551
|
Fan LC, Yang ST, Gui JF. Differential screening and characterization analysis of the egg envelope glycoprotein ZP3 cDNAs between gynogenetic and gonochoristic crucian carp. Cell Res 2001; 11:17-27. [PMID: 11305321 DOI: 10.1038/sj.cr.7290062] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Gynogenetic silver crucian carp, Carassius auratus gibelio, is an intriguing model system. In the present work, a systemic study has been initiated by introducing suppression subtractive hybridization technique into this model system to identify the differentially expressed genes in oocytes between gynogenetic silver crucian carp and its closely related gonochoristic color crucian carp. Five differential cDNA fragments were identified from the preliminary screening, and two of them are ZP3 homologues. Moreover, the full length ZP3 cDNAs were cloned from their oocyte cDNA libraries. The length of ZP3 cDNAs were 1378 bp for gyno-carp and 1367 bp for gono-carp, and they can be translated into proteins with 435 amino acids. Obvious differences are not only in the composition of amino acids, but also in the number of potential O-linked oligosaccharide sites. In addition, gyno-carp ZP3 amino acid sequence has an unexpected higher identity value with common carp (83.5%) than that with the closely related gono-carp (74.7%). The unique homology may be originated from the ancient hybridization. Northern blot analysis confirmed that expression of the ZP3 gene occurred exclusively in the oocytes. Because O-linked oligosaccharides on ZP3 have been demonstrated to play very important roles in fertilization, it is suggested that the extra O-linked glycosylation sites may be related to the unique sperm-egg recognition mechanism in gynogenesis.
Collapse
Affiliation(s)
- L C Fan
- State Key laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan
| | | | | |
Collapse
|
552
|
Stoffel A, Le Beau MM. The API2/MALT1 fusion product may lead to germinal center B cell lymphomas by suppression of apoptosis. Hum Hered 2001; 51:1-7. [PMID: 11096264 DOI: 10.1159/000022952] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Low-grade B cell lymphomas of mucosa-associated lymphoid tissue (MALT) represent a distinct clinicopathological entity that arises in a wide variety of extranodal sites. Genetically, MALT lymphomas are characterized by the t(11;18)(q21;q21). The genes involved in this translocation have been identified to be API2 on chromosome 11, which encodes an apoptotic inhibitor, and MALT1, a novel gene on chromosome 18. We identified the t(11;18)(q21;q21) by Southern blot analysis and reverse transcriptase PCR in 42% of a panel of extranodal MALT lymphomas. We also identified the breakpoints within the API2 and MALT1 genes in 7 patients, which revealed a consistent breakpoint after the third baculoviral inhibitor of apoptosis repeat domain within API2, and variable breakpoints in MALT1. We determined the API2/MALT1 fusion transcript in 2 cases by Northern blot analysis and also showed that MALT1 mRNA is constitutively expressed in a variety of human tissues. To understand the functional consequence of the translocation, we determined the pattern of expression of API2 and MALT1 through B lineage differentiation. API2 was expressed only in cell lines which correspond to mature B cells, whereas MALT1 mRNA was detectable in pre-B cells, mature B cells and plasma cells. These results suggest that fusion of MALT1 to API2 mediated by the t(11;18)(q21;q21) may result in an increased inhibition of germinal center B cell apoptosis and subsequent development of MALT lymphomas.
Collapse
MESH Headings
- Apoptosis
- B-Lymphocytes/metabolism
- Blotting, Northern
- Blotting, Southern
- Caspases
- Cell Differentiation
- Gene Expression
- Humans
- Inhibitor of Apoptosis Proteins
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/pathology
- Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Proteins/genetics
- Proteins/metabolism
- RNA/analysis
- Sequence Analysis, RNA
- Translocation, Genetic
Collapse
Affiliation(s)
- A Stoffel
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | |
Collapse
|
553
|
Ueda T, Akiyama N, Sai H, Oya N, Noda M, Hiraoka M, Kizaka-Kondoh S. c-IAP2 is induced by ionizing radiation through NF-kappaB binding sites. FEBS Lett 2001; 491:40-4. [PMID: 11226415 DOI: 10.1016/s0014-5793(01)02145-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transcriptional promoters responsive to low doses of X-irradiation may be useful in developing a new strategy in gene therapy combined with conventional radiotherapy. The retrovirus-mediated gene trap screening identified c-IAP2 as one of genes possessing such promoters. The analysis of the cis-elements responsive to X-irradiation in c-IAP2 promoter revealed that the NF-kappaB binding sites were necessary and sufficient for the X-ray-responsiveness. We constructed the plasmid p4NFB-BAX, which had four tandem repeats of the NF-kappaB binding sites of c-IAP2 promoter (4NFB) and a suicide gene BAX under the control of 4NFB. The human tumor cells transfected with p4NFB-BAX significantly reduced the number of cells that survived 2 Gy irradiation.
Collapse
Affiliation(s)
- T Ueda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
554
|
|
555
|
Levkau B, Garton KJ, Ferri N, Kloke K, Nofer JR, Baba HA, Raines EW, Breithardt G. xIAP induces cell-cycle arrest and activates nuclear factor-kappaB : new survival pathways disabled by caspase-mediated cleavage during apoptosis of human endothelial cells. Circ Res 2001; 88:282-90. [PMID: 11179195 DOI: 10.1161/01.res.88.3.282] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Survival of human vascular endothelial cells depends on their ability to activate the transcription factor nuclear factor-kappaB (NF-kappaB), a regulator of antiapoptotic genes, such as the X chromosome-linked inhibitor of apoptosis protein (xIAP). In the present study, we demonstrated expression of xIAP in the endothelial lining of normal human arteries and veins and elevated levels in highly malignant human endothelial tumors. Using retroviral infection of human endothelial cells, we identified two novel survival mechanisms mediated by xIAP in endothelial cells. First, xIAP can activate the transcription factor NF-kappaB, a known survival factor for human endothelial cells. This positive feedback loop induced by xIAP is mediated via phosphorylation and sustained degradation of inhibitor (I) kappaBalpha. Second, xIAP can inhibit cell proliferation via downregulation of cyclins A and D1 and induction of the cyclin-dependent kinase inhibitors p21(Cip1/Waf1) and p27(Kip1). Cleavage of xIAP by caspases during endothelial cell apoptosis disables both of these biological functions of xIAP. Thus, caspase-mediated cleavage of xIAP interrupts a positive regulatory cytoprotective loop between NF-kappaB and xIAP and increases the vulnerability of the cell to apoptosis by releasing it from an xIAP-mediated quiescent state.
Collapse
Affiliation(s)
- B Levkau
- Institute of Arteriosclerosis Research, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
556
|
Abstract
A novel human inhibitor of apoptosis protein (IAP) family member termed Livin was identified, containing a single baculoviral IAP repeat (BIR) domain and a COOH-terminal RING finger domain. The mRNA for livin was not detectable by Northern blot in most normal adult tissues with the exception of the placenta, but was present in developmental tissues and in several cancer cell lines. Highest levels were observed in two melanoma-derived cell lines, G361 and SK-Mel29. Transfection of livin in HeLa cells resulted in protection from apoptosis induced by expression of FADD, Bax, RIP, RIP3, and DR6. Similar to other IAP family members, the anti-apoptotic activity of Livin was dependent on the BIR domain. Livin was also capable of inhibiting DEVD-like caspase activity triggered by tumor necrosis factor-alpha. In vitro binding studies demonstrated a direct interaction between Livin and the active form of the downstream caspases, caspase-3 and -7, that was dependent on the BIR domain of Livin. In addition, the unprocessed and cleaved forms of caspase-9 co-immunoprecipitated with Livin in vivo, and recombinant Livin could inhibit the activation of caspase-9 induced by Apaf-1, cytochrome c, and dATP. The subcellular distribution of the transfected Livin was analyzed by immunofluorescence. Both Livin and Survivin were expressed in the nucleus and in a filamentous pattern throughout the cytoplasm. In contrast to the apoptotic activity, the COOH-terminal RING domain mediated its subcellular localization patterning. Further studies found that transfection of an antisense construct against livin could trigger apoptosis specifically in cell lines expressing livin mRNA. This was associated with an increase in DNA fragmentation and in DEVD-like caspase activity. Thus, disruption of Livin may provide a strategy to induce apoptosis in certain cancer cells.
Collapse
Affiliation(s)
- G M Kasof
- AstraZeneca Pharmaceuticals, Enabling Sciences and Technology, Wilmington, Delaware 19803, USA
| | | |
Collapse
|
557
|
Abstract
The balance between pro- and antiapoptotic proteins can determine cellular fate. In this regard, the Bcl-2 and IAP protein families have evolved as highly conserved regulators of cell death. A further testament to their critical roles in maintaining balance between cell life and death may be the increasing implication of Bcl-2 and TAP proteins in the pathologies of human diseases. Although much has been learned about these families of proteins, future studies of the Bcl-2 and IAP families are sure to hold more exciting discoveries and will continue to reveal new strategies for combating human diseases.
Collapse
Affiliation(s)
- Q L Deveraux
- The Burnham Institute Program on Apoptosis and Cell Death Research, La Jolla, California 92037, USA
| | | | | |
Collapse
|
558
|
Ruckdeschel K, Mannel O, Richter K, Jacobi CA, Trülzsch K, Rouot B, Heesemann J. Yersinia outer protein P of Yersinia enterocolitica simultaneously blocks the nuclear factor-kappa B pathway and exploits lipopolysaccharide signaling to trigger apoptosis in macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1823-31. [PMID: 11160229 DOI: 10.4049/jimmunol.166.3.1823] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure of macrophages to bacteria or LPS mediates activation of signaling pathways that induce expression of self defense-related genes. Pathogenic Yersinia species impair activation of transcription factor NF-kappaB and trigger apoptosis in macrophages. In this study, we dissected the mechanism of apoptosis induction by Yersinia. Selectively, Yersinia enterocolitica strains producing the effector protein Yersinia outer protein P (YopP) hampered NF-kappaB activation and subsequently conferred apoptosis to J774A.1 macrophages. Thereby, YopP bound and inhibited the macrophage NF-kappaB-activating kinase IKKbeta. YopP- and Yersinia-, but not Salmonella-induced apoptosis was specifically prevented by transient overexpression of NF-kappaB p65, giving evidence that YopP mediates cell death by disrupting the NF-kappaB signaling pathway. Transfection of J774A.1 macrophages with YopP induced a moderate, but significant degree of apoptosis (40-50% of transfected cells). This effect was strongly enhanced by additional initiation of LPS signaling (80-90%), indicating a synergism between LPS-induced signal transduction and inhibition of NF-kappaB by YopP. This reflects a strategy of a bacterial pathogen that takes advantage of LPS, serving as cofactor, to impair the macrophage.
Collapse
Affiliation(s)
- K Ruckdeschel
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, München, Germany
| | | | | | | | | | | | | |
Collapse
|
559
|
Koulich E, Nguyen T, Johnson K, Giardina C, D'mello S. NF-kappaB is involved in the survival of cerebellar granule neurons: association of IkappaBbeta [correction of Ikappabeta] phosphorylation with cell survival. J Neurochem 2001; 76:1188-98. [PMID: 11181838 DOI: 10.1046/j.1471-4159.2001.00134.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The NF-kappaB transcription factor consists of dimeric complexes belonging to the Rel family, which include p50, p52, p65 (RelA), RelB and c-Rel. NF-kappaB activity is tightly controlled by IkappaB proteins which bind to NF-kappaB preventing its translocation to the nucleus. Activation of NF-kappaB is most often mediated by IkappaB degradation, which permits NF-kappaB to enter the nucleus. We investigated the role of NF-kappaB in the survival of cerebellar granule neurons. We found that survival of these neurons in high potassium medium is blocked by three separate inhibitors of NF-kappaB activity: SN-50, N-tosyl-L-phenylalanine chloromethyl ketone and pyrrolidinedithiocarbamate, indicating that NF-kappaB is required for neuronal survival. Gel-shift assays reveal three complexes that bind to the NF-kappaB binding site in high potassium medium. Switching these cultures to low potassium medium, a stimulus that leads to apoptotic death, causes a reduction in the level of the largest complex, which contains p65. Overexpression of p65 by transfection inhibits low potassium-induced apoptosis, whereas overexpression of IkappaBalpha promotes apoptosis even in high potassium medium. Surprisingly, however, neither the level of endogenous p65 nor that of IkappaBalpha and IkappaBbeta is altered by low potassium treatment. Similarly, no changes are seen in the nuclear or cytoplasmic levels of p50, p52, RelB and c-Rel. Phosphorylation of p65, which can lead to its activation, is unchanged. Phosphorylation of IkappaBbeta is, however, reduced by low potassium treatment. Besides being necessary for high potassium-mediated neuronal survival, NF-kappaB is also involved in the survival-promoting effects of IGF-1 and cAMP as judged by the ability of SN-50 to inhibit the actions of these survival factors and the ability of these factors to inhibit the low potassium-induced alterations in the DNA-binding activity of NF-kappaB. Taken together, our results show that NF-kappaB may represent a point of convergence in the signaling pathways activated by different survival factors and that uncommon mechanisms might be involved in NF-kappaB-mediated survival of cerebellar granule neurons.
Collapse
Affiliation(s)
- E Koulich
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, USA
| | | | | | | | | |
Collapse
|
560
|
Mountz JD, Hsu HC, Matsuki Y, Zhang HG. Apoptosis and rheumatoid arthritis: past, present, and future directions. Curr Rheumatol Rep 2001; 3:70-8. [PMID: 11177773 DOI: 10.1007/s11926-001-0053-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The current studies of apoptosis in rheumatoid arthritis (RA) suggest that molecules (Fas-related or TNF-related), pathways (activation of pro-apoptosis or anti-apoptosis pathway), cell types (lymphocytes or synovial fibroblast), and the mechanism that triggers apoptosis (tolerance induction-related, down-modulation of inflammation-related, or DNA damage-related) all play a fundamental role to determine the induction or prevention of RA. These series of defects at different levels and in different cells lead to hyperproliferation, defective apoptosis, or hyperapoptosis. This review summarizes the available knowledge of apoptosis and RA to help identify candidate target cells and target molecules for delivery of gene constructs or modified biological or chemical reagents to the target site for effective modification of these cells.
Collapse
Affiliation(s)
- J D Mountz
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, 701 South 19th Street, LHRB 473, Birmingham, AL 35294-0007, USA.
| | | | | | | |
Collapse
|
561
|
Lin H, Chen C, Chen BD. Resistance of bone marrow-derived macrophages to apoptosis is associated with the expression of X-linked inhibitor of apoptosis protein in primary cultures of bone marrow cells. Biochem J 2001; 353:299-306. [PMID: 11139394 PMCID: PMC1221572 DOI: 10.1042/0264-6021:3530299] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study we investigated the underlying mechanisms that confer resistance on mature macrophages with the use of macrophage colony-stimulating factor (M-CSF)-induced bone marrow-derived macrophages (BMDM). In the presence of M-CSF, immature precursor cells were induced to undergo proliferation and differentiation into mature macrophages in vitro with cell morphology similar to that of tissue macrophages by day 7-10. Immunoblot analyses showed that bone marrow precursors express appreciable levels of caspase-3 and caspase-9 but no or very low levels of c-fms (M-CSF receptor) and the apoptosis regulators X-linked inhibitor of apoptosis protein (XIAP), c-IAP-1, Bcl-2 and Bax. The differentiation of BMDM is associated with a steady and gradual increase in the levels of c-fms, XIAP, c-IAP-1, Bcl-2 and Bax, reaching maximal levels by day 7. However, the levels of caspase-3 and caspase-9 stayed essentially unchanged even after prolonged incubation (more than 10 days) with M-CSF. Unlike bone marrow precursor cells, mature BMDM (day 7-10) were resistant to apoptosis induced by M-CSF depletion, which includes the activation of caspase-3 and caspase-9 and the degradation of XIAP, Bcl-2 and Bax proteins in the process. Treatment of day 7 BMDM with XIAP anti-sense oligonucleotides (oligos), but not sense oligos, partly abolished their resistance to apoptosis. By using a gel-shift assay and a specific nuclear factor kappaB (NF-kappaB) inhibitor, we demonstrated that NF-kappaB activity is responsible for the up-regulation of XIAP in M-CSF-treated macrophages. In addition, treatment of starved macrophages with M-CSF induced a rapid phosphorylation of Akt kinase before the activation of NF-kappaB. Our results showed that XIAP is one of the anti-apoptotic regulators that confer resistance on mature macrophages by M-CSF.
Collapse
Affiliation(s)
- H Lin
- Division of Hematology-Oncology, Department of Internal Medicine, and Barbara Ann Karmanos Cancer Institutes, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
| | | | | |
Collapse
|
562
|
Lee HJ, Kim SH, Kim KW, Um JH, Lee HW, Chung BS, Kang CD. Antiapoptotic role of NF-kappaB in the auto-oxidized dopamine-induced apoptosis of PC12 cells. J Neurochem 2001; 76:602-9. [PMID: 11208923 DOI: 10.1046/j.1471-4159.2001.00076.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Current concepts of the pathogenesis of Parkinson's disease (PD) center on the formation of reactive oxygen species (ROS), and dopamine has been considered to be a major source of ROS. Recently, it has been shown in a postmortem study that nuclear translocation of nuclear factor-kappa B (NF-kappaB) was observed in dopaminergic neurons of patient with PD. However, its role is not known. The present study examined the possible role of NF-kappaB in ODA (auto-oxidized dopamine)-induced apoptosis to understand the process of PD. Using the electrophoretic mobility shift assay, it was found that ODA activated the DNA binding activity of NF-kappaB. Suppression of the transcriptional activity of NF-kappaB in PC12 cells by overexpression of a wild-type and a dominant negative mutant form (S32A/S36A) of inhibitor kappa B (IkappaB)-alpha led to increase of apoptotic cell death induced by treatment of ODA. In addition, overexpression of NF-kappaB in PC12 cells blocked ODA-induced cell death. However, JNK/SAPK activities, which mediate various stress signals, were similar among the parental, NF-kappaB- or dominant negative mutant IkappaB alpha-transfected cells. Therefore, these results suggest that activation of NF-kappaB during ODA-induced apoptosis may have a counteracting activity against the signals mediating apoptotic cell death and thereby delay the process of Parkinson's disease.
Collapse
Affiliation(s)
- H J Lee
- Department of Biochemistry, College of Medicine, Pusan National University, Korea
| | | | | | | | | | | | | |
Collapse
|
563
|
Wajant H, Scheurich P. Tumor necrosis factor receptor-associated factor (TRAF) 2 and its role in TNF signaling. Int J Biochem Cell Biol 2001; 33:19-32. [PMID: 11167129 DOI: 10.1016/s1357-2725(00)00064-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tumor necrosis factor (TNF) is the prototypic member of the TNF ligand family and has a key role in the regulation of inflammatory processes. TNF exerts its functions by interaction with the death domain-containing TNF-receptor 1 (TNF-R1) and the non-death domain-containing TNF-receptor 2 (TNF-R2), both members of a receptor family complementary to the TNF ligand family. Due to the prototypic features of the TNF receptors and their importance for the regulation of inflammation, the signal transduction mechanisms utilized by these receptors have been extensively studied. Several proteins that interact directly or indirectly with the cytoplasmic domains of TNF-R1 and TNF-R2 have been identified in the recent years giving ideas how these receptors are connected to the apoptotic pathway and the signaling cascades leading to activation of NF-kappaB and JNK. Of special interest are TNF receptor-associated factor (TRAF) 1 and 2, which defines a novel group of adaptor proteins involved in signal transduction by most members of the TNF receptor family, of IL-1 receptor and IL-17 receptor as well as some members of the TOLL-like receptor family. TRAF 2 is currently the best-characterized TRAF family member, having a key role in mediating TNF-R1-induced activation of NF-kappaB and JNK. Moreover, recent studies suggest that TRAF 2 represents an integration point for pro- and antiapoptotic signals. This review focuses on the molecular mechanisms that underlay signal initiation by TNF-R1 and TNF-R2, with particular consideration of the role of TRAF 2, and highlights the importance of this molecule for the integration of such antagonizing pathways as death induction and NF-kappaB-mediated surviving signals.
Collapse
Affiliation(s)
- H Wajant
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart 70569, Germany.
| | | |
Collapse
|
564
|
Abstract
Drug resistance, to date, has primarily been attributed to increased drug export or detoxification mechanisms. Despite correlations between drug export and drug resistance, it is increasingly apparent that such mechanisms cannot fully account for chemoresistance in neoplasia. It is now widely accepted that chemotherapeutic drugs kill tumour cells by inducing apoptosis, a genetically regulated cell death programme. Evidence is emerging that the exploitation of survival pathways, which may have contributed to disease development in the first instance, may also be important in the development of the chemoresistance. This review discusses the components of and associations between multiple signalling cascades and their possible contribution to the development of neoplasia and the chemoresistant phenotype.
Collapse
Affiliation(s)
- D M O'Gorman
- Department of Biochemistry, University College Cork, Ireland
| | | |
Collapse
|
565
|
Iordanov MS, Wong J, Bell JC, Magun BE. Activation of NF-kappaB by double-stranded RNA (dsRNA) in the absence of protein kinase R and RNase L demonstrates the existence of two separate dsRNA-triggered antiviral programs. Mol Cell Biol 2001; 21:61-72. [PMID: 11113181 PMCID: PMC88780 DOI: 10.1128/mcb.21.1.61-72.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Double-stranded RNA (dsRNA) of viral origin triggers two programs of the innate immunity in virus-infected cells. One is intended to decrease the rate of host cell protein synthesis and thus to prevent viral replication. This program is mediated by protein kinase R (PKR) and by RNase L and contributes, eventually, to the self-elimination of the infected cell via apoptosis. The second program is responsible for the production of antiviral (type I) interferons and other alarmone cytokines and serves the purpose of preparing naive cells for the viral invasion. This second program requires the survival of the infected cell and depends on the expression of antiapoptotic genes through the activation of the NF-kappaB transcription factor. The second program therefore relies on ongoing transcription and translation. It has been proposed that PKR plays an essential role in the activation of NF-kappaB by dsRNA. Here we present evidence that the dsRNA-induced NF-kappaB activity and the expression of beta interferon and inflammatory cytokines do not require either PKR or RNase L. Our results indicate, therefore, that the two dsRNA-activated programs are separate and can function independently of each other.
Collapse
Affiliation(s)
- M S Iordanov
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | |
Collapse
|
566
|
Lin JH, Deng G, Huang Q, Morser J. KIAP, a novel member of the inhibitor of apoptosis protein family. Biochem Biophys Res Commun 2000; 279:820-31. [PMID: 11162435 DOI: 10.1006/bbrc.2000.4027] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified a novel human gene, kiap (kidney inhibitor of apoptosis protein) that encodes a single BIR domain and a RING zinc finger domain. kiap has been assigned to the q13.3 region of human chromosome 20 by fluorescent in situ hybridization analysis. Northern blot analysis indicates that KIAP is expressed mainly in placenta, lymph node and fetal kidney. In this report, we show that overexpression of KIAP blocks apoptosis induced by menadione or by overexpression of BAX. In addition, we show that overexpression of KIAP enhances apoptosis induced by etoposide, and, that KIAP fails to block apoptosis induced by overexpression of Fas. Thus, KIAP, a new member of the inhibitor of apoptosis protein (IAP) family, has pleiotropic effects on apoptosis induced by various stimuli.
Collapse
Affiliation(s)
- J H Lin
- Biochemistry and Molecular Biology Graduate Group, University of California, Davis, California, USA.
| | | | | | | |
Collapse
|
567
|
Cui X, Imaizumi T, Yoshida H, Tanji K, Matsumiya T, Satoh K. Lipopolysaccharide induces the expression of cellular inhibitor of apoptosis protein-2 in human macrophages. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1524:178-82. [PMID: 11113565 DOI: 10.1016/s0304-4165(00)00155-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Apoptosis is an important process in normal animal development as well as in diseases, and inhibitor of apoptosis protein (IAP) is one of the important factors that regulate apoptotic cell death. We found that lipopolysaccharide (LPS) enhances the expression of mRNA and protein of cellular IAP-2 (cIAP2) in human monoblastic U937 cells differentiated by phorbol ester pretreatment. cIAP2 mRNA was not detected in undifferentiated U937 cells. mRNAs of cIAP1 and X-chromosome-linked IAP (XIAP) were expressed constitutively and not affected by LPS in both undifferentiated and differentiated cells. LPS stimulated the expression of cIAP2 mRNA and protein in time- and concentration-dependent manners. LPS enhanced the expression of cIAP2 mRNA and protein in human monocyte-derived macrophages, which was associated with the inhibition of the caspase-3 activation, i.e., decrease in active p17 fragment of caspase-3 with simultaneous accumulation of precursor p20 fragment. We conclude that LPS may inhibit apoptosis of macrophages, at least in part, through the induction of cIAP2.
Collapse
Affiliation(s)
- X Cui
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki, Japan
| | | | | | | | | | | |
Collapse
|
568
|
Costas MA, Holsboer F, Arzt E. Transrepression of NF-kappaB is not required for glucocorticoid-mediated protection of TNF-alpha-induced apoptosis on fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1499:122-129. [PMID: 11118644 DOI: 10.1016/s0167-4889(00)00113-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cellular resistance to tumor necrosis factor (TNF) of most cell types has been attributed to both a protective pathway induced by this cytokine and the preexistence of protective factors in the target cell. NF-kappaB has been postulated as one of the principal factors involved in antiapoptotic gene expression control on TNF-resistant cells. We have previously shown that glucocorticoids protect the naturally TNF-sensitive L-929 cells from apoptosis. Here we analyze the role of NF-kappaB and glucocorticoids on TNF-induced apoptosis in L-929 cells. We found that inhibition of NF-kappaB enhanced the sensitivity to TNF-induced apoptosis. Glucocorticoids inhibited NF-kappaB transactivation via IkappaB induction. Moreover, glucocorticoids protected from TNF-induced apoptosis even when NF-kappaB activity was inhibited by stable or transient expression of the superrepressor IkappaB. These results demonstrate that although glucocorticoids inhibit NF-kappaB transactivation in these cells, this is not required for their protection from TNF-induced apoptosis.
Collapse
|
569
|
Teshima S, Kutsumi H, Kawahara T, Kishi K, Rokutan K. Regulation of growth and apoptosis of cultured guinea pig gastric mucosal cells by mitogenic oxidase 1. Am J Physiol Gastrointest Liver Physiol 2000; 279:G1169-76. [PMID: 11093939 DOI: 10.1152/ajpgi.2000.279.6.g1169] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously reported that primary cultures of guinea pig gastric pit cells expressed all of the phagocyte NADPH oxidase components (gp91-, p22-, p67-, p47-, and p40-phox) and could spontaneously release superoxide anion (O(2)(-)). We demonstrate here that pit cells express a nonphagocyte-specific gp91-phox homolog (Mox1) but not gp91-phox. Inclusion of catalase significantly inhibited [(3)H]thymidine uptake during the initial 2 days of culture. Pit cells, matured on day 2, slowly underwent spontaneous apoptosis. Scavenging O(2)(-) and related oxidants by superoxide dismutase plus catalase or N-acetyl cysteine (NAC) and inhibiting Mox1 oxidase by diphenylene iodonium activated caspase 3-like proteases and markedly enhanced chromatin condensation and DNA fragmentation. This accelerated apoptosis was completely blocked by a caspase inhibitor, z-Val-Ala-Asp-CH(2)F. Mox1-derived reactive oxygen intermediates constitutively activated nuclear factor-kappaB, and inhibition of this activity by nuclear factor-kappaB decoy oligodeoxynucleotide accelerated their spontaneous apoptosis. These results suggest that O(2)(-) produced by the pit cell Mox1 oxidase may play a crucial role in the regulation of their spontaneous apoptosis as well as cell proliferation.
Collapse
Affiliation(s)
- S Teshima
- Department of Nutrition, School of Medicine, The University of Tokushima, Tokushima City, Tokushima 770-8503, Japan
| | | | | | | | | |
Collapse
|
570
|
Abstract
Evasion of apoptosis appears to be a necessary event in tumor progression. Some oncogenes, such as c-myc and E1A, induce apoptosis in the absence of survival factors. However, others, such as bcl-2 and v-src, activate antiapoptotic pathways. For v-Src, these antiapoptotic pathways are dependent on the function of Ras, phosphatidylinositol (PI) 3-kinase, and Stat3. Here we asked whether v-Src can activate a proapoptotic signal when survival signaling is inhibited. We show that when the functions of Ras and PI 3-kinase are inhibited, v-src-transformed Rat-2 fibroblasts undergo apoptosis, evidenced by loss of adherence, nuclear fragmentation, and chromosomal DNA degradation. The apoptotic response is dependent on activation of caspase 3. Under similar conditions nontransformed Rat-2 cells undergo considerably lower levels of apoptosis. Apoptosis induced by v-Src is accompanied by a loss of mitochondrial membrane potential and release of cytochrome c and is blocked by overexpression of bcl-2, indicating that it is mediated by the mitochondrial pathway. However apoptosis induced by v-Src is not accompanied by an increase in the level of p53 and is not dependent on p53 function. Thus v-Src generates a p53-independent proapoptotic signal.
Collapse
Affiliation(s)
- B L Webb
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
571
|
Abstract
It has been shown that the molecular mechanism by which cytokines and glucocorticoids mutually antagonize their functions involves a mutual glucocorticoid receptor (GR)/nuclear factor-kappa B (NF-kappa B) transrepression. Here we report a role for the nuclear receptor coactivator RAC3, in modulating NF-kappa B transactivation. We found that RAC3 functions as a coactivator by binding to the active form of NF-kappa B and that overexpression of RAC3 restores GR-dependent transcription neglecting GR/NF-kappa B transrepression. The competition between GR and NF-kappa B for binding to RAC3 may represent a general mechanism by which both transcription factors mutually antagonize their activity.
Collapse
Affiliation(s)
- S Werbajh
- Deparmento de Cs. Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Argentina
| | | | | | | |
Collapse
|
572
|
Tudan C, Jackson JK, Blanis L, Pelech SL, Burt HM. Inhibition of TNF-alpha-induced neutrophil apoptosis by crystals of calcium pyrophosphate dihydrate is mediated by the extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways up-stream of caspase 3. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5798-806. [PMID: 11067939 DOI: 10.4049/jimmunol.165.10.5798] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of protein kinases in the inhibition of TNF-alpha associated apoptosis of human neutrophils by crystals of calcium pyrophosphate dihydrate (CPPD) (25 mg/ml) was investigated. We monitored the activities of the p44 extracellular signal-regulated kinase 1 (ERK1) and p42 ERK2 mitogen-activated protein (MAP) kinases and phosphatidylinositol 3-kinase (PI3-K)-regulated protein kinase B (Akt) in neutrophils incubated with TNF-alpha and CPPD crystals, separately and in combination, in parallel with the endogenous caspase 3 activity and DNA fragmentation. CPPD crystals were observed to induce a robust and transient activation of ERK1, ERK2, and Akt, whereas TNF-alpha produced only a modest and delayed activation of Akt. In the presence of TNF-alpha, Akt activity was enhanced, and CPPD crystal-induced activation of ERK1 and ERK2 was more sustained than with CPPD crystals alone, but TNF-alpha itself reduced the basal phosphotransferase activities of these MAP kinases. Preincubation with the MAP kinase kinase (MEK1) inhibitors PD98059 (20 ng/ml) and U0126 (250 nM), or the PI3-K inhibitors wortmannin (100 nM) and LY294002 (50 microM) repressed the activation of ERK1, ERK2, and Akt in association with CPPD crystal incubation, in the absence or presence of TNF-alpha. Furthermore, the inhibition of the Mek1/Mek2-->ERK1/ERK2 or PI3-K/Akt pathways reversed CPPD crystal-associated suppression of TNF-alpha-induced caspase 3 activation and neutrophil apoptosis. Together, these results indicate that CPPD crystals function to induce acute inflammatory responses through ERK1/ERK2 and PI3-K/Akt-mediated stimulation of neutrophil activation and repression of apoptosis.
Collapse
Affiliation(s)
- C Tudan
- Faculty of Pharmaceutical Sciences, and Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
573
|
Arrode G, Boccaccio C, Lulé J, Allart S, Moinard N, Abastado JP, Alam A, Davrinche C. Incoming human cytomegalovirus pp65 (UL83) contained in apoptotic infected fibroblasts is cross-presented to CD8(+) T cells by dendritic cells. J Virol 2000; 74:10018-24. [PMID: 11024130 PMCID: PMC102040 DOI: 10.1128/jvi.74.21.10018-10024.2000] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection is well controlled mainly by cytotoxic CD8(+) T lymphocytes (CTL) directed against the matrix protein pp65 despite the numerous immune escape mechanisms developed by the virus. Dendritic cells (DCs) are key antigen-presenting cells for the generation of an immune response which have the capacity to acquire antigens via endocytosis of apoptotic cells and thus present peptides to major histocompatibility complex class I-restricted T cells. We examined whether this mechanism could contribute to the activation of anti-pp65 CTL. In this study, we show that infection by HCMV AD169 induced sensitization of MRC5 fibroblasts to tumor necrosis factor alpha-mediated apoptosis very early after virus inoculation and that pp65 contained in apoptotic cells came from the delivery of the matrix protein into the cell. We observed that immature DCs derived from peripheral monocytes were not permissive to HCMV AD169 infection but were able to internalize pp65-positive apoptotic infected MRC5 cells. We then demonstrated that following exposure to these apoptotic bodies, DCs could activate HLA-A2- or HLA-B35-restricted anti-pp65 CTL, suggesting that they acquired and processed properly fibroblast-derived pp65. Together, our data suggest that cross-presentation of incoming pp65 contained in apoptotic cells may provide a quick and efficient way to prime anti-HCMV CD8(+) T cells.
Collapse
Affiliation(s)
- G Arrode
- INSERM U395, IFR 30, UPS, CNRS, CHU, 31024 Toulouse Cédex, France
| | | | | | | | | | | | | | | |
Collapse
|
574
|
Abstract
It is not clear why on treatment with certain killer cytokines or chemotherapeutic agents, some cells undergo apoptosis while others do not. The delineation of sensitivity/resistance pathways should provide a more specific therapy for cancer and other hyperproliferative diseases. Most cells die either by apoptosis or by necrosis. The biochemical pathway that mediates these two modes of cell death has recently been described. The nuclear factor (NF)-kappa B and the genes regulated by this transcription factor have been shown to play a critical role in induction of resistance to killer agents. Thus, inhibitors of NF-kappa B activation have a potential in overcoming resistance to apoptosis induced by various agents. The evidence for and against such a notion is discussed.
Collapse
Affiliation(s)
- B B Aggarwal
- Department of Bioimmunotherapy, M.D. Anderson Cancer Center, University of Texas, Houston, TX 77030, USA.
| |
Collapse
|
575
|
Adams J, Palombella VJ, Elliott PJ. Proteasome inhibition: a new strategy in cancer treatment. Invest New Drugs 2000. [PMID: 10857991 DOI: 10.1023/a: 1006321828515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ubiquitin proteasome pathway is a highly conserved intracellular pathway for the degradation of proteins. Many of the short-lived regulatory proteins which govern cell division, growth, activation, signaling and transcription are substrates that are temporally degraded by the proteasome. In recent years, new and selective inhibitors of the proteasome have been employed in cell culture systems to examine the anti-tumor potential of these agents. This review covers the chemistry of selected proteasome inhibitors, possible mechanisms of action in cell culture and the in vivo examination of proteasome inhibitors in murine and human xenograft tumor models in mice. One inhibitor, PS-341, has recently entered Phase I clinical trials in cancer patients with advanced disease to further test the potential of this approach.
Collapse
Affiliation(s)
- J Adams
- ProScript, Inc., Cambridge, MA 02139, USA
| | | | | |
Collapse
|
576
|
Cheng Q, Lee HH, Li Y, Parks TP, Cheng G. Upregulation of Bcl-x and Bfl-1 as a potential mechanism of chemoresistance, which can be overcome by NF-kappaB inhibition. Oncogene 2000; 19:4936-40. [PMID: 11039911 DOI: 10.1038/sj.onc.1203861] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In A549 human lung adenocarcinoma cells, we found that TNF-alpha and several commonly used chemotherapeutic agents upregulated the expression of Bcl-x and/or Bfl-1/A1 through an NF-kappaB-dependent pathway. While parental A549 cells were resistant to the cytotoxic effects of both TNF-alpha and chemotherapy agents, NF-kappaB-blocked A549 cells were sensitized to both. Expression of either Bcl-x or Bfl-1/A1 in the NF-kappaB-deficient cells at physiological levels provided differential protection against TNF-alpha and chemotherapeutic treatment. These studies provide a potential mechanism for the phenomenon of chemotherapy-induced chemoresistance, and also reveal a potential strategy by which chemoresistance can be overcome.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Antineoplastic Agents/pharmacology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Doxycycline/pharmacology
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- I-kappa B Proteins
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Minor Histocompatibility Antigens
- NF-KappaB Inhibitor alpha
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/physiology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/drug effects
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Protein Biosynthesis
- Proteins/genetics
- Proteins/physiology
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/physiology
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Receptors, Tumor Necrosis Factor/drug effects
- Receptors, Tumor Necrosis Factor/physiology
- Recombinant Fusion Proteins/physiology
- Transfection
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- bcl-X Protein
Collapse
Affiliation(s)
- Q Cheng
- Department of Microbiology and Molecular Genetics, Jonsson Comprehensive Cancer Center and Molecular Biology Institute, University of California Los Angeles, 90095, USA
| | | | | | | | | |
Collapse
|
577
|
Solary E, Droin N, Bettaieb A, Corcos L, Dimanche-Boitrel MT, Garrido C. Positive and negative regulation of apoptotic pathways by cytotoxic agents in hematological malignancies. Leukemia 2000; 14:1833-49. [PMID: 11021759 DOI: 10.1038/sj.leu.2401902] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most chemotherapeutic drugs can induce tumor cell death by apoptosis. Analysis of the molecular mechanisms that regulate apoptosis has indicated that anticancer agents simultaneously activate several pathways that either positively or negatively regulate the death process. The main pathway from specific damage induced by the drug to apoptosis involves activation of caspases in the cytosol by pro-apoptotic molecules such as cytochrome c released from the mitochondrial intermembrane space. At least in some cell types, anticancer drugs also upregulate the expression of death receptors and sensitize tumor cells to their cognate ligands. The Fas-mediated pathway could contribute to the early steps of drug-induced apoptosis while sensitization to the cytokine TRAIL could be used to amplify the response to cytotoxic drugs. The Bcl-2 family of proteins, that includes anti- and pro-apoptotic molecules, regulates cell sensitivity mainly at the mitochondrial level. Anticancer drugs modulate their expression (eg through p53-dependent gene transcription), their activity (eg by phosphorylating Bcl-2) and their subcellular localization (eg by inducing the translocation of specific BH3-only pro-apoptotic proteins). Very early after interacting with tumor cells, anticancer drugs also activate lipid-dependent signaling pathways that either increase or decrease cell ability to die by apoptosis. In addition, cytotoxic agents can activate protective pathways that involve activation of NFkappaB transcription factor, accumulation of heat shock proteins such as Hsp27 and activation of proteins involved in cell cycle regulation. This review discusses how modulation of the balance between noxious and protective signals that regulate drug-induced apoptosis could be used to improve the efficacy of current therapeutic regimens in hematological malignancies.
Collapse
|
578
|
Uren AG, O'Rourke K, Aravind L, Pisabarro M, Seshagiri S, Koonin EV, Dixit VM. Identification of Paracaspases and Metacaspases. Mol Cell 2000. [DOI: 10.1016/s1097-2765(05)00086-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
579
|
White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 2000; 179:1-33. [PMID: 11054482 DOI: 10.1016/s0022-510x(00)00386-5] [Citation(s) in RCA: 603] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brain ischemia and reperfusion engage multiple independently-fatal terminal pathways involving loss of membrane integrity in partitioning ions, progressive proteolysis, and inability to check these processes because of loss of general translation competence and reduced survival signal-transduction. Ischemia results in rapid loss of high-energy phosphate compounds and generalized depolarization, which induces release of glutamate and, in selectively vulnerable neurons (SVNs), opening of both voltage-dependent and glutamate-regulated calcium channels. This allows a large increase in cytosolic Ca(2+) associated with activation of mu-calpain, calcineurin, and phospholipases with consequent proteolysis of calpain substrates (including spectrin and eIF4G), activation of NOS and potentially of Bad, and accumulation of free arachidonic acid, which can induce depletion of Ca(2+) from the ER lumen. A kinase that shuts off translation initiation by phosphorylating the alpha-subunit of eukaryotic initiation factor-2 (eIF2alpha) is activated either by adenosine degradation products or depletion of ER lumenal Ca(2+). Early during reperfusion, oxidative metabolism of arachidonate causes a burst of excess oxygen radicals, iron is released from storage proteins by superoxide-mediated reduction, and NO is generated. These events result in peroxynitrite generation, inappropriate protein nitrosylation, and lipid peroxidation, which ultrastructurally appears to principally damage the plasmalemma of SVNs. The initial recovery of ATP supports very rapid eIF2alpha phosphorylation that in SVNs is prolonged and associated with a major reduction in protein synthesis. High catecholamine levels induced by the ischemic episode itself and/or drug administration down-regulate insulin secretion and induce inhibition of growth-factor receptor tyrosine kinase activity, effects associated with down-regulation of survival signal-transduction through the Ras pathway. Caspase activation occurs during the early hours of reperfusion following mitochondrial release of caspase 9 and cytochrome c. The SVNs find themselves with substantial membrane damage, calpain-mediated proteolytic degradation of eIF4G and cytoskeletal proteins, altered translation initiation mechanisms that substantially reduce total protein synthesis and impose major alterations in message selection, down-regulated survival signal-transduction, and caspase activation. This picture argues powerfully that, for therapy of brain ischemia and reperfusion, the concept of single drug intervention (which has characterized the approaches of basic research, the pharmaceutical industry, and clinical trials) cannot be effective. Although rigorous study of multi-drug protocols is very demanding, effective therapy is likely to require (1) peptide growth factors for early activation of survival-signaling pathways and recovery of translation competence, (2) inhibition of lipid peroxidation, (3) inhibition of calpain, and (4) caspase inhibition. Examination of such protocols will require not only characterization of functional and histopathologic outcome, but also study of biochemical markers of the injury processes to establish the role of each drug.
Collapse
Affiliation(s)
- B C White
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
580
|
Watanabe K, Kubota M, Hamahata K, Lin Y, Usami I. Prevention of etoposide-induced apoptosis by proteasome inhibitors in a human leukemic cell line but not in fresh acute leukemia blasts. A differential role of NF-kappab activation. Biochem Pharmacol 2000; 60:823-30. [PMID: 10930537 DOI: 10.1016/s0006-2952(00)00387-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent research indicates that the proteasome is one of the non-caspase proteases involved in apoptotic signaling pathways. Nuclear factor-kappaB (NF-kappaB) activation, one of the key factors in apoptosis, can be prevented through abrogation of IkappaBalpha degradation by proteasome inhibition. We have investigated the effects of the proteasome inhibitors carbobenzoxyl-L-leucyl-L-leucyl-L-leucinal (MG132) and N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal (LLnL) on apoptosis and NF-kappaB activation induced by etoposide, using a human leukemia cell line (U937) and leukemia blasts freshly isolated from patients with acute leukemia. Pretreatment of U937 cells with MG132 or LLnL inhibited etoposide-induced morphological apoptosis and caspase-3 activation. Furthermore, MG132 or LLnL prevented NF-kappaB activation and IkappaBalpha degradation, but not IkappaBalpha phosphorylation at Ser32. Other inhibitors of NF-kappaB activation, including pyrrrolidine dithiocarbamate (an antioxidant) and the peptide SN50 (an inhibitor of translocation of activated NF-kappaB into the nucleus), also attenuated etoposide-induced apoptosis. In leukemia blasts, although proteasome inhibitors suppressed NF-kappaB activation induced by etoposide, they were unable to prevent morphological apoptosis. Moreover, proteasome inhibitors by themselves caused apoptosis in leukemia blasts at the concentrations employed in this study. These results suggest that the role that NF-kappaB plays in apoptosis induced by etoposide in a human leukemia cell line may be different from the role it plays in freshly isolated leukemia blasts.
Collapse
Affiliation(s)
- K Watanabe
- Department of Pediatrics, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
581
|
Segev DL, Ha TU, Tran TT, Kenneally M, Harkin P, Jung M, MacLaughlin DT, Donahoe PK, Maheswaran S. Mullerian inhibiting substance inhibits breast cancer cell growth through an NFkappa B-mediated pathway. J Biol Chem 2000; 275:28371-9. [PMID: 10874041 DOI: 10.1074/jbc.m004554200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Müllerian inhibiting substance (MIS), a member of the transforming growth factor-beta superfamily, induces regression of the Müllerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G(1) phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFkappaB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IkappaBalpha expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFkappaB signaling pathway was required for these processes. These results identify the NFkappaB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.
Collapse
Affiliation(s)
- D L Segev
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
582
|
Weber C, Erl W. Modulation of vascular cell activation, function, and apoptosis: role of antioxidants and nuclear factor-kappa B. CURRENT TOPICS IN CELLULAR REGULATION 2000; 36:217-35. [PMID: 10842754 DOI: 10.1016/s0070-2137(01)80010-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The activity of NF-kappa B is critically involved in the inflammatory activation of endothelial cells and their adhesiveness and also appears to regulate apoptosis in SMC by coordinating antiapoptotic programs. The activity of NF-kappa B has been revealed within human atheromas or following angioplasty but not in undiseased arteries. Hence, the inhibition of NF-kappa B mobilization by antioxidative or anti-inflammatory agents or by adenoviral I kappa B alpha overexpression, as reviewed herein, may act in concert to suppress endothelial activation and to induce SMC apoptosis. This synergistic concept may be a vasoprotective approach to prevent atherogenesis and restenosis by attenuating inflammatory reactions and SMC proliferation in nascent and progressing atherosclerotic lesions, as well as in developing neointima formations following angioplasty.
Collapse
Affiliation(s)
- C Weber
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten Ludwig-Maximilians-Universität Munich, Germany
| | | |
Collapse
|
583
|
Mustapha S, Kirshner A, De Moissac D, Kirshenbaum LA. A direct requirement of nuclear factor-kappa B for suppression of apoptosis in ventricular myocytes. Am J Physiol Heart Circ Physiol 2000; 279:H939-45. [PMID: 10993753 DOI: 10.1152/ajpheart.2000.279.3.h939] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear factor-kappa B (NF-kappa B) is a ubiquitously expressed cellular factor regulated by the cytoplasmic factor inhibitor protein kappa B alpha (I kappa B alpha). Activation of NF-kappa B by cytokines, including tumor necrosis factor-alpha (TNF-alpha), requires the phosphorylation and degradation of I kappa B alpha. An anti-apoptotic role for NF-kappa B has recently been suggested. In the present study, we ascertained whether death-promoting signals and apoptosis mediated by TNF-alpha are suppressed by NF-kappa B in postnatal ventricular myocytes. Stimulation of myocytes with TNF-alpha resulted in a 12.1-fold increase (P < 0.01) in NF-kappa B-dependent gene transcription and DNA binding compared with controls. This was accompanied by a corresponding increase in the NF-kappa B target protein A20 as determined by Western blot analysis. Vital staining revealed that TNF-alpha was not cytotoxic to myocytes and did not provoke apoptosis. Adenovirus-mediated delivery of a nonphosphorylatable form of I kappa B alpha to inactivate NF-kappa B prevented TNF-alpha-stimulated NF-kappa B-dependent gene transcription and nuclear NF-kappa B DNA binding. Importantly, myocytes stimulated with TNF-alpha and defective for NF-kappa B activation resulted in a 2.2-fold increase (P < 0.001) in apoptosis. To our knowledge, the data provide the first indication that a functional NF-kappa B signaling pathway is crucial for suppressing death-promoting signals mediated by TNF-alpha in ventricular myocytes.
Collapse
Affiliation(s)
- S Mustapha
- Faculty of Medicine, Department of Physiology, Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2A6
| | | | | | | |
Collapse
|
584
|
Kügler S, Straten G, Kreppel F, Isenmann S, Liston P, Bähr M. The X-linked inhibitor of apoptosis (XIAP) prevents cell death in axotomized CNS neurons in vivo. Cell Death Differ 2000; 7:815-24. [PMID: 11042676 DOI: 10.1038/sj.cdd.4400712] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The inhibition of neuronal apoptosis in acute traumatic and ischemic injuries as well as in long term neurodegenerative disorders like spinal muscular atrophy and possibly Alzheimer's disease is a fundamental requirement for a therapeutic strategy. In this study we used an established in vivo model system of induction of neuronal apoptosis in the CNS to evaluate the properties of the X-linked inhibitor of apoptosis protein (XIAP) to inhibit secondary cell death after axonal lesions. We used adenoviral vectors to transduce retinal ganglion cells after axotomy of the optic nerve of adult rats. Vector application was performed at the optic nerve stump so that only the lesioned retinal neurons could be transduced. We found XIAP to be as effective as the viral broad spectrum caspase inhibitor protein p35. These findings suggest that axotomized RGCs degenerate through class II caspase activity and furthermore offer the possibility of using mammalian XIAP protein to inhibit neuronal apoptosis as a basis for a regenerative therapy in the CNS.
Collapse
Affiliation(s)
- S Kügler
- Department of Neurology, University of Tuebingen, Medical School Verfuegungsgebaeude, Auf der Morgenstelle 15, 72076 Tuebingen, Germany.
| | | | | | | | | | | |
Collapse
|
585
|
Yang YL, Li XM. The IAP family: endogenous caspase inhibitors with multiple biological activities. Cell Res 2000; 10:169-77. [PMID: 11032169 DOI: 10.1038/sj.cr.7290046] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IAPs (inhibitors of apoptosis) are a family of proteins containing one or more characteristic BIR domains. These proteins have multiple biological activities that include binding and inhibiting caspases, regulating cell cycle progression, and modulating receptor-mediated signal transduction. Our recent studies found the IAP family members XIAP and c-IAP1 are ubiquitinated and degraded in proteasomes in response to apoptotic stimuli in T cells, and their degradation appears to be important for T cells to commit to death. In addition to three BIR domains, each of these IAPs also contains a RING finger domain. We found this region confers ubiquitin protease ligase (E3) activity to IAPs, and is responsible for the auto-ubiquitination and degradation of IAPs after an apoptotic stimulus. Given the fact that IAPs can bind a variety of proteins, such as caspases and TRAFs, it will be of interest to characterize potential substrates of the E3 activity of IAPs and the effects of ubiquitination by IAPs on signal transduction, cell cycle, and apoptosis.
Collapse
Affiliation(s)
- Y L Yang
- Laboratory of Immune Cell Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
586
|
Rivera-Walsh I, Cvijic ME, Xiao G, Sun SC. The NF-kappa B signaling pathway is not required for Fas ligand gene induction but mediates protection from activation-induced cell death. J Biol Chem 2000; 275:25222-30. [PMID: 10837465 DOI: 10.1074/jbc.m000444200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stimulation of T cells by antigens or mitogens triggers multiple signaling pathways leading to activation of genes encoding interleukin-2 and other growth-regulatory cytokines. The same stimuli also activate the gene encoding an apoptosis-inducing molecule, Fas ligand (FasL), which contributes to activation-induced cell death. It has been proposed that the signaling pathways involved in cytokine gene induction also contribute to activation-induced FasL expression; however, genetic evidence for this proposal is lacking. In the present study, the role of the NF-kappaB signaling pathway in FasL gene expression was examined using a mutant T cell line deficient in an essential NF-kappaB signaling component, IkappaB kinase gamma. These mutant cells have a blockade in signal-induced activation of NF-kappaB but remained normal in the activation of NF-AT and AP-1 transcription factors. Interestingly, the NF-kappaB signaling defect has no effect on mitogen-stimulated FasL gene expression, although it completely blocks the interleukin-2 gene induction. We further demonstrate that NF-kappaB activation is required for protecting T cells from apoptosis induction by mitogens and an agonistic anti-Fas antibody. These genetic results suggest that the NF-kappaB signaling pathway is not required for activation-induced FasL expression but rather mediates cell growth and protection from activation-induced cell death.
Collapse
Affiliation(s)
- I Rivera-Walsh
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey Medical Center, 17033, USA
| | | | | | | |
Collapse
|
587
|
Khoshnan A, Tindell C, Laux I, Bae D, Bennett B, Nel AE. The NF-kappa B cascade is important in Bcl-xL expression and for the anti-apoptotic effects of the CD28 receptor in primary human CD4+ lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1743-54. [PMID: 10925251 DOI: 10.4049/jimmunol.165.4.1743] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We explored the role of the NF-kappa B pathway in the survival of primary human CD4+ T lymphocytes during CD28 costimulation. Transduction of proliferating CD4+ T cells with a tetracycline-regulated retrovirus encoding for a dominant-interfering, degradation-resistant I-kappaBalpha (inhibitor of kappa B alpha factor) mutant induced apoptosis. Using DNA arrays, we show that Bcl-xL features as a prominent anti-apoptotic member among a number of early CD28-inducible genes. A 1.2-kb segment of the proximal Bcl-xL promoter, linked to a luciferase reporter, responded to CD3/CD28 stimulation in Jurkat cells. Mutation of an NF-kappa B site around -840 decreased, while ectopic expression of I-kappa B kinase-beta (IKK beta) enhanced reporter gene activity. Na+-salicylate and cyclopentenone PGs, direct inhibitors of IKK beta, interfered in the activation of the Bcl-xL promoter and induced apoptosis in CD28-costimulated CD4+ T cells. Moreover, salicylate blocked nuclear localization of NF-kappa B factors that bind to the NF-kappa B binding site in the Bcl-xL promoter, as well as the expression of Bcl-xL protein. HuT-78, a lymphoblastoid T cell line with constitutive NF-kappa B activity, contained elevated levels of Bcl-xL protein and, similar to proliferating CD4+ T cells, was resistant to apoptotic stimuli such as anti-Fas and TNF-alpha. In contrast, the same stimuli readily induced apoptosis in a Jurkat T cell clone with no detectable Bcl-xL expression. Jurkat BMS2 cells also differed from HuT-78 in collapse of mitochondrial membrane potential and superoxide generation in the mitochondrium. Taken together, these data demonstrate that CD3/CD28-induced activation of IKK beta and expression of Bcl-xL promote the survival of primary human CD4+ T lymphocytes.
Collapse
Affiliation(s)
- A Khoshnan
- Division of Clinical Immunology and Allergy, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
588
|
Wajant H, Haas E, Schwenzer R, Muhlenbeck F, Kreuz S, Schubert G, Grell M, Smith C, Scheurich P. Inhibition of death receptor-mediated gene induction by a cycloheximide-sensitive factor occurs at the level of or upstream of Fas-associated death domain protein (FADD). J Biol Chem 2000; 275:24357-66. [PMID: 10823821 DOI: 10.1074/jbc.m000811200] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In HeLa cells, induction of apoptosis and nuclear factor kappaB (NF-kappaB) activation initiated by TRAIL/Apo2L or the agonistic Apo1/Fas-specific monoclonal antibody anti-APO-1 require the presence of cycloheximide (CHX). Inhibition of caspases prevented TRAIL/anti-APO-1-induced apoptosis, but not NF-kappaB activation, indicating that both pathways bifurcate upstream of the receptor-proximal caspase-8. Under these conditions, TRAIL and anti-APO-1 up-regulated the expression of the known NF-kappaB targets interleukin-6, cellular inhibitor of apoptosis 2 (cIAP2), and TRAF1 (TRAF, tumor necrosis factor receptor-associate factor). In the presence of CHX, the stable overexpression of a deletion mutant of the Fas-associated death domain molecule FADD comprising solely the death domain of the molecule but lacking its death effector domain (FADD-(80-208)) led to the same response pattern as TRAIL or anti-APO-1 treatment. Moreover, the ability of death receptors to induce NF-kappaB activation was drastically reduced in a FADD-deficient Jurkat cell line. TRAIL-, anti-APO-1-, and FADD-(80-208)-initiated gene induction was blocked by a dominant-negative mutant of TRAF2 or the p38 kinase inhibitor SB203580, similar to tumor necrosis factor receptor-1-induced NF-kappaB activation. CHX treatment rapidly down-regulated endogenous cFLIP protein levels, and overexpression of cellular FLICE inhibitory protein (cFLIP) inhibited death receptor-induced NF-kappaB activation. Thus, a novel functional role of cFLIP as a negative regulator of gene induction by death receptors became apparent.
Collapse
Affiliation(s)
- H Wajant
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
589
|
Richter BW, Duckett CS. The IAP proteins: caspase inhibitors and beyond. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2000; 2000:pe1. [PMID: 11752601 DOI: 10.1126/stke.2000.44.pe1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Apoptosis, or programmed cell death, occurs as an outcome of signals that direct cells to perish. Whether initiated by specifically activated receptors or induced through viral infection, apoptosis is an important means by which organisms maintain health and homeostasis. The apoptotic pathway uses several regulatory proteins that prevent uncontrolled cell death, which would be detrimental to the organism. Richter and Duckett review the recently discovered and characterized inhibitors of apoptosis proteins (IAPs). Not surprisingly, IAPs were first identified in viruses that were able to subvert apoptosis in infected cells. Evidence exists suggesting that, in addition to inhibiting apoptosis, IAPs are involved in signal transduction and cell cycle regulation. Richter and Duckett also review other recent observations indicating that some IAPs may have roles in protein ubiquitination. Although the various roles of the IAPs are beginning to be uncovered, new questions arise about the breadth of their functions and the proteins to which IAPs bind.
Collapse
Affiliation(s)
- B W Richter
- Division of Clinical Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
590
|
Gewirtz DA. Growth arrest and cell death in the breast tumor cell in response to ionizing radiation and chemotherapeutic agents which induce DNA damage. Breast Cancer Res Treat 2000; 62:223-35. [PMID: 11072787 DOI: 10.1023/a:1006414422919] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Breast tumor cells are relatively refractory to apoptosis in response to modalities which induce DNA damage such as ionizing radiation and the topoisomerase II inhibitor, adriamycin. Various factors which may modulate the apoptotic response to DNA damage include the p53 status of the cell, levels and activity of the Bax and Bcl-2 families of proteins, activation of NF-kappa B, relative levels of insulin like growth factor and insulin-like growth factor binding proteins, activation of MAP kinases and PI3/Akt kinases, (the absence of) ceramide generation and the CD95 (APO1/Fas) signaling pathway. Prolonged growth arrest associated with replicative senescence may represent an alternative and reciprocal response to DNA-damage induced apoptosis that is p53 and/or p21waf1/cip1 dependent while delayed apoptosis may occur in p53 mutant breast tumor cells which fail to maintain the growth-arrested state. Clearly, the absence of an immediate apoptotic response to DNA damage does not eliminate other avenues leading to cell death and loss of self-renewal capacity in the breast tumor cell. Nevertheless, prolonged growth arrest (even if ultimately succeeded by apoptotic or necrotic cell death) could provide an opportunity for subpopulations of breast tumor cells to recover proliferative capacity and to develop resistance to subsequent clinical intervention.
Collapse
Affiliation(s)
- D A Gewirtz
- Department of Pharmacology, Virginia Commonwealth University/Medical College of Virginia, Richmond 23298, USA.
| |
Collapse
|
591
|
Moor AC. Signaling pathways in cell death and survival after photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2000; 57:1-13. [PMID: 11100832 DOI: 10.1016/s1011-1344(00)00065-8] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photodynamic therapy (PDT) is a cytotoxic treatment, which can induce cells to initiate a rescue response, or to undergo cell death, either apoptosis or necrosis. The many signaling pathways involved in these processes are the topic of this review. The subcellular localization of the photosensitizer has been shown to be a key factor in the outcome of PDT. Mitochondrial localized photosensitizers are able to induce apoptosis very rapidly. Lysosomal localized photosensitizers can elicit either a necrotic or an apoptotic response. In the plasma membrane, a target for various photosensitizers, rescue responses, apoptosis and necrosis is initiated. Several protein phosphorylation cascades are involved in the regulation of the response to PDT. Finally, a number of stress-induced proteins play a role in the rescue response after PDT. Notably, the induction of apoptosis by PDT might not be crucial for an optimal outcome. Recent studies indicate that abrogation of the apoptotic pathway does alter the clonogenic survival of the cells after PDT. Further studies, both in vitro and especially in vivo could lead to more efficient combination therapies in which signaling pathways, involved in cell death or rescue, are either up- or downregulated before PDT.
Collapse
Affiliation(s)
- A C Moor
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| |
Collapse
|
592
|
Abstract
We now know that tumor necrosis factor (TNF) family ligands regulate development of lymphoid tissue and coordinate cellular differentiation to defend against intracellular pathogens. In particular, TNF provides essential signals for the formation of secondary lymphoid tissue structures and plays an important role in several physiological and pathological conditions that relate to its action in inflammation and leukocyte movement. The TNF-related family of membrane-anchored and secreted ligands also represents a major mechanism regulating cell death and cell survival. TNF was first described as an endotoxin-induced and macrophage secreted factor that caused haemorrhagic necrosis of tumor cells. Over the past two decades we have come to appreciate that T lymphocytes and natural killer (NK) cells also produce TNF, yet no clear single role for lymphocyte-derived TNF has emerged. This review describes the key molecular details of the action of TNF and discusses the evidence for TNF-mediated cytotoxicity being critical to lymphocyte function and immunoregulation.
Collapse
Affiliation(s)
- M J Smyth
- Cellular Cytotoxicity Laboratory, Austin Research Institute, Austin.
| | | |
Collapse
|
593
|
Cai J, Wallace DC, Zhivotovsky B, Jones DP. Separation of cytochrome c-dependent caspase activation from thiol-disulfide redox change in cells lacking mitochondrial DNA. Free Radic Biol Med 2000; 29:334-42. [PMID: 11035262 DOI: 10.1016/s0891-5849(00)00312-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Release of mitochondrial cytochrome c (cyt c) is an early and common event during apoptosis. Previous studies showed that the loss of cyt c triggered superoxide production by mitochondria and contributed to the oxidation of cellular thiol-disulfide redox state. In this study, we tested whether loss of the functional electron transport chain due to depleting mitochondrial DNA (mtDNA) would affect this redox-signaling mechanism during apoptosis. Results showed that cyt c release and caspase activation in response to staurosporine treatment were preserved in cells lacking mitochondrial DNA (rho0 cells). However, unlike the case with rho+ cells, in which a dramatic oxidation of intracellular glutathione (GSH) occurred after mitochondrial cyt c release, the thiol-disulfide redox state in apoptotic rho0 cells remained largely unchanged. Thus, mitochondrial signaling of caspase activation can be separated from the bioenergetic function, and mitochondrial respiratory chain is the principal source of ROS generation in staurosporine-induced apoptosis.
Collapse
Affiliation(s)
- J Cai
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
594
|
Hofer-Warbinek R, Schmid JA, Stehlik C, Binder BR, Lipp J, de Martin R. Activation of NF-kappa B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J Biol Chem 2000; 275:22064-8. [PMID: 10807933 DOI: 10.1074/jbc.m910346199] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of endothelial and many other cell types to tumor necrosis factor alpha generates both apoptotic and anti-apoptotic signals. The anti-apoptotic pathway leads to activation of the transcription factor NF-kappaB that regulates the expression of genes such as A20 or members of the IAP gene family that protect cells from tumor necrosis factor alpha-mediated apoptosis. In turn, some anti-apoptotic genes have been shown to modulate NF-kappaB activity. Here we demonstrate that XIAP, a NF-kappaB-dependent member of the IAP gene family, is a strong stimulator of NF-kappaB. Expression of XIAP leads to increased nuclear translocation of the p65 subunit of NF-kappaB via a novel signaling pathway that involves the mitogen-activated protein kinase kinase kinase TAK1. We show that TAK1 physically interacts with NIK and with IKK2, and both XIAP or active TAK1 can stimulate IKK2 kinase activity. Thus, XIAP may be part of a system of regulatory loops that balance a cell's response to environmental stimuli.
Collapse
Affiliation(s)
- R Hofer-Warbinek
- Department of Vascular Biology and Thrombosis Research, University of Vienna, A-1235 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
595
|
Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 2000; 68:383-424. [PMID: 10872455 DOI: 10.1146/annurev.biochem.68.1.383] [Citation(s) in RCA: 2002] [Impact Index Per Article: 80.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: (a) Zymogen gene transcription is regulated; (b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and (c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.
Collapse
Affiliation(s)
- W C Earnshaw
- Institute of Cell and Molecular Biology, University of Edinburgh, Scotland, United Kingdom.
| | | | | |
Collapse
|
596
|
Romano MF, Lamberti A, Bisogni R, Tassone P, Pagnini D, Storti G, Del Vecchio L, Turco MC, Venuta S. Enhancement of cytosine arabinoside-induced apoptosis in human myeloblastic leukemia cells by NF-kappa B/Rel- specific decoy oligodeoxynucleotides. Gene Ther 2000; 7:1234-7. [PMID: 10918492 DOI: 10.1038/sj.gt.3301216] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The activity of NF-kappa B/Rel nuclear factors is known to inhibit apoptosis in various cell types. We investigated whether the subtraction of NF-kappa B/Rel activity influenced the response of 11 AML (M1, M2 and M4) patients' cells to AraC. To this end we used a phosphorothioate double-stranded decoy oligodeoxynucleotide (ODN) carrying the NF-kappa B/Rel- consensus sequence. Cell incubation with this ODN, but not its mutated (scrambled) form used as a control, resulted in abating the NF-kappa B/Rel nuclear levels in these cells, as verified by electrophoretic mobility shift assay (EMSA) of cells' nuclear extracts. We incubated the leukemic cells with AraC (32 or 1 microM), in either the absence or presence of the decoy or the scrambled ODN, and analyzed cell apoptosis. The spontaneous cell apoptosis detectable in the absence of AraC (<25%) was not modulated by the oligonucleotide presence in cell cultures. On the other hand, in 10 of the 11 samples tested, the decoy kappa B, but not the scrambled ODN significantly (P < 0.01 in a Student's t test) enhanced cell apoptotic response to AraC. Such an effect was particularly remarkable at low AraC doses (1 microM). These findings indicate that NF-kappa B/Rel activity influences response to AraC in human primary myeloblastic cells, and suggests that the inhibition of NF-kappa B/Rel factors can improve the effect of chemotherapy in AML. Gene Therapy (2000) 7, 1234-1237.
Collapse
Affiliation(s)
- M F Romano
- Dipartimento di Biochimica e Biotecnologie Mediche, Federico II University, Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
597
|
Rust C, Karnitz LM, Paya CV, Moscat J, Simari RD, Gores GJ. The bile acid taurochenodeoxycholate activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J Biol Chem 2000; 275:20210-6. [PMID: 10770953 DOI: 10.1074/jbc.m909992199] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Liver injury during cholestasis reflects a balance between the effects of toxic and nontoxic bile acids. However, the critical distinction between a toxic and nontoxic bile acid remains subtle and unclear. For example, the glycine conjugate of chenodeoxycholate (GCDC) induces hepatocyte apoptosis, whereas the taurine conjugate (TCDC) does not. We hypothesized that the dissimilar cellular responses may reflect differential activation of a phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathway. In the bile acid-transporting McNtcp.24 rat hepatoma cell line, TCDC, but not GCDC, stimulated PI3K activity. Consistent with this observation, inhibition of PI3K rendered TCDC cytotoxic, and constitutive activation of PI3K rendered GCDC nontoxic. Both Akt and the atypical protein kinase C isoform zeta (PKCzeta) have been implicated in PI3K-dependent survival signaling. However, TCDC activated PKCzeta, but not Akt. Moreover, inhibition of PKCzeta converted TCDC into a cytotoxic agent, whereas overexpression of wild-type PKCzeta blocked GCDC-induced apoptosis. We also demonstrate that TCDC activated nuclear factor kappaB (NF-kappaB) in a PI3K- and PKCzeta-dependent manner. Moreover, inhibition of NF-kappaB by an IkappaB super-repressor rendered TCDC cytotoxic, suggesting that NF-kappaB is also necessary to prevent the cytotoxic effects of TCDC. Collectively, these data suggest that some hydrophobic bile acids such as TCDC activate PI3K-dependent survival pathways, which prevent their otherwise inherent toxicity.
Collapse
Affiliation(s)
- C Rust
- Division of Gastroenterology and Hepatology, Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
598
|
Hong SY, Yoon WH, Park JH, Kang SG, Ahn JH, Lee TH. Involvement of two NF-kappa B binding elements in tumor necrosis factor alpha -, CD40-, and epstein-barr virus latent membrane protein 1-mediated induction of the cellular inhibitor of apoptosis protein 2 gene. J Biol Chem 2000; 275:18022-8. [PMID: 10751398 DOI: 10.1074/jbc.m001202200] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The antiapoptotic function of NF-kappaB is believed to be mediated through the induction of antiapoptotic genes. Among the antiapoptotic genes, cellular inhibitor of apoptosis protein 2 (c-IAP2/HIAP-1/MIHC) is originally identified as a molecule recruited to the tumor necrosis factor (TNF) receptor complex, and its expression is preferentially up-regulated by TNF and other stimuli activating NF-kappaB. However, direct evidence of transcriptional regulation of NF-kappaB on the c-IAP2 gene is still missing. Here, we have cloned and characterized the promoter region required for NF-kappaB-dependent transcription of the c-IAP2 gene. Sequencing of a 3.5-kilobase fragment of the 5'-flanking region of the c-IAP2 gene has identified a TATA-like sequence and potential binding sites for nuclear factor of activated T cells, interferon regulatory factor 1, activator protein 1, glucocorticoid response element, and three putative NF-kappaB binding elements. Deletion and mutational analysis of the 5'-flanking region linked to the luciferase gene revealed that transcriptional activation by TNF or interleukin 1 is mediated cooperatively by two NF-kappaB binding sites. Electrophoretic mobility shift assays characterized that the two NF-kappaB sites can be recognized and bound by the NF-kappaB p50/p65 heterodimer. In addition, the transcription of c-IAP2 promoter was strongly up-regulated when CD40 or Epstein-Barr virus latent membrane protein 1 was overexpressed.
Collapse
Affiliation(s)
- S Y Hong
- Department of Biology, College of Science, Yonsei University, Seoul 120-749, South Korea
| | | | | | | | | | | |
Collapse
|
599
|
Yamit-Hezi A, Nir S, Wolstein O, Dikstein R. Interaction of TAFII105 with selected p65/RelA dimers is associated with activation of subset of NF-kappa B genes. J Biol Chem 2000; 275:18180-7. [PMID: 10849440 DOI: 10.1074/jbc.275.24.18180] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TAF(II)105, a substoichiometric coactivator subunit of TFIID, is important for activation of anti-apoptotic genes by NF-kappaB in response to the cytokine tumor necrosis factor (TNF)-alpha. In the present study we have analyzed the mechanism of TAF(II)105 function with respect to its regulation of p65/RelA, a component of NF-kappaB. We found two independent p65/RelA-binding domains within the N terminus of TAF(II)105. One of these domains appears to be crucial for TAF(II)105-mediated anti-apoptotic gene activation in response to TNF-alpha. Analysis of the interaction between TAF(II)105 and different NF-kappaB complexes has revealed substantial differences in the affinity of TAF(II)105 toward different p65/RelA-containing dimers. We have identified the TNF-alpha induced anti-apoptotic A20 gene as a target gene of TAF(II)105. A20 has a differential protective effect on cell death induced by TNF-alpha in the presence of either the dominant negative mutant of TAF(II)105 (TAF(II)105DeltaC) or the superdominant IkappaBalpha. The results suggest that the inhibitory effect of TAF(II)105DeltaC on NF-kappaB-dependent genes is restricted to a subset of anti-apoptotic genes while the effect of IkappaBalpha is more general. Thus, an interaction between NF-kappaB and a specific coactivator is important for specifying target gene activation.
Collapse
Affiliation(s)
- A Yamit-Hezi
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
600
|
Duriez PJ, Wong F, Dorovini-Zis K, Shahidi R, Karsan A. A1 functions at the mitochondria to delay endothelial apoptosis in response to tumor necrosis factor. J Biol Chem 2000; 275:18099-107. [PMID: 10849436 DOI: 10.1074/jbc.m908925199] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF) does not cause endothelial apoptosis unless the expression of cytoprotective genes is blocked. We have previously demonstrated that one of the TNF-inducible cytoprotective genes is the Bcl-2 family member, A1. A1 is induced by the action of the transcription factor, NFkappaB, in response to inflammatory mediators. In this report we demonstrate that, as with other cell types, inhibition of NFkappaB initiates microvascular endothelial apoptosis in response to TNF. A1 is able to inhibit this apoptosis over 24 h. We demonstrate that A1 is localized to and functions at the mitochondria. Whereas A1 is able to inhibit mitochondrial depolarization, loss of cytochrome c, cleavage of caspase 9, BID, and poly(ADP-ribose) polymerase, it does not block caspase 8 or caspase 3 cleavage. In contrast, A1 is not able to prevent endothelial apoptosis by TNF over 72 h, when NFkappaB signaling is blocked. On the other hand, the caspase inhibitor, benzyloxycarbonyl-VAD-formylmethyl ketone, completely blocks TNF-induced endothelial apoptosis over 72 h. Our findings indicate that A1 is able to maintain temporary survival of endothelial cells in response to TNF by maintaining mitochondrial viability and function. However, a mitochondria-independent caspase pathway eventually results in endothelial death despite mitochondrial protection by A1.
Collapse
Affiliation(s)
- P J Duriez
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver General Hospital, and St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6, Canada
| | | | | | | | | |
Collapse
|