551
|
Gätschenberger H, Gimple O, Tautz J, Beier H. Honey bee drones maintain humoral immune competence throughout all life stages in the absence of vitellogenin production. ACTA ACUST UNITED AC 2012; 215:1313-22. [PMID: 22442369 DOI: 10.1242/jeb.065276] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drones are haploid male individuals whose major social function in honey bee colonies is to produce sperm and mate with a queen. In spite of their limited tasks, the vitality of drones is of utmost importance for the next generation. The immune competence of drones - as compared to worker bees - is largely unexplored. Hence, we studied humoral and cellular immune reactions of in vitro reared drone larvae and adult drones of different age upon artificial bacterial infection. Haemolymph samples were collected after aseptic and septic injury and subsequently employed for (1) the identification of immune-responsive peptides and/or proteins by qualitative proteomic analyses in combination with mass spectrometry and (2) the detection of antimicrobial activity by inhibition-zone assays. Drone larvae and adult drones responded with a strong humoral immune reaction upon bacterial challenge, as validated by the expression of small antimicrobial peptides. Young adult drones exhibited a broader spectrum of defence reactions than drone larvae. Distinct polypeptides including peptidoglycan recognition protein-S2 and lysozyme 2 were upregulated in immunized adult drones. Moreover, a pronounced nodulation reaction was observed in young drones upon bacterial challenge. Prophenoloxidase zymogen is present at an almost constant level in non-infected adult drones throughout the entire lifespan. All observed immune reactions in drones were expressed in the absence of significant amounts of vitellogenin. We conclude that drones - like worker bees - have the potential to activate multiple elements of the innate immune response.
Collapse
Affiliation(s)
- Heike Gätschenberger
- BEEgroup, Biocentre, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
552
|
Tanaka H, Sagisaka A, Fujita K, Furukawa S, Ishibashi J, Yamakawa M. BmEts upregulates promoter activity of lebocin in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:474-481. [PMID: 22484450 DOI: 10.1016/j.ibmb.2012.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 05/31/2023]
Abstract
The Ets family protein BmEts is assumed to be implicated in determination of diapause in the embryogenesis of Bombyx mori. In this study, we found that expression of BmEts was increased in the fat body and other tissues of the 5th instar larvae in response to Escherichia coli injection. Cotransfection experiments using a silkworm cell line revealed that overexpression of BmEts significantly elevated the activity of lebocin promoter but not of cecropin B1, cecropin D, attacin, and moricin promoters. Activation of the lebocin promoter by BmEts was dependent on at least two κB elements and the most proximal GGAA/T motif located on the 5'-upstream region. BmEts further synergistically enhanced E. coli or BmRelish1-d2 (active form)-stimulated lebocin promoter activation. Two κB elements were also found to be involved in promoter activation by BmRelish1-d2 and in synergistic promoter activation by BmEts and BmRelish1-d2 in the silkworm cells. Specific binding of recombinant BmEts to the proximal κB element and the most proximal GGAA/T motif and interaction between BmEts and BmRelish1 were also observed. To our knowledge, this is the first report of an Ets family protein directly regulating immune-related genes in invertebrates.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Insect Mimetics Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan.
| | | | | | | | | | | |
Collapse
|
553
|
Gao Q, Tancredi SE, Thompson GJ. Identification of mycosis-related genes in the eastern subterranean termite by suppression subtractive hybridization. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 80:63-76. [PMID: 22549993 DOI: 10.1002/arch.21026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Eastern subterranean termite Reticulitermes flavipes (Isoptera, Rhinotermitidae) is a cosmopolitan, structural pest that is the target of research into termite innate immunity. In this study, we use suppression subtractive hybridization to construct a normalized cDNA library of genes excessively expressed upon fungal infection. At 24 h postinfection with Metarhizium anisopliae, the library revealed 182 expressed sequence tag (EST) clones that potentially represent immune responsive genes. The nucleotide sequence from a majority (97%) of ESTs assembled into a small number (n = 13) of contiguous sequences, with the remainder (n = 6) representing singletons. Our screen therefore captured as many as 19 different mRNAs highly expressed in response to the fungal pathogen at this time. Primary sequencing of all loci revealed that approximately half (n = 10) contained open reading frames with significant similarity to known proteins. These clones represent nuclear and mitochondrial coding genes, as well as putative long noncoding RNA genes. Quantitative polymerase chain reaction analysis of coding genes on independently infected groups of worker termites confirms in each case that the transcripts identified from the library are up-regulated postfungal infection. The genes identified here are relevant to future studies on termite biocontrol and social insect immunity.
Collapse
Affiliation(s)
- Qi Gao
- Department of Biology, Western University, London, Canada
| | | | | |
Collapse
|
554
|
Zhong X, Xu XX, Yi HY, Lin C, Yu XQ. A Toll-Spätzle pathway in the tobacco hornworm, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:514-24. [PMID: 22516181 PMCID: PMC3361650 DOI: 10.1016/j.ibmb.2012.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/20/2012] [Accepted: 03/23/2012] [Indexed: 05/03/2023]
Abstract
Insects synthesize a battery of antimicrobial peptides (AMPs) and expression of AMP genes is regulated by the Toll and Imd (immune deficiency) pathways in Drosophila melanogaster. Drosophila Toll pathway is activated after Spätzle (Spz) is cleaved by Spätzle processing enzyme (SPE) to release the active C-terminal C106 domain (DmSpz-C106), which then binds to the Toll receptor to initiate the signaling pathway and regulate expression of AMP genes such as drosomycin. Toll and Spz genes have been identified in other insects, but interaction between Toll and Spz and direct evidence for a Toll-Spz pathway in other insect species have not been demonstrated. Our aim is to investigate a Toll-Spz pathway in Manduca sexta, and compare M. sexta and D. melanogaster Toll-Spz pathways. Co-immunoprecipitation (Co-IP) assays showed that MsToll(ecto) (the ecto-domain of M. sexta Toll) could interact with MsSpz-C108 (the active C-terminal C108 domain of M. sexta Spz) but not with full-length MsSpz, and DmToll(ecto) could interact with DmSpz-C106 but not DmSpz, suggesting that Toll receptor only binds to the active C-terminal domain of Spz. Co-expression of MsToll-MsSpz-C108, but not MsToll-MsSpz, could up-regulate expression of drosomycin gene in Drosophila S2 cells, indicating that MsToll-MsSpz-C108 complex can activate the Toll signaling pathway. In vivo assays showed that activation of AMP genes, including cecropin, attacin, moricin and lebocin, in M. sexta larvae by purified recombinant MsSpz-C108 could be blocked by pre-injection of antibody to MsToll, further confirming a Toll-Spz pathway in M. sexta, a lepidopteran insect.
Collapse
Affiliation(s)
- Xue Zhong
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Xiao-Xia Xu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- College of Natural Resources and Environments, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Hui-Yu Yi
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- College of Animal Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Christopher Lin
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Xiao-Qiang Yu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Send correspondence to: Xiao-Qiang Yu, PhD, Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, Telephone: (816)-235-6379, Fax: (816)-235-1503,
| |
Collapse
|
555
|
Correlation of proteome-wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee (Apis mellifera). Genome Biol 2012; 13:R81. [PMID: 23021491 PMCID: PMC3491398 DOI: 10.1186/gb-2012-13-9-r81] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/29/2012] [Accepted: 09/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Disease is a major factor driving the evolution of many organisms. In honey bees, selection for social behavioral responses is the primary adaptive process facilitating disease resistance. One such process, hygienic behavior, enables bees to resist multiple diseases, including the damaging parasitic mite Varroa destructor. The genetic elements and biochemical factors that drive the expression of these adaptations are currently unknown. Proteomics provides a tool to identify proteins that control behavioral processes, and these proteins can be used as biomarkers to aid identification of disease tolerant colonies. RESULTS We sampled a large cohort of commercial queen lineages, recording overall mite infestation, hygiene, and the specific hygienic response to V. destructor. We performed proteome-wide correlation analyses in larval integument and adult antennae, identifying several proteins highly predictive of behavior and reduced hive infestation. In the larva, response to wounding was identified as a key adaptive process leading to reduced infestation, and chitin biosynthesis and immune responses appear to represent important disease resistant adaptations. The speed of hygienic behavior may be underpinned by changes in the antenna proteome, and chemosensory and neurological processes could also provide specificity for detection of V. destructor in antennae. CONCLUSIONS Our results provide, for the first time, some insight into how complex behavioural adaptations manifest in the proteome of honey bees. The most important biochemical correlations provide clues as to the underlying molecular mechanisms of social and innate immunity of honey bees. Such changes are indicative of potential divergence in processes controlling the hive-worker maturation.
Collapse
|
556
|
Aronstein KA, Saldivar E, Vega R, Westmiller S, Douglas AE. How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera. INSECTS 2012; 3:601-15. [PMID: 26466617 PMCID: PMC4553578 DOI: 10.3390/insects3030601] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/25/2012] [Accepted: 06/18/2012] [Indexed: 11/16/2022]
Abstract
We investigated the effect of the parasitic mite Varroa destructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa‑infested bees displayed elevated titer of Deformed Wing Virus (DWV), suggestive of depressed capacity to limit viral replication. Expression of genes coding three anti-microbial peptides (defensin1, abaecin, hymenoptaecin) was either not significantly different between Varroa-infested and uninfested bees or was significantly elevated in Varroa-infested bees, varying with sampling date and bee developmental age. The effect of Varroa on nutritional indices of the bees was complex, with protein, triglyceride, glycogen and sugar levels strongly influenced by life-stage of the bee and individual colony. Protein content was depressed and free amino acid content elevated in Varroa-infested pupae, suggesting that protein synthesis, and consequently growth, may be limited in these insects. No simple relationship between the values of nutritional and immune-related indices was observed, and colony-scale effects were indicated by the reduced weight of pupae in colonies with high Varroa abundance, irrespective of whether the individual pupa bore Varroa.
Collapse
Affiliation(s)
| | | | - Rodrigo Vega
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | | | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
557
|
Nazzi F, Brown SP, Annoscia D, Del Piccolo F, Di Prisco G, Varricchio P, Della Vedova G, Cattonaro F, Caprio E, Pennacchio F. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathog 2012; 8:e1002735. [PMID: 22719246 PMCID: PMC3375299 DOI: 10.1371/journal.ppat.1002735;pmid:22719246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 04/23/2012] [Indexed: 02/04/2025] Open
Abstract
The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health.
Collapse
Affiliation(s)
- Francesco Nazzi
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Udine, Udine, Italy
| | - Sam P. Brown
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Desiderato Annoscia
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Udine, Udine, Italy
| | - Fabio Del Piccolo
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Udine, Udine, Italy
| | - Gennaro Di Prisco
- Dipartimento di Entomologia e Zoologia Agraria “Filippo Silvestri”, Università degli Studi di Napoli “Federico II”, Portici (Napoli), Italy
| | - Paola Varricchio
- Dipartimento di Entomologia e Zoologia Agraria “Filippo Silvestri”, Università degli Studi di Napoli “Federico II”, Portici (Napoli), Italy
| | - Giorgio Della Vedova
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Udine, Udine, Italy
| | - Federica Cattonaro
- Istituto di Genomica Applicata, Parco Scientifico e Tecnologico Luigi Danieli, Udine, Italy
| | - Emilio Caprio
- Dipartimento di Entomologia e Zoologia Agraria “Filippo Silvestri”, Università degli Studi di Napoli “Federico II”, Portici (Napoli), Italy
| | - Francesco Pennacchio
- Dipartimento di Entomologia e Zoologia Agraria “Filippo Silvestri”, Università degli Studi di Napoli “Federico II”, Portici (Napoli), Italy
| |
Collapse
|
558
|
Nazzi F, Brown SP, Annoscia D, Del Piccolo F, Di Prisco G, Varricchio P, Della Vedova G, Cattonaro F, Caprio E, Pennacchio F. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathog 2012; 8:e1002735. [PMID: 22719246 PMCID: PMC3375299 DOI: 10.1371/journal.ppat.1002735] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 04/23/2012] [Indexed: 01/09/2023] Open
Abstract
The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health.
Collapse
Affiliation(s)
- Francesco Nazzi
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Udine, Udine, Italy
- * E-mail: (FN); (FP)
| | - Sam P. Brown
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Desiderato Annoscia
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Udine, Udine, Italy
| | - Fabio Del Piccolo
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Udine, Udine, Italy
| | - Gennaro Di Prisco
- Dipartimento di Entomologia e Zoologia Agraria “Filippo Silvestri”, Università degli Studi di Napoli “Federico II”, Portici (Napoli), Italy
| | - Paola Varricchio
- Dipartimento di Entomologia e Zoologia Agraria “Filippo Silvestri”, Università degli Studi di Napoli “Federico II”, Portici (Napoli), Italy
| | - Giorgio Della Vedova
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Udine, Udine, Italy
| | - Federica Cattonaro
- Istituto di Genomica Applicata, Parco Scientifico e Tecnologico Luigi Danieli, Udine, Italy
| | - Emilio Caprio
- Dipartimento di Entomologia e Zoologia Agraria “Filippo Silvestri”, Università degli Studi di Napoli “Federico II”, Portici (Napoli), Italy
| | - Francesco Pennacchio
- Dipartimento di Entomologia e Zoologia Agraria “Filippo Silvestri”, Università degli Studi di Napoli “Federico II”, Portici (Napoli), Italy
- * E-mail: (FN); (FP)
| |
Collapse
|
559
|
Dussaubat C, Brunet JL, Higes M, Colbourne JK, Lopez J, Choi JH, Martín-Hernández R, Botías C, Cousin M, McDonnell C, Bonnet M, Belzunces LP, Moritz RFA, Le Conte Y, Alaux C. Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PLoS One 2012; 7:e37017. [PMID: 22623972 PMCID: PMC3356400 DOI: 10.1371/journal.pone.0037017] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 04/12/2012] [Indexed: 12/12/2022] Open
Abstract
The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera). Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects at the molecular level by using genetic and biochemical tools. The transcriptome modifications at the midgut level were characterized seven days post-infection with tiling microarrays. Then we tested the bee midgut response to infection by measuring activity of antioxidant and detoxification enzymes (superoxide dismutases, glutathione peroxidases, glutathione reductase, and glutathione-S-transferase). At the gene-expression level, the bee midgut responded to N. ceranae infection by an increase in oxidative stress concurrent with the generation of antioxidant enzymes, defense and protective response specifically observed in the gut of mammals and insects. However, at the enzymatic level, the protective response was not confirmed, with only glutathione-S-transferase exhibiting a higher activity in infected bees. The oxidative stress was associated with a higher transcription of sugar transporter in the gut. Finally, a dramatic effect of the microsporidia infection was the inhibition of genes involved in the homeostasis and renewal of intestinal tissues (Wnt signaling pathway), a phenomenon that was confirmed at the histological level. This tissue degeneration and prevention of gut epithelium renewal may explain early bee death. In conclusion, our integrated approach not only gives new insights into the pathological effects of N. ceranae and the bee gut response, but also demonstrate that the honey bee gut is an interesting model system for studying host defense responses.
Collapse
Affiliation(s)
- Claudia Dussaubat
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Jean-Luc Brunet
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Mariano Higes
- Bee Pathology Laboratory, Centro Apícola Regional, JCCM, Marchamalo, Spain
| | - John K. Colbourne
- The Centre for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, United States of America
| | - Jacqueline Lopez
- The Centre for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, United States of America
| | - Jeong-Hyeon Choi
- The Centre for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, United States of America
| | | | - Cristina Botías
- Bee Pathology Laboratory, Centro Apícola Regional, JCCM, Marchamalo, Spain
| | - Marianne Cousin
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Cynthia McDonnell
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Marc Bonnet
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Luc P. Belzunces
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Robin F. A. Moritz
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Cédric Alaux
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
- * E-mail:
| |
Collapse
|
560
|
Boncristiani H, Underwood R, Schwarz R, Evans JD, Pettis J, vanEngelsdorp D. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:613-20. [PMID: 22212860 DOI: 10.1016/j.jinsphys.2011.12.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 05/25/2023]
Abstract
The effect of using acaricides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health. Irregular ontogenesis, suppression of immune defenses, and impairment of normal behavior have been linked to pesticide use. External stressors, including parasites and the pathogens they vector, can confound studies on the effects of pesticides on the metabolism of honey bees. This is the case of Varroa destructor, a mite that negatively affects honey bee health on many levels, from direct parasitism, which diminishes honey bee productivity, to vectoring and/or activating other pathogens, including many viruses. Here we present a gene expression profile comprising genes acting on diverse metabolic levels (detoxification, immunity, and development) in a honey bee population that lacks the influence of varroa mites. We present data for hives treated with five different acaricides; Apiguard (thymol), Apistan (tau-fluvalinate), Checkmite (coumaphos), Miteaway (formic acid) and ApiVar (amitraz). The results indicate that thymol, coumaphos and formic acid are able to alter some metabolic responses. These include detoxification gene expression pathways, components of the immune system responsible for cellular response and the c-Jun amino-terminal kinase (JNK) pathway, and developmental genes. These could potentially interfere with the health of individual honey bees and entire colonies.
Collapse
|
561
|
Schöning C, Gisder S, Geiselhardt S, Kretschmann I, Bienefeld K, Hilker M, Genersch E. Evidence for damage-dependent hygienic behaviour towards Varroa destructor-parasitised brood in the western honey bee, Apis mellifera. ACTA ACUST UNITED AC 2012; 215:264-71. [PMID: 22189770 DOI: 10.1242/jeb.062562] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ectoparasitic mite Varroa destructor and honey bee pathogenic viruses have been implicated in the recent demise of honey bee colonies. Several studies have shown that the combination of V. destructor and deformed wing virus (DWV) poses an especially serious threat to honey bee health. Mites transmitting virulent forms of DWV may cause fatal DWV infections in the developing bee, while pupae parasitised by mites not inducing or activating overt DWV infections may develop normally. Adult bees respond to brood diseases by removing affected brood. This hygienic behaviour is an essential part of the bees' immune response repertoire and is also shown towards mite-parasitised brood. However, it is still unclear whether the bees react towards the mite in the brood cell or rather towards the damage done to the brood. We hypothesised that the extent of mite-associated damage rather than the mere presence of parasitising mites triggers hygienic behaviour. Hygienic behaviour assays performed with mites differing in their potential to transmit overt DWV infections revealed that brood parasitised by 'virulent' mites (i.e. mites with a high potential to induce fatal DWV infections in parasitised pupae) were removed significantly more often than brood parasitised by 'less virulent' mites (i.e. mites with a very low potential to induce overt DWV infections) or non-parasitised brood. Chemical analyses of brood odour profiles suggested that the bees recognise severely affected brood by olfactory cues. Our results suggest that bees show selective, damage-dependent hygienic behaviour, which may be an economic way for colonies to cope with mite infestation.
Collapse
Affiliation(s)
- Caspar Schöning
- Institute for Bee Research, Friedrich-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
562
|
Simone-Finstrom MD, Spivak M. Increased resin collection after parasite challenge: a case of self-medication in honey bees? PLoS One 2012; 7:e34601. [PMID: 22479650 PMCID: PMC3315539 DOI: 10.1371/journal.pone.0034601] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 03/02/2012] [Indexed: 11/29/2022] Open
Abstract
The constant pressure posed by parasites has caused species throughout the animal kingdom to evolve suites of mechanisms to resist infection. Individual barriers and physiological defenses are considered the main barriers against parasites in invertebrate species. However, behavioral traits and other non-immunological defenses can also effectively reduce parasite transmission and infection intensity. In social insects, behaviors that reduce colony-level parasite loads are termed "social immunity." One example of a behavioral defense is resin collection. Honey bees forage for plant-produced resins and incorporate them into their nest architecture. This use of resins can reduce chronic elevation of an individual bee's immune response. Since high activation of individual immunity can impose colony-level fitness costs, collection of resins may benefit both the individual and colony fitness. However the use of resins as a more direct defense against pathogens is unclear. Here we present evidence that honey bee colonies may self-medicate with plant resins in response to a fungal infection. Self-medication is generally defined as an individual responding to infection by ingesting or harvesting non-nutritive compounds or plant materials. Our results show that colonies increase resin foraging rates after a challenge with a fungal parasite (Ascophaera apis: chalkbrood or CB). Additionally, colonies experimentally enriched with resin had decreased infection intensities of this fungal parasite. If considered self-medication, this is a particularly unique example because it operates at the colony level. Most instances of self-medication involve pharmacophagy, whereby individuals change their diet in response to direct infection with a parasite. In this case with honey bees, resins are not ingested but used within the hive by adult bees exposed to fungal spores. Thus the colony, as the unit of selection, may be responding to infection through self-medication by increasing the number of individuals that forage for resin.
Collapse
Affiliation(s)
- Michael D Simone-Finstrom
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America.
| | | |
Collapse
|
563
|
Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG. Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS One 2012; 7:e32962. [PMID: 22427917 PMCID: PMC3299707 DOI: 10.1371/journal.pone.0032962] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 02/07/2012] [Indexed: 01/25/2023] Open
Abstract
Recent losses of honey bee colonies have led to increased interest in the microbial communities that are associated with these important pollinators. A critical function that bacteria perform for their honey bee hosts, but one that is poorly understood, is the transformation of worker-collected pollen into bee bread, a nutritious food product that can be stored for long periods in colonies. We used 16S rRNA pyrosequencing to comprehensively characterize in genetically diverse and genetically uniform colonies the active bacterial communities that are found on honey bees, in their digestive tracts, and in bee bread. This method provided insights that have not been revealed by past studies into the content and benefits of honey bee-associated microbial communities. Colony microbiotas differed substantially between sampling environments and were dominated by several anaerobic bacterial genera never before associated with honey bees, but renowned for their use by humans to ferment food. Colonies with genetically diverse populations of workers, a result of the highly promiscuous mating behavior of queens, benefited from greater microbial diversity, reduced pathogen loads, and increased abundance of putatively helpful bacteria, particularly species from the potentially probiotic genus Bifidobacterium. Across all colonies, Bifidobacterium activity was negatively correlated with the activity of genera that include pathogenic microbes; this relationship suggests a possible target for understanding whether microbes provide protective benefits to honey bees. Within-colony diversity shapes microbiotas associated with honey bees in ways that may have important repercussions for colony function and health. Our findings illuminate the importance of honey bee-bacteria symbioses and examine their intersection with nutrition, pathogen load, and genetic diversity, factors that are considered key to understanding honey bee decline.
Collapse
Affiliation(s)
- Heather R. Mattila
- Department of Biological Sciences, Wellesley College, Wellesley, Massachussetts, United States of America
| | - Daniela Rios
- Department of Biological Sciences, Wellesley College, Wellesley, Massachussetts, United States of America
| | | | - Guus Roeselers
- Microbiology & Systems Biology group, TNO, Utrechtseweg, Zeist, The Netherlands
| | - Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
564
|
Loker ES. Macroevolutionary Immunology: A Role for Immunity in the Diversification of Animal life. Front Immunol 2012; 3:25. [PMID: 22566909 PMCID: PMC3342036 DOI: 10.3389/fimmu.2012.00025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/08/2012] [Indexed: 11/13/2022] Open
Abstract
An emerging picture of the nature of immune systems across animal phyla reveals both conservatism of some features and the appearance among and within phyla of novel, lineage-specific defense solutions. The latter collectively represent a major and underappreciated form of animal diversity. Factors influencing this macroevolutionary (above the species level) pattern of novelty are considered and include adoption of different life styles, life histories, and body plans; a general advantage of being distinctive with respect to immune defenses; and the responses required to cope with parasites, many of which afflict hosts in a lineage-specific manner. This large-scale pattern of novelty implies that immunological phenomena can affect microevolutionary processes (at the population level within species) that can eventually lead to macroevolutionary events such as speciation, radiations, or extinctions. Immunologically based phenomena play a role in favoring intraspecific diversification, specialization and host specificity of parasites, and mechanisms are discussed whereby this could lead to parasite speciation. Host switching - the acquisition of new host species by parasites - is a major mechanism that drives parasite diversity and is frequently involved in disease emergence. It is also one that can be favored by reductions in immune competence of new hosts. Mechanisms involving immune phenomena favoring intraspecific diversification and speciation of host species are also discussed. A macroevolutionary perspective on immunology is invaluable in today's world, including the need to study a broader range of species with distinctive immune systems. Many of these species are faced with extinction, another macroevolutionary process influenced by immune phenomena.
Collapse
Affiliation(s)
- Eric S. Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, Division of Parasitology, Museum of Southwestern Biology, University of New MexicoAlbuquerque, NM, USA
| |
Collapse
|
565
|
Wilson-Rich N, Tarpy DR, Starks PT. Within- and across-colony effects of hyperpolyandry on immune function and body condition in honey bees (Apis mellifera). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:402-407. [PMID: 22233933 DOI: 10.1016/j.jinsphys.2011.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 05/31/2023]
Abstract
Honey bees (Apis mellifera) have become a model system for studies on the influence of genetic diversity on disease. Honey bee queens mate with a remarkably high number of males-up to 29 in the current study-from which they produce a colony of genetically diverse daughter workers. Recent evidence suggests a significant benefit of intracolony genetic diversity on disease resistance. Here, we explored the relationship between the level of genetic diversity and multiple physiological mechanisms of cellular and humoral immune defense (encapsulation response and phenoloxidase activity). We also investigated an effect of genetic diversity on a measure of body condition (fat body mass). While we predicted that mean colony phenoloxidase activity, encapsulation response, and fat body mass would show a positive relationship with increased intracolonial genetic diversity, we found no significant relationship between genetic diversity and these immune measures, and found no consistent effect on body condition. These results suggest that high genetic diversity as a result of extreme polyandry may have little bearing on the physiological mechanisms of immune function at naturally occurring mating levels in honey bees.
Collapse
Affiliation(s)
- Noah Wilson-Rich
- Department of Biology, Tufts University, Medford, MA 02155, United States.
| | | | | |
Collapse
|
566
|
Dainat B, Evans JD, Chen YP, Gauthier L, Neumann P. Predictive markers of honey bee colony collapse. PLoS One 2012; 7:e32151. [PMID: 22384162 PMCID: PMC3285648 DOI: 10.1371/journal.pone.0032151] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 01/23/2012] [Indexed: 11/18/2022] Open
Abstract
Across the Northern hemisphere, managed honey bee colonies, Apis mellifera, are currently affected by abrupt depopulation during winter and many factors are suspected to be involved, either alone or in combination. Parasites and pathogens are considered as principal actors, in particular the ectoparasitic mite Varroa destructor, associated viruses and the microsporidian Nosema ceranae. Here we used long term monitoring of colonies and screening for eleven disease agents and genes involved in bee immunity and physiology to identify predictive markers of honeybee colony losses during winter. The data show that DWV, Nosema ceranae, Varroa destructor and Vitellogenin can be predictive markers for winter colony losses, but their predictive power strongly depends on the season. In particular, the data support that V. destructor is a key player for losses, arguably in line with its specific impact on the health of individual bees and colonies.
Collapse
Affiliation(s)
- Benjamin Dainat
- Swiss Bee Research Centre, Agroscope Liebefeld-Posieux Research Station ALP, Bern, Switzerland.
| | | | | | | | | |
Collapse
|
567
|
Richter J, Helbing S, Erler S, Lattorff HMG. Social context-dependent immune gene expression in bumblebees (Bombus terrestris). Behav Ecol Sociobiol 2012. [DOI: 10.1007/s00265-012-1327-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
568
|
Höcherl N, Siede R, Illies I, Gätschenberger H, Tautz J. Evaluation of the nutritive value of maize for honey bees. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:278-285. [PMID: 22172382 DOI: 10.1016/j.jinsphys.2011.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 05/31/2023]
Abstract
In modern managed agro-ecosystems, the supply of adequate food from blooming crops is limited to brief periods. During periods of pollen deficiencies, bees are forced to forage on alternative crops, such as maize. However, pollen of maize is believed to be a minor food source for bees as it is thought to be lacking in proteins and essential amino acids. This study was conducted to verify this assumption. In maize, a strikingly low concentration of histidine was found, but the amount of all other essential amino acids was greater than that of mixed pollen. The performance and the immunocompetence of bees consuming a pure maize pollen diet (A) was compared to bees feeding on a polyfloral pollen diet (B) and to bees feeding on an artificial substitute of pollen (C). Consumption of diets A and C were linked to a reduction in brood rearing and lifespan. However, no immunological effects were observed based on two parameters of the humoral immunity.
Collapse
Affiliation(s)
- Nicole Höcherl
- BEEGroup, Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
569
|
Survival and immune response of drones of a Nosemosis tolerant honey bee strain towards N. ceranae infections. J Invertebr Pathol 2012; 109:297-302. [PMID: 22285444 DOI: 10.1016/j.jip.2012.01.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 12/11/2022]
Abstract
Honey bee colonies (Apis mellifera) have been selected for low level of Nosema in Denmark over decades and Nosema is now rarely found in bee colonies from these breeding lines. We compared the immune response of a selected and an unselected honey bee lineage, taking advantage of the haploid males to study its potential impact on the tolerance toward Nosema ceranae, a novel introduced microsporidian pathogen. After artificial infections of the N. ceranae spores, the lineage selected for Nosema tolerance showed a higher N. ceranae spore load, a lower mortality and an up-regulated immune response. The differences in the response of the innate immune system between the selected and unselected lineage were strongest at day six post infection. In particular genes of the Toll pathway were up-regulated in the selected strain, probably is the main immune pathway involved in N. ceranae infection response. After decades of selective breeding for Nosema tolerance in the Danish strain, it appears these bees are tolerant to N. ceranae infections.
Collapse
|
570
|
Infection of honey bees with acute bee paralysis virus does not trigger humoral or cellular immune responses. Arch Virol 2012; 157:689-702. [PMID: 22258854 PMCID: PMC3314816 DOI: 10.1007/s00705-012-1223-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/04/2011] [Indexed: 11/28/2022]
Abstract
We have studied the responses of honey bees at different life stages (Apis mellifera) to controlled infection with acute bee paralysis virus and have identified the haemolymph of infected larvae and adult worker bees as the compartment where massive propagation of ABPV occurs. Insects respond with a broad spectrum of induced innate immune reactions to bacterial infections, whereas defence mechanisms based on RNA interference play a major role in antiviral immunity. In this study, we have determined that honey bee larvae and adult workers do not produce a humoral immune reaction upon artificial infection with ABPV, in contrast to control individuals challenged with Escherichia coli. ABPV-infected bees produced neither elevated levels of specific antimicrobial peptides (AMPs), such as hymenoptaecin and defensin, nor any general antimicrobial activity, as revealed by inhibition-zone assays. Additionally, adult bees did not generate melanised nodules upon ABPV infection, an important cellular immune function activated by bacteria and viruses in some insects. Challenge of bees with both ABPV and E. coli showed that innate humoral and cellular immune reactions are induced in mixed infections, albeit at a reduced level.
Collapse
|
571
|
Expression of larval jelly antimicrobial peptide defensin1 in Apis mellifera colonies. Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-011-0153-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
572
|
Barribeau SM, Gerardo NM. An evolutionarily and ecologically focused strategy for genome sequencing efforts. Heredity (Edinb) 2011; 108:577-80. [PMID: 22126851 DOI: 10.1038/hdy.2011.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
573
|
Albert Š, Gätschenberger H, Azzami K, Gimple O, Grimmer G, Sumner S, Fujiyuki T, Tautz J, Mueller MJ. Evidence of a novel immune responsive protein in the Hymenoptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:968-981. [PMID: 22001069 DOI: 10.1016/j.ibmb.2011.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/20/2011] [Accepted: 09/27/2011] [Indexed: 05/31/2023]
Abstract
Honeybee populations are severely threatened by parasites and diseases. Recent outbreaks of Colony Collapse Disorder (CCD) has caused loss of more than 35% of bee colonies in the USA, and this is thought to at least in part be due to parasites and/or disease. Interestingly, the honeybee possesses of a limited set of immune genes compared to other insects. Non-canonical immune genes of honeybee are of interest because they may provide greater insights into the peculiar nature of the immune system of this social insect. Previous analyses of bee haemolymph upon bacterial challenge identified a novel leucine-rich repeat protein termed IRP30. Here we show that IRP30 behaves as a typical secreted immune protein. It is expressed simultaneously with carboxylesterase upon treatment with bacteria or other elicitors of immune response. Furthermore we characterize the gene and the mRNA encoding this protein and the IRP30 protein itself. Its regulation and evolution reveal that IRP30 belongs to a protein family, distributed broadly among Hymenoptera, suggesting its ancient function in immune response. We document an interesting case of a recent IRP30 loss in the ant Atta cephalotes and hypothesize that a putative IRP30 homolog of Nasonia emerged by convergent evolution rather than diverged from a common ancestor.
Collapse
Affiliation(s)
- Štefan Albert
- BEEgroup, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
574
|
Evans JD, Schwarz RS. Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol 2011; 19:614-20. [PMID: 22032828 DOI: 10.1016/j.tim.2011.09.003] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 10/15/2022]
Abstract
The biology and health of the honey bee Apis mellifera has been of interest to human societies for centuries. Research on honey bee health is surging, in part due to new tools and the arrival of colony-collapse disorder (CCD), an unsolved decline in bees from parts of the United States, Europe, and Asia. Although a clear understanding of what causes CCD has yet to emerge, these efforts have led to new microbial discoveries and avenues to improve our understanding of bees and the challenges they face. Here we review the known honey bee microbes and highlight areas of both active and lagging research. Detailed studies of honey bee-pathogen dynamics will help efforts to keep this important pollinator healthy and will give general insights into both beneficial and harmful microbes confronting insect colonies.
Collapse
Affiliation(s)
- Jay D Evans
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS) Bee Research Laboratory, Beltsville Agricultural Research Center (BARC) East Building 476, Beltsville, MD 20705, USA.
| | | |
Collapse
|
575
|
Alaux C, Dantec C, Parrinello H, Le Conte Y. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees. BMC Genomics 2011; 12:496. [PMID: 21985689 PMCID: PMC3209670 DOI: 10.1186/1471-2164-12-496] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 10/10/2011] [Indexed: 12/30/2022] Open
Abstract
Background Malnutrition is a major factor affecting animal health, resistance to disease and survival. In honey bees (Apis mellifera), pollen, which is the main dietary source of proteins, amino acids and lipids, is essential to adult bee physiological development while reducing their susceptibility to parasites and pathogens. However, the molecular mechanisms underlying pollen's nutritive impact on honey bee health remained to be determined. For that purpose, we investigated the influence of pollen nutrients on the transcriptome of worker bees parasitized by the mite Varroa destructor, known for suppressing immunity and decreasing lifespan. The 4 experimental groups (control bees without a pollen diet, control bees fed with pollen, varroa-parasitized bees without a pollen diet and varroa-parasitized bees fed with pollen) were analyzed by performing a digital gene expression (DGE) analysis on bee abdomens. Results Around 36, 000 unique tags were generated per DGE-tag library, which matched about 8, 000 genes (60% of the genes in the honey bee genome). Comparing the transcriptome of bees fed with pollen and sugar and bees restricted to a sugar diet, we found that pollen activates nutrient-sensing and metabolic pathways. In addition, those nutrients had a positive influence on genes affecting longevity and the production of some antimicrobial peptides. However, varroa parasitism caused the development of viral populations and a decrease in metabolism, specifically by inhibiting protein metabolism essential to bee health. This harmful effect was not reversed by pollen intake. Conclusions The DGE-tag profiling methods used in this study proved to be a powerful means for analyzing transcriptome variation related to nutrient intake in honey bees. Ultimately, with such an approach, applying genomics tools to nutrition research, nutrigenomics promises to offer a better understanding of how nutrition influences body homeostasis and may help reduce the susceptibility of bees to (less virulent) pathogens.
Collapse
Affiliation(s)
- Cédric Alaux
- INRA, UMR 406 Abeilles et Environnement, Domaine Saint-Paul, 84914 Avignon, France.
| | | | | | | |
Collapse
|
576
|
The genomic impact of 100 million years of social evolution in seven ant species. Trends Genet 2011; 28:14-21. [PMID: 21982512 DOI: 10.1016/j.tig.2011.08.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 11/21/2022]
Abstract
Ants (Hymenoptera, Formicidae) represent one of the most successful eusocial taxa in terms of both their geographic distribution and species number. The publication of seven ant genomes within the past year was a quantum leap for socio- and ant genomics. The diversity of social organization in ants makes them excellent model organisms to study the evolution of social systems. Comparing the ant genomes with those of the honeybee, a lineage that evolved eusociality independently from ants, and solitary insects suggests that there are significant differences in key aspects of genome organization between social and solitary insects, as well as among ant species. Altogether, these seven ant genomes open exciting new research avenues and opportunities for understanding the genetic basis and regulation of social species, and adaptive complex systems in general.
Collapse
|
577
|
Altincicek B, Ter Braak B, Laughton AM, Udekwu KI, Gerardo NM. Escherichia coli K-12 pathogenicity in the pea aphid, Acyrthosiphon pisum, reveals reduced antibacterial defense in aphids. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1091-1097. [PMID: 21527277 DOI: 10.1016/j.dci.2011.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 05/30/2023]
Abstract
To better understand the molecular basis underlying aphid immune tolerance to beneficial bacteria and immune defense to pathogenic bacteria, we characterized how the pea aphid Acyrthosiphon pisum responds to Escherichia coli K-12 infections. E. coli bacteria, usually cleared in the hemolymph of other insect species, were capable of growing exponentially and killing aphids within a few days. Red fluorescence protein expressing E. coli K-12 laboratory strain multiplied in the aphid hemolymph as well as in the digestive tract, resulting in death of infected aphids. Selected gene deletion mutants of the E. coli K-12 predicted to have reduced virulence during systemic infections showed no difference in either replication or killing rate when compared to the wild type E. coli strain. Of note, however, the XL1-Blue E. coli K-12 strain exhibited a significant lag phase before multiplying and killing aphids. This bacterial strain has recently been shown to be more sensitive to oxidative stress than other E. coli K-12 strains, revealing a potential role for reactive oxygen species-mediated defenses in the otherwise reduced aphid immune system.
Collapse
Affiliation(s)
- Boran Altincicek
- Department of Biology, Emory University, O. Wayne Rollins Research Center, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
578
|
Keebaugh ES, Schlenke TA. Adaptive evolution of a novel Drosophila lectin induced by parasitic wasp attack. Mol Biol Evol 2011; 29:565-77. [PMID: 21873297 DOI: 10.1093/molbev/msr191] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Drosophila melanogaster has long been used as a model for the molecular genetics of innate immunity. Such work has uncovered several immune receptors that recognize bacterial and fungal pathogens by binding unique components of their cell walls and membranes. Drosophila also act as hosts to metazoan pathogens such as parasitic wasps, which can infect a majority of individuals in natural populations, but many aspects of their immune responses against these more closely related pathogens are poorly understood. Here, we present data describing the transcriptional induction and molecular evolution of a candidate Drosophila anti-wasp immunity gene, lectin-24A. Lectin-24A has a secretion signal sequence and its lectin domain suggests a function in sugar group binding. Transcript levels of lectin-24A were induced significantly stronger and faster following wasp attack than following wounding or bacterial infection, demonstrating lectin-24A is not a general stress response or defense response gene but is instead part of a specific response against wasps. The major site of lectin-24A transcript production is the fat body, the main humoral immune tissue of flies. Interestingly, lectin-24A is a new gene of the D. melanogaster/Drosophila simulans clade, displaying very little homology to any other Drosophila lectins. Population genetic analyses of lectin-24A DNA sequence data from African and North American populations of D. melanogaster and D. simulans revealed gene length polymorphisms segregating at high frequencies as well as strong evidence of repeated and recent selective sweeps. Thus, lectin-24A is a rapidly evolving new gene that has seemingly developed functional importance for fly resistance against infection by parasitic wasps.
Collapse
|
579
|
Ratzka C, Liang C, Dandekar T, Gross R, Feldhaar H. Immune response of the ant Camponotus floridanus against pathogens and its obligate mutualistic endosymbiont. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:529-536. [PMID: 21440063 DOI: 10.1016/j.ibmb.2011.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/01/2011] [Accepted: 03/11/2011] [Indexed: 05/30/2023]
Abstract
Numerous insect species harbor mutualistic endosymbionts that play a role in nutrient cycling or confer other fitness benefits to their hosts. Insect hosts face the problem of having to maintain such mutualistic bacteria while staging an immune response towards pathogens upon infection. In addition, hosts may regulate the number of endosymbionts present in their tissues via the innate immune system. Camponotus floridanus ants harbor the obligate endosymbiont Blochmannia floridanus in specialized midgut cells and ovaries. We identified genes transcriptionally induced in response to septic injury by suppression subtractive hybridization (SSH). Among these were genes involved in pathogen recognition (e.g. GNBP), signal transduction (e.g. MAPK-kinase), antimicrobial activity (e.g. defensin and hymenoptaecin), or general stress response (e.g. heat shock protein). A quantitative analysis of immune-gene expression revealed different expression kinetics of individual factors and also characteristic expression profiles after injection of gram-negative and gram-positive bacteria. Likewise, B. floridanus injected into the hemocoel elicited a comparable immune response of its host C. floridanus. Thus, the host immune system may contribute to controlling the endosymbiont population.
Collapse
Affiliation(s)
- Carolin Ratzka
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, Germany
| | | | | | | | | |
Collapse
|
580
|
Gao Q, Bidochka MJ, Thompson GJ. Effect of group size and caste ratio on individual survivorship and social immunity in a subterranean termite. Acta Ethol 2011. [DOI: 10.1007/s10211-011-0108-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
581
|
Fischman BJ, Woodard SH, Robinson GE. Molecular evolutionary analyses of insect societies. Proc Natl Acad Sci U S A 2011; 108 Suppl 2:10847-54. [PMID: 21690385 PMCID: PMC3131825 DOI: 10.1073/pnas.1100301108] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The social insects live in extraordinarily complex and cohesive societies, where many individuals sacrifice their personal reproduction to become helpers in the colony. Identifying adaptive molecular changes involved in eusocial evolution in insects is important for understanding the mechanisms underlying transitions from solitary to social living, as well as the maintenance and elaboration of social life. Here, we review recent advances made in this area of research in several insect groups: the ants, bees, wasps, and termites. Drawing from whole-genome comparisons, candidate gene approaches, and a genome-scale comparative analysis of protein-coding sequence, we highlight novel insights gained for five major biological processes: chemical signaling, brain development and function, immunity, reproduction, and metabolism and nutrition. Lastly, we make comparisons across these diverse approaches and social insect lineages and discuss potential common themes of eusocial evolution, as well as challenges and prospects for future research in the field.
Collapse
Affiliation(s)
| | | | - Gene E. Robinson
- Program in Ecology, Evolution, and Conservation Biology
- Department of Entomology
- Institute for Genomic Biology, and
- Neuroscience Program, University of Illinois, Urbana, IL 61801
| |
Collapse
|
582
|
Niño EL, Tarpy DR, Grozinger C. Genome-wide analysis of brain transcriptional changes in honey bee (Apis mellifera L.) queens exposed to carbon dioxide and physical manipulation. INSECT MOLECULAR BIOLOGY 2011; 20:387-398. [PMID: 21410804 DOI: 10.1111/j.1365-2583.2011.2011.01072.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mating is a complex process causing many behavioural and physiological changes, but the factors triggering them and the underlying molecular processes are not well characterized. In the present study we examine the effects of CO(2) (a commonly used anaesthetic in instrumental insemination that causes changes similar to those occurring after mating) and physical manipulation (which may mimic certain aspects of copulation) on the behavioural, physiological and brain transcriptional changes in honey bee queens. We show that while CO(2) causes cessation of mating flights and ovary activation, physical manipulation has additional effects on ovary activation and brain transcriptional changes. Comparisons with previous studies of honey bees and female Drosophila indicate that common molecular mechanisms may be responsible for regulating reproductive changes across different mating regimes and insect orders.
Collapse
Affiliation(s)
- E L Niño
- Department of Entomology, North Carolina State University, Raleigh, NC, USA.
| | | | | |
Collapse
|
583
|
Le Conte Y, Alaux C, Martin JF, Harbo JR, Harris JW, Dantec C, Séverac D, Cros-Arteil S, Navajas M. Social immunity in honeybees (Apis mellifera): transcriptome analysis of varroa-hygienic behaviour. INSECT MOLECULAR BIOLOGY 2011; 20:399-408. [PMID: 21435061 DOI: 10.1111/j.1365-2583.2011.01074.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Honeybees have evolved a social immunity consisting of the cooperation of individuals to decrease disease in the hive. We identified a set of genes involved in this social immunity by analysing the brain transcriptome of highly varroa-hygienic bees, who efficiently detect and remove brood infected with the Varroa destructor mite. The function of these candidate genes does not seem to support a higher olfactory sensitivity in hygienic bees, as previously hypothesized. However, comparing their genomic profile with those from other behaviours suggests a link with brood care and the highly varroa-hygienic Africanized honeybees. These results represent a first step toward the identification of genes involved in social immunity and thus provide first insights into the evolution of social immunity.
Collapse
Affiliation(s)
- Y Le Conte
- INRA, UMR 406 Abeilles et Environnement, Site Agroparc, Avignon cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
584
|
Abstract
Innate host defense pathways consist of microbial sensors, their signaling pathways, and the antimicrobial effector mechanisms. Several classes of host defense pathways are currently known, each comprising several pattern-recognition receptors that detect different types of pathogens. These pathways interact with one another in a variety of ways that can be categorized into cooperation, complementation, and compensation. Understanding the principles of these interactions is important for better understanding of host defense mechanisms, as well as for correct interpretation of immunodeficient phenotypes.
Collapse
Affiliation(s)
- Simone Nish
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
585
|
Kim JH, Min JS, Kang JS, Kwon DH, Yoon KS, Strycharz J, Koh YH, Pittendrigh BR, Clark JM, Lee SH. Comparison of the humoral and cellular immune responses between body and head lice following bacterial challenge. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:332-9. [PMID: 21296152 DOI: 10.1016/j.ibmb.2011.01.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/13/2011] [Accepted: 01/27/2011] [Indexed: 05/24/2023]
Abstract
The differences in the immune response between body lice, Pediculus humanus humanus, and head lice, Pediculus humanus capitis, were investigated initially by measuring the proliferation rates of two model bacteria, a Gram-positive Staphylococcus aureus and a Gram-negative Escherichia coli, following challenge by injection. Body lice showed a significantly reduced immune response compared to head lice particularly to E. coli at the early stage of the immune challenge. Annotation of the body louse genome identified substantially fewer immune-related genes compared with other insects. Nevertheless, all required genetic components of the major immune pathways, except for the immune deficiency (Imd) pathway, are still retained in the body louse genome. Transcriptional profiling of representative genes involved in the humoral immune response, following bacterial challenge, revealed that both body and head lice, regardless of their developmental stages, exhibited an increased immune response to S. aureus but little to E. coli. Head lice, however, exhibited a significantly higher phagocytotic activity against E. coli than body lice, whereas the phagocytosis against S. aureus differed only slightly between body and head lice. These findings suggest that the greater immune response in head lice against E. coli is largely due to enhanced phagocytosis and not due to differences in the humoral immune response. The reduced phagocytotic activity in body lice could be responsible, in part, for their increased vector competence.
Collapse
Affiliation(s)
- Ju Hyeon Kim
- Department of Agricultural Biotechnology, Seoul National University, 151-921 Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
586
|
Sampling and RNA quality for diagnosis of honey bee viruses using quantitative PCR. J Virol Methods 2011; 174:150-2. [PMID: 21473885 DOI: 10.1016/j.jviromet.2011.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 03/23/2011] [Accepted: 03/28/2011] [Indexed: 11/22/2022]
Abstract
Molecular diagnoses of pathogens via ribonucleic acid (RNA) signatures are used widely in honey bee pathology. Such diagnoses can be compromised by ubiquitous and endogenous RNA-degrading enzymes activated after the death of sampled bees. RNA degradation can be minimized by storage at ultra-cold temperatures or by immersion in high-salt buffers. However, these methods are not always available in the field or are costly, driving a search for alternative methods to store and transport bees for RNA analyses. While the impact of storage conditions on RNA integrity has been evaluated, the tolerance of standard RT-qPCR diagnostic methods of honey bee pathogens for suboptimal collection and storage is unknown. Given the short regions of RNA used for pathogen diagnosis (generally amplified regions of 100-200 nucleotides), it is conceivable that even degraded RNA will provide a template for precise diagnosis. In this study, the impact of the two most convenient sample storage and handling methods (+4°C and ambient temperature) for identifying honey bee virus infections was evaluated by RT-qPCR. The aim was to streamline the methods needed to collect, transport, and store honey bee samples destined for pathogen diagnosis. The data show that samples held at room temperature for times anticipated for sample transport for up to 5 days are suitable for diagnosis of two of the most common and prevalent honey bee viruses, deformed wing virus (DWV) and black queen cell virus (BQCV). The results will be useful for the standardisation of sampling methods across countries and laboratories.
Collapse
|
587
|
Erler S, Popp M, Lattorff HMG. Dynamics of immune system gene expression upon bacterial challenge and wounding in a social insect (Bombus terrestris). PLoS One 2011; 6:e18126. [PMID: 21479237 PMCID: PMC3066223 DOI: 10.1371/journal.pone.0018126] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/24/2011] [Indexed: 01/08/2023] Open
Abstract
The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT). There is a lack of immune genes in social insects (e.g. honeybees) when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals). The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge. Antimicrobial peptides (AMP) (abaecin, defensin 1, hymenoptaecin) were strongly up-regulated by wounding and bacterial challenge, the latter showing a higher impact on the gene expression level. Sterile wounding down-regulated TEP A, an effector gene of the JAK/STAT pathway, and bacterial infection influenced genes of the Imd (relish) and JNK pathway (basket). Relish was up-regulated within the first hour after bacterial challenge, but decreased strongly afterwards. AMP expression following wounding and bacterial challenge correlates with the expression pattern of relish whereas correlated expression with dorsal was absent. Although expression of AMPs was high, continuous bacterial growth was observed throughout the experiment. Here we demonstrate for the first time the temporal dynamics of immune system gene expression in a social insect. Wounding and bacterial challenge affected the innate immune system significantly. Induction of AMP expression due to wounding might comprise a pre-adaptation to accompanying bacterial infections. Compared with solitary species this social insect exhibits reduced immune system efficiency, as bacterial growth could not be inhibited. A negative feedback loop regulating the Imd-pathway is suggested. AMPs, the end product of the Imd-pathway, inhibited the up-regulation of the transcription factor relish, which is necessary for effector gene expression.
Collapse
Affiliation(s)
- Silvio Erler
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Saale, Germany.
| | | | | |
Collapse
|
588
|
Parker BJ, Barribeau SM, Laughton AM, de Roode JC, Gerardo NM. Non-immunological defense in an evolutionary framework. Trends Ecol Evol 2011; 26:242-8. [PMID: 21435735 DOI: 10.1016/j.tree.2011.02.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 11/18/2022]
Abstract
After parasite infection, invertebrates activate immune system-based defenses such as encapsulation and the signaling pathways of the innate immune system. However, hosts are often able to defend against parasites without using these mechanisms. The non-immunological defenses, such as behaviors that prevent or combat infection, symbiont-mediated defense, and fecundity compensation, are often ignored but can be important in host-parasite dynamics. We review recent studies showing that heritable variation in these traits exists among individuals, and that they are costly to activate and maintain. We also discuss findings from genome annotation and expression studies to show how immune system-based and non-immunological defenses interact. Placing these studies into an evolutionary framework emphasizes their importance for future studies of host-parasite coevolution.
Collapse
Affiliation(s)
- Benjamin J Parker
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 E. Clifton Rd. N.E., Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
589
|
Esfahani SS, Engström Y. Activation of an innate immune response in large numbers of permeabilized Drosophila embryos. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:263-266. [PMID: 21075135 DOI: 10.1016/j.dci.2010.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 11/05/2010] [Accepted: 11/06/2010] [Indexed: 05/30/2023]
Abstract
Innate immunity in Drosophila involves the inducible expression and synthesis of antimicrobial peptides. We have previously shown that not only Drosophila larvae and adults, but also embryos, are capable of mounting an immune response after injection of bacterial substances. To simplify genetic dissection of the signaling pathways involved in immune-gene regulation we developed a procedure for permeabilization of large number of embryos and subsequent infiltration with bacterial fragments. This approach, which promoted expression of CecropinA1- and Diptericin-driven β-gal expression in the epidermis of more than 90% of the treated embryos, will enable analysis of mutants that are embryonic lethal. Thus, genes that are involved in essential pleiotrophic functions, in addition to being candidates in immune-regulation will be amenable for analysis of their involvement in the fly's immune defense.
Collapse
|
590
|
Suen G, Teiling C, Li L, Holt C, Abouheif E, Bornberg-Bauer E, Bouffard P, Caldera EJ, Cash E, Cavanaugh A, Denas O, Elhaik E, Favé MJ, Gadau J, Gibson JD, Graur D, Grubbs KJ, Hagen DE, Harkins TT, Helmkampf M, Hu H, Johnson BR, Kim J, Marsh SE, Moeller JA, Muñoz-Torres MC, Murphy MC, Naughton MC, Nigam S, Overson R, Rajakumar R, Reese JT, Scott JJ, Smith CR, Tao S, Tsutsui ND, Viljakainen L, Wissler L, Yandell MD, Zimmer F, Taylor J, Slater SC, Clifton SW, Warren WC, Elsik CG, Smith CD, Weinstock GM, Gerardo NM, Currie CR. The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle. PLoS Genet 2011; 7:e1002007. [PMID: 21347285 PMCID: PMC3037820 DOI: 10.1371/journal.pgen.1002007] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/30/2010] [Indexed: 11/21/2022] Open
Abstract
Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host-microbe symbioses.
Collapse
Affiliation(s)
- Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
591
|
Abstract
Genome sequences are quickly being generated from a variety of organisms and provide researchers with an abundance of previously inaccessible information and an important source of insight into immune mechanisms. There are a variety of methods to accurately characterize genes from new genome sequences, but immune receptors pose special challenges for these techniques. Immune receptors, particularly those that directly recognize pathogens, often diverge rapidly among species and are commonly found in large, complex multigene families. Because of these characteristics, immune receptors tend to be overlooked or misannotated in large-scale genomic surveys. We describe here a computational strategy to characterize homologs of immune receptors and also to identify putative novel receptors from newly assembled genome sequences. The description of these protocols is aimed at a typical immunologist, and a substantial knowledge of bioinformatics is not expected. The approach is based on using low-stringency sequence searches to identify divergent homologs. For receptors with multiple domains, the intersection of low-stringency searches can be used to identify divergent receptor sequences with high confidence. For multigene families, these predictions can be refined using sequence conservation among gene family paralogs. This strategy has recently been useful in identifying novel expansions in immune receptors in a number of animal genomes and will likely continue to revolutionize our view of animal immunity as new genomes emerge.
Collapse
Affiliation(s)
- Katherine M Buckley
- Department of Immunology and Department of MedicalBiophysics, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
592
|
MARTINSON VINCENTG, DANFORTH BRYANN, MINCKLEY ROBERTL, RUEPPELL OLAV, TINGEK SALIM, MORAN NANCYA. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 2010; 20:619-28. [DOI: 10.1111/j.1365-294x.2010.04959.x] [Citation(s) in RCA: 383] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
593
|
Mwangi S, Murungi E, Jonas M, Christoffels A. Evolutionary genomics of Glossina morsitans immune-related CLIP domain serine proteases and serine protease inhibitors. INFECTION GENETICS AND EVOLUTION 2010; 11:740-5. [PMID: 21055483 DOI: 10.1016/j.meegid.2010.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/10/2010] [Accepted: 10/07/2010] [Indexed: 02/08/2023]
Abstract
Several species of haematophagous tsetse flies (genus Glossina) are vectors for trypanosomes, the parasitic protozoans that cause Human African Trypanosomiasis (HAT). Although there was a reduced incidence of HAT in the mid 1960s, decreased disease surveillance has led to a resurgence of HAT in sub-Saharan Africa. Despite being efficient vectors for HAT transmission, the prevalence of G. morsitans infection by trypanosomes in the wild is surprisingly minimal. The precise mechanisms by which G. morsitans remain refractory to trypanosome infection are largely unknown although it has been demonstrated that G. morsitans mounts a strong immune response to invading pathogens. This study identifies G. morsitans immune-related CLIP domain serine proteases and their inhibitors, serine protease inhibitors (serpin) genes. It further establishes their evolutionary relationships with counterparts in Drosophila melanogaster, Anopheles gambiae, Bombyx mori, Manduca sexta and Culex quinquefasciatus. Multiple sequence alignments show conservation of most secondary structure elements for both CLIPs and serpins. Amino acid composition of the serpin reactive site loop (RSL) indicates that the G. morsitans serpins act through an inhibitory mechanism to the target serine protease. Similar to D. melanogaster and unlike A. gambiae, the transcriptome data suggest that G. morsitans does not contain gene expansions in their CLIP-domain serine protease and serpin families. The presence of alternatively spliced variants in the G. morsitans serpins transcriptome data mirrors that of the D. melanogaster transcriptome.
Collapse
Affiliation(s)
- Sarah Mwangi
- South African National Bioinformatics Institute, University of the Western Cape, Modderdam Road, Bellville, Cape Town, South Africa.
| | | | | | | |
Collapse
|
594
|
Di Prisco G, Pennacchio F, Caprio E, Boncristiani HF, Evans JD, Chen Y. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. J Gen Virol 2010; 92:151-5. [PMID: 20926637 DOI: 10.1099/vir.0.023853-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Israeli acute paralysis virus (IAPV) is a significant marker of honeybee colony collapse disorder (CCD). In the present work, we provide the first evidence that Varroa destructor is IAPV replication-competent and capable of vectoring IAPV in honeybees. The honeybees became infected with IAPV after exposure to Varroa mites that carried the virus. The copy number of IAPV in bees was positively correlated with the density of Varroa mites and time period of exposure to Varroa mites. Further, we showed that the mite-virus association could possibly reduce host immunity and therefore promote elevated levels of virus replication. This study defines an active role of Varroa mites in IAPV transmission and sheds light on the epidemiology of IAPV infection in honeybees.
Collapse
Affiliation(s)
- Gennaro Di Prisco
- Dipartimento di Entomologia e Zoologia Agraria Filippo Silvestri, Universita' degli Studi di Napoli Federico II, Via Universita' n.100, 80055 Portici, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
595
|
Schlüns H, Sadd BM, Schmid-Hempel P, Crozier RH. Infection with the trypanosome Crithidia bombi and expression of immune-related genes in the bumblebee Bombus terrestris. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:705-709. [PMID: 20144650 DOI: 10.1016/j.dci.2010.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/01/2010] [Accepted: 02/01/2010] [Indexed: 05/28/2023]
Abstract
Social bees and other insects are frequently parasitized by a large range of different microorganisms. Among these is Crithidia bombi (Kinetoplastida: Trypanosomatidae), a common gut parasite of bumblebees, Bombus spp. (Insecta: Apidae). Bumblebees are important pollinators in commercial and natural environments. There are clear detrimental effects of C. bombi infections on the fitness of bumblebees. However, little has been known about how the bee's immune system responds to infections with trypanosome parasites. Here, we study the immune response of Bombus terrestris on infection by C. bombi. We measured the expression of four immune-related genes (Hemomucin, MyD88, Relish, and TEP7) using RT-qPCR in adult B. terrestris workers that were either healthy or infected with the trypanosome parasite C. bombi. The potential recognition gene Hemomucin was significantly upregulated in the infected bees. Further, there was substantial and significant variation in all four genes among different bumblebee colonies irrespective of infection status.
Collapse
Affiliation(s)
- Helge Schlüns
- School of Marine and Tropical Biology, Centre for Comparative Genomics, James Cook University, Townsville, Queensland 4811, Australia.
| | | | | | | |
Collapse
|
596
|
Aronstein KA, Murray KD, Saldivar E. Transcriptional responses in honey bee larvae infected with chalkbrood fungus. BMC Genomics 2010; 11:391. [PMID: 20565973 PMCID: PMC2996924 DOI: 10.1186/1471-2164-11-391] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 06/21/2010] [Indexed: 11/14/2022] Open
Abstract
Background Diseases and other stress factors working synergistically weaken honey bee health and may play a major role in the losses of bee populations in recent years. Among a large number of bee diseases, chalkbrood has been on the rise. We present here the experimental identification of honey bee genes that are differentially expressed in response to infection of honey bee larvae with the chalkbrood fungus, Ascosphaera apis. Results We used cDNA-AFLP ®Technology to profile transcripts in infected and uninfected bee larvae. From 64 primer combinations, over 7,400 transcriptionally-derived fragments were obtained A total of 98 reproducible polymorphic cDNA-AFLP fragments were excised and sequenced, followed by quantitative real-time RT-PCR (qRT-PCR) analysis of these and additional samples. We have identified a number of differentially-regulated transcripts that are implicated in general mechanisms of stress adaptation, including energy metabolism and protein transport. One of the most interesting differentially-regulated transcripts is for a chitinase-like enzyme that may be linked to anti-fungal activities in the honey bee larvae, similarly to gut and fat-body specific chitinases found in mosquitoes and the red flour beetle. Surprisingly, we did not find many components of the well-characterized NF-κB intracellular signaling pathways to be differentially-regulated using the cDNA-AFLP approach. Therefore, utilizing qRT-PCR, we probed some of the immune related genes to determine whether the lack of up-regulation of their transcripts in our analysis can be attributed to lack of immune activation or to limitations of the cDNA-AFLP approach. Conclusions Using a combination of cDNA-AFLP and qRT-PCR analyses, we were able to determine several key transcriptional events that constitute the overall effort in the honey bee larvae to fight natural fungal infection. Honey bee transcripts identified in this study are involved in critical functions related to transcriptional regulation, apoptotic degradation of ubiquitinated proteins, nutritional regulation, and RNA processing. We found that immune regulation of the anti-fungal responses in honey bee involves highly coordinated activation of both NF-κB signaling pathways, leading to production of anti-microbial peptides. Significantly, activation of immune responses in the infected bee larvae was associated with down-regulation of major storage proteins, leading to depletion of nutritional resources.
Collapse
|
597
|
|
598
|
Rayaprolu S, Wang Y, Kanost MR, Hartson S, Jiang H. Functional analysis of four processing products from multiple precursors encoded by a lebocin-related gene from Manduca sexta. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:638-47. [PMID: 20096726 PMCID: PMC2841005 DOI: 10.1016/j.dci.2010.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/07/2010] [Accepted: 01/12/2010] [Indexed: 05/10/2023]
Abstract
Antimicrobial peptides (AMPs) are a crucial component of the natural immune system in insects. Five types of AMPs have been identified in the tobacco hornworm Manduca sexta, including attacin, cecropin, moricin, gloverin, and lebocin. Here we report the isolation of lebocin-related cDNA clones and antibacterial activity of their processed protein products. The 17 cDNA sequences are composed of a constant 5' end and a variable 3' region containing 3-16 copies of an 81-nucleotide repeat. The sequence of the corresponding gene isolated from a M. sexta genomic library and Southern blotting results indicated that the gene lacks introns and exists as a single copy in the genome. The genomic sequence contained 13 complete and one partial copy of the 81-nucleotide repeat. Northern blot analysis revealed multiple transcripts with major size differences. The mRNA level of M. sexta lebocin increased substantially in fat body after larvae had been injected with bacteria. The RXXR motifs in the protein sequences led us to postulate that the precursors are processed by an intracellular convertase to form four bioactive peptides. To test this hypothesis, we chemically synthesized the peptides and examined their antibacterial activity. Peptide 1 killed Gram-positive and Gram-negative bacteria. Peptide 2, similar in sequence to a Galleria mellonella AMP, did not affect the bacterial growth. Peptide 3 was inactive but peptide 3 with an extra Arg at the carboxyl terminus was active against Escherichia coli at a high minimum inhibitory concentration. Peptide 4, encoded by the 81-bp repeat, was inactive in the antibacterial tests. The hypothesis that posttranslational processing of the precursor proteins produces multiple bioactive peptides for defense purposes was validated by identification of peptides 1, 2, and 3 from larval hemolymph via liquid chromatography and tandem mass spectrometry. Comparison with the orthologs from other lepidopteran insects indicates that the same mechanism may be used to generate several functional products from a single precursor.
Collapse
Affiliation(s)
- Subrahmanyam Rayaprolu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Michael R. Kanost
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Steven Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
599
|
Parker BJ, Elderd BD, Dwyer G. Host behaviour and exposure risk in an insect-pathogen interaction. J Anim Ecol 2010; 79:863-70. [PMID: 20384645 DOI: 10.1111/j.1365-2656.2010.01690.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. Studies of variability in host resistance to disease generally emphasize variability in susceptibility given exposure, neglecting the possibility that hosts may vary in behaviours that affect the risk of exposure. 2. In many insects, horizontal transmission of baculoviruses occurs when larvae consume foliage contaminated by the cadavers of virus-infected conspecific larvae; so, host behaviour may have a strong effect on the risk of infection. 3. We studied variability in the behaviour of gypsy moth (Lymantria dispar) larvae, which are able to detect and avoid virus-contaminated foliage. 4. Our results show that detection ability can be affected by the family line that larvae originate from, even at some distance from a virus-infected cadaver, and suggest that cadaver-detection ability may be heritable. 5. There is thus the potential for natural selection to act on cadaver-detection ability, and thereby to affect the dynamics of pathogen-driven cycles in gypsy moth populations. 6. We argue that host behaviour is a neglected component in studies of variability in disease resistance.
Collapse
Affiliation(s)
- Benjamin J Parker
- Department of Ecology and Evolution, The University of Chicago, 1101 E. 57th St, Chicago, IL 60637, USA
| | | | | |
Collapse
|
600
|
Calderón RA, van Veen JW, Sommeijer MJ, Sanchez LA. Reproductive biology of Varroa destructor in Africanized honey bees (Apis mellifera). EXPERIMENTAL & APPLIED ACAROLOGY 2010; 50:281-297. [PMID: 19851876 DOI: 10.1007/s10493-009-9325-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 09/22/2009] [Indexed: 05/28/2023]
Abstract
Since its first contact with Apis mellifera, the population dynamics of the parasitic mite Varroa destructor varies from one region to another. In many regions of the world, apiculture has come to depend on the use of acaricides, because of the extensive damage caused by varroa to bee colonies. At present, the mite is considered to contribute to the recent decline of honey bee colonies in North America and Europe. Because in tropical climates worker brood rearing and varroa reproduction occurs all year round, it could be expected that here the impact of the parasite will be even more devastating. Yet, this has not been the case in tropical areas of South America. In Brazil, varroa was introduced more than 30 years ago and got established at low levels of infestation, without causing apparent damage to apiculture with Africanized honey bees (AHB). The tolerance of AHB to varroa is apparently attributable, at least in part, to resistance in the bees. The low fertility of this parasite in Africanized worker brood and the grooming and hygienic behavior of the bees are referred as important factors in keeping mite infestation low in the colonies. It has also been suggested that the type of mite influences the level of tolerance in a honey bee population. The Korea haplotype is predominant in unbalanced host-parasite systems, as exist in Europe, whereas in stable systems, as in Brazil, the Japan haplotype used to predominate. However, the patterns of varroa genetic variation have changed in Brazil. All recently sampled mites were of the Korea haplotype, regardless whether the mites had reproduced or not. The fertile mites on AHB in Brazil significantly increased from 56% in the 1980s to 86% in recent years. Nevertheless, despite the increased fertility, no increase in mite infestation rates in the colonies has been detected so far. A comprehensive literature review of varroa reproduction data, focusing on fertility and production of viable female mites, was conducted to provide insight into the Africanized bee host-parasite relationship.
Collapse
Affiliation(s)
- R A Calderón
- Centro de Investigaciones Apícolas Tropicales, Universidad Nacional, PO Box 475-3000, Heredia, Costa Rica.
| | | | | | | |
Collapse
|