogen-host recognition, toxin-receptor interactions, signal transduction, cancer metastasis, and immune responses. Elucidating pathways related to post-translational modifications (PTMs) such as glycosylation are of growing importance in post-genome science and technology. Graphical networks describing the relationships among glycan-related molecules, including genes, proteins, lipids and various biological events are considered extremely valuable and convenient tools for the systematic investigation of PTMs. However, there is no database which dynamically draws functional networks related to glycans. Description We have created a database called Glyco-Net http://www.glycoconjugate.jp/functions/, with many binary relationships among glycan-related molecules. Using search results, we can dynamically draw figures of the functional relationships among these components with nodes and arrows. A certain molecule or event corresponds to a node in the network figures, and the relationship between the molecule and the event are indicated by arrows. Since all components are treated equally, an arrow is also a node. Conclusions In this paper, we describe our new database, Glyco-Net, which is the first database to dynamically show networks of the functional profiles of glycan related molecules. The graphical networks will assist in the understanding of the role of the PTMs. In addition, since various kinds of bio-objects such as genes, proteins, and inhibitors are equally treated in Glyco-Net, we can obtain a large amount of information on the PTMs.
Collapse
Affiliation(s)
- Ryo Hashimoto
- Division of Advanced Chemical Biology, Graduate School of Life Science, Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | | | | | | | | | | |
Collapse
|
566
|
Pearce OMT, Varki A. Chemo-enzymatic synthesis of the carbohydrate antigen N-glycolylneuraminic acid from glucose. Carbohydr Res 2010; 345:1225-9. [PMID: 20452577 PMCID: PMC2898718 DOI: 10.1016/j.carres.2010.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/01/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
Abstract
N-Glycolylneuraminic acid (Neu5Gc) is a non-human sialic acid, which may play a significant role in human pathologies, such as cancer and vascular disease. Further studies into the role of Neu5Gc in human disease are hindered by limited sources of this carbohydrate. Using a chemo-enzymatic approach, Neu5Gc was accessed in six steps from glucose. The synthesis allows access to gram-scale quantities quickly and economically and produces Neu5Gc in superior quality to commercial sources. Finally, we demonstrate that the synthesized Neu5Gc can be incorporated into the cell glycocalyx of human cells, which do not naturally synthesize this sugar. The synthesis produces Neu5Gc suitable for in vitro or in vivo use.
Collapse
Affiliation(s)
- Oliver M. T. Pearce
- Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Dr. La Jolla, CA, 92093-0687
| | - Ajit Varki
- Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Dr. La Jolla, CA, 92093-0687
| |
Collapse
|
567
|
Abstract
In vertebrates, sialylated glycans participate in a wide range of biological processes and affect the development and function of the nervous system. While the complexity of glycosylation and the functional redundancy among sialyltransferases provide obstacles for revealing biological roles of sialylation in mammals, Drosophila possesses a sole vertebrate-type sialyltransferase, Drosophila sialyltransferase (DSiaT), with significant homology to its mammalian counterparts, suggesting that Drosophila could be a suitable model to investigate the function of sialylation. To explore this possibility and investigate the role of sialylation in Drosophila, we inactivated DSiaT in vivo by gene targeting and analyzed phenotypes of DSiaT mutants using a combination of behavioral, immunolabeling, electrophysiological, and pharmacological approaches. Our experiments demonstrated that DSiaT expression is restricted to a subset of CNS neurons throughout development. We found that DSiaT mutations result in significantly decreased life span, locomotor abnormalities, temperature-sensitive paralysis, and defects of neuromuscular junctions. Our results indicate that DSiaT regulates neuronal excitability and affects the function of a voltage-gated sodium channel. Finally, we showed that sialyltransferase activity is required for DSiaT function in vivo, which suggests that DSiaT mutant phenotypes result from a defect in sialylation of N-glycans. This work provided the first evidence that sialylation has an important biological function in protostomes, while also revealing a novel, nervous system-specific function of alpha2,6-sialylation. Thus, our data shed light on one of the most ancient functions of sialic acids in metazoan organisms and suggest a possibility that this function is evolutionarily conserved between flies and mammals.
Collapse
|
568
|
Horsfall LE, Nelson A, Berry A. Identification and characterization of important residues in the catalytic mechanism of CMP-Neu5Ac synthetase from Neisseria meningitidis. FEBS J 2010; 277:2779-90. [PMID: 20491913 PMCID: PMC2901514 DOI: 10.1111/j.1742-4658.2010.07696.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sialylated oligosaccharides, present on mammalian outer-cell surfaces, play vital roles in cellular interactions and some bacteria are able to mimic these structures to evade their host’s immune system. It would be of great benefit to the study of infectious and autoimmune diseases and cancers, to understand the pathway of sialylation in detail to enable the design and production of inhibitors and mimetics. Sialylation occurs in two stages, the first to activate sialic acid and the second to transfer it to the target molecule. The activation step is catalysed by the enzyme CMP-Neu5Ac synthetase (CNS). Here we used crystal structures of CNS and similar enzymes to predict residues of importance in the CNS from Neisseria meningitidis. Nine residues were mutated to alanine, and the steady-state enzyme kinetic parameters were measured using a continuous assay to detect one of the products of the reaction, pyrophosphate. Mutations that caused the greatest loss in activity included K142A, D211A, D209A and a series of mutations at residue Q104, highlighted from sequence-alignment studies of related enzymes, demonstrating significant roles for these residues in the catalytic mechanism of CNS. The mutations of D211A and D209A provide strong evidence for a previously proposed metal-binding site in the enzyme, and the results of our mutations at residue Q104 lead us to include this residue in the metal-binding site of an intermediate complex. This suggests that, like the sugar-activating lipopolysaccharide-synthesizing CMP-2-keto-3-deoxy-manno-octonic acid synthetase enzyme KdsB, CNS recruits two Mg2+ ions during the catalytic cycle.
Collapse
Affiliation(s)
- Louise E Horsfall
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
569
|
Colloquium paper: uniquely human evolution of sialic acid genetics and biology. Proc Natl Acad Sci U S A 2010; 107 Suppl 2:8939-46. [PMID: 20445087 DOI: 10.1073/pnas.0914634107] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Darwinian evolution of humans from our common ancestors with nonhuman primates involved many gene-environment interactions at the population level, and the resulting human-specific genetic changes must contribute to the "Human Condition." Recent data indicate that the biology of sialic acids (which directly involves less than 60 genes) shows more than 10 uniquely human genetic changes in comparison with our closest evolutionary relatives. Known outcomes are tissue-specific changes in abundant cell-surface glycans, changes in specificity and/or expression of multiple proteins that recognize these glycans, and novel pathogen regimes. Specific events include Alu-mediated inactivation of the CMAH gene, resulting in loss of synthesis of the Sia N-glycolylneuraminic acid (Neu5Gc) and increase in expression of the precursor N-acetylneuraminic acid (Neu5Ac); increased expression of alpha2-6-linked Sias (likely because of changed expression of ST6GALI); and multiple changes in SIGLEC genes encoding Sia-recognizing Ig-like lectins (Siglecs). The last includes binding specificity changes (in Siglecs -5, -7, -9, -11, and -12); expression pattern changes (in Siglecs -1, -5, -6, and -11); gene conversion (SIGLEC11); and deletion or pseudogenization (SIGLEC13, SIGLEC14, and SIGLEC16). A nongenetic outcome of the CMAH mutation is human metabolic incorporation of foreign dietary Neu5Gc, in the face of circulating anti-Neu5Gc antibodies, generating a novel "xeno-auto-antigen" situation. Taken together, these data suggest that both the genes associated with Sia biology and the related impacts of the environment comprise a relative "hot spot" of genetic and physiological changes in human evolution, with implications for uniquely human features both in health and disease.
Collapse
|
570
|
Müthing J, Distler U. Advances on the compositional analysis of glycosphingolipids combining thin-layer chromatography with mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:425-479. [PMID: 19609886 DOI: 10.1002/mas.20253] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glycosphingolipids (GSLs), composed of a hydrophilic carbohydrate chain and a lipophilic ceramide anchor, play pivotal roles in countless biological processes, including infectious diseases and the development of cancer. Knowledge of the number and sequence of monosaccharides and their anomeric configuration and linkage type, which make up the principal items of the glyco code of biologically active carbohydrate chains, is essential for exploring the function of GSLs. As part of the investigation of the vertebrate glycome, GSL analysis is undergoing rapid expansion owing to the application of novel biochemical and biophysical technologies. Mass spectrometry (MS) takes part in the network of collaborations to further unravel structural and functional aspects within the fascinating world of GSLs with the ultimate aim to better define their role in human health and disease. However, a single-method analytical MS technique without supporting tools is limited yielding only partial structural information. Because of its superior resolving power, robustness, and easy handling, high-performance thin-layer chromatography (TLC) is widely used as an invaluable tool in GSL analysis. The intention of this review is to give an insight into current advances obtained by coupling supplementary techniques such as TLC and mass spectrometry. A retrospective view of the development of this concept and the recent improvements by merging (1) TLC separation of GSLs, (2) their detection with oligosaccharide-specific proteins, and (3) in situ MS analysis of protein-detected GSLs directly on the TLC plate, are provided. The procedure works on a nanogram scale and was successfully applied to the identification of cancer-associated GSLs in several types of human tumors. The combination of these two supplementary techniques opens new doors by delivering specific structural information of trace quantities of GSLs with only limited investment in sample preparation.
Collapse
Affiliation(s)
- Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany.
| | | |
Collapse
|
571
|
Regueiro-Figueroa M, Djanashvili K, Esteban-Gómez D, de Blas A, Platas-Iglesias C, Rodríguez-Blas T. Towards Selective Recognition of Sialic Acid Through Simultaneous Binding to Its cis-Diol and Carboxylate Functions. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000186] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
572
|
Jin S, Cheng Y, Reid S, Li M, Wang B. Carbohydrate recognition by boronolectins, small molecules, and lectins. Med Res Rev 2010; 30:171-257. [PMID: 19291708 PMCID: PMC2829346 DOI: 10.1002/med.20155] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbohydrates are known to mediate a large number of biological and pathological events. Small and macromolecules capable of carbohydrate recognition have great potentials as research tools, diagnostics, vectors for targeted delivery of therapeutic and imaging agents, and therapeutic agents. However, this potential is far from being realized. One key issue is the difficulty in the development of "binders" capable of specific recognition of carbohydrates of biological relevance. This review discusses systematically the general approaches that are available in developing carbohydrate sensors and "binders/receptors," and their applications. The focus is on discoveries during the last 5 years.
Collapse
Affiliation(s)
- Shan Jin
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Yunfeng Cheng
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Suazette Reid
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Minyong Li
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Binghe Wang
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| |
Collapse
|
573
|
Cebo C, Caillat H, Bouvier F, Martin P. Major proteins of the goat milk fat globule membrane. J Dairy Sci 2010; 93:868-76. [DOI: 10.3168/jds.2009-2638] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 11/11/2009] [Indexed: 11/19/2022]
|
574
|
Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood 2010; 115:3427-36. [PMID: 20194899 DOI: 10.1182/blood-2009-10-247296] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The general notion that functional platelets are important for successful hematogenous tumor metastasis has been inaugurated more than 4 decades ago and has since been corroborated in numerous experimental settings. Thorough preclinical investigations have, at least in part, clarified some specifics regarding the involvement of platelet adhesion receptors, such as thrombin receptors or integrins, in the metastasis cascade. Pivotal preclinical experiments have demonstrated that hematogenous tumor spread was dramatically diminished when platelets were depleted from the circulation or when functions of platelet surface receptors were inhibited pharmacologically or genetically. Such insight has inspired researchers to devise novel antitumoral therapies based on targeting platelet receptors. However, several mechanistic aspects underlying the impact of platelet receptors on tumor metastasis are not fully understood, and agents directed against platelet receptors have not yet found their way into the clinic. In addition, recent results suggesting that targeted inhibition of certain platelet surface receptors may even result in enhanced experimental tumor metastasis have demonstrated vividly that the role of platelets in tumor metastasis is more complex than has been anticipated previously. This review gives a comprehensive overview on the most important platelet receptors and their putative involvement in hematogenous metastasis of malignant tumors.
Collapse
|
575
|
Kaida K, Kusunoki S. Antibodies to gangliosides and ganglioside complexes in Guillain-Barré syndrome and Fisher syndrome: mini-review. J Neuroimmunol 2010; 223:5-12. [PMID: 20172612 DOI: 10.1016/j.jneuroim.2010.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/01/2010] [Accepted: 02/02/2010] [Indexed: 01/05/2023]
Abstract
Antiganglioside antibodies play a pathogenic role in the pathophysiology of Guillain-Barré syndrome (GBS) and Fisher syndrome (FS). Antiganglioside antibody-mediated nerve injury is likely to result from nerve damage through complement activation or dysfunction of molecules such as voltage-gated sodium and calcium channels. Clustered epitopes of complexes of two gangliosides in the cell membrane can be targeted by serum antibodies in GBS and FS and may regulate the accessibility and avidity of antiganglioside antibodies. The glycolipid environment or the specific distribution of target gangliosides in the peripheral nervous system may also influence the pathogenic effect of antiganglioside antibodies in GBS and FS. Structural and functional analyses of glycoepitopes of ganglioside complexes in membranes will provide new vistas on antibody-antigen interaction in GBS and shed light on microdomain function mediated by carbohydrate-carbohydrate interactions, which may lead to novel treatments for GBS and FS.
Collapse
Affiliation(s)
- Kenichi Kaida
- Division of Neurology, Department of Internal Medicine 3, National Defense Medical College, Tokorozawa, Saitama-ken, Japan
| | | |
Collapse
|
576
|
Abstract
Sialic acids are a subset of nonulosonic acids, which are nine-carbon alpha-keto aldonic acids. Natural existing sialic acid-containing structures are presented in different sialic acid forms, various sialyl linkages, and on diverse underlying glycans. They play important roles in biological, pathological, and immunological processes. Sialobiology has been a challenging and yet attractive research area. Recent advances in chemical and chemoenzymatic synthesis, as well as large-scale E. coli cell-based production, have provided a large library of sialoside standards and derivatives in amounts sufficient for structure-activity relationship studies. Sialoglycan microarrays provide an efficient platform for quick identification of preferred ligands for sialic acid-binding proteins. Future research on sialic acid will continue to be at the interface of chemistry and biology. Research efforts not only will lead to a better understanding of the biological and pathological importance of sialic acids and their diversity but also could lead to the development of therapeutics.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
577
|
Lee A, Chick JM, Kolarich D, Haynes PA, Robertson GR, Tsoli M, Jankova L, Clarke SJ, Packer NH, Baker MS. Liver membrane proteome glycosylation changes in mice bearing an extra-hepatic tumor. Mol Cell Proteomics 2010; 10:M900538MCP200. [PMID: 20167946 DOI: 10.1074/mcp.m900538-mcp200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cancer is well known to be associated with alterations in membrane protein glycosylation (Bird, N. C., Mangnall, D., and Majeed, A. W. (2006) Biology of colorectal liver metastases: A review. J. Surg. Oncol. 94, 68-80; Dimitroff, C. J., Pera, P., Dall'Olio, F., Matta, K. L., Chandrasekaran, E. V., Lau, J. T., and Bernacki, R. J. (1999) Cell surface n-acetylneuraminic acid alpha2,3-galactoside-dependent intercellular adhesion of human colon cancer cells. Biochem. Biophys. Res. Commun. 256, 631-636; and Arcinas, A., Yen, T. Y., Kebebew, E., and Macher, B. A. (2009) Cell surface and secreted protein profiles of human thyroid cancer cell lines reveal distinct glycoprotein patterns. J. Proteome Res. 8, 3958-3968). Equally, it has been well established that tumor-associated inflammation through the release of pro-inflammatory cytokines is a common cause of reduced hepatic drug metabolism and increased toxicity in advanced cancer patients being treated with cytotoxic chemotherapies. However, little is known about the impact of bearing a tumor (and downstream effects like inflammation) on liver membrane protein glycosylation. In this study, proteomic and glycomic analyses were used in combination to determine whether liver membrane protein glycosylation was affected in mice bearing the Engelbreth-Holm Swarm sarcoma. Peptide IPG-IEF and label-free quantitation determined that many enzymes involved in the protein glycosylation pathway specifically; mannosidases (Man1a-I, Man1b-I and Man2a-I), mannoside N-acetylglucosaminyltransferases (Mgat-I and Mgat-II), galactosyltransferases (B3GalT-VII, B4GalT-I, B4GalT-III, C1GalT-I, C1GalT-II, and GalNT-I), and sialyltransferases (ST3Gal-I, ST6Gal-I, and ST6GalNAc-VI) were up-regulated in all livers of tumor-bearing mice (n = 3) compared with nontumor bearing controls (n = 3). In addition, many cell surface lectins: Sialoadhesin-1 (Siglec-1), C-type lectin family 4f (Kupffer cell receptor), and Galactose-binding lectin 9 (Galectin-9) were determined to be up-regulated in the liver of tumor-bearing compared with control mice. Global glycan analysis identified seven N-glycans and two O-glycans that had changed on the liver membrane proteins derived from tumor-bearing mice. Interestingly, α (2,3) sialic acid was found to be up-regulated on the liver membrane of tumor-bearing mice, which reflected the increased expression of its associated sialyltransferase and lectin receptor (siglec-1). The overall increased sialylation on the liver membrane of Engelbreth-Holm Swarm bearing mice correlates with the increased expression of their associated glycosyltransferases and suggests that glycosylation of proteins in the liver plays a role in tumor-induced liver inflammation.
Collapse
Affiliation(s)
- Albert Lee
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW 2109 Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
578
|
Hsu CH, Chu KC, Lin YS, Han JL, Peng YS, Ren CT, Wu CY, Wong CH. Highly Alpha-Selective Sialyl Phosphate Donors for Efficient Preparation of Natural Sialosides. Chemistry 2010; 16:1754-60. [DOI: 10.1002/chem.200903035] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
579
|
Cheng Y, Li M, Wang S, Peng H, Reid S, Ni N, Fang H, Xu W, Wang B. Carbohydrate biomarkers for future disease detection and treatment. Sci China Chem 2010; 53:3-20. [PMID: 32214994 PMCID: PMC7089153 DOI: 10.1007/s11426-010-0021-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 10/09/2009] [Indexed: 12/28/2022]
Abstract
Carbohydrates are considered as one of the most important classes of biomarkers for cell types, disease states, protein functions, and developmental states. Carbohydrate "binders" that can specifically recognize a carbohydrate biomarker can be used for developing novel types of site specific delivery methods and imaging agents. In this review, we present selected examples of important carbohydrate biomarkers and how they can be targeted for the development of therapeutic and diagnostic agents. Examples are arranged based on disease categories including (1) infectious diseases, (2) cancer, (3) inflammation and immune responses, (4) signal transduction, (5) stem cell transformation, (6) embryo development, and (7) cardiovascular diseases, though some issues cross therapeutic boundaries.
Collapse
Affiliation(s)
- YunFeng Cheng
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - MinYong Li
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, 250012 China
| | - ShaoRu Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - HanJing Peng
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Suazette Reid
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - NanTing Ni
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Hao Fang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, 250012 China
| | - WenFang Xu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, 250012 China
| | - BingHe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
580
|
Bereman MS, Muddiman DC. The effects of abundant plasma protein depletion on global glycan profiling using nanoLC FT-ICR mass spectrometry. Anal Bioanal Chem 2010; 396:1473-9. [PMID: 20087731 PMCID: PMC2866188 DOI: 10.1007/s00216-009-3368-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/26/2022]
Abstract
We report the results of abundant plasma protein depletion on the analysis of underivatized N-linked glycans derived from plasma proteins by nanoLC Fourier-transform ion cyclotron resonance mass spectrometry. N-linked glycan profiles were compared between plasma samples where the six most abundant plasma proteins were depleted (n = 3) through a solid-phase immunoaffinity column and undepleted plasma samples (n = 3). Three exogenous glycan standards were spiked into all samples which allowed for normalization of the N-glycan abundances. The abundances of 20 glycans varying in type, structure, composition, and molecular weight (1,200-3,700 Da) were compared between the two sets of samples. Small fucosylated non-sialylated complex glycans were found to decrease in abundance in the depleted samples (greater than or equal to tenfold) relative to the undepleted samples. Protein depletion was found to marginally effect (less than threefold) the abundance of high mannose, hybrid, and large highly sialylated complex species. The significance of these findings in terms of future biomarker discovery experiments via global glycan profiling is discussed.
Collapse
Affiliation(s)
- Michael S. Bereman
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - David C. Muddiman
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
581
|
A cyclic glucosyl ceramide acceptor as a versatile building block for complex ganglioside synthesis. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2009.12.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
582
|
Toegel S, Pabst M, Wu SQ, Grass J, Goldring MB, Chiari C, Kolb A, Altmann F, Viernstein H, Unger FM. Phenotype-related differential alpha-2,6- or alpha-2,3-sialylation of glycoprotein N-glycans in human chondrocytes. Osteoarthritis Cartilage 2010; 18:240-8. [PMID: 19800998 PMCID: PMC2818349 DOI: 10.1016/j.joca.2009.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 08/18/2009] [Accepted: 09/09/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Sialic acids frequently occur at the terminal positions of glycoprotein N-glycans present at chondrocyte surfaces or in the cartilage matrix. Sialic acids are transferred to glycoproteins in either alpha-2,3 or alpha-2,6 linkage by specific sialyltransferases (SiaTs) and can potentially affect cell functions and cell-matrix interactions. The present study aimed to assess the relationship between the expression of the human chondrocyte phenotype and the sialylation of chondrocyte glycoprotein N-glycans. METHODS The transcription of 5 SiaT was quantified using real-time Reverse transcription polymerase chain reaction (RT-PCR) assays. N-glycan analysis was performed using LC-ESI-MS. Primary human chondrocytes were cultured in monolayer or alginate beads and compared to the chondrocyte cell lines C-28/I2 and SW1353. In addition, effects of interleukin-1beta (IL-1beta) or tumour necrosis factor-alpha (TNF-alpha) on primary cells were assessed. RESULTS Primary human chondrocytes predominantly express alpha-2,6-specific SiaTs and accordingly, alpha-2,6-linked sialic acid residues in glycoprotein N-glycans. In contrast, the preponderance of alpha-2,3-linked sialyl residues and, correspondingly, reduced levels of alpha-2,6-specific SiaTs are associated with the altered chondrocyte phenotype of C-28/I2 and SW1353 cells. Importantly, a considerable shift towards alpha-2,3-linked sialic acids and alpha-2,3-specific SiaT mRNA levels occurred in primary chondrocytes treated with IL-1beta or tumour necrosis factor-alpha (TNF-alpha). CONCLUSION The expression of the differentiated chondrocyte phenotype is linked to the ratio of alpha-2,6- to alpha-2,3-linked sialic acids in chondrocyte glycoprotein N-glycans. A shift towards altered sialylation might contribute to impaired cell-matrix interactions in disease conditions.
Collapse
Affiliation(s)
- S Toegel
- Medical University Vienna, Vienna, Austria,Laboratory for Cartilage Biology, Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York, USA,Corresponding author Stefan Toegel, Medical University Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria, Tel: 0043 1 4277 55461, Fax: 0043 1 4277 9554,
| | - M Pabst
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - SQ Wu
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria,Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - J Grass
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - MB Goldring
- Laboratory for Cartilage Biology, Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York, USA
| | - C Chiari
- Department of Orthopedics, Medical University Vienna, Vienna, Austria
| | - A Kolb
- Department of Orthopedics, Medical University Vienna, Vienna, Austria
| | - F Altmann
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - H Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - FM Unger
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| |
Collapse
|
583
|
Parker RB, Kohler JJ. Regulation of intracellular signaling by extracellular glycan remodeling. ACS Chem Biol 2010; 5:35-46. [PMID: 19968325 DOI: 10.1021/cb9002514] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The plasma membrane of eukaryotic cells is coated with carbohydrates. By virtue of their extracellular position and recognizable chemical features, cell surface glycans mediate many receptor-ligand interactions. Recently, mammalian extracellular hydrolytic enzymes have been shown to modify the structure of cell surface glycans and consequently alter their binding properties. These cell surface glycan remodeling events can cause rapid changes in critical signal transduction phenomena. This Review highlights recent studies on the roles of eukaryotic extracellular sialidases, sulfatases, and a deacetylase in regulation of intracellular signaling. We also describe possible therapies that target extracellular glycan remodeling processes and discuss the potential for new discoveries in this area.
Collapse
Affiliation(s)
- Randy B. Parker
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9185
| | - Jennifer J. Kohler
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9185
| |
Collapse
|
584
|
Evidence for a novel human-specific xeno-auto-antibody response against vascular endothelium. Blood 2010; 114:5225-35. [PMID: 19828701 DOI: 10.1182/blood-2009-05-220400] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Humans are genetically unable to synthesize the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc). However, Neu5Gc can be metabolically incorporated and covalently expressed on cultured human cell surfaces. Meanwhile, humans express varying and sometimes high titers of polyclonal anti-Neu5Gc antibodies. Here, a survey of human tissues by immunohistochemistry with both a monospecific chicken anti-Neu5Gc antibody and with affinity-purified human anti-Neu5Gc antibodies demonstrates endothelial expression of Neu5Gc, likely originating from Neu5Gc-rich foods like red meats. We hypothesized that the combination of Neu5Gc incorporation and anti-Neu5Gc antibodies can induce endothelial activation. Indeed, the incubation of high-titer human sera with Neu5Gc-fed endothelial cells led to Neu5Gc-dependent antibody binding, complement deposition, endothelial activation, selectin expression, increased cytokine secretion, and monocyte binding. The proinflammatory cytokine tumor necrosis factor-alpha also selectively enhanced human anti-Neu5Gc antibody reactivity. Anti-Neu5Gc antibodies affinity-purified from human serum also directed Neu5Gc-dependent complement deposition onto cultured endothelial cells. These data indicate a novel human-specific mechanism in which Neu5Gc-rich foods deliver immunogenic Neu5Gc to the endothelium, giving anti-Neu5Gc antibody- and complement-dependent activation, and potentially contributing to human vascular pathologies. In the case of atherosclerosis, Neu5Gc is present both in endothelium overlying plaques and in subendothelial regions, providing multiple pathways for accelerating inflammation in this disease.
Collapse
|
585
|
Amano M, Yamaguchi M, Takegawa Y, Yamashita T, Terashima M, Furukawa JI, Miura Y, Shinohara Y, Iwasaki N, Minami A, Nishimura SI. Threshold in stage-specific embryonic glycotypes uncovered by a full portrait of dynamic N-glycan expression during cell differentiation. Mol Cell Proteomics 2009; 9:523-37. [PMID: 20008832 DOI: 10.1074/mcp.m900559-mcp200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although various glycoforms appear to participate independently in multiple molecular interactions in cellular adhesion that contribute to embryogenesis and organogenesis, a full portrait of the glycome diversity and the effect of the structural variations of cellular glycoforms on individual cell stages in proliferation and differentiation remain unclear. Here we describe a novel concept for the characterization of dynamic glycoform alteration during cell differentiation by means of "glycoblotting-based cellular glycomics," the only method allowing for rapid and quantitative glycan analysis. We demonstrated that processes of dynamic cellular differentiation of mouse embryonic carcinoma cells, P19CL6 and P19C6, and mouse embryonic stem cells into cardiomyocytes or neural cells can be monitored and characterized quantitatively by profiling entire N-glycan structures of total cell glycoproteins. Whole N-glycans enriched and identified by the glycoblotting method (67 glycans for P19CL6, 75 glycans for P19C6, and 72 glycans for embryonic stem cells) were profiled and bar-coded quantitatively with respect to the ratio of subgroups composed of characteristic glycoforms, namely glycotypes.
Collapse
Affiliation(s)
- Maho Amano
- Laboratory of Advanced Chemical Biology, Graduate School of Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, N21 W11, Kita-ku, Sapporo 001-0021, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
586
|
Duncan PI, Raymond F, Fuerholz A, Sprenger N. Sialic acid utilisation and synthesis in the neonatal rat revisited. PLoS One 2009; 4:e8241. [PMID: 20011510 PMCID: PMC2785881 DOI: 10.1371/journal.pone.0008241] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/19/2009] [Indexed: 12/27/2022] Open
Abstract
Background Milk is the sole source of nutrients for neonatal mammals and is generally considered to have co-evolved with the developmental needs of the suckling newborn. One evolutionary conserved constituent of milk and present on many glycoconjugates is sialic acid. The brain and colon are major sites of sialic acid display and together with the liver also of synthesis. Methodology/Principal Findings In this study we examined in rats the relationship between the sialic acid content of milk and the uptake, utilization and synthesis of sialic acid in suckling pups. In rat milk sialic acid was found primarily as 3′sialyllactose and at highest levels between 3 and 10 days postpartum and that decreased towards weaning. In the liver of suckling pups sialic acid synthesis paralleled the increase in milk sialic acid reaching and keeping maximum activity from postnatal day 5 onwards. In the colon, gene expression profiles suggested that a switch from sialic acid uptake and catabolism towards sialic acid synthesis and utilization occurred that mirrored the change of sialic acid in milk from high to low expression. In brain sialic acid related gene expression profiles did not change to any great extent during the suckling period. Conclusions/Significance Our results support the views that (i) when milk sialic acid levels are high, in the colon this sialic acid is catabolized to GlcNAc that in turn may be used as such or used as substrate for sialic acid synthesis and (ii) when milk sialic acid levels are low the endogenous sialic acid synthetic machinery in colon is activated.
Collapse
Affiliation(s)
- Peter I. Duncan
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
- * E-mail: (PID); (NS)
| | - Frédéric Raymond
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Andreas Fuerholz
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Norbert Sprenger
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
- * E-mail: (PID); (NS)
| |
Collapse
|
587
|
Gabri MR, Otero LL, Gomez DE, Alonso DF. Exogenous incorporation of neugc-rich mucin augments n-glycolyl sialic acid content and promotes malignant phenotype in mouse tumor cell lines. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:146. [PMID: 19951433 PMCID: PMC2795750 DOI: 10.1186/1756-9966-28-146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 12/01/2009] [Indexed: 01/17/2023]
Abstract
Background Carbohydrates embedded in the plasma membrane are one of the main actors involved in the communication of cells with the microenvironment. Neuraminic sialic acids are glycocalyx sugars that play important roles in the modulation of malignant cell behaviour. N-glycolylneuraminic acid (NeuGc) is synthesized by the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH), an enzyme expressed in all mammals except humans. In mice, this sugar is synthesized in several somatic tissues. Methods We used the B16 melanoma and F3II mammary carcinoma mouse tumor cell lines. By CMAH directed RT-PCR and NeuGc detection with the specific anti-NeuGc-GM3 antibody 14F7 we evaluated enzyme and ganglioside expression in tumor cells, respectively. Expression of NeuGc-GM3 ganglioside was reached by in vitro incubation with NeuGc-rich bovine submaxillary mucin and evaluated by slot-blot and immunohistochemistry assays using the 14F7 antibody. Tumor cells treated with mucin or purified NeuGc were injected s.c. and i.v. in syngeneic mice to evaluate tumor and metastatic growth. Results In the present work we demonstrated the absence of expression of CMAH enzyme in B16 melanoma and F3II mammary carcinoma cells. In vitro incubation of these NeuGc-negative cells with NeuGc-rich mucin increased the presence of NeuGc in cell membranes for at least 48-72 h, as a component of the GM3 ganglioside. Preincubation with NeuGc-rich mucin reduced tumor latency and increased the metastatic potential of tumor cells in syngeneic animals. Similar results were obtained when cells were incubated with purified NeuGc alone. Conclusion Our results indicate that B16 and F3II mouse tumor cell lines do not express NeuGc in cell membranes but they are able to incorporate NeuGc from an exogenous source, contributing to the malignant phenotype of melanoma and mammary carcinoma cells.
Collapse
Affiliation(s)
- Mariano R Gabri
- Laboratory of Molecular Oncology, Quilmes National University, (Roque Saenz Peña 352), Bernal, (B1876BXD), Argentina.
| | | | | | | |
Collapse
|
588
|
Liu F, Lee HJ, Strynadka NCJ, Tanner ME. Inhibition of Neisseria meningitidis sialic acid synthase by a tetrahedral intermediate analogue. Biochemistry 2009; 48:9194-201. [PMID: 19719325 DOI: 10.1021/bi9012758] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Neisseria meningitidis sialic acid synthase (NeuB) catalyzes the metal-dependent condensation of N-acetylmannosamine (ManNAc) and phosphoenolpyruvate (PEP) to generate N-acetylneuraminic acid (NeuAc or sialic acid). N. meningitidis is a causative agent of meningitis and produces a capsular polysaccharide comprised of polysialic acid. This allows it to evade the immune system of the host by an act of molecular mimicry. This work describes the synthesis and characterization of the first potent inhibitor of sialic acid synthase. The inhibitor is a stable deoxy analogue of the tetrahedral intermediate presumed to form in the NeuB reaction and was synthesized as a mixture of stereoisomers at the key tetrahedral center. Inhibition studies demonstrate that one stereoisomer binds more tightly than the other and that the more potent isomer binds with micromolar affinity. An X-ray crystallographic analysis of the NeuB.inhibitor.Mn(2+) complex solved to a resolution of 1.75 A shows that the more tightly bound stereoisomer bears a (2R)-configuration. This suggests that the tetrahedral intermediate formed in the NeuB reaction also bears a (2R)-configuration. This analysis is consistent with a mechanism whereby the active site metal plays at least two roles during catalysis. First, it serves as an electrostatic catalyst and activates the aldehyde of ManNAc for attack by the alkene of PEP. Second, it serves as a source of nucleophilic water and delivers it to the si face of the oxocarbenium intermediate to generate a tetrahedral intermediate with a (2R)-configuration.
Collapse
Affiliation(s)
- Feng Liu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | | | | | | |
Collapse
|
589
|
Garnett JA, Liu Y, Leon E, Allman SA, Friedrich N, Saouros S, Curry S, Soldati-Favre D, Davis BG, Feizi T, Matthews S. Detailed insights from microarray and crystallographic studies into carbohydrate recognition by microneme protein 1 (MIC1) of Toxoplasma gondii. Protein Sci 2009; 18:1935-47. [PMID: 19593815 DOI: 10.1002/pro.204] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intracellular protozoan Toxoplasma gondii is among the most widespread parasites. The broad host cell range of the parasite can be explained by carbohydrate microarray screening analyses that have demonstrated the ability of the T. gondii adhesive protein, TgMIC1, to bind to a wide spectrum of sialyl oligosaccharide ligands. Here, we investigate by further microarray analyses in a dose-response format the differential binding of TgMIC1 to 2-3- and 2-6-linked sialyl carbohydrates. Interestingly, two novel synthetic fluorinated analogs of 3'SiaLacNAc(1-4) and 3'SiaLacNAc(1-3) were identified as highly potent ligands. To understand the structural basis of the carbohydrate binding specificity of TgMIC1, we have determined the crystal structures of TgMIC1 micronemal adhesive repeat (MAR)-region (TgMIC1-MARR) in complex with five sialyl-N-acetyllactosamine analogs. These crystal structures have revealed a specific, water-mediated hydrogen bond network that accounts for the preferential binding of TgMIC1-MARR to arrayed 2-3-linked sialyl oligosaccharides and the high potency of the fluorinated analogs. Furthermore, we provide strong evidence for the first observation of a C--F...H--O hydrogen bond within a lectin-carbohydrate complex. Finally, detailed comparison with other oligosaccharide-protein complexes in the Protein Data Bank (PDB) reveals a new family of sialic-acid binding sites from lectins in parasites, bacteria, and viruses.
Collapse
Affiliation(s)
- James A Garnett
- Division of Molecular Biosciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW72AZ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
590
|
Yuriev E, Agostino M, Farrugia W, Christiansen D, Sandrin MS, Ramsland PA. Structural biology of carbohydrate xenoantigens. Expert Opin Biol Ther 2009; 9:1017-29. [PMID: 19591628 DOI: 10.1517/14712590903066703] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Transplantation of organs across species (xenotransplantation) is being considered to overcome the shortage of human donor organs. However, unmodified pig organs undergo an antibody-mediated hyperacute rejection that is brought about by the presence of natural antibodies to Galalpha(1,3)Gal, which is the major carbohydrate xenoantigen. Genetic modification of pig organs to remove most of the Galalpha(1,3)Gal epitopes has been achieved, but the human immune system may still recognize residual lipid-linked Galalpha(1,3)Gal carbohydrates, new (cryptic) carbohydrates or additional non-Galalpha(1,3)Gal carbohydrate xenoantigens. The structural basis for lectin and antibody recognition of Galalpha(1,3)Gal carbohydrates is starting to be understood and is discussed in this review. Antibody binding to Galalpha(1,3)Gal carbohydrates is predicted to primarily involve end-on insertion of the terminal alphaGal residue, but it is possible that groove-type binding can occur, as for some lectins. It is likely that similar antibody and lectin recognition will occur with other non-Galalpha(1,3)Gal xenoantigens, which potentially represent new barriers for pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Elizabeth Yuriev
- Monash University, Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry and Drug Action, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
591
|
Souady J, Soltwisch J, Dreisewerd K, Haier J, Peter-Katalinić J, Müthing J. Structural Profiling of Individual Glycosphingolipids in a Single Thin-Layer Chromatogram by Multiple Sequential Immunodetection Matched with Direct IR-MALDI-o-TOF Mass Spectrometry. Anal Chem 2009; 81:9481-92. [DOI: 10.1021/ac901948h] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jamal Souady
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, and Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany
| | - Jens Soltwisch
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, and Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, and Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany
| | - Jörg Haier
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, and Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany
| | - Jasna Peter-Katalinić
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, and Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, and Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany
| |
Collapse
|
592
|
Nilsson J, Rüetschi U, Halim A, Hesse C, Carlsohn E, Brinkmalm G, Larson G. Enrichment of glycopeptides for glycan structure and attachment site identification. Nat Methods 2009; 6:809-11. [PMID: 19838169 DOI: 10.1038/nmeth.1392] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/04/2009] [Indexed: 12/11/2022]
Abstract
We present a method to enrich for glycoproteins from proteomic samples. Sialylated glycoproteins were selectively periodate-oxidized, captured on hydrazide beads, trypsinized and released by acid hydrolysis of sialic acid glycosidic bonds. Mass spectrometric fragment analysis allowed identification of glycan structures, and additional fragmentation of deglycosylated ions yielded peptide sequence information, which allowed glycan attachment site and protein identification. We identified 36 N-linked and 44 O-linked glycosylation sites on glycoproteins from human cerebrospinal fluid.
Collapse
Affiliation(s)
- Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
593
|
Kushi Y, Kamimiya H, Hiratsuka H, Nozaki H, Fukui H, Yanagida M, Hashimoto M, Nakamura K, Watarai S, Kasama T, Kajiwara H, Yamamoto T. Sialyltransferases of marine bacteria efficiently utilize glycosphingolipid substrates. Glycobiology 2009; 20:187-98. [PMID: 19837852 DOI: 10.1093/glycob/cwp160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial sialyltransferases (STs) from marine sources were characterized using glycosphingolipids (GSLs). Bacterial STs were found to be beta-galacotoside STs. There were two types of STs: (1) ST obtained from strains such as ishi-224, 05JTC1 (#1), ishi-467, 05JTD2 (#2), and faj-16, 05JTE1 (#3), which form alpha2-3 sialic acid (Sia) linkages, named alpha2-3ST, (2) ST obtained from strains such as ISH-224, N1C0 (#4), pda-rec, 05JTB2 (#5), and pda-0160, 05JTA2 (#6), which form alpha2-6 Sia linkages, named alpha2-6ST. All STs showed affinity to neolacto- and lacto-series GSLs, particularly in neolactotetraosyl ceramide (nLc(4)Cer). No large differences were observed in the pH and temperature profiles of enzyme activities. Kinetic parameters obtained by Lineweaver-Burk plot analysis showed that #3 and #4 STs had practical synthetic activity and thus it became easily possible to achieve large-scale ganglioside synthesis (100-300 muM) using these recombinant enzymes. Gangliosides synthesized from nLc(4)Cer by alpha2-3 and alpha2-6STs were structurally characterized by several analytical and immunological methods, and they were identified as IV(3)alphaNeuAc-nLc(4)Cer(S2-3PG) and IV(6)alphaNeuAc-nLc(4)Cer (S2-6PG), respectively. Further characterization of these STs using lactotetraosylceramide (Lc(4)Cer), neolactohexaosylceramide (i antigen), and IV(6)kladoLc(8)Cer (I antigen) showed the synthesis of corresponding gangliosides as well. Synthesized gangliosides showed binding activity to the influenza A virus [A/panama/2007/99 (H3N2)] at a similar level to purified S2-3PG and S2-6PG from mammalian sources. The above evidence suggests that these STs have unique features, including substrate specificities restricted to lacto- and neolactoseries GSLs, as well as catalytic potentials for ganglioside synthesis. This demonstrates that efficient in vitro ganglioside synthesis could be a valuable tool for selectively synthesizing Sias modifications, thereby permitting the exploration of unknown functions.
Collapse
Affiliation(s)
- Yasunori Kushi
- Department of Agriculture and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
594
|
Schauer R. Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol 2009; 19:507-14. [PMID: 19699080 PMCID: PMC7127376 DOI: 10.1016/j.sbi.2009.06.003] [Citation(s) in RCA: 528] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 05/20/2009] [Accepted: 06/24/2009] [Indexed: 12/16/2022]
Abstract
The wide occurrence of sialic acids (Sia) in various chemical forms linked as monomers or polymers in an outstanding position in a multitude of complex carbohydrates of animals and microorganisms renders them as most versatile function modulators in cell biology and pathology. A survey is presented of recent advances in the study of the influences that Sias have as bulky hydrophilic and electronegatively charged monosaccharides on animal cells and on their interaction with microorganisms. Some highlights are: sialylation leads to increased anti-inflammatory activity of IgG antibodies, facilitates the escape of microorganisms from the host's immune system, and in polymeric form is involved in the regulation of embryogenesis and neuronal growth and function. The role of siglecs in immunoregulation, the dynamics of lymphocyte binding to selectins and the interactions of toxins, viruses, and other microorganisms with the host's Sia are now better understood. N-Glycolylneuraminic acid from food is antigenic in man and seems to have pathogenic potential. Sia O-acetylation mediated by various eukaryotic and prokaryotic O-acetyltransferases modulates the affinity of these monosaccharides to mammalian and microbial receptors and hinders apoptosis. The functionally versatile O-acetylated ganglioside GD3 is an onco-fetal antigen.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität, Olshausenstr. 40, D-24098 Kiel, Germany.
| |
Collapse
|
595
|
Abstract
Leukocyte recruitment encompasses cell adhesion and activation steps that enable circulating leukocytes to roll, arrest, and firmly adhere on the endothelial surface before they extravasate into distinct tissue locations. This complex sequence of events relies on adhesive interactions between surface structures on leukocytes and endothelial cells and also on signals generated during the cell-cell contacts. Cell surface glycans play a crucial role in leukocyte recruitment. Several glycosyltransferases such as alpha1,3 fucosyltransferases, alpha2,3 sialyltransferases, core 2 N-acetylglucosaminlytransferases, beta1,4 galactosyltransferases, and polypeptide N-acetylgalactosaminyltransferases have been implicated in the generation of functional selectin ligands that mediate leukocyte rolling via binding to selectins. Recent evidence also suggests a role of alpha2,3 sialylated carbohydrate determinants in triggering chemokine-mediated leukocyte arrest and influencing beta1 integrin function. The recent discovery of galectin- and siglec-dependent processes further emphasizes the significant role of glycans for the successful recruitment of leukocytes into tissues. Advancing the knowledge on glycan function into appropriate pathology models is likely to suggest interesting new therapeutic strategies in the treatment of immune- and inflammation-mediated diseases.
Collapse
Affiliation(s)
- Markus Sperandio
- Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany.
| | | | | |
Collapse
|
596
|
Human-specific evolution of sialic acid targets: explaining the malignant malaria mystery? Proc Natl Acad Sci U S A 2009; 106:14739-40. [PMID: 19717444 DOI: 10.1073/pnas.0908196106] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
597
|
Abstract
ABH(O) blood group polymorphisms are based on well-known intraspecies variations in structures of neutral blood cell surface glycans in humans and other primates. Whereas natural antibodies against these glycans can act as barriers to blood transfusion and transplantation, the normal functions of this long-standing evolutionary polymorphism remain largely unknown. Although microbial interactions have been suggested as a selective force, direct binding of lethal pathogens to ABH antigens has not been reported. We show in this study that ABH antigens found on human erythrocytes modulate the specific interactions of 3 sialic acid-recognizing proteins (human Siglec-2, 1918SC influenza hemagglutinin, and Sambucus nigra agglutinin) with sialylated glycans on the same cell surface. Using specific glycosidases that convert A and B glycans to the underlying H(O) structure, we show ABH antigens stabilize sialylated glycan clusters on erythrocyte membranes uniquely for each blood type, generating differential interactions of the 3 sialic acid-binding proteins with erythrocytes from each blood type. We further show that by stabilizing such structures ABH antigens can also modulate sialic acid-mediated interaction of pathogens such as Plasmodium falciparum malarial parasite. Thus, ABH antigens can noncovalently alter the presentation of other cell surface glycans to cognate-binding proteins, without themselves being a direct ligand.
Collapse
|
598
|
Sprenger N, Julita M, Donnicola D, Jann A. Sialic acid feeding aged rats rejuvenates stimulated salivation and colon enteric neuron chemotypes. Glycobiology 2009; 19:1492-502. [PMID: 19696237 DOI: 10.1093/glycob/cwp124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Old age is linked to numerous changes of body functions such as salivation, gastrointestinal motility, and permeability all linked to central and enteric nervous system decline. Thus, gut motility and barrier functions suffer. Sialic acid plays a key role in the nervous system at large and for many receptor functions specifically. Decreased sialylation in the elderly suggests an endogenous sialic acid deficit. We used a rat model of aging, to ask whether sialic acid feeding would affect (i) stimulated salivation, (ii) gut functions, and (iii) sialic acid levels and neuronal markers in brain and gut. We observed reduced levels of pilocarpine-stimulated salivation in old versus young rats and restored this function by sialic acid feeding. Brain ganglioside bound sialic acid levels were found lower in aged versus young rats, and sialic acid feeding partly restored the levels. The hypothalamic expression of cholinergic and panneuronal markers was reduced in aged rats. The expression of the nitrergic marker nNOS was increased upon sialic acid feeding in aged rats. Neither fecal output nor gut permeability was different between young and aged rats studied here, and sialic acid feeding did not alter these parameters. However, the colonic expression of specific nervous system markers nNOS and Uchl1 and the key enzyme for sialic acid synthesis GNE were differentially affected in young and aged rats by sialic acid feeding indicating that regulatory mechanisms change with age. Investigation of sialic acid supplementation as a functional nutrient in the elderly may help those who suffer from disorders of reduced salivation. Further research is needed to understand the differential effects of sialic acid feeding in young and aged rats.
Collapse
Affiliation(s)
- Norbert Sprenger
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000 Switzerland.
| | | | | | | |
Collapse
|
599
|
Pinho SS, Reis CA, Gärtner F, Alpaugh ML. Molecular plasticity of E-cadherin and sialyl lewis x expression, in two comparative models of mammary tumorigenesis. PLoS One 2009; 4:e6636. [PMID: 19675678 PMCID: PMC2722091 DOI: 10.1371/journal.pone.0006636] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 07/16/2009] [Indexed: 01/04/2023] Open
Abstract
Background The process of metastasis involves a series of steps and interactions between the tumor embolus and the microenvironment. Key alterations in adhesion molecules are known to dictate progression from the invasive to malignant phenotype followed by colonization at a distant site. The invasive phenotype results from the loss of expression of the E-cadherin adhesion molecule, whereas the malignant phenotype is associated with an increased expression of the carbohydrate ligand-binding epitopes, (e.g. Sialyl Lewis x/a) that bind endothelial E-selectin of the lymphatics and vasculature. Methodology Our study analyzed the expression of two adhesion molecules, E-cadherin and Sialyl Lewis x (sLex), in both a canine mammary carcinoma and human inflammatory breast cancer (IBC) model, using double labelled immunofluorescence staining. Results Our results demonstrate that canine mammary carcinoma and human IBC exhibit an inversely correlated cellular expression of E-cadherin and sLex within the same tumor embolus. Conclusions Our results in these two comparative models (canine and human) suggest the existence of a biologically coordinated mechanism of E-cadherin and sLex expression (i.e. molecular plasticity) essential for tumor establishment and metastatic progression.
Collapse
Affiliation(s)
- Salomé S. Pinho
- Department of Carcinogenesis, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Pathology, Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Celso A. Reis
- Department of Carcinogenesis, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Fátima Gärtner
- Department of Carcinogenesis, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Pathology, Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- * E-mail: (FG); (MLA)
| | - Mary L. Alpaugh
- Department of Biology, The City College of New York, New York, New York, United States of America
- * E-mail: (FG); (MLA)
| |
Collapse
|
600
|
Tanaka H, Ando H, Ishida H, Kiso M, Ishihara H, Koketsu M. Synthetic study on α(2→8)-linked oligosialic acid employing 1,5-lactamization as a key step. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.05.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|