551
|
Bermúdez-Silva FJ, Suárez Pérez J, Nadal A, Rodríguez de Fonseca F. The role of the pancreatic endocannabinoid system in glucose metabolism. Best Pract Res Clin Endocrinol Metab 2009; 23:87-102. [PMID: 19285263 DOI: 10.1016/j.beem.2008.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The endogenous cannabinoid system participates in the regulation of energy homeostasis, and this fact led to the identification of a new group of therapeutic agents for complicated obesity and diabetes. Cannabinoid receptor antagonists are now realities in clinical practice. The use of such antagonists for reducing body weight gain, lowering cholesterol and improving glucose homeostasis is based on the ability of the endocannabinoids to coordinately regulate energy homeostasis by interacting with central and peripheral targets, including adipose tissue, muscle, liver and endocrine pancreas. In this review we will analyse the presence of this system in the main cell types of the islets of Langerhans, as well as the physiological relevance of the endocannabinoids and parent acylethanolamides in hormone secretion and glucose homeostasis. We will also analyse the impact that these findings may have in clinical practice and the potential outcome of new therapeutic strategies for modulating glucose homeostasis and insulin/glucagon secretion.
Collapse
Affiliation(s)
- Francisco J Bermúdez-Silva
- Laboratorio de Medicina Regenerativa, Fundación IMABIS, Hospital Carlos Haya, Avda. Carlos Haya, Pabellón de Gobierno, sótano, 29010, Málaga, Spain.
| | | | | | | |
Collapse
|
552
|
Samaha FF, Chou CM. Blockade of the endocannabinoid system for the reduction of cardiometabolic risk factors. Obesity (Silver Spring) 2009; 17:220-5. [PMID: 19039319 DOI: 10.1038/oby.2008.476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Frederick F Samaha
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
553
|
Cavuoto P, Wittert GA. The role of the endocannabinoid system in the regulation of energy expenditure. Best Pract Res Clin Endocrinol Metab 2009; 23:79-86. [PMID: 19285262 DOI: 10.1016/j.beem.2008.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endocannabinoids, a lipid-derived signaling system, regulate appetite and motivation to eat via effects in the hypothalamus and nucleus accumbens. Not all the effects of endocannabinoids on fat mass can be explained by the regulation of food intake alone. Endocannabinoids and their receptors are located in areas of the central nervous system and multiple peripheral tissues involved in the regulation of intermediary metabolism and energy expenditure. In addition to regulating food intake by both central and peripherally mediated effects, endocannabinoids modify glucose and lipid metabolism so as to promote energy storage via lipogenesis and reduce energy expenditure. The endocannabinoid system appears to be overactive in obesity and may serve to maintain fat mass and underlies some of the metabolic consequences of obesity. Inhibition of the cannabinoid type-1 receptor ameliorates the effects of endocannabinoids on food intake and energy metabolism; lipogenesis is inhibited, lipolysis, fatty acid oxidation and glucose uptake increase.
Collapse
Affiliation(s)
- Paul Cavuoto
- Discipline of Medicine, School of Medicine, Level 6 Eleanor Harrald Building, Royal Adelaide Hospital, University of Adelaide, Adelaide, South Australia 5000, Australia
| | | |
Collapse
|
554
|
Richard D, Guesdon B, Timofeeva E. The brain endocannabinoid system in the regulation of energy balance. Best Pract Res Clin Endocrinol Metab 2009; 23:17-32. [PMID: 19285258 DOI: 10.1016/j.beem.2008.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The role played by the endocannabinoid system in the regulation of energy balance is currently generating a great amount of interest among several groups of investigators. This interest in large part comes from the urgent need to develop anti-obesity and anti-cachexia drugs around target systems (such as the endocannabinoid system), which appears to be genuinely involved in energy balance regulation. When activated, the endocannabinoid system favors energy deposition through increasing energy intake and reducing energy expenditure. This system is activated in obesity and following food deprivation, which further supports its authentic function in energy balance regulation. The cannabinoid receptor type 1 (CB1), one of the two identified cannabinoid receptors, is expressed in energy-balance brain structures that are also able to readily produce or inactivate N-arachidonoyl ethanolamine (anandamide) and 2-arachidonoylglycerol (2AG), the most abundantly formed and released endocannabinoids. The brain action of endocannabinoid system on energy balance seems crucial and needs to be delineated in the context of the homeostatic and hedonic controls of food intake and energy expenditure. These controls require the coordinated interaction of the hypothalamus, brainstem and limbic system and it appears imperative to unravel those interplays. It is also critical to investigate the metabolic endocannabinoid system while considering the panoply of functions that the endocannabinoid system fulfills in the brain and other tissues. This article aims at reviewing the potential mechanisms whereby the brain endocannabinoid system influences the regulation energy balance.
Collapse
Affiliation(s)
- Denis Richard
- Laval Hospital Research Center, Québec, Canada, G1V 4G5.
| | | | | |
Collapse
|
555
|
Maynadier M, Basile I, Gary-Bobo M. Adiponectin normalization: a clue to the anti-metabolic syndrome action of rimonabant. Drug Discov Today 2009; 14:192-7. [DOI: 10.1016/j.drudis.2008.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/19/2008] [Accepted: 09/29/2008] [Indexed: 02/07/2023]
|
556
|
Verty ANA, Allen AM, Oldfield BJ. The effects of rimonabant on brown adipose tissue in rat: implications for energy expenditure. Obesity (Silver Spring) 2009; 17:254-61. [PMID: 19057531 DOI: 10.1038/oby.2008.509] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cannabinoid CB1 receptor antagonist rimonabant (SR 141716) produces a sustained decrease in body weight on a background of a transient reduction in food intake. An increase in energy expenditure has been implicated, possibly mediated via peripheral endocannabinoid system; however, the role of the central endocannabinoid system is unclear. The present study investigates this role. Rimonabant (10 mg/kg IP) was administered for 21 days to rats surgically implanted with biotelemetry devices to measure temperature in the interscapular brown adipose tissue (BAT). BAT temperature as a putative measure of thermogenesis in the BAT, physical activity, body weight, food intake, as well as changes in UCP1 messenger RNA (mRNA) and protein were measured. In addition, role of the CNS in mediating these actions of rimonabant was determined in rats where the BAT was sympathetically denervated. As expected, chronic administration of rimonabant significantly reduced body weight for the entire treatment period despite only a transient decrease in food intake. There was a profound increase in BAT temperature, particularly during the dark phase of each circadian cycle throughout the treatment period. A corresponding increase in uncoupling protein (UCP1) was also observed following chronic rimonabant treatment. The rimonabant-induced elevation in BAT temperature and decrease in body weight were significantly attenuated following denervation, indicating an involvement of the CNS. These findings suggest that the long-term weight loss associated with rimonabant treatment is due at least in part to an elevation in energy expenditure, represented here by elevated temperature recorded in the BAT, which is mediated primarily by the central endocannabinoid system.
Collapse
Affiliation(s)
- Aaron N A Verty
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
557
|
Hong S, Fan J, Kemmerer ES, Evans S, Li Y, Wiley JW. Reciprocal changes in vanilloid (TRPV1) and endocannabinoid (CB1) receptors contribute to visceral hyperalgesia in the water avoidance stressed rat. Gut 2009; 58:202-10. [PMID: 18936104 PMCID: PMC4236191 DOI: 10.1136/gut.2008.157594] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Increasing evidence suggests that chronic stress plays an important role in the pathophysiology of several functional gastrointestinal disorders. We investigated whether cannabinoid receptor 1 (CB1) and vanilloid receptor 1 (TRPV1; transient receptor potential vanilloid 1) are involved in stress-induced visceral hyperalgesia. METHODS Male rats were exposed to 1 h water avoidance (WA) stress daily for 10 consecutive days. The visceromotor response (VMR) to colorectal distension (CRD) was measured. Immunofluorescence and western blot analysis were used to assess the expression of CB1 and TRPV1 receptors in dorsal root ganglion (DRG) neurons. RESULTS WA stressed rats demonstrated a significant increase in the serum corticosterone levels and faecal pellet output compared to controls supporting stimulation of the hypothalamic-pituitary-adrenal (HPA) axis. The VMR increased significantly at pressures of 40 and 60 mm Hg in WA stress rats compared with controls, respectively, and was associated with hyperalgesia. The endogenous CB1 agonist anandamide was increased significantly in DRGs from stressed rats. Immunofluorescence and western blot analysis showed a significant decrease in CB1 and a reciprocal increase in TRPV1 expression and phosphorylation in DRG neurons from stressed rats. These reciprocal changes in CB1 and TRPV1 were reproduced by treatment of control DRGs with anandamide in vitro. In contrast, treatment of control DRGs in vitro with the CB1 receptor agonist WIN 55,212-2 decreased the levels of TRPV1 and TRPV1 phosphorylation. Treatment of WA stress rats in situ with WIN 55,212-2 or the TRPV1 antagonist capsazepine prevented the development of visceral hyperalgesia and blocked the upregulation of TRPV1. CONCLUSIONS These results suggest that the endocannabinoid (CB1) and TRP (TRPV1) pathways may play a potentially important role in stress-induced visceral hyperalgesia.
Collapse
Affiliation(s)
- Shuangsong Hong
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - Jing Fan
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | | | - Simon Evans
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Ying Li
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - John W. Wiley
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| |
Collapse
|
558
|
Meguid MM, Glade MJ, Middleton FA. Weight regain after Roux-en-Y: a significant 20% complication related to PYY. Nutrition 2009; 24:832-42. [PMID: 18725080 DOI: 10.1016/j.nut.2008.06.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Accepted: 06/26/2008] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Roux-en-Y gastric bypass (RYGB) produces rapid and dramatic weight loss in very heavy obese patients. Up to 20% cannot sustain their weight loss beyond 2 to 3 y after surgery. METHODS To identify putative etiologic factors producing post-RYGB weight regain, a literature survey of metabolic changes in very obese and a review of our diet-induced obese RYGB rat model data was done. RESULTS Weight regain suggests an imbalance in physiologic mechanisms regulating appetite and metabolic rate. Weight regain occurred in 25% of our rats, produced by return to presurgical energy intake levels. The 75% of rats that sustained weight loss secreted a significantly larger amount of peptide YY (PYY) while suppressing leptin secretion; those that failed were unable to develop or sustain a sufficiently large plasma PYY:leptin ratio. Metabolic consequences of this failure included reversal of initial postsurgical increases in peripheral fatty acid oxidation, anorexigenic activity in the hypothalamic arcuate nucleus and paraventricular nucleus, and the expression of uncoupling protein-2 in adipose tissues, and decreases in hepatic lipogenesis, free tri-iodothyronine secretion, expression of orexigenic activity in the arcuate nucleus and paraventricular nucleus, expression of adenosine monophosphate kinase in adipose tissues, skeletal muscle mitochondrial mass, and endocannabinoid content and appetite. CONCLUSION Weight regain after RYGB occurs in approximately 20% of patients and constitutes a serious complication. Weight regain-promoting consequences are attributed to a failure to sustain elevated plasma PYY concentrations, indicating that combining RYGB with pharmacologic stimulation of PYY secretion in patients after RYGB who exhibit inadequate PYY concentration may increase long-term success of surgical weight reduction in morbidly obese adults.
Collapse
Affiliation(s)
- Michael M Meguid
- Surgical Metabolism and Nutrition Laboratory, Department Surgery, Neuroscience and Physiology Program, SUNY Upstate Medical University, Syracuse, New York, USA.
| | | | | |
Collapse
|
559
|
Diaz S, Farhang B, Hoien J, Stahlman M, Adatia N, Cox JM, Wagner EJ. Sex differences in the cannabinoid modulation of appetite, body temperature and neurotransmission at POMC synapses. Neuroendocrinology 2009; 89:424-40. [PMID: 19136814 PMCID: PMC5427591 DOI: 10.1159/000191646] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 12/11/2022]
Abstract
We sought to determine whether sex differences exist for the cannabinoid modulation of appetite, body temperature and neurotransmission at pro-opiomelanocortin (POMC) synapses. Gonadectomized male and female guinea pigs were outfitted to monitor core body temperature and injected with either the CB1 receptor agonist WIN 55,212-2 (1 mg/kg s.c.), antagonist AM251 (3 mg/kg s.c.) or vehicle (1 ml/kg s.c.) and evaluated for changes in six indices of feeding behavior under ad libitum conditions for 7 days. WIN 55,212-2 elicited an overt, sexually differentiated hyperphagia in which males displayed larger increases in hourly and daily intake, consumption/gram body weight, meal size and meal duration. The agonist also produced a more robust acute hypothermia in males than in females. In addition, males were more sensitive to the hypophagic effect of AM251, manifested by comparatively sizeable decreases in hourly intake, consumption/gram body weight, meal frequency and hyperthermia. To gain additional insight into the cellular mechanism underlying cannabinoid regulation of energy homeostasis, we performed whole-cell patch clamp recordings in hypothalamic slices prepared from gonadectomized male and female guinea pigs, and monitored miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) in arcuate (ARC) neurons. ARC neurons from females exhibited a higher basal mEPSC frequency. WIN 55,212-2 dose-dependently reduced mEPSC and mIPSC frequency; however, cells from males were far less sensitive to the CB1 receptor-mediated decrease in mIPSC frequency. These effects were observed in neurons subsequently identified as POMC neurons. These data reveal pronounced sex differences in how cannabinoids influence the hypothalamic control of homeostasis.
Collapse
Affiliation(s)
- Shanna Diaz
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | | | | | | | | | | | | |
Collapse
|
560
|
Madsen AN, Jelsing J, van de Wall EH, Vrang N, Larsen PJ, Schwartz GJ. Rimonabant induced anorexia in rodents is not mediated by vagal or sympathetic gut afferents. Neurosci Lett 2009; 449:20-3. [DOI: 10.1016/j.neulet.2008.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/19/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
|
561
|
Diarylimidazolyl oxadiazole and thiadiazole derivatives as cannabinoid CB1 receptor antagonists. Bioorg Med Chem Lett 2009; 19:142-5. [DOI: 10.1016/j.bmcl.2008.10.130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/28/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
|
562
|
Abstract
The ability of the endocannabinoid (EC) system to control appetite, food intake and energy balance has recently received great attention, particularly in the light of the different modes of action underlying these functions. The EC system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, cannabinoid type 1 receptors (CB1) and ECs are integrated components of the networks controlling appetite and food intake. Interestingly, the EC system has recently been shown to control several metabolic functions by acting on peripheral tissues, such as adipocytes, hepatocytes, the skeletal muscles and the endocrine pancreas. The relevance of the system is further strengthened by the notion that visceral obesity seems to be a condition in which an overactivation of the EC system occurs; therefore, drugs interfering with this overactivation by blocking CB1 receptors are considered valuable candidates for the treatment of obesity and related cardiometabolic risk factors.
Collapse
MESH Headings
- Amides/pharmacology
- Amides/therapeutic use
- Animals
- Cannabinoid Receptor Modulators/antagonists & inhibitors
- Cannabinoid Receptor Modulators/metabolism
- Cannabinoid Receptor Modulators/therapeutic use
- Clinical Trials as Topic
- Eating/drug effects
- Eating/physiology
- Energy Metabolism/drug effects
- Feeding and Eating Disorders/drug therapy
- Feeding and Eating Disorders/metabolism
- Feeding and Eating Disorders/pathology
- Humans
- Islets of Langerhans/metabolism
- Liver/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Obesity/drug therapy
- Obesity/metabolism
- Obesity/pathology
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Pyrazoles/pharmacology
- Pyrazoles/therapeutic use
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Rimonabant
Collapse
Affiliation(s)
- Cristina Cervino
- Endocrinology Unit and C.R.B.A., Department of Clinical Medicine and Gastroenterology, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138, Bologna, Italy
| | | | | | | |
Collapse
|
563
|
Deedwania P. The endocannabinoid system and cardiometabolic risk: Effects of CB1 receptor blockade on lipid metabolism. Int J Cardiol 2009; 131:305-12. [DOI: 10.1016/j.ijcard.2008.06.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 05/06/2008] [Accepted: 06/28/2008] [Indexed: 11/30/2022]
|
564
|
Abstract
The hypothalamus is a specialised area in the brain that integrates the control of energy homeostasis, regulating both food intake and energy expenditure. The classical theory for hypothalamic feeding control is mainly based on the relationship between peripheral signals and neurotransmitters/neuromodulators in the central nervous system. Thus, hypothalamic neurons respond to peripheral signals, such as hormones and nutrients, by modifying the synthesis of neuropeptides. Despite the well-established role of these hypothalamic networks, increasing evidence indicates that the modulation of lipid metabolism in the hypothalamus plays a critical role in feeding control. In fact, the pharmacologic and genetic targeting of key enzymes from these pathways, such as AMP-activated protein kinase, acetyl-CoA carboxylase, carnitine palmitoyltransferase 1, fatty acid synthase, and malonyl-CoA decarboxylase, has a profound effect on food intake and body weight. Here, we review what is currently known about the relationship between hypothalamic lipid metabolism and whole body energy homeostasis. Defining these novel mechanisms may offer new therapeutic targets for the treatment of obesity and its associated pathologies.
Collapse
Affiliation(s)
- Carlos Diéguez
- Department of Physiology, School of Medicine, University of Santiago de Compostela
- CIBER ‘Fisiopatología de la Obesidad y Nutrición’, Instituto de Salud Carlos III, Santiago de Compostela
| | - Gema Frühbeck
- CIBER ‘Fisiopatología de la Obesidad y Nutrición’, Instituto de Salud Carlos III, Santiago de Compostela
- Metabolic Research Laboratory, Clínica Universitaria de Navarra, University of Navarra, Pamplona, Spain
| | - Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela
- CIBER ‘Fisiopatología de la Obesidad y Nutrición’, Instituto de Salud Carlos III, Santiago de Compostela
- *Miguel López, PhD, Department of Physiology, School of Medicine, University of Santiago de Compostela, S. Francisco s/n 15782, Santiago de Compostela (A Coruβa), Spain, Tel. +34 981-582658, Fax -574145,
| |
Collapse
|
565
|
Pierantoni R, Cobellis G, Meccariello R, Cacciola G, Chianese R, Chioccarelli T, Fasano S. CB1 activity in male reproduction: mammalian and nonmammalian animal models. VITAMINS AND HORMONES 2009; 81:367-87. [PMID: 19647119 DOI: 10.1016/s0083-6729(09)81014-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The importance of the endocannabinoid system (ECBS) and its involvement in several physiological processes is still increasing. Since the isolation of the main active compound of Cannabis sativa, Delta(9)-THC, several lines of research have evidenced the basic roles of this signaling system mainly considering its high conservation during evolution. In this chapter the attention is focussed on the involvement of the ECBS in the control of male reproductive aspects at both central and local levels which are both considered from a comparative point of view.
Collapse
Affiliation(s)
- Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Via Costantinopoli, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
566
|
Lee Y, Tharp WG, Dixon AE, Spaulding L, Trost S, Nair S, Permana PA, Pratley RE. Dysregulation of cannabinoid CB1 receptor expression in subcutaneous adipocytes of obese individuals. Anim Cells Syst (Seoul) 2009. [DOI: 10.1080/19768354.2009.9647232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
567
|
Deli L, Wittmann G, Kalló I, Lechan RM, Watanabe M, Liposits Z, Fekete C. Type 1 cannabinoid receptor-containing axons innervate hypophysiotropic thyrotropin-releasing hormone-synthesizing neurons. Endocrinology 2009; 150:98-103. [PMID: 18818298 PMCID: PMC2630898 DOI: 10.1210/en.2008-0330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 09/15/2008] [Indexed: 11/19/2022]
Abstract
Hypophysiotropic TRH-synthesizing neurons of the hypothalamic paraventricular nucleus (PVN) have a critical role in the regulation of the energy homeostasis through control of the hypothalamic-pituitary-thyroid axis. Recently, endocannabinoids have been shown to exert inhibitory effects on TRH neurons via the type 1 cannabinoid receptor (CB1). To understand the anatomical basis for this regulatory mechanism, we determined whether CB1 is contained in axons innervating hypophysiotropic TRH neurons using a recently developed antiserum against the C-terminal portion of mouse CB1. CB1-immunoreactive axons densely innervated the parvicellular subdivisions of the PVN where the hypophysiotropic TRH neurons are located. By double-labeling immunocytochemistry, CB1-immunoreactive varicosities were observed in juxtaposition to the vast majority of TRH neurons in the PVN. At the ultrastructural level, CB1-immunoreactivity was observed in the preterminal portion of axons establishing both symmetric and asymmetric synaptic specializations with the perikarya and dendrites of TRH neurons in the PVN. These data demonstrate that CB1 is abundantly present in axons that are in synaptic association with hypophysiotropic TRH neurons, indicating an important role for endocannabinoids in the regulation of the hypothalamic-pituitary-thyroid axis. The presence of both symmetric and asymmetric type CB1 synapses on TRH neurons in the PVN suggests that endocannabinoids may influence both excitatory and inhibitory inputs of these neurons.
Collapse
Affiliation(s)
- Levente Deli
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, Budapest 1083, Hungary
| | | | | | | | | | | | | |
Collapse
|
568
|
|
569
|
Integration of endocannabinoid signaling into the neural network regulating stress-induced activation of the hypothalamic-pituitary-adrenal axis. Curr Top Behav Neurosci 2009; 1:289-306. [PMID: 21104389 DOI: 10.1007/978-3-540-88955-7_12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The evidence that has been gathered to date strongly argues for an inhibitory role of endocannabinoid (ECB) signaling in regulating HPA axis activity. Under basal conditions, ECB signaling appears to be a driving force in the maintenance of low HPA axis activity, as disruption of CB₁ receptor activity results in basal hyperactivity of the HPA axis. Under conditions of acute stress, ECB signaling likewise appears to constrain activation of the HPA axis, possibly via both distal regulation of incoming amygdalar inputs and local regulation of excitatory input to CRF neurosecretory cells in the PVN. ECB neurotransmission is, in turn, modulated by stress, possibly acting as either a "gatekeeper" of the HPA axis, or a recovery system aimed at limiting HPA axis activity. Consistently, pharmacological enhancement of ECB signaling attenuates stress-induced HPA axis activity while impairment of CB₁ receptor signaling results in an exaggerated cellular and neuroendocrine response to stress. Additionally, under conditions of repeated stress, a progressive increase in limbic 2AG/CB₁ receptor signaling contributes to the development and expression of neuroendocrine habituation.Ultimately, these data demonstrate that the ECB system is likely to be an integral player in the neuronal response and plasticity to stress. The relevance of this relationship has not been fully explored with respect to both normal homeostasis and pathological states characterized by alterations in HPA axis function, but will be a focus of future research.
Collapse
|
570
|
Abstract
The endocannabinoid (ECB) system comprises cannabinoid receptors, ECBs and the whole machinery for the synthesis and degradation of ECBs. It has emerged as an important signalling system in the nervous system, controlling numerous physiological processes, including synaptic transmission, learning and memory, reward, feeding, neuroprotection, neuroinflammation, and neural development. This system is also implicated in various diseases of the nervous system, and thus has become a promising therapeutic target. The use of genetically modified mice has contributed crucially to our rapidly expanding knowledge of the ECB system. In this chapter, the existing mouse mutants targeting the ECB system will be discussed in detail. The use of conditional mutants has given an additional dimension to the analysis of the system, and, it is hoped, will finally enable us to understand this widespread and complex system in the context of intricate networks where different brain regions and neurotransmitter systems interact tightly with each other.
Collapse
Affiliation(s)
- Krisztina Monory
- Department of Physiological Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 6, D-55099, Mainz, Germany.
| | | |
Collapse
|
571
|
Abstract
The usual physiological perspective on appetite and food intake regards control of eating simplistically, as merely the reflexive behavioural component of a strict homeostatic regulatory system. Hunger is seen to arise in response to energy deficit; meal size is determined by the passage of nutrients into the gut and the stimulation of multiple satiety signals; and overall energy intake is modified to reflect the balance of fuel reserves and energy expenditure. But everyday experience shows that we rarely eat simply through need. Rather, food stimuli exert a powerful influence over consumption through their appeal to innate and learned appetites, generating the psychological experiences of hunger, craving and delight independently of energy status. That these important and influential subjective experiences are mediated through complex neurochemical processes is self-evident; but the chemical nature of our infatuation with, and subservience to, the motivating properties of foods are overshadowed by mechanistic, peripherally anchored models that take little account of psychological factors, and which consequently struggle to explain the phenomenon of obesity. This chapter discusses recent developments that suggest the endocannabinoids are key components of the central mechanisms that give rise to the emotional and motivational experiences that lead us to eat and to overconsume.
Collapse
|
572
|
Kunos G, Osei-Hyiaman D, Bátkai S, Sharkey KA, Makriyannis A. Should peripheral CB(1) cannabinoid receptors be selectively targeted for therapeutic gain? Trends Pharmacol Sci 2009; 30:1-7. [PMID: 19042036 PMCID: PMC2748782 DOI: 10.1016/j.tips.2008.10.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/13/2008] [Accepted: 10/15/2008] [Indexed: 01/09/2023]
Abstract
Endocannabinoids, endogenous lipid ligands of cannabinoid receptors, mediate a variety of effects similar to those of marijuana. Cannabinoid CB(1) receptors are highly abundant in the brain and mediate psychotropic effects, which limits their value as a potential therapeutic target. There is growing evidence for CB(1) receptors in peripheral tissues that modulate a variety of functions, including pain sensitivity and obesity-related hormonal and metabolic abnormalities. In this review we propose that selective targeting of peripheral CB(1) receptors has potential therapeutic value because it would help to minimize addictive, psychoactive effects in the case of CB(1) agonists used as analgesics, or depression and anxiety in the case of CB(1) antagonists used in the management of cardiometabolic risk factors associated with the metabolic syndrome.
Collapse
Affiliation(s)
- George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
573
|
Akbas F, Gasteyger C, Sjödin A, Astrup A, Larsen TM. A critical review of the cannabinoid receptor as a drug target for obesity management. Obes Rev 2009; 10:58-67. [PMID: 18721231 DOI: 10.1111/j.1467-789x.2008.00520.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The discovery of cannabinoids, with the well-known stimulatory effect of Cannabis sativa on appetite, has offered a new drug target for obesity treatment. Cannabinoids act on two different receptors: CB1 receptors which are sited in the brain and many peripheral tissues, and CB2 receptors which are primarily found in immune system cells. Cannabinoid receptor antagonists act centrally by blocking CB1 receptors, thereby reducing food intake. Moreover, they probably also act peripherally by increasing thermogenesis and therefore energy expenditure, as has been suggested by animal experiments. Despite these promising mechanisms of action, recent clinical studies examining the effect of the two CB1 receptor antagonists rimonabant and taranabant showed that the attained weight loss did not exceed that attained with other currently approved anti-obesity medications. Moreover, potentially severe psychiatric adverse effects limit their clinical use. As several new CB1 receptor antagonists are presently undergoing development, it remains to be elucidated to what extent they differ in terms of efficacy and safety. This review primarily discusses how close cannabinoid receptor antagonists are to the ideal anti-obesity drug, with respect to their mechanisms of action, clinical effectiveness and safety.
Collapse
Affiliation(s)
- F Akbas
- Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | |
Collapse
|
574
|
Tallett A, Blundell J, Rodgers R. Effects of acute low-dose combined treatment with naloxone and AM 251 on food intake, feeding behaviour and weight gain in rats. Pharmacol Biochem Behav 2009; 91:358-66. [DOI: 10.1016/j.pbb.2008.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/04/2008] [Accepted: 08/06/2008] [Indexed: 01/08/2023]
|
575
|
Elphick MR, Egertová M. Cannabinoid Receptor Genetics and Evolution. THE CANNABINOID RECEPTORS 2009. [DOI: 10.1007/978-1-59745-503-9_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
576
|
Sugamura K, Sugiyama S, Nozaki T, Matsuzawa Y, Izumiya Y, Miyata K, Nakayama M, Kaikita K, Obata T, Takeya M, Ogawa H. Activated endocannabinoid system in coronary artery disease and antiinflammatory effects of cannabinoid 1 receptor blockade on macrophages. Circulation 2008; 119:28-36. [PMID: 19103987 DOI: 10.1161/circulationaha.108.811992] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cannabinoid 1 (CB1) receptor blockade with rimonabant represents a clinical therapeutic strategy for obesity. Recently, the role of the endocannabinoid system has been described in peripheral organs. We sought to determine whether the endocannabinoid system could be involved in human atherosclerosis and whether CB1 receptor blockade could modulate proinflammatory activity in macrophages. METHODS AND RESULTS mRNA expression levels of CB1 receptor in coronary atherectomy samples were significantly higher in patients with unstable angina than in those with stable angina (3.62+/-2.96-fold; n=7; P<0.05). Immunoreactive area analysis of the coronary artery showed that CB1 receptor expression was greater in lipid-rich atheromatous plaques than in fibrous plaques, especially in CD68 macrophages (9.5+/-1.2% versus 0.6+/-0.6%; n=5; P<0.01). Levels of blood endocannabinoids were significantly higher in patients with coronary artery disease (n=20) than those without coronary artery disease (n=20) (median [interquartile range]: anandamide, 1.048 pmol/mL [0.687 to 1.387 pmol/mL] versus 0.537 pmol/mL [0.468 to 0.857 pmol/mL], P<0.01; 2-arachidonoyl glycerol, 13.30 pmol/mL [6.65 to 16.21 pmol/mL] versus 7.67 pmol/mL [6.39 to 10.03 pmol/mL], P<0.05). In cultured macrophages, expression of CB1 receptor was significantly increased during monocyte-macrophage differentiation (1.78+/-0.13-fold; n=6; P<0.01). CB1 receptor blockade in macrophages induced a significant increase in cytosolic cAMP (29.9+/-13.0%; n=4; P<0.01), inhibited phosphorylation of c-Jun N-terminal kinase (-19.1+/-12.6%, n=4; P<0.05), and resulted in a significant decrease in the production of proinflammatory mediators (interleukin-1beta, -28.9+/-10.9%; interleukin-6, -24.8+/-7.6%; interleukin-8, -22.7+/-5.2%; tumor necrosis factor-alpha, -13.6+/-4.8%; matrix metalloproteinase-9, -16.4+/-3.8%; n=4 to 8; P<0.01). CONCLUSIONS Patients with coronary artery disease demonstrated the activation of the endocannabinoid system with elevated levels of blood endocannabinoids and increased expression of CB1 receptor in coronary atheroma. CB1 receptor blockade exhibited antiinflammatory effects on macrophages, which might provide beneficial effects on atherogenesis.
Collapse
Affiliation(s)
- Koichi Sugamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
577
|
Wasmuth HE, Trautwein C. Hepatic steatosis and endocannabinoids--does it all happen within the liver? Hepatology 2008; 48:2080-2. [PMID: 19026004 DOI: 10.1002/hep.22682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
578
|
Di Marzo V. CB1 receptor antagonism: biological basis for metabolic effects. Drug Discov Today 2008; 13:1026-41. [DOI: 10.1016/j.drudis.2008.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/20/2008] [Accepted: 09/01/2008] [Indexed: 11/15/2022]
|
579
|
Esposito I, Proto MC, Gazzerro P, Laezza C, Miele C, Alberobello AT, D'Esposito V, Beguinot F, Formisano P, Bifulco M. The cannabinoid CB1 receptor antagonist rimonabant stimulates 2-deoxyglucose uptake in skeletal muscle cells by regulating the expression of phosphatidylinositol-3-kinase. Mol Pharmacol 2008; 74:1678-86. [PMID: 18801918 DOI: 10.1124/mol.108.049205] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The endocannabinoid system regulates food intake, energy, and glucose metabolism at both central and peripheral levels. We have investigated the mechanism by which it may control glucose uptake in skeletal muscle cells. Detectable levels of the cannabinoid receptor type 1 (CB1) were revealed in L6 cells. Exposure of differentiated L6 myotubes to the CB1 antagonist rimonabant (SR141716) selectively increased 2-deoxyglucose uptake (2-DG) in a time- and dose-dependent manner. A similar effect was induced by genetic silencing of CB1 by small interfering RNA. Protein expression profiling revealed that both the regulatory p85 and the catalytic p110 subunits of the phosphatidylinositol-3-kinase (PI3K) were increased by SR141716. No significant change in the cellular content of other known molecules regulating PI3K was observed. However, phosphoinositide-dependent kinase-1, Akt/protein kinase B, and protein kinase Czeta activities were rapidly induced after SR141716 treatment of L6 cells in a PI3K-dependent manner. The stimulatory effect of SR141716 on PI3K expression and activity was largely prevented by N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline (H-89), an inhibitor of the cAMP-dependent protein kinase. Moreover, SR141716-stimulated 2-DG uptake was blunted by the coincubation either with H-89 or with the PI3K inhibitor 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002), both in L6 cells and in mouse primary myocytes. Thus, modulation of CB1 regulates glucose uptake at the level of the PI3K signaling system in skeletal muscle cells. Interfering with CB1 signaling may therefore ameliorate glucoregulatory functions in peripheral tissues.
Collapse
Affiliation(s)
- Iolanda Esposito
- Dipartimento di Biologia e Patologia Cellulare e Molecolare & Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
580
|
Sathyapalan T, Cho LW, Kilpatrick ES, Coady AM, Atkin SL. A comparison between rimonabant and metformin in reducing biochemical hyperandrogenaemia and insulin resistance in patients with polycystic ovary syndrome (PCOS): a randomized open-label parallel study. Clin Endocrinol (Oxf) 2008; 69:931-5. [PMID: 18410553 DOI: 10.1111/j.1365-2265.2008.03260.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CONTEXT Weight loss and metformin therapy are reported to be beneficial in improving the biochemical hyperandrogenaemia and insulin resistance of polycystic ovary syndrome (PCOS). Rimonabant has been found to reduce weight and improve the metabolic profile in patients with obesity, type 2 diabetes and metabolic syndrome. OBJECTIVE To compare the effects of insulin sensitization with metformin to weight reduction by rimonabant on biochemical hyperandrogenaemia and insulin resistance in patients with PCOS. DESIGN A randomized, open-label parallel study. SETTING Endocrinology outpatient clinic in a referral centre. SUBJECTS Twenty patients with PCOS and biochemical hyperandrogenaemia with a body mass index (BMI) >or= 30 kg/m(2) were recruited. INTERVENTION Patients were randomized to 1.5 g daily of metformin or 20 mg daily of rimonabant. MAIN OUTCOME MEASURES The primary end-point of the study was a change in total testosterone. RESULTS After 12 weeks of rimonabant there was a significant reduction (mean +/- SEM) in weight (104.6 +/- 4.6 vs. 98.4 +/- 4.7 kg, P < 0.01), waist circumference (116.0 +/- 3.3 vs. 109.2 +/- 3.7 cm, P < 0.01), hip circumference (128.5 +/- 4.0 vs. 124.1 +/- 4.2 cm, P < 0.03), waist-hip ratio (0.90 +/- 0.02 vs. 0.88 +/- 0.01, P < 0.01) free androgen index (FAI) (26.6 +/- 6.1 vs. 16.6 +/- 4.1, P < 0.01), testosterone [4.6 +/- 0.4 vs. 3.1 +/- 0.3 nmol/l (132.7 +/- 11.5 vs. 89.4 +/- 8.65 ng/dl), P < 0.01] and insulin resistance as measured by the homeostasis model assessment (HOMA) method (4.4 +/- 0.5 vs. 3.4 +/- 0.4, P = 0.05). There was no change in any of these parameters in the metformin-treated group. CONCLUSION This study suggests that the weight loss through rimonabant therapy may be of use in patients with PCOS and appears superior to insulin sensitization by metformin in reducing the FAI and insulin resistance in obese PCOS patients treated over a 12-week period.
Collapse
|
581
|
Watanabe T, Kubota N, Ohsugi M, Kubota T, Takamoto I, Iwabu M, Awazawa M, Katsuyama H, Hasegawa C, Tokuyama K, Moroi M, Sugi K, Yamauchi T, Noda T, Nagai R, Terauchi Y, Tobe K, Ueki K, Kadowaki T. Rimonabant ameliorates insulin resistance via both adiponectin-dependent and adiponectin-independent pathways. J Biol Chem 2008; 284:1803-12. [PMID: 19008231 DOI: 10.1074/jbc.m807120200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rimonabant has been shown to not only decrease the food intake and body weight but also to increase serum adiponectin levels. This increase of the serum adiponectin levels has been hypothesized to be related to the rimonabant-induced amelioration of insulin resistance linked to obesity, although experimental evidence to support this hypothesis is lacking. To test this hypothesis experimentally, we generated adiponectin knock-out (adipo(-/-))ob/ob mice. After 21 days of 30 mg/kg rimonabant, the body weight and food intake decreased to similar degrees in the ob/ob and adipo(-/-)ob/ob mice. Significant improvement of insulin resistance was observed in the ob/ob mice following rimonabant treatment, associated with significant up-regulation of the plasma adiponectin levels, in particular, of high molecular weight adiponectin. Amelioration of insulin resistance in the ob/ob mice was attributed to the decrease of glucose production and activation of AMP-activated protein kinase (AMPK) in the liver induced by rimonabant but not to increased glucose uptake by the skeletal muscle. Interestingly, the rimonabant-treated adipo(-/-)ob/ob mice also exhibited significant amelioration of insulin resistance, although the degree of improvement was significantly lower as compared with that in the ob/ob mice. The effects of rimonabant on the liver metabolism, namely decrease of glucose production and activation of AMPK, were also less pronounced in the adipo(-/-)ob/ob mice. Thus, it was concluded that rimonabant ameliorates insulin resistance via both adiponectin-dependent and adiponectin-independent pathways.
Collapse
Affiliation(s)
- Taku Watanabe
- Department of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
582
|
Aversa A, Rossi F, Francomano D, Bruzziches R, Bertone C, Santiemma V, Spera G. Early endothelial dysfunction as a marker of vasculogenic erectile dysfunction in young habitual cannabis users. Int J Impot Res 2008; 20:566-73. [DOI: 10.1038/ijir.2008.43] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
583
|
Nogueiras R, Veyrat-Durebex C, Suchanek PM, Klein M, Tschöp J, Caldwell C, Woods SC, Wittmann G, Watanabe M, Liposits Z, Fekete C, Reizes O, Rohner-Jeanrenaud F, Tschöp MH. Peripheral, but not central, CB1 antagonism provides food intake-independent metabolic benefits in diet-induced obese rats. Diabetes 2008; 57:2977-91. [PMID: 18716045 PMCID: PMC2570394 DOI: 10.2337/db08-0161] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Blockade of the CB1 receptor is one of the promising strategies for the treatment of obesity. Although antagonists suppress food intake and reduce body weight, the role of central versus peripheral CB1 activation on weight loss and related metabolic parameters remains to be elucidated. We therefore specifically assessed and compared the respective potential relevance of central nervous system (CNS) versus peripheral CB1 receptors in the regulation of energy homeostasis and lipid and glucose metabolism in diet-induced obese (DIO) rats. RESEARCH DESIGN AND METHODS Both lean and DIO rats were used for our experiments. The expression of key enzymes involved in lipid metabolism was measured by real-time PCR, and euglycemic-hyperinsulinemic clamps were used for insulin sensitivity and glucose metabolism studies. RESULTS Specific CNS-CB1 blockade decreased body weight and food intake but, independent of those effects, had no beneficial influence on peripheral lipid and glucose metabolism. Peripheral treatment with CB1 antagonist (Rimonabant) also reduced food intake and body weight but, in addition, independently triggered lipid mobilization pathways in white adipose tissue and cellular glucose uptake. Insulin sensitivity and skeletal muscle glucose uptake were enhanced, while hepatic glucose production was decreased during peripheral infusion of the CB1 antagonist. However, these effects depended on the antagonist-elicited reduction of food intake. CONCLUSIONS Several relevant metabolic processes appear to independently benefit from peripheral blockade of CB1, while CNS-CB1 blockade alone predominantly affects food intake and body weight.
Collapse
Affiliation(s)
- Ruben Nogueiras
- Department of Psychiatry, Obesity Research Centre, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
584
|
Mukhopadhyay P, Mohanraj R, Bátkai S, Pacher P. CB1 cannabinoid receptor inhibition: promising approach for heart failure? CONGESTIVE HEART FAILURE (GREENWICH, CONN.) 2008; 14:330-4. [PMID: 19076859 PMCID: PMC2669829 DOI: 10.1111/j.1751-7133.2008.00016.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Partha Mukhopadhyay
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Rajesh Mohanraj
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Sándor Bátkai
- Section on Neuroendocrinology, Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| |
Collapse
|
585
|
Abstract
Cannabinoids are a group of compounds acting primarily via CB1 and CB2 receptors. The expression of cannabinoid receptors in normal liver is low or absent. However, many reports have proven up-regulation of the expression of CB1 and CB2 receptors in hepatic myofibroblasts and vascular endothelial cells, as well as increased concentration of endocannabinoids in liver in the course of chronic progressive liver diseases. It has been shown that CB1 receptor signalling exerts profibrogenic and proinflammatory effects in liver tissue, primarily due to the stimulation of hepatic stellate cells, whereas the activation of CB2 receptors inhibits or even reverses liver fibrogenesis. Similarly, CB1 receptor stimulation contributes to progression of liver steatosis. In end-stage liver disease, the endocannabinoid system has been shown to contribute to hepatic encephalopathy and vascular effects, such as portal hypertension, splanchnic vasodilatation, relative peripheral hypotension and probably cirrhotic cardiomyopathy. So far, available evidence is based on cellular cultures or animal models. Clinical data on the effects of cannabinoids in chronic liver diseases are limited. However, recent studies have shown the contribution of cannabis smoking to the progression of liver fibrosis and steatosis. Moreover, controlling CB1 or CB2 signalling appears to be an attractive target in managing liver diseases.
Collapse
|
586
|
Osei-Hyiaman D, Liu J, Zhou L, Godlewski G, Harvey-White J, Jeong WI, Bátkai S, Marsicano G, Lutz B, Buettner C, Kunos G. Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice. J Clin Invest 2008; 118:3160-9. [PMID: 18677409 DOI: 10.1172/jci34827] [Citation(s) in RCA: 378] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 06/11/2008] [Indexed: 02/06/2023] Open
Abstract
Diet-induced obesity is associated with fatty liver, insulin resistance, leptin resistance, and changes in plasma lipid profile. Endocannabinoids have been implicated in the development of these associated phenotypes, because mice deficient for the cannabinoid receptor CB1 (CB1-/-) do not display these changes in association with diet-induced obesity. The target tissues that mediate these effects, however, remain unknown. We therefore investigated the relative role of hepatic versus extrahepatic CB1 receptors in the metabolic consequences of a high-fat diet, using liver-specific CB1 knockout (LCB1-/-) mice. LCB1(-/-) mice fed a high-fat diet developed a similar degree of obesity as that of wild-type mice, but, similar to CB1(-/-) mice, had less steatosis, hyperglycemia, dyslipidemia, and insulin and leptin resistance than did wild-type mice fed a high-fat diet. CB1 agonist-induced increase in de novo hepatic lipogenesis and decrease in the activity of carnitine palmitoyltransferase-1 and total energy expenditure were absent in both CB1(-/-) and LCB1(-/-) mice. We conclude that endocannabinoid activation of hepatic CB1 receptors contributes to the diet-induced steatosis and associated hormonal and metabolic changes, but not to the increase in adiposity, observed with high-fat diet feeding. Theses studies suggest that peripheral CB1 receptors could be selectively targeted for the treatment of fatty liver, impaired glucose homeostasis, and dyslipidemia in order to minimize the neuropsychiatric side effects of nonselective CB1 blockade during treatment of obesity-associated conditions.
Collapse
Affiliation(s)
- Douglas Osei-Hyiaman
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
587
|
Wang H, Xie H, Dey SK. Loss of cannabinoid receptor CB1 induces preterm birth. PLoS One 2008; 3:e3320. [PMID: 18833324 PMCID: PMC2553193 DOI: 10.1371/journal.pone.0003320] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/08/2008] [Indexed: 11/18/2022] Open
Abstract
Background Preterm birth accounting approximate 10% of pregnancies in women is a tremendous social, clinical and economic burden. However, its underlying causes remain largely unknown. Emerging evidence suggests that endocannabinoid signaling via cannabinoid receptor CB1 play critical roles in multiple early pregnancy events in both animals and humans. Since our previous studies demonstrated that loss of CB1 defers the normal implantation window in mice, we surmised that CB1 deficiency would influence parturition events. Methods and Findings Exploiting mouse models with targeted deletion of Cnr1, Cnr2 and Ptgs1 encoding CB1, CB2 and cyclooxygenase-1, respectively, we examined consequences of CB1 or CB2 silencing on the onset of parturition. We observed that genetic or pharmacological inactivation of CB1, but not CB2, induced preterm labor in mice. Radioimmunoassay analysis of circulating levels of ovarian steroid hormones revealed that premature birth resulting from CB1 inactivation is correlated with altered progesterone/estrogen ratios prior to parturition. More strikingly, the phenotypic defects of prolonged pregnancy length and parturition failure in mice missing Ptgs1 were corrected by introducing CB1 deficiency into Ptgs1 null mice. In addition, loss of CB1 resulted in aberrant secretions of corticotrophin-releasing hormone and corticosterone during late gestation. The pathophysiological significance of this altered corticotrophin-releasing hormone-driven endocrine activity in the absence of CB1 was evident from our subsequent findings that a selective corticotrophin-releasing hormone antagonist was able to restore the normal parturition timing in Cnr1 deficient mice. In contrast, wild-type females receiving excessive levels of corticosterone induced preterm birth. Conclusions CB1 deficiency altering normal progesterone and estrogen levels induces preterm birth in mice. This defect is independent of prostaglandins produced by cyclooxygenase-1. Moreover, CB1 inactivation resulted in aberrant corticotrophin-releasing hormone and corticosterone activities prior to parturition, suggesting that CB1 regulates labor by interacting with the corticotrophin-releasing hormone-driven endocrine axis.
Collapse
Affiliation(s)
- Haibin Wang
- Departments of Pediatrics, Cell & Developmental Biology, and Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Huirong Xie
- Departments of Pediatrics, Cell & Developmental Biology, and Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sudhansu K. Dey
- Departments of Pediatrics, Cell & Developmental Biology, and Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
588
|
Abstract
Insulin resistance in skeletal muscle is an early event in the development of diabetes with obesity being one of the major contributing factors. Conditioned medium (CM) from differentiated human adipocytes impairs insulin signalling in human skeletal muscle cells. Recent data on adipocyte-induced insulin resistance in skeletal muscle cells describes underlying mechanisms of this process. Skeletal muscle insulin resistance involves multiple pathways and irreversible changes in the expression level of critical proteins. Furthermore, the reversibility of insulin resistance could be demonstrated. Several strategies to combat insulin resistance have been developed. One recent approach to treat obesity and the metabolic syndrome is the use of endocannabinoid receptor antagonists such as rimonabant. These compounds might also reduce insulin resistance in type 2 diabetes with effects on adipose tissue and liver and possibly skeletal muscle.
Collapse
Affiliation(s)
- Kristin Eckardt
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Dusseldorf, Germany.
| | | | | |
Collapse
|
589
|
Perrini S, Leonardini A, Laviola L, Giorgino F. Biological specificity of visceral adipose tissue and therapeutic intervention. Arch Physiol Biochem 2008; 114:277-86. [PMID: 18946788 DOI: 10.1080/13813450802334752] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With excess energy storage, obesity develops, leading to increased risk for type 2 diabetes and cardiovascular diseases. The distribution of body fat appears to be even more important than the total amount of fat. Abdominal and, in particular, visceral adiposity is strongly linked to insulin resistance, type 2 diabetes, hypertension, dyslipidaemia, sleep apnea, and other complications of obesity. Visceral adiposity, manifested as a high waist circumference, is now accepted as a major component of the metabolic syndrome. However, the biological mechanisms underlying the adverse impact of visceral fat accumulation remain to be established. This review will focus on the analysis of the biological specificity of adipose tissue located in the abdominal region, and will explore intervention strategies targeting the impaired function of the visceral adipocyte as potential therapies for the cardio-metabolic outcomes of patients with the metabolic syndrome.
Collapse
Affiliation(s)
- Sebastio Perrini
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology and Metabolic Diseases, University of Bari School of Medicine, Bari, Italy
| | | | | | | |
Collapse
|
590
|
Pacher P, Mukhopadhyay P, Mohanraj R, Godlewski G, Bátkai S, Kunos G. Modulation of the endocannabinoid system in cardiovascular disease: therapeutic potential and limitations. Hypertension 2008; 52:601-7. [PMID: 18779440 PMCID: PMC2568884 DOI: 10.1161/hypertensionaha.105.063651] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 08/04/2008] [Indexed: 12/23/2022]
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9413, USA.
| | | | | | | | | | | |
Collapse
|
591
|
Brommage R, Desai U, Revelli JP, Donoviel DB, Fontenot GK, Dacosta CM, Smith DD, Kirkpatrick LL, Coker KJ, Donoviel MS, Eberhart DE, Holt KH, Kelly MR, Paradee WJ, Philips AV, Platt KA, Suwanichkul A, Hansen GM, Sands AT, Zambrowicz BP, Powell DR. High-throughput screening of mouse knockout lines identifies true lean and obese phenotypes. Obesity (Silver Spring) 2008; 16:2362-7. [PMID: 18719666 DOI: 10.1038/oby.2008.361] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We developed a high-throughput approach to knockout (KO) and phenotype mouse orthologs of the 5,000 potential drug targets in the human genome. As part of the phenotypic screen, dual-energy X-ray absorptiometry (DXA) technology estimates body-fat stores in eight KO and four wild-type (WT) littermate chow-fed mice from each line. Normalized % body fat (nBF) (mean KO % body fat/mean WT littermate % body fat) values from the first 2322 lines with viable KO mice at 14 weeks of age showed a normal distribution. We chose to determine how well this screen identifies body-fat phenotypes by selecting 13 of these 2322 KO lines to serve as benchmarks based on their published lean or obese phenotype on a chow diet. The nBF values for the eight benchmark KO lines with a lean phenotype were > or =1 s.d. below the mean for seven (perilipin, SCD1, CB1, MCH1R, PTP1B, GPAT1, PIP5K2B) but close to the mean for NPY Y4R. The nBF values for the five benchmark KO lines with an obese phenotype were >2 s.d. above the mean for four (MC4R, MC3R, BRS3, translin) but close to the mean for 5HT2cR. This screen also identifies novel body-fat phenotypes as exemplified by the obese kinase suppressor of ras 2 (KSR2) KO mice. These body-fat phenotypes were confirmed upon studying additional cohorts of mice for KSR2 and all 13 benchmark KO lines. This simple and cost-effective screen appears capable of identifying genes with a role in regulating mammalian body fat.
Collapse
|
592
|
Overactive endocannabinoid signaling impairs apolipoprotein E-mediated clearance of triglyceride-rich lipoproteins. Proc Natl Acad Sci U S A 2008; 105:14561-6. [PMID: 18794527 DOI: 10.1073/pnas.0807232105] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The endocannabinoid (EC) system regulates food intake and energy metabolism. Cannabinoid receptor type 1 (CB1) antagonists show promise in the treatment of obesity and its metabolic consequences. Although the reduction in adiposity resulting from therapy with CB1 antagonists may not account fully for the concomitant improvements in dyslipidemia, direct effects of overactive EC signaling on plasma lipoprotein metabolism have not been documented. The present study used a chemical approach to evaluate the direct effects of increased EC signaling in mice by inducing acute elevations of endogenously produced cannabinoids through pharmacological inhibition of their enzymatic hydrolysis by isopropyl dodecylfluorophosphonate (IDFP). Acute IDFP treatment increased plasma levels of triglyceride (TG) (2.0- to 3.1-fold) and cholesterol (1.3- to 1.4-fold) in conjunction with an accumulation in plasma of apolipoprotein (apo)E-depleted TG-rich lipoproteins. These changes did not occur in either CB1-null or apoE-null mice, were prevented by pretreatment with CB1 antagonists, and were not associated with reduced hepatic apoE gene expression. Although IDFP treatment increased hepatic mRNA levels of lipogenic genes (Srebp1 and Fas), there was no effect on TG secretion into plasma. Instead, IDFP treatment impaired clearance of an intravenously administered TG emulsion, despite increased postheparin lipoprotein lipase activity. Therefore, overactive EC signaling elicits an increase in plasma triglyceride levels associated with reduced plasma TG clearance and an accumulation in plasma of apoE-depleted TG-rich lipoproteins. These findings suggest a role of CB1 activation in the pathogenesis of obesity-related hypertriglyceridemia and underscore the potential efficacy of CB1 antagonists in treating metabolic disease.
Collapse
|
593
|
Speakman J, Hambly C, Mitchell S, Król E. The contribution of animal models to the study of obesity. Lab Anim 2008; 42:413-32. [PMID: 18782824 DOI: 10.1258/la.2007.006067] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Obesity results from prolonged imbalance of energy intake and energy expenditure. Animal models have provided a fundamental contribution to the historical development of understanding the basic parameters that regulate the components of our energy balance. Five different types of animal model have been employed in the study of the physiological and genetic basis of obesity. The first models reflect single gene mutations that have arisen spontaneously in rodent colonies and have subsequently been characterized. The second approach is to speed up the random mutation rate artificially by treating rodents with mutagens or exposing them to radiation. The third type of models are mice and rats where a specific gene has been disrupted or over-expressed as a deliberate act. Such genetically-engineered disruptions may be generated through the entire body for the entire life (global transgenic manipulations) or restricted in both time and to certain tissue or cell types. In all these genetically-engineered scenarios, there are two types of situation that lead to insights: where a specific gene hypothesized to play a role in the regulation of energy balance is targeted, and where a gene is disrupted for a different purpose, but the consequence is an unexpected obese or lean phenotype. A fourth group of animal models concern experiments where selective breeding has been utilized to derive strains of rodents that differ in their degree of fatness. Finally, studies have been made of other species including non-human primates and dogs. In addition to studies of the physiological and genetic basis of obesity, studies of animal models have also informed us about the environmental aspects of the condition. Studies in this context include exploring the responses of animals to high fat or high fat/high sugar (Cafeteria) diets, investigations of the effects of dietary restriction on body mass and fat loss, and studies of the impact of candidate pharmaceuticals on components of energy balance. Despite all this work, there are many gaps in our understanding of how body composition and energy storage are regulated, and a continuing need for the development of pharmaceuticals to treat obesity. Accordingly, reductions in the use of animal models, while ethically desirable, will not be feasible in the short to medium term, and indeed an expansion in activity using animal models is anticipated as the epidemic continues and spreads geographically.
Collapse
Affiliation(s)
- John Speakman
- Aberdeen Centre for Energy Regulation and Obesity, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | | | | | | |
Collapse
|
594
|
Hill MN, Carrier EJ, McLaughlin RJ, Morrish AC, Meier SE, Hillard CJ, Gorzalka BB. Regional alterations in the endocannabinoid system in an animal model of depression: effects of concurrent antidepressant treatment. J Neurochem 2008; 106:2322-36. [PMID: 18643796 PMCID: PMC2606621 DOI: 10.1111/j.1471-4159.2008.05567.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has been suggested that disturbances in endocannabinoid signaling contribute to the development of depressive illness; however, at present there is insufficient evidence to allow for a full understanding of this role. To further this understanding, we performed an analysis of the endocannabinoid system in an animal model of depression. Male rats exposed to chronic, unpredictable stress (CUS) for 21 days exhibited a reduction in sexual motivation, consistent with the hypothesis that CUS in rats induces depression-like symptoms. We determined the effects of CUS, with or without concurrent treatment with the antidepressant imipramine (10 mg/kg), on CP55940 binding to the cannabinoid CB(1) receptor; whole tissue endocannabinoid content; and fatty acid amide hydrolase (FAAH) activity in the prefrontal cortex, hippocampus, hypothalamus, amygdala, midbrain and ventral striatum. Exposure to CUS resulted in a significant increase in CB(1) receptor binding site density in the prefrontal cortex and a decrease in CB(1) receptor binding site density in the hippocampus, hypothalamus and ventral striatum. Except in the hippocampus, these CUS-induced alterations in CB(1) receptor binding site density were attenuated by concurrent antidepressant treatment. CUS alone produced a significant reduction in N-arachidonylethanolamine (anandamide) content in every brain region examined, which was not reversed by antidepressant treatment. These data suggest that the endocannabinoid system in cortical and subcortical structures is differentially altered in an animal model of depression and that the effects of CUS on CB(1) receptor binding site density are attenuated by antidepressant treatment while those on endocannabinoid content are not.
Collapse
MESH Headings
- Analgesics/pharmacology
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents, Tricyclic/pharmacology
- Arachidonic Acids/metabolism
- Brain/metabolism
- Brain/physiopathology
- Cannabinoid Receptor Modulators/metabolism
- Cyclohexanols/pharmacology
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/physiopathology
- Disease Models, Animal
- Endocannabinoids
- Imipramine/pharmacology
- Male
- Motivation
- Polyunsaturated Alkamides/metabolism
- Rats
- Rats, Long-Evans
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Sexual Behavior, Animal/drug effects
- Sexual Behavior, Animal/physiology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Matthew N. Hill
- Department of Psychology, University of British Columbia, Vancouver, B.C. Canada
| | - Erica J. Carrier
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI USA
| | - Ryan J. McLaughlin
- Department of Psychology, University of British Columbia, Vancouver, B.C. Canada
| | - Anna C. Morrish
- Department of Psychology, University of British Columbia, Vancouver, B.C. Canada
| | - Sarah E. Meier
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI USA
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI USA
| | - Boris B. Gorzalka
- Department of Psychology, University of British Columbia, Vancouver, B.C. Canada
| |
Collapse
|
595
|
Thanos PK, Ramalhete RC, Michaelides M, Piyis YK, Wang GJ, Volkow ND. Leptin receptor deficiency is associated with upregulation of cannabinoid 1 receptors in limbic brain regions. Synapse 2008; 62:637-42. [PMID: 18563836 PMCID: PMC2659017 DOI: 10.1002/syn.20531] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Leptin receptor dysfunction results in overeating and obesity. Leptin regulates hypothalamic signaling that underlies the motivation to hyperphagia, but the interaction between leptin and cannabinoid signaling is poorly understood. We evaluated the role of cannabinoid 1 receptors (CB(1)R) in overeating and the effects of food deprivation on CB(1)R in the brain. One-month-old Zucker rats were divided into unrestricted and restricted (fed 70% of unrestricted rats) diet groups and maintained until adulthood (4 months). Levels of relative binding sites of CB(1)R (CB(1)R binding levels) were assessed using [(3)H] SR141716A in vitro autoradiography. These levels were higher (except cerebellum and hypothalamus) at 4 months than at 1 month of age. One month CB(1)R binding levels for most brain regions did not differ between Ob and Lean (Le) rats (except in frontal and cingulate cortices in Le and in the hypothalamus in Ob). Four month Ob rats had higher CB(1)R binding levels than Le in most brain regions and food restriction was associated with higher CB(1)R levels in all brain regions in Ob, but not in Le rats. CB(1)R binding levels increased between adolescence and young adulthood which we believe was influenced by leptin and food availability. The high levels of CB(1)R in Ob rats suggest that leptin's inhibition of food-intake is in part mediated by downregulation of CB(1)R and that leptin interferes with CB(1)R upregulation under food-deprivation conditions. These results are consistent with prior findings showing increased levels of endogenous cannabinoids in the Ob rats corroborating the regulation of cannabinoid signaling by leptin.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Lab, Department of Medicine, Brookhaven National Lab, Upton, NY 11973, USA.
| | | | | | | | | | | |
Collapse
|
596
|
Affiliation(s)
- Daniele Piomelli
- Department of Pharmacology, MedSurge II, University of California, Irvine, California 92697-4625, USA.
| |
Collapse
|
597
|
Kunos G, Osei-Hyiaman D, Liu J, Godlewski G, Bátkai S. Endocannabinoids and the control of energy homeostasis. J Biol Chem 2008; 283:33021-5. [PMID: 18694938 DOI: 10.1074/jbc.r800012200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endocannabinoids (ECBs) are ubiquitous lipid mediators that act through the same G protein-coupled receptors (CB1 and CB2) that recognize plant-derived cannabinoids. As regulators of metabolism, ECBs are anabolic: they increase the intake, promote the storage, and decrease the expenditure of energy. Recent work indicates that activation of peripheral CB1 receptors by ECBs plays a key role in the hormonal/metabolic changes associated with obesity/metabolic syndrome and may be targeted for its pharmacotherapy.
Collapse
Affiliation(s)
- George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9413, USA.
| | | | | | | | | |
Collapse
|
598
|
Abstract
It has been reported that cannabinoids may cause overeating in humans and in laboratory animals. Although, endogenous cannabinoids and their receptors (CB1) have been found in the hypothalamus, and recently also in gastrointestinal tract, the precise mechanism of appetite control by cannabinoids remains unknown. Recently, ghrelin--a hormone secreted mainly from the stomach X/A-like cells was proposed to be an appetite stimulating agent. The aim of this study was the evaluation of the influence of a single ip injection of a stable analogue of endogenous cannabinoid--anandamide, R-(+)-methanandamide (2.5 mg/kg) and CP 55,940 (0.25 mg/kg), an exogenous agonist of CB1 receptors, on ghrelin plasma concentration and on ghrelin immunoreactivity in the gastric mucosa of male Wistar rats. Four hours after a single injection of both cannabinoids or vehicle, the animals were anaesthetized and blood was taken from the abdominal aorta to determinate plasma ghrelin concentration by RIA. Subsequently, the animals underwent resection of distal part of stomach. Immunohistochemical study of gastric mucosa, using the EnVision method and specific monoclonal antibodies against ghrelin was performed. The intensity of ghrelin immunoreactivity in X/A-like cells was analyzed using Olympus Cell D image analysis system. The attenuation of ghrelin-immunoreactivity of gastric mucosa, after a single injection of R-(+)-methanandamide and CP 55,940 was accompanied by a significant increase of ghrelin plasma concentration. These results indicate that stimulation of appetite exerted by cannabinoids may be connected with an increase of ghrelin secretion from gastric X/A-like cells.
Collapse
|
599
|
Abstract
Mounting evidence suggests that the endocannabinoid system regulates energy metabolism through direct effects on peripheral tissues as well as central effects that regulate appetite. Here we examined the effect of cannabinoid receptor 1 (CB1) signaling on insulin action in fat cells. We examined effects of the natural CB1 agonist, 2-Arachidonoylglycerol (2-AG), and the synthetic CB1 antagonist, SR141716, on insulin action in cultured adipocytes. We used translocation of glucose transporter GLUT4 to plasma membrane (PM) as a measure of insulin action. 2-AG activation of the CB1 receptor promoted insulin sensitivity whereas antagonism by SR141716 reduced insulin sensitivity. Neither drug affected GLUT4 translocation in the absence of insulin or with high doses of insulin. Consistent with these results we found that insulin-stimulated phosphorylation of the protein kinase Akt was increased by 2-AG, attenuated by SR141716, and unaffected in the absence of insulin or by addition of high-dose insulin. These data provide a functional and molecular link between the CB1 receptor and insulin sensitivity, because insulin-stimulated phosphorylation of Akt is required for GLUT4 translocation to the PM. The sensitizing effects of 2-AG were abrogated by SR141716 and Pertussis toxin, indicating that the effects are mediated by CB1 receptor. Importantly, neither 2-AG nor SR141716 alone or in combination with maximal dose of insulin had effects on GLUT4 translocation and Akt phosphorylation. These data are consistent with a model in which the endocannabinoid system sets the sensitivity of the insulin response in adipocytes rather than directly regulating the redistribution of GLUT4 or Akt phosphorylation.
Collapse
Affiliation(s)
- Roja Motaghedi
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
600
|
Szmitko PE, Verma S. The endocannabinoid system and cardiometabolic risk. Atherosclerosis 2008; 199:248-56. [DOI: 10.1016/j.atherosclerosis.2008.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Revised: 02/23/2008] [Accepted: 03/08/2008] [Indexed: 11/16/2022]
|