551
|
Szeto HH, Liu S, Soong Y, Alam N, Prusky GT, Seshan SV. Protection of mitochondria prevents high-fat diet–induced glomerulopathy and proximal tubular injury. Kidney Int 2016; 90:997-1011. [DOI: 10.1016/j.kint.2016.06.013] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 12/19/2022]
|
552
|
Li SY, Susztak K. The long noncoding RNA Tug1 connects metabolic changes with kidney disease in podocytes. J Clin Invest 2016; 126:4072-4075. [PMID: 27760046 DOI: 10.1172/jci90828] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An increasing amount of evidence suggests that metabolic alterations play a key role in chronic kidney disease (CKD) pathogenesis. In this issue of the JCI, Long et al. report that the long noncoding RNA (lncRNA) taurine-upregulated 1 (Tug1) contributes to CKD development. The authors show that Tug1 regulates mitochondrial function in podocytes by epigenetic targeting of expression of the transcription factor PPARγ coactivator 1α (PGC-1α, encoded by Ppargc1a). Transgenic overexpression of Tug1 specifically in podocytes ameliorated diabetes-induced CKD in mice. Together, these results highlight an important connection between lncRNA-mediated metabolic alterations in podocytes and kidney disease development.
Collapse
|
553
|
Imasawa T, Obre E, Bellance N, Lavie J, Imasawa T, Rigothier C, Delmas Y, Combe C, Lacombe D, Benard G, Claverol S, Bonneu M, Rossignol R. High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy. FASEB J 2016; 31:294-307. [PMID: 27825100 PMCID: PMC5161522 DOI: 10.1096/fj.201600293r] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023]
Abstract
Podocytes play a key role in diabetic nephropathy pathogenesis, but alteration of their metabolism remains unknown in human kidney. By using a conditionally differentiating human podocyte cell line, we addressed the functional and molecular changes in podocyte energetics during in vitro development or under high glucose conditions. In 5 mM glucose medium, we observed a stepwise activation of oxidative metabolism during cell differentiation that was characterized by peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α)–dependent stimulation of mitochondrial biogenesis and function, with concomitant reduction of the glycolytic enzyme content. Conversely, when podocytes were cultured in high glucose (20 mM), stepwise oxidative phosphorylation biogenesis was aborted, and a glycolytic switch occurred, with consecutive lactic acidosis. Expression of the master regulators of oxidative metabolism transcription factor A mitochondrial, PGC-1α, AMPK, and serine–threonine liver kinase B1 was altered by high glucose, as well as their downstream signaling networks. Focused transcriptomics revealed that myocyte-specific enhancer factor 2C (MEF2C) and myogenic factor 5 (MYF5) expression was inhibited by high glucose levels, and endoribonuclease-prepared small interfering RNA–mediated combined inhibition of those transcription factors phenocopied the glycolytic shift that was observed in high glucose conditions. Accordingly, a reduced expression of MEF2C, MYF5, and PGC-1α was found in kidney tissue sections that were obtained from patients with diabetic nephropathy. These findings obtained in human samples demonstrate that MEF2C-MYF5–dependent bioenergetic dedifferentiation occurs in podocytes that are confronted with a high-glucose milieu.—Imasawa, T., Obre, E., Bellance, N., Lavie, J., Imasawa, T., Rigothier, C., Delmas, Y., Combe, C., Lacombe, D., Benard, G., Claverol, S., Bonneu, M., Rossignol, R. High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy.
Collapse
Affiliation(s)
- Toshiyuki Imasawa
- Kidney Center, National Hospital Organization Chiba-East Hospital, Chiba, Japan;
| | - Emilie Obre
- INSERM Unité 1211, Laboratory of Rare Diseases, Metabolism, and Genetics, Bordeaux University, Bordeaux, France.,Cellomet, Centre Hospitalier Universitaire Pellegrin, Bordeaux, France
| | - Nadège Bellance
- INSERM Unité 1211, Laboratory of Rare Diseases, Metabolism, and Genetics, Bordeaux University, Bordeaux, France
| | - Julie Lavie
- INSERM Unité 1211, Laboratory of Rare Diseases, Metabolism, and Genetics, Bordeaux University, Bordeaux, France
| | - Tomoko Imasawa
- INSERM Unité 1211, Laboratory of Rare Diseases, Metabolism, and Genetics, Bordeaux University, Bordeaux, France
| | - Claire Rigothier
- Department of Nephrology, Transplantation, and Dialysis, Bordeaux University Hospital Center, Bordeaux, France; and
| | - Yahsou Delmas
- Department of Nephrology, Transplantation, and Dialysis, Bordeaux University Hospital Center, Bordeaux, France; and
| | - Christian Combe
- Department of Nephrology, Transplantation, and Dialysis, Bordeaux University Hospital Center, Bordeaux, France; and
| | - Didier Lacombe
- INSERM Unité 1211, Laboratory of Rare Diseases, Metabolism, and Genetics, Bordeaux University, Bordeaux, France
| | - Giovanni Benard
- INSERM Unité 1211, Laboratory of Rare Diseases, Metabolism, and Genetics, Bordeaux University, Bordeaux, France
| | - Stéphane Claverol
- Center of Functional Genomics, Bordeaux University, Bordeaux, France
| | - Marc Bonneu
- Center of Functional Genomics, Bordeaux University, Bordeaux, France
| | - Rodrigue Rossignol
- INSERM Unité 1211, Laboratory of Rare Diseases, Metabolism, and Genetics, Bordeaux University, Bordeaux, France.,Cellomet, Centre Hospitalier Universitaire Pellegrin, Bordeaux, France
| |
Collapse
|
554
|
Stabilization of endogenous Nrf2 by minocycline protects against Nlrp3-inflammasome induced diabetic nephropathy. Sci Rep 2016; 6:34228. [PMID: 27721446 PMCID: PMC5056367 DOI: 10.1038/srep34228] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023] Open
Abstract
While a plethora of studies support a therapeutic benefit of Nrf2 activation and ROS inhibition in diabetic nephropathy (dNP), the Nrf2 activator bardoxolone failed in clinical studies in type 2 diabetic patients due to cardiovascular side effects. Hence, alternative approaches to target Nrf2 are required. Intriguingly, the tetracycline antibiotic minocycline, which has been in clinical use for decades, has been shown to convey anti-inflammatory effects in diabetic patients and nephroprotection in rodent models of dNP. However, the mechanism underlying the nephroprotection remains unknown. Here we show that minocycline protects against dNP in mouse models of type 1 and type 2 diabetes, while caspase -3,-6,-7,-8 and -10 inhibition is insufficient, indicating a function of minocycline independent of apoptosis inhibition. Minocycline stabilizes endogenous Nrf2 in kidneys of db/db mice, thus dampening ROS-induced inflammasome activation in the kidney. Indeed, minocycline exerts antioxidant effects in vitro and in vivo, reducing glomerular markers of oxidative stress. Minocycline reduces ubiquitination of the redox-sensitive transcription factor Nrf2 and increases its protein levels. Accordingly, minocycline mediated Nlrp3 inflammasome inhibition and amelioration of dNP are abolished in diabetic Nrf2−/− mice. Taken together, we uncover a new function of minocycline, which stabilizes the redox-sensitive transcription factor Nrf2, thus protecting from dNP.
Collapse
|
555
|
|
556
|
Nair M, le Roux CW, Docherty NG. Mechanisms underpinning remission of albuminuria following bariatric surgery. Curr Opin Endocrinol Diabetes Obes 2016; 23:366-72. [PMID: 27584009 DOI: 10.1097/med.0000000000000279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Albuminuria is a biomarker of renal injury commonly used to monitor progression of diabetic kidney disease. The appearance of excess albumin in the urine reflects alterations in the structure and permeability of the glomerular filtration barrier. The present article summarizes the clinical evidence base for remission of albuminuria after bariatric surgery. It furthermore focuses on how beneficial impacts on glomerular podocyte structure and function may explain this phenomenon. RECENT FINDINGS A coherent clinical evidence base is emerging demonstrating remission of albuminuria following bariatric surgery in patients with obesity and diabetes. The impaired metabolic milieu in diabetic kidney disease drives podocyte dedifferentiation and death through glucotoxic, lipotoxic proinflammatory, and pressure-related stress. Improvements in these parameters after surgery correlate with improvements in albuminuria and preclinical studies provide mechanistic data that support the existence of cause-effect relationship. SUMMARY The benefits of bariatric surgery extend beyond weight loss in diabetes to encompass beneficial effects on diabetic renal injury. Attenuation of the toxic metabolic milieu that the podocyte is exposed to postbariatric surgery suggests that the restitution of podocyte health is a key cellular event underpinning remission of albuminuria.
Collapse
Affiliation(s)
- Meera Nair
- aDiabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, IrelandbDepartment of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedencInvestigative Science, Imperial College London, London, UK
| | | | | |
Collapse
|
557
|
Kato M, Wang M, Chen Z, Bhatt K, Oh HJ, Lanting L, Deshpande S, Jia Y, Lai JYC, O'Connor CL, Wu Y, Hodgin JB, Nelson RG, Bitzer M, Natarajan R. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nat Commun 2016; 7:12864. [PMID: 27686049 PMCID: PMC5553130 DOI: 10.1038/ncomms12864] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
It is important to find better treatments for diabetic nephropathy (DN), a debilitating renal complication. Targeting early features of DN, including renal extracellular matrix accumulation (ECM) and glomerular hypertrophy, can prevent disease progression. Here we show that a megacluster of nearly 40 microRNAs and their host long non-coding RNA transcript (lnc-MGC) are coordinately increased in the glomeruli of mouse models of DN, and mesangial cells treated with transforming growth factor-β1 (TGF- β1) or high glucose. Lnc-MGC is regulated by an endoplasmic reticulum (ER) stress-related transcription factor, CHOP. Cluster microRNAs and lnc-MGC are decreased in diabetic Chop-/- mice that showed protection from DN. Target genes of megacluster microRNAs have functions related to protein synthesis and ER stress. A chemically modified oligonucleotide targeting lnc-MGC inhibits cluster microRNAs, glomerular ECM and hypertrophy in diabetic mice. Relevance to human DN is also demonstrated. These results demonstrate the translational implications of targeting lnc-MGC for controlling DN progression.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Mei Wang
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Zhuo Chen
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Kirti Bhatt
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Hyung Jung Oh
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Supriya Deshpande
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Ye Jia
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Jennifer Y C Lai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - YiFan Wu
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Robert G Nelson
- Diabetes Epidemiology and Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85014, USA
| | - Markus Bitzer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| |
Collapse
|
558
|
Epigallocatechin-3-gallate Attenuates Renal Damage by Suppressing Oxidative Stress in Diabetic db/db Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2968462. [PMID: 27698952 PMCID: PMC5028863 DOI: 10.1155/2016/2968462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/14/2016] [Accepted: 08/09/2016] [Indexed: 01/05/2023]
Abstract
Epigallocatechin-3-gallate (EGCG), extracted from green tea, has been shown to have antioxidative activity. In the present study, we evaluated the effect of EGCG on the kidney function in db/db mice and also tried to investigate the underlying mechanism of the renoprotective effects of EGCG in both animals and cells. EGCG treatment could decrease the level of urinary protein, 8-iso-PGF2a, and Ang II. Moreover, EGCG could also change the level of several parameters associated with oxidative stress. In addition, the protein expression levels of AT-1R, p22-phox, p47-phox, p-ERK1/2, p-p38 MAPK, TGF-β1, and α-SMA in diabetic db/db mice were upregulated, and all of these symptoms were downregulated with the treatment of EGCG at 50 and 100 mg/kg/d. Furthermore, the pathological changes were ameliorated in db/db mice after EGCG treatment. HK-2 cell-based experiments indicated that EGCG could inhibit the expression of MAPK pathways, which is the downstream effector of Ang II mediated oxidative stress. All these results indicated that EGCG treatment could ameliorate changes of renal pathology and delay the progression of DKD by suppressing hyperglycemia-induced oxidative stress in diabetic db/db mice.
Collapse
|
559
|
Zheng B, Chen L, Gonzalez FJ. ISN Forefronts Symposium 2015: Nuclear Receptors and Diabetic Nephropathy. Kidney Int Rep 2016; 1:177-188. [PMID: 28932823 PMCID: PMC5601313 DOI: 10.1016/j.ekir.2016.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 01/19/2023] Open
Abstract
Diabetic nephropathy (DN) is the major reason for end stage renal disease in the western world. Patients with DN developed more severe cardiovascular complications with worse prognosis. In spite of tight blood pressure and glucose control through applying angiotensin II receptor antagonism, angiotensin receptor inhibitors and even direct renin inhibitors, the progression and development of DN has continued to accelerate. Nuclear receptors are, with few exceptions, ligand-depended transcription factors some of which modulate genes involved in the transportation and metabolism of carbohydrate or lipid, and inflammation. Considering the diverse biological functions of nuclear receptors, efforts have been made to explore their contributions to the pathogenesis of DN and potential therapeutic strategies. This review is mainly focused on the association between various nuclear receptors and the pathogenesis of DN, the potential beneficial effects of targeting these receptors for preventing the progress of DN, and the important role that nuclear receptors may play in future therapeutic strategies for DN.
Collapse
Affiliation(s)
- Bo Zheng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
560
|
Klebanow LR, Peshel EC, Schuster AT, De K, Sarvepalli K, Lemieux ME, Lenoir JJ, Moore AW, McDonald JA, Longworth MS. Drosophila Condensin II subunit Chromosome-associated protein D3 regulates cell fate determination through non-cell-autonomous signaling. Development 2016; 143:2791-802. [PMID: 27317808 PMCID: PMC5004906 DOI: 10.1242/dev.133686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/03/2016] [Indexed: 12/19/2022]
Abstract
The pattern of the Drosophila melanogaster adult wing is heavily influenced by the expression of proteins that dictate cell fate decisions between intervein and vein during development. dSRF (Blistered) expression in specific regions of the larval wing disc promotes intervein cell fate, whereas EGFR activity promotes vein cell fate. Here, we report that the chromatin-organizing protein CAP-D3 acts to dampen dSRF levels at the anterior/posterior boundary in the larval wing disc, promoting differentiation of cells into the anterior crossvein. CAP-D3 represses KNOT expression in cells immediately adjacent to the anterior/posterior boundary, thus blocking KNOT-mediated repression of EGFR activity and preventing cell death. Maintenance of EGFR activity in these cells depresses dSRF levels in the neighboring anterior crossvein progenitor cells, allowing them to differentiate into vein cells. These findings uncover a novel transcriptional regulatory network influencing Drosophila wing vein development, and are the first to identify a Condensin II subunit as an important regulator of EGFR activity and cell fate determination in vivo.
Collapse
Affiliation(s)
- Lindsey R Klebanow
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Emanuela C Peshel
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Andrew T Schuster
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Kuntal De
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Kavitha Sarvepalli
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | - Jessica J Lenoir
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Adrian W Moore
- Disease Mechanism Research Core, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | | | - Michelle S Longworth
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
561
|
Brouwers MCGJ, Jacobs C, Bast A, Stehouwer CDA, Schaper NC. Modulation of Glucokinase Regulatory Protein: A Double-Edged Sword? Trends Mol Med 2016; 21:583-594. [PMID: 26432016 DOI: 10.1016/j.molmed.2015.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/16/2015] [Accepted: 08/12/2015] [Indexed: 12/30/2022]
Abstract
The continuous search for drugs targeting type 2 diabetes mellitus (T2DM) has led to the identification of small molecules that disrupt the binding between glucokinase and glucokinase regulatory protein (GKRP). Although mice studies are encouraging, it will take years before these disruptors can be introduced to T2DM patients. Recently, genome-wide association studies (GWASs) have shown that variants in the gene encoding GKRP protect against T2DM and kidney disease but predispose to gout, nonalcoholic fatty liver disease, and dyslipidemia. These genetic data, together with previous experience with systemic and hepatospecific glucokinase activators, provide insight into the anticipated efficacy and safety of small-molecule disruptors in humans. Interestingly, they suggest that the opposite--enhanced GKRP-glucokinase binding--could be beneficial in selected patients.
Collapse
Affiliation(s)
- Martijn C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands.
| | - Chantal Jacobs
- Department of Internal Medicine, Division of Endocrinology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Aalt Bast
- Department of Toxicology, Faculty of Health Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Coen D A Stehouwer
- General Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Nicolaas C Schaper
- Department of Internal Medicine, Division of Endocrinology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
562
|
Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway. Sci Rep 2016; 6:29196. [PMID: 27381856 PMCID: PMC4933928 DOI: 10.1038/srep29196] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/14/2016] [Indexed: 12/26/2022] Open
Abstract
Hyperglycemia upregulates thioredoxin interacting protein (TXNIP) expression, which in turn induces ROS production, inflammatory and fibrotic responses in the diabetic kidney. Dysregulation of autophagy contributes to the development of diabetic nephropathy. However, the interaction of TXNIP with autophagy/mitophagy in diabetic nephropathy is unknown. In this study, streptozotocin-induced diabetic rats were given TXNIP DNAzyme or scrambled DNAzyme for 12 weeks respectively. Fibrotic markers, mitochondrial function and mitochondrial reactive oxygen species (mtROS) were assessed in kidneys. Tubular autophagy and mitophagy were determined in kidneys from both human and rats with diabetic nephropathy. TXNIP and autophagic signaling molecules were examined. TXNIP DNAzyme dramatically attenuated extracellular matrix deposition in the diabetic kidneys compared to the control DNAzyme. Accumulation of autophagosomes and reduced autophagic clearance were shown in tubular cells of human diabetic compared to non-diabetic kidneys, which was reversed by TXNIP DNAzyme. High glucose induced mitochondrial dysfunction and mtROS production, and inhibited mitophagy in proximal tubular cells, which was reversed by TXNIP siRNA. TXNIP inhibition suppressed diabetes-induced BNIP3 expression and activation of the mTOR signaling pathway. Collectively, hyperglycemia-induced TXNIP contributes to the dysregulation of tubular autophagy and mitophagy in diabetic nephropathy through activation of the mTOR signaling pathway.
Collapse
|
563
|
Ying C, Zhou X, Chang Z, Ling H, Cheng X, Li W. Blood glucose fluctuation accelerates renal injury involved to inhibit the AKT signaling pathway in diabetic rats. Endocrine 2016; 53:81-96. [PMID: 26860515 DOI: 10.1007/s12020-016-0867-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022]
Abstract
Blood glucose fluctuation is associated with diabetic nephropathy. However, the mechanism by which blood glucose fluctuation accelerates renal injury is not fully understood. The aim of the present study was to assess the effects of blood glucose fluctuation on diabetic nephropathy in rats and investigate its underlying mechanism. Diabetes in the rats was induced by a high sugar, high-fat diet, and a single dose of STZ (35 mg/kg)-injected intraperitoneally. Unstable blood sugar models were induced by subcutaneous insulin injection and intravenous glucose injection alternately. Body weight, glycosylated hemoglobin A1c (HbAlc), blood urea nitrogen (BUN), serum creatinine (Scr), and Creatinine clearance (Ccr) were assessed. T-SOD activity and MDA level were measured by assay kit. Change in renal tissue ultrastructure was observed by light microscopy and electron microscopy. Phosphorylated ser/thr protein kinase (p-AKT) (phosphor-Ser473), phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β) (phosphor-Ser9), Bcl-2-associated X protein (BAX), B cell lymphoma/leukemia 2 (BCL-2), and cleaved-cysteinyl aspartate-specific proteinase-3 (caspase-3) levels were detected by immunohistochemistry and Western blot. We observed that BUN and Scr were increased in diabetic rats, and Ccr was decreased. Furthermore, blood glucose fluctuations could exacerbate the Ccr changes. Renal tissue ultrastructure was also seriously injured by glucose variability in diabetic rats. In addition, glucose fluctuation increased the oxidative stress of renal tissue. Moreover, fluctuating blood glucose decreased p-AKT level and BCL-2, and increased p-GSK-3β, BAX, cleaved-caspase-3 levels, and ratio of BAX/BCL-2 in the kidneys of diabetic rats. In conclusion, these results suggest that blood glucose fluctuation accelerated renal injury is due, at least in part to its oxidative stress promoting and inhibiting the AKT signaling pathway in diabetic rats.
Collapse
Affiliation(s)
- Changjiang Ying
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Xiaoyan Zhou
- Laboratory of Morphology, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Zhenzhen Chang
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Hongwei Ling
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Xingbo Cheng
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.
| | - Wei Li
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
564
|
Ai Z, Li M, Liu W, Foo JN, Mansouri O, Yin P, Zhou Q, Tang X, Dong X, Feng S, Xu R, Zhong Z, Chen J, Wan J, Lou T, Yu J, Zhou Q, Fan J, Mao H, Gale D, Barratt J, Armour JAL, Liu J, Yu X. Low α-defensin gene copy number increases the risk for IgA nephropathy and renal dysfunction. Sci Transl Med 2016; 8:345ra88. [PMID: 27358498 DOI: 10.1126/scitranslmed.aaf2106] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/10/2016] [Indexed: 12/12/2022]
Abstract
Although a major source of genetic variation, copy number variations (CNVs) and their involvement in disease development have not been well studied. Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. We performed association analysis of the DEFA1A3 CNV locus in two independent IgAN cohorts of southern Chinese Han (total of 1189 cases and 1187 controls). We discovered three independent copy number associations within the locus: DEFA1A3 [P = 3.99 × 10−9; odds ratio (OR), 0.88], DEFA3 (P = 6.55 × 10−5; OR, 0.82), and a noncoding deletion variant (211bp) (P = 3.50 × 10−16; OR, 0.75) (OR per copy, fixed-effects meta-analysis). While showing strong association with an increased risk for IgAN (P = 9.56 × 10−20), low total copy numbers of the three variants also showed significant association with renal dysfunction in patients with IgAN (P = 0.03; hazards ratio, 3.69; after controlling for the effects of known prognostic factors) and also with increased serum IgA1 (P = 0.02) and galactose-deficient IgA1 (P = 0.03). For replication, we confirmed the associations of DEFA1A3 (P = 4.42 × 10−4; OR, 0.82) and DEFA3 copy numbers (P = 4.30 × 10−3; OR, 0.74) with IgAN in a Caucasian cohort (531 cases and 198 controls) and found the 211bp variant to be much rarer in Caucasians. We also observed an association of the 211bp copy number with membranous nephropathy (P = 1.11 × 10−7; OR, 0.74; in 493 Chinese cases and 500 matched controls), but not with diabetic kidney disease (in 806 Chinese cases and 786 matched controls). By explaining 4.96% of disease risk and influencing renal dysfunction in patients with IgAN, the DEFA1A3 CNV locus may be a potential therapeutic target for developing treatments for this disease.
Collapse
Affiliation(s)
- Zhen Ai
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Ming Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Wenting Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Jia-Nee Foo
- Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Omniah Mansouri
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Peiran Yin
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Qian Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Xueqing Tang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Xiuqing Dong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Shaozhen Feng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Ricong Xu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Zhong Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Jian Chen
- Department of Nephrology, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian 350025, China
| | - Jianxin Wan
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Tanqi Lou
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Jianwen Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Daniel Gale
- University College London Centre for Nephrology, Royal Free Hospital, London NW3 2PF, UK
| | - Jonathan Barratt
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - John A L Armour
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore. School of Biological Sciences, Anhui Medical University, Hefei, Anhui 230032, China. Saw Swee Hock School of Public Health, National University of Singapore, Singapore 119077, Singapore.
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
565
|
Perez-Gomez MV, Sanchez-Niño MD, Sanz AB, Zheng B, Martín-Cleary C, Ruiz-Ortega M, Ortiz A, Fernandez-Fernandez B. Targeting inflammation in diabetic kidney disease: early clinical trials. Expert Opin Investig Drugs 2016; 25:1045-58. [PMID: 27268955 DOI: 10.1080/13543784.2016.1196184] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The age-standardized death rate from diabetic kidney disease increased by 106% from 1990 to 2013, indicating that novel therapeutic approaches are needed, in addition to the renin-angiotensin system (RAS) blockers currently in use. Clinical trial results of anti-fibrotic therapy have been disappointing. However, promising anti-inflammatory drugs are currently on phase 1 and 2 randomized controlled trials. AREAS COVERED The authors review the preclinical, phase 1 and 2 clinical trial information of drugs tested for diabetic kidney disease that directly target inflammation as a main or key mode of action. Agents mainly targeting other pathways, such as endothelin receptor or mineralocorticoid receptor blockers and vitamin D receptor activators are not discussed. EXPERT OPINION Agents targeting inflammation have shown promising results in the treatment of diabetic kidney disease when added on top of RAS blockade. The success of pentoxifylline in open label trials supports the concept of targeting inflammation. In early clinical trials, the pentoxifylline derivative CTP-499, the CCR2 inhibitor CCX140-B, the CCL2 inhibitor emapticap pegol and the JAK1/JAK2 inhibitor baricitinib were the most promising drugs for diabetic kidney disease. The termination of trials testing the anti-IL-1β antibody gevokizumab in 2015 will postpone the evaluation of therapies targeting inflammatory cytokines.
Collapse
Affiliation(s)
- Maria Vanessa Perez-Gomez
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Maria Dolores Sanchez-Niño
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Ana Belen Sanz
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Binbin Zheng
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain
| | - Catalina Martín-Cleary
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Marta Ruiz-Ortega
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Alberto Ortiz
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Beatriz Fernandez-Fernandez
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| |
Collapse
|
566
|
Oe Y, Hayashi S, Fushima T, Sato E, Kisu K, Sato H, Ito S, Takahashi N. Coagulation Factor Xa and Protease-Activated Receptor 2 as Novel Therapeutic Targets for Diabetic Nephropathy. Arterioscler Thromb Vasc Biol 2016; 36:1525-33. [PMID: 27283743 DOI: 10.1161/atvbaha.116.307883] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The role of hypercoagulability in the pathogenesis of diabetic nephropathy (DN) remains elusive. We recently reported the increased infiltration of macrophages expressing tissue factor in diabetic kidney glomeruli; tissue factor activates coagulation factor X (FX) to FXa, which in turn stimulates protease-activated receptor 2 (PAR2) and causes inflammation. APPROACH AND RESULTS Here, we demonstrated that diabetes mellitus increased renal FX mRNA, urinary FXa activity, and FX expression in glomerular macrophages. Administration of an oral FXa inhibitor, edoxaban, ameliorated DN with concomitant reductions in the expression of PARs (Par1 and Par2) and of proinflammatory and profibrotic genes. Diabetes mellitus induced PAR2, and lack of Par2 ameliorated DN. FXa or PAR2 agonist increased inflammatory cytokines in endothelial cells and podocytes in vitro. CONCLUSIONS We conclude that enhanced FXa and PAR2 exacerbate DN and that both are promising targets for preventing DN. Alleviating inflammation is probably more important than inhibiting coagulation per se when treating kidney diseases using anticoagulants.
Collapse
Affiliation(s)
- Yuji Oe
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.O., E.S., K.K., H.S., S.I., N.T.); and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, Japan (S.H., T.F., E.S., H.S., N.T.)
| | - Sakiko Hayashi
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.O., E.S., K.K., H.S., S.I., N.T.); and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, Japan (S.H., T.F., E.S., H.S., N.T.)
| | - Tomofumi Fushima
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.O., E.S., K.K., H.S., S.I., N.T.); and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, Japan (S.H., T.F., E.S., H.S., N.T.)
| | - Emiko Sato
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.O., E.S., K.K., H.S., S.I., N.T.); and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, Japan (S.H., T.F., E.S., H.S., N.T.)
| | - Kiyomi Kisu
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.O., E.S., K.K., H.S., S.I., N.T.); and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, Japan (S.H., T.F., E.S., H.S., N.T.)
| | - Hiroshi Sato
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.O., E.S., K.K., H.S., S.I., N.T.); and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, Japan (S.H., T.F., E.S., H.S., N.T.)
| | - Sadayoshi Ito
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.O., E.S., K.K., H.S., S.I., N.T.); and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, Japan (S.H., T.F., E.S., H.S., N.T.)
| | - Nobuyuki Takahashi
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.O., E.S., K.K., H.S., S.I., N.T.); and Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, Japan (S.H., T.F., E.S., H.S., N.T.).
| |
Collapse
|
567
|
Reiner AP, Susztak K. APOL1 Variants: From Parasites to Kidney Function to Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2016; 36:219-20. [PMID: 26819463 DOI: 10.1161/atvbaha.115.306794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Alex P Reiner
- From the Fred Hutchinson Cancer Research Center, WHI Clinical Coordinating Center/Public Health Sciences (A.P.R.), and Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.S.).
| | - Katalin Susztak
- From the Fred Hutchinson Cancer Research Center, WHI Clinical Coordinating Center/Public Health Sciences (A.P.R.), and Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.S.).
| |
Collapse
|
568
|
Abstract
Chronic kidney disease (CKD) represents a leading cause of death in the United States. There is no cure for this disease, with current treatment strategies relying on blood pressure control through blockade of the renin-angiotensin system. Such approaches only delay the development of end-stage kidney disease and can be associated with serious side effects. Recent identification of several novel mechanisms contributing to CKD development - including vascular changes, loss of podocytes and renal epithelial cells, matrix deposition, inflammation and metabolic dysregulation - has revealed new potential therapeutic approaches for CKD. This Review assesses emerging strategies and agents for CKD treatment, highlighting the associated challenges in their clinical development.
Collapse
|
569
|
Sever S, Reiser J. CD2AP, dendrin, and cathepsin L in the kidney. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:3129-30. [PMID: 26506476 DOI: 10.1016/j.ajpath.2015.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Sanja Sever
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
570
|
Xu X, Qi X, Shao Y, Li Y, Fu X, Feng S, Wu Y. High glucose induced-macrophage activation through TGF-β-activated kinase 1 signaling pathway. Inflamm Res 2016; 65:655-64. [PMID: 27153994 DOI: 10.1007/s00011-016-0948-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/22/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE AND DESIGN Transforming growth factor-β-activated kinase 1 (TAK1) plays a pivotal role in innate immune responses and kidney disease, and is critically involved in macrophage activation. However, there is a paucity of data to explore the role of high glucose (HG) in the regulation of TAK1 signaling and its functional role in macrophage activation. We assume that TAK1 signaling in hyperglycemic condition could be a key factor leading to macrophage activation and inflammation response. METHODS Mice macrophages were seeded on a 96-well cell culture plate; cell viability was tested after treatment with different concentration of TAK1 inhibitors. Cells were divided into groups (OZ300; MC; NC; HG; HG + OZ30, 100, 300 nM) and treated for given time course. Monocyte chemotactic protein1(MCP-1) and tumor necrosis factor-α (TNF-α) mRNA levels were evaluated by qRT-PCR. Flow cytometry and confocal microscopy are used to analyse the activated macrophage induced by HG. Expression levels of p-TAK1, TAB 1, p-JNK, p-p38MAPK, NF-κBpp65 were detected by western blot. Nuclear translocation of NF-κBp65 was assessed by confocal microscopy. RESULTS Our data revealed that high glucose not only significantly increased macrophage activation and subsequently abnormal high-expression of MCP-1 and TNF-α, but likewise remarkably enhanced TAK1 activation, MAPK phosphorylation, NF-κB expression in macrophages. Furthermore, pharmacological inhibition of TAK1 attenuated high glucose-triggered signal pathways, macrophage activation and inflammatory cytokines in a simulated diabetic environment. CONCLUSION Our findings suggested that high glucose activated macrophages mainly in TAK1/MAPKs and TAK1/NF-κB-dependent manners, which lead to the polarization of macrophages towards a pro-inflammatory phenotype, and finally lead to diabetic nephropathy. In sum, the study raises novel data about the molecular mechanisms involved in the high glucose-mediated inflammatory response in macrophages.
Collapse
Affiliation(s)
- Xingxin Xu
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiangming Qi
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yunxia Shao
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yuanyuan Li
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xin Fu
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Shiyao Feng
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yonggui Wu
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
571
|
Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol 2016; 12:426-39. [PMID: 27140856 DOI: 10.1038/nrneph.2016.54] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kidney fibrosis is a common histological manifestation of functional decline in the kidney. Fibrosis is a reactive process that develops in response to excessive epithelial injury and inflammation, leading to myofibroblast activation and an accumulation of extracellular matrix. Here, we describe how three key developmental signalling pathways - Notch, Wnt and Hedgehog (Hh) - are reactivated in response to kidney injury and contribute to the fibrotic response. Although transient activation of these pathways is needed for repair of injured tissue, their sustained activation is thought to promote fibrosis. Excessive Wnt and Notch expression prohibit epithelial differentiation, whereas increased Wnt and Hh expression induce fibroblast proliferation and myofibroblastic transdifferentiation. Notch, Wnt and Hh are fundamentally different signalling pathways, but their choreographed activation seems to be just as important for fibrosis as it is for embryonic kidney development. Decreasing the activity of Notch, Wnt or Hh signalling could potentially provide a new therapeutic strategy to ameliorate the development of fibrosis in chronic kidney disease.
Collapse
Affiliation(s)
- Maria Edeling
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 415 Clinical Research Building, Philadelphia, Pennsylvania 19104, USA.,Department of Molecular Nephrology, Internal Medicine D, University Hospital Albert-Schweitzer-Straße 33, Münster 48149, Germany
| | - Grace Ragi
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 415 Clinical Research Building, Philadelphia, Pennsylvania 19104, USA
| | - Shizheng Huang
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 415 Clinical Research Building, Philadelphia, Pennsylvania 19104, USA
| | - Hermann Pavenstädt
- Department of Molecular Nephrology, Internal Medicine D, University Hospital Albert-Schweitzer-Straße 33, Münster 48149, Germany
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 415 Clinical Research Building, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
572
|
Griffin TP, Martin WP, Islam N, O'Brien T, Griffin MD. The Promise of Mesenchymal Stem Cell Therapy for Diabetic Kidney Disease. Curr Diab Rep 2016; 16:42. [PMID: 27007719 DOI: 10.1007/s11892-016-0734-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus (DM) commonly leads to progressive chronic kidney disease despite current best medical practice. The pathogenesis of diabetic kidney disease (DKD) involves a complex network of primary and secondary mechanisms with both intra-renal and systemic components. Apart from inhibition of the renin angiotensin aldosterone system, targeting individual pathogenic mediators with drug therapy has not, thus far, been proven to have high clinical value. Stem or progenitor cell therapies offer an alternative strategy for modulating complex disease processes through suppressing multiple pathogenic pathways and promoting pro-regenerative mechanisms. Mesenchymal stem cells (MSCs) have shown particular promise based on their accessibility from adult tissues and their diverse mechanisms of action including secretion of paracrine anti-inflammatory and cyto-protective factors. In this review, the progress toward clinical translation of MSC therapy for DKD is critically evaluated. Results from animal models suggest distinct potential for systemic MSC infusion to favourably modulate DKD progression. However, only a few early phase clinical trials have been initiated and efficacy in humans remains to be proven. Key knowledge gaps and research opportunities exist in this field. These include the need to gain greater understanding of in vivo mechanism of action, to identify quantifiable biomarkers of response to therapy and to define the optimal source, dose and timing of MSC administration. Given the rising prevalence of DM and DKD worldwide, continued progress toward harnessing the inherent regenerative functions of MSCs and other progenitor cells for even a subset of those affected has potential for profound societal benefits.
Collapse
Affiliation(s)
- Tomás P Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
- Centre for Diabetes, Endocrinology and Metabolism, Galway University Hospitals, Saolta University Health Group, Galway, Ireland
| | - William Patrick Martin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
- Centre for Diabetes, Endocrinology and Metabolism, Galway University Hospitals, Saolta University Health Group, Galway, Ireland
| | - Nahidul Islam
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
- Centre for Diabetes, Endocrinology and Metabolism, Galway University Hospitals, Saolta University Health Group, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland.
- Nephrology Services, Galway University Hospitals, Saolta University Health Group, Galway, Ireland.
| |
Collapse
|
573
|
Menon MC, He JC. Prostaglandin I2 Receptor Agonism for Proteinuria and Diabetes: Good for the Goose and Good for the Gander? Diabetes 2016; 65:1149-51. [PMID: 27208182 PMCID: PMC4839201 DOI: 10.2337/dbi16-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Madhav C Menon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
574
|
Kim DH, Choi BH, Ku SK, Park JH, Oh E, Kwak MK. Beneficial Effects of Sarpogrelate and Rosuvastatin in High Fat Diet/Streptozotocin-Induced Nephropathy in Mice. PLoS One 2016; 11:e0153965. [PMID: 27097221 PMCID: PMC4838298 DOI: 10.1371/journal.pone.0153965] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/06/2016] [Indexed: 01/18/2023] Open
Abstract
Chronic kidney disease (CKD) is a major complication of metabolic disorders such as diabetes mellitus, obesity, and hypertension. Comorbidity of these diseases is the factor exacerbating CKD progression. Statins are commonly used in patients with metabolic disorders to decrease the risk of cardiovascular complications. Sarpogrelate, a selective antagonist of 5-hydroxytryptamine (5-HT) 2A receptor, inhibits platelet aggregation and is used to improve peripheral circulation in diabetic patients. Here, we investigated the effects of sarpogrelate and rosuvastatin on CKD in mice that were subjected to a high fat diet (HFD) for 22 weeks and a single low dose of streptozotocin (STZ, 40 mg/kg). When mice were administrated sarpogrelate (50 mg/kg, p.o.) for 13 weeks, albuminuria and urinary cystatin C excretion were normalized and histopathological changes such as glomerular mesangial expansion, tubular damage, and accumulations in lipid droplets and collagen were significantly improved. Sarpogrelate treatment repressed the HFD/STZ-induced CD31 and vascular endothelial growth factor receptor-2 expressions, indicating the attenuation of glomerular endothelial proliferation. Additionally, sarpogrelate inhibited interstitial fibrosis by suppressing the increases in transforming growth factor-β1 (TGF-β1) and plasminogen activator inhibitor-1 (PAI-1). All of these functional and histological improvements were also seen in rosuvastatin (20 mg/kg) group and, notably, the combinatorial treatment with sarpogrelate and rosuvastatin showed additive beneficial effects on histopathological changes by HFD/STZ. Moreover, sarpogrelate reduced circulating levels of PAI-1 that were elevated in the HFD/STZ group. As supportive in vitro evidence, sarpogrelate incubation blocked TGF-β1/5-HT-inducible PAI-1 expression in murine glomerular mesangial cells. Taken together, sarpogrelate and rosuvastatin may be advantageous to control the progression of CKD in patients with comorbid metabolic disorders, and particularly, the use of sarpogrelate as adjunctive therapy with statins may provide additional benefits on CKD.
Collapse
Affiliation(s)
- Dong-hyun Kim
- College of pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Bo-hyun Choi
- College of pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Sae-Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeonsangbuk-do, 712-715, Republic of Korea
| | - Jeong-hyeon Park
- College of pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Euichaul Oh
- College of pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Mi-Kyoung Kwak
- College of pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
- * E-mail:
| |
Collapse
|
575
|
KCa3.1 mediates dysfunction of tubular autophagy in diabetic kidneys via PI3k/Akt/mTOR signaling pathways. Sci Rep 2016; 6:23884. [PMID: 27029904 PMCID: PMC4814925 DOI: 10.1038/srep23884] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Autophagy is emerging as an important pathway in many diseases including diabetic nephropathy. It is acknowledged that oxidative stress plays a critical role in autophagy dysfunction and diabetic nephropathy, and KCa3.1 blockade ameliorates diabetic renal fibrosis through inhibiting TGF-β1 signaling pathway. To identify the role of KCa3.1 in dysfunctional tubular autophagy in diabetic nephropathy, human proximal tubular cells (HK2) transfected with scrambled or KCa3.1 siRNAs were exposed to TGF-β1 for 48 h, then autophagosome formation, the autophagy marker LC3, signaling molecules PI3K, Akt and mTOR, and oxidative stress marker nitrotyrosine were examined respectively. In vivo, LC3, nitrotyrosine and phosphorylated mTOR were examined in kidneys of diabetic KCa3.1+/+ and KCa3.1-/- mice. The results demonstrated that TGF-β1 increased the formation of autophagic vacuoles, LC3 expression, and phosphorylation of PI3K, Akt and mTOR in scrambled siRNA transfected HK2 cells compared to control cells, which was reversed in KCa3.1 siRNA transfected HK2 cells. In vivo, expression of LC3 and nitrotyrosine, and phosphorylation of mTOR were significantly increased in kidneys of diabetic KCa3.1+/+ mice compared to non-diabetic mice, which were attenuated in kidneys of diabetic KCa3.1-/- mice. These results suggest that KCa3.1 activation contributes to dysfunctional tubular autophagy in diabetic nephropathy through PI3K/Akt/mTOR signaling pathways.
Collapse
|
576
|
The Clinical Significance of HbA1c in Operable Chronic Thromboembolic Pulmonary Hypertension. PLoS One 2016; 11:e0152580. [PMID: 27031508 PMCID: PMC4816563 DOI: 10.1371/journal.pone.0152580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/16/2016] [Indexed: 01/30/2023] Open
Abstract
Background Glycosylated hemoglobin A1c (HbA1c) has been proposed as an independent predictor of long-term prognosis in pulmonary arterial hypertension. However, the clinical relevance of HbA1c in patients with operable chronic thromboembolic pulmonary hypertension (CTEPH) remains unknown. The aim of the present study was to investigate the clinical significance of HbA1c as a biomarker in CTEPH. Methods Prospectively, 102 patients underwent pulmonary endarterectomy (PEA) in our national referral center between March 2013 and March 2014, of which after exclusion 45 patients were analyzed. HbA1c- levels, hemodynamic and exercise parameters were analyzed prior and one-year post-PEA. Results 45 patients (BMI: 27.3 ± 6.0 kg/m2; age: 62.7 ± 12.3 years) with a mean pulmonary arterial pressure (mPAP) of 43.6 ± 9.4 mmHg, a pulmonary vascular resistance (PVR) of 712.1 ± 520.4 dyn*s/cm5, a cardiac index (CI) of 2.4 ± 0.5 l/min/m2 and a mean HbA1c-level of 39.8 ± 5.6 mmol/mol were included. One-year post-PEA pulmonary hemodynamic and functional status significantly improved in our cohort. Baseline HbA1c-levels were significantly associated with CI, right atrial pressure, peak oxygen uptake and the change of 6-minute walking distance using linear regression analysis. However, using logistic regression analysis baseline HbA1c-levels were not significantly associated with residual post-PEA PH. Conclusions This is the first prospective study to describe an association of HbA1c-levels with pulmonary hemodynamics and exercise capacity in operable CTEPH patients. Our preliminary results indicate that in these patients impaired glucose metabolism as assessed by HbA1c is of clinical significance. However, HbA1c failed as a predictor of the hemodynamic outcome one-year post-PEA.
Collapse
|
577
|
Munukutla S, Pan G, Deshpande M, Thandavarayan RA, Krishnamurthy P, Palaniyandi SS. Alcohol Toxicity in Diabetes and Its Complications: A Double Trouble? Alcohol Clin Exp Res 2016; 40:686-97. [PMID: 27013182 DOI: 10.1111/acer.13008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/11/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Eight percent of the U.S. population has been diagnosed with diabetes mellitus (DM), while another large percentage has gone undiagnosed. As the epidemiology of this disease constitutes a larger percentage of the American population, another factor presents a dangerous dilemma that can exacerbate the hazardous effects imposed by DM. Excessive alcohol consumption concerns the health of more than 50% of all adults. When this heavy-alcohol-drinking population overlaps with DM and its complications, the effects can be dangerous. In this review, we term it as "double trouble." METHODS We provide evidence of alcohol-induced exacerbation of organ damage in diabetic conditions. In certain cases, we have explained how diabetes and alcohol induce similar pathological effects. RESULTS Known exacerbated complications include those related to heart diseases, liver damage, kidney dysfunction, as well as retinal and neurological impairment. Often, pathophysiological damage concludes with end-stage disorders and even mortality. The metabolic, cell signaling, and pathophysiological changes associated with "double trouble" would lead to the identification of novel therapeutic targets. CONCLUSIONS This review summarizes the epidemiology, diagnosis, pathophysiology, metabolic, and cell signaling alterations and finally brushes upon issues and strategies to manage the "double trouble."
Collapse
Affiliation(s)
- Srikar Munukutla
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Mandar Deshpande
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Rajarajan A Thandavarayan
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
| | - Prasanna Krishnamurthy
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
| | - Suresh S Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University, Detroit, Michigan
| |
Collapse
|
578
|
Abstract
PURPOSE OF REVIEW Foam cells in human glomeruli can be encountered in various renal diseases including focal segmental glomerulosclerosis and diabetic nephropathy. Although foam cells are key participants in atherosclerosis, surprisingly little is known about their pathogenicity in the kidney. We review our understanding (or lack thereof) of foam cells in the kidney, as well as insights gained in studies of foam cells and macrophages involved in atherosclerosis to suggest areas of investigation that will allow better characterization of the role of these cells in renal disease. RECENT FINDINGS There is a general dearth of animal models of disease with renal foam cell accumulation, limiting progress in our understanding of the pathobiology of these cells. Recent genetic modifications of hyperlipidemic mice have resulted in some new disease models with renal foam cell accumulation. Recent studies have challenged older paradigms by findings that indicate that many tissue macrophages are derived from cells permanently residing in the tissue from birth rather than circulating monocytes. SUMMARY Renal foam cells remain an enigma. Extrapolating from studies of atherosclerosis suggests that therapeutics targeting mitochondrial reactive oxygen species production, or modulating cholesterol and lipoprotein uptake or egress from these cells, may prove beneficial for kidney diseases in which foam cells are present.
Collapse
|
579
|
Abstract
PURPOSE OF REVIEW Podocytes are the main gatekeeper of protein filtration in the glomerulus. When podocytes work less efficiently, this translates to the appearance of proteins in the urine, a condition that, if not promptly treated, leads to progression of glomerular damage and renal failure. RECENT FINDINGS Novel gene mutations have been uncovered in patients with nephrotic syndrome combined with a better definition of the role of podocin mutations. Although the importance of the inflammasome pathway and of the mechanisms of autophagy in podocyte health and disease have been increasingly recognized, a precise relationship between these processes still needs to be assessed. Numerous potential therapeutic targets have been identified and numerous data support the possibility of boosting podocyte regeneration. However, translation of experimental results into the clinic could largely depend on the avoidance of undesired side-effects; nanomedicine could provide the means to target old and novel drugs specifically to the podocytes. SUMMARY Podocytes are key cells in the glomerulus, and their damage inevitably leads to proteinuria and glomerular dysfunction. The more is known about the causes and mechanisms of podocyte damage, the more it will be possible to find new cures for glomerular diseases of the kidney.
Collapse
|
580
|
Gao F, Yao M, Cao Y, Liu S, Liu Q, Duan H. Valsartan ameliorates podocyte loss in diabetic mice through the Notch pathway. Int J Mol Med 2016; 37:1328-36. [PMID: 26985716 DOI: 10.3892/ijmm.2016.2525] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 03/01/2016] [Indexed: 11/06/2022] Open
Abstract
The Notch pathway is known to be linked to diabetic nephropathy (DN); however, its underlying mechanism was poorly understood. In the present study, we examined the effect of Valsartan, an angiotensin II type 1 receptor antagonist, on the Notch pathway and podocyte loss in DN. Diabetes was induced in mice by an intraperitoneal injection of streptozotocin and and this was followed by treatment with Valsartan. Levels of blood glucose, kidney weight and body weight, as well as proteinuria were measured. Samples of the kidneys were also histologically examined. The relative levels of Jagged1, Notch1, Notch intracellular domain 1 (NICD1), Hes family BHLH transcription factor 1 (Hes1) and Hes-related family BHLH transcription factor with YRPW motif 1 expression (Hey1) in the glomeruli were determined by immunohistochemical analysis, western blot analysis and RT-qPCR. The B-Cell CLL/Lymphoma 2 (Bcl-2) and p53 pathways were examined by western blot analysis. Apoptosis and detachment of podocytes from the glomerular basement membrane were examined using a TUNEL assay, flow cytometric analysis and ELISA. The number of podocytes was quantified by measuring Wilms tumor-1 (WT-1) staining. We noted that the expression of Jagged1, Notch1, NICD1, Hes1 and Hey1 was increased in a time-dependent manner in the glomeruli of mice with streptozotocin (STZ)-induced diabetes. Moreover, in diabetic mice, Valsartan significantly reduced kidney weight and proteinuria, and mitigated the pathogenic processes in the kidneys. Valsartan also inhibited the activation of Notch, Bcl-2 and p53 pathways and ameliorated podocyte loss in the glomeruli of mice with STZ-induced diabetes. Taken together, these findings indicated that Valsartan exerted a beneficial effect on reducing podocyte loss, which is associated with inhibition of Notch pathway activation in the glomeruli of diabetic mice.
Collapse
Affiliation(s)
- Feng Gao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Min Yao
- Department of Biochemistry, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yanping Cao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Shuxia Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Qingjuan Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
581
|
Zhao S, Li T, Li J, Lu Q, Han C, Wang N, Qiu Q, Cao H, Xu X, Chen H, Zheng Z. miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway. Diabetologia 2016; 59:644-54. [PMID: 26687158 DOI: 10.1007/s00125-015-3832-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/17/2015] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS The mechanisms underlying the cellular metabolic memory induced by high glucose remain unclear. Here, we sought to determine the effects of microRNAs (miRNAs) on metabolic memory in diabetic retinopathy. METHODS The miRNA microarray was used to examine human retinal endothelial cells (HRECs) following exposure to normal glucose (N) or high glucose (H) for 1 week or transient H for 2 days followed by N for another 5 days (H→N). Levels of sirtuin 1 (SIRT1) and acetylated-nuclear factor κB (Ac-NF-κB) were examined following transfection with miR-23b-3p inhibitor or with SIRT1 small interfering (si)RNA in the H→N group, and the apoptotic HRECs were determined by flow cytometry. Retinal tissues from diabetic rats were similarly studied following intravitreal injection of miR-23b-3p inhibitor. Chromatin immunoprecipitation (ChIP) analysis was performed to detect binding of NF-κB p65 to the potential binding site of the miR-23b-27b-24-1 gene promoter in HRECs. RESULTS High glucose increased miR-23b-3p expression, even after the return to normal glucose. Luciferase assays identified SIRT1 as a target mRNA of miR-23b-3p. Reduced miR-23b-3p expression inhibited Ac-NF-κB expression by rescuing SIRT1 expression and also relieved the effect of metabolic memory induced by high glucose in HRECs. The results were confirmed in the retina using a diabetic rat model of metabolic memory. High glucose facilitated the recruitment of NF-κB p65 and promoted transcription of the miR-23b-27b-24-1 gene, which can be suppressed by decreasing miR-23b-3p expression. CONCLUSIONS/INTERPRETATION These studies identify a novel mechanism whereby miR-23b-3p regulates high-glucose-induced cellular metabolic memory in diabetic retinopathy through a SIRT1-dependent signalling pathway.
Collapse
Affiliation(s)
- Shuzhi Zhao
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Tao Li
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Jun Li
- Department of Ophthalmology, Lishui City Center Hospital, Lishui, People's Republic of China
| | - Qianyi Lu
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Changjing Han
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Na Wang
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Hui Cao
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Xun Xu
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Yishan Road 301, Shanghai, 200233, People's Republic of China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
582
|
Yuan H, Reddy MA, Deshpande S, Jia Y, Park JT, Lanting LL, Jin W, Kato M, Xu ZG, Das S, Natarajan R. Epigenetic Histone Modifications Involved in Profibrotic Gene Regulation by 12/15-Lipoxygenase and Its Oxidized Lipid Products in Diabetic Nephropathy. Antioxid Redox Signal 2016; 24:361-75. [PMID: 26492974 PMCID: PMC4779982 DOI: 10.1089/ars.2015.6372] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS Epigenetic mechanisms, including histone post-translational modifications and DNA methylation, are implicated in the pathogenesis of diabetic nephropathy (DN), but the mediators are not well known. Moreover, although dyslipidemia contributes to DN, epigenetic changes triggered by lipids are unclear. In diabetes, increased expression of 12/15-lipoxygenase (12/15-LO) enhances oxidized lipids such as 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE], which promote oxidant stress, glomerular and mesangial cell (MC) dysfunction, and fibrosis, and mediate the actions of profibrotic growth factors. We hypothesized that 12/15-LO and its oxidized lipid products can regulate epigenetic mechanisms mediating profibrotic gene expression related to DN. RESULTS 12(S)-HETE increased profibrotic gene expression and enrichment of permissive histone lysine modifications at their promoters in MCs. 12(S)-HETE also increased protein levels of SET7, a histone H3 lysine 4 methyltransferase, and promoted its nuclear translocation and enrichment at profibrotic gene promoters. Furthermore, SET7 (Setd7) gene silencing inhibited 12(S)-HETE-induced profibrotic gene expression. 12/15-LO (Alox15) gene silencing or genetic knockout inhibited transforming growth factor-β1 (TGF-β1)-induced expression of Setd7 and profibrotic genes and histone modifications in MCs. Furthermore, 12/15-LO knockout in mice ameliorated key features of DN and abrogated increases in renal SET7 and profibrotic genes. Additionally, 12/15-LO siRNAs in vivo blocked increases in renal SET7 and profibrotic genes in diabetic mice. INNOVATION AND CONCLUSION These novel results demonstrate for the first time that 12/15-LO-derived oxidized lipids regulate histone modifications associated with profibrotic gene expression in MCs, and 12/15-LO can mediate similar actions of TGF-β1 and diabetes. Targeting 12/15-LO might be a useful strategy to inhibit key epigenetic mechanisms involved in DN.
Collapse
Affiliation(s)
- Hang Yuan
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California.,2 Department of Nephrology, First Hospital of Jilin University , Changchun, China
| | - Marpadga A Reddy
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Supriya Deshpande
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Ye Jia
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California.,3 Department of Nephrology, Second Hospital of Jilin University , Changchun, China
| | - Jung Tak Park
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California.,4 Department of Internal Medicine, College of Medicine, Yonsei University , Seoul, Republic of Korea
| | - Linda L Lanting
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Wen Jin
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Mitsuo Kato
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Zhong Gao Xu
- 2 Department of Nephrology, First Hospital of Jilin University , Changchun, China
| | - Sadhan Das
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Rama Natarajan
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| |
Collapse
|
583
|
Bajaj S, Makkar BM, Abichandani VK, Talwalkar PG, Saboo B, Srikanta SS, Das A, Chandrasekaran S, Krishnan PV, Shah A, Abraham G, Tikku P, Kumar S. Management of anemia in patients with diabetic kidney disease: A consensus statement. Indian J Endocrinol Metab 2016; 20:268-81. [PMID: 27042425 PMCID: PMC4792030 DOI: 10.4103/2230-8210.176348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This consensus statement focuses on the window of opportunity, which exists while treating patients with diabetic kidney disease and anemia.
Collapse
Affiliation(s)
- Sarita Bajaj
- Director-Professor and Head, Department of Medicine, MLN Medical College, Allahabad, India
| | - Brij Mohan Makkar
- Sr. Consultant Physician and Diabetologist, Diabetes and Obesity Centre, Paschim Vihar, New Delhi, India
| | | | | | - Banshi Saboo
- Consultant Diabetologist, Dia Care - Diabetes Care and Hormone Clinic, Ambawadi, Ahmedabad, India
| | - S. S. Srikanta
- Medical Director and Senior Consultant Endocrinology Diabetes, Samatvam Endocrinology Diabetes Center, Samatvam: Science and Research for Human Welfare Trust, Jnana Sanjeevini Diabetes Hospital and Medical Center, Bengaluru, India
| | - Ashok Das
- Professor of Medicine and Head of Endocrinology, Pondicherry Institute of Medical Sciences, Puducherry, India
| | - Sruti Chandrasekaran
- Consultant Endocrinology, Diabetology and Metabolism, Global Hospitals, Adyar Cancer Institute, Vikas Center for Hormones and Mental Health, Chennai, India
| | - P. Venkata Krishnan
- Consultant, Division of Internal Medicine, Medanta - The Medicity Hospital, Gurgaon, Haryana, India
| | - Arun Shah
- Consultant Nephrologist, Lilavati Hospital and Bharatiya Arogyanidhi Hospital, Mumbai, India
| | - Georgi Abraham
- Professor of Medicine, Pondicherry Institute of Medical Sciences, Puducherry and Consultant – Nephrologist, Madras Medical Mission, Chennai, India
| | - Pankaj Tikku
- Executive Chief Editor and Editorial Head, Passi HealthCom Pvt. Ltd., Delhi, India
| | - Sushil Kumar
- Sr. Executive Editor, Passi HealthCom Pvt. Ltd, Delhi, India
| |
Collapse
|
584
|
Loewe P, Stefanidis I, Mertens PR, Chatzikyrkou C. Effects of various stages of nephropathy on wound healing in patients with diabetes: an observational cohort study encompassing 731 diabetics. Int Urol Nephrol 2016; 48:751-8. [PMID: 26873270 DOI: 10.1007/s11255-016-1229-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/25/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE In diabetics genetic predisposition, poor glycemic control and arterial hypertension contribute to nephropathy development in patients affected by diabetes mellitus. We set up the hypothesis that diabetic nephropathy and incisional hernia formation may have in common alterations of collagen composition and tested whether the occurrence of diabetic nephropathy coincides with wound healing disturbance (incisional herniation) or connective tissue diseases (inguinal herniation, umbilical herniation, aortic aneurysm, varicose veins, disc herniation). DESIGN A questionnaire on surgical procedures, wound healing and connective tissue disorders was performed with 731 diabetics. Furthermore, test results for kidney function and damage (creatinine clearance, proteinuria) and blood sugar control (HbA1c) were recorded. Correlations between aforementioned connective tissue diseases and "advanced" diabetic nephropathy were calculated. "Advanced" diabetic nephropathy was assumed in patients with macroproteinuria, CKD stage 5 and/or end-stage renal disease. All diabetics with CKD stages 1 and 2 without proteinuria were included in the "control" group. A subgroup analysis on incisional hernia formation coinciding with diabetic nephropathy was performed in patients with previously performed abdominal surgery. RESULTS In patients with advanced nephropathy, some diseases with connective tissue alterations, such as inguinal herniation, aortic aneurysms and varicose veins, did not occur more frequently than in patients without nephropathy. In diabetics with nephropathy, umbilical herniation (3 vs. 8.2 %, p = 0.04) and disc herniation rates (5.7 vs. 16.1 %, p = 0.002) were significantly lower. Subgroup analysis of patients with previously performed abdominal surgery (n = 381) revealed significantly higher incisional herniation rates when "advanced" diabetic nephropathy was present (16 % compared to 5.7 % without nephropathy, p = 0.016). CONCLUSION Our findings support the hypothesis that incisional hernia formation and diabetic nephropathy are positively correlated. Conversely, umbilical and disc herniation pathomechanisms are distinct, as these negatively correlate with the presence of advanced diabetic nephropathy.
Collapse
Affiliation(s)
- Paula Loewe
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Ioannis Stefanidis
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Christos Chatzikyrkou
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| |
Collapse
|
585
|
Peng H, Li Y, Wang C, Zhang J, Chen Y, Chen W, Cao J, Wang Y, Hu Z, Lou T. ROCK1 Induces Endothelial-to-Mesenchymal Transition in Glomeruli to Aggravate Albuminuria in Diabetic Nephropathy. Sci Rep 2016; 6:20304. [PMID: 26842599 PMCID: PMC4740844 DOI: 10.1038/srep20304] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) can cause loss of tight junctions, which in glomeruli are associated with albuminuria. Here we evaluated the role of EndMT in the development of albuminuria in diabetic nephropathy (DN). We demonstrated that EndMT occurs in the glomerular endothelium of patients with DN, showing by a decrease in CD31 but an increase in α-SMA expression. In glomeruli of db/db mice, there was an increased ROCK1 expression in the endothelium plus a decreased CD31-positive cells. Cultured glomerular endothelial cells (GEnCs) underwent EndMT when stimulated by 30 mM glucose, and exhibited increased permeability. Meanwhile, they showed a higher ROCK1 expression and activation. Notably, inhibition of ROCK1 largely blocked EndMT and the increase in endothelial permeability under this high-glucose condition. In contrast, overexpression of ROCK1 induced these changes. Consistent alterations were observed in vivo that treating db/db mice with the ROCK1 inhibitor, fasudil, substantially suppressed the expression of α-SMA in the glomerular endothelium, and reduced albuminuria. Thus we conclude that ROCK1 is induced by high glucose and it stimulates EndMT, resulting in increased endothelial permeability. Inhibition of ROCK1 could be a therapeutic strategy for preventing glomerular endothelial dysfunction and albuminuria in developing DN.
Collapse
Affiliation(s)
- Hui Peng
- Department of Internal Medicine, Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuanqing Li
- Department of Internal Medicine, Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Cheng Wang
- Department of Internal Medicine, Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun Zhang
- Department of Internal Medicine, Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanru Chen
- Department of Internal Medicine, Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wenfang Chen
- Department of Pathology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jin Cao
- Department of Medicine, Nephrology Division, Baylor College of Medicine, Houston, Texas, 77030-3411, U.S
| | - Yanlin Wang
- Department of Medicine, Nephrology Division, Baylor College of Medicine, Houston, Texas, 77030-3411, U.S
| | - Zhaoyong Hu
- Department of Medicine, Nephrology Division, Baylor College of Medicine, Houston, Texas, 77030-3411, U.S
| | - Tanqi Lou
- Department of Internal Medicine, Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
586
|
Wu D, Yang X, Zheng T, Xing S, Wang J, Chi J, Bian F, Li W, Xu G, Bai X, Wu G, Jin S. A novel mechanism of action for salidroside to alleviate diabetic albuminuria: effects on albumin transcytosis across glomerular endothelial cells. Am J Physiol Endocrinol Metab 2016; 310:E225-37. [PMID: 26646098 DOI: 10.1152/ajpendo.00391.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/01/2015] [Indexed: 11/22/2022]
Abstract
Salidroside (SAL) is a phenylethanoid glycoside isolated from the medicinal plant Rhodiola rosea. R. rosea has been reported to have beneficial effects on diabetic nephropathy (DN) and high-glucose (HG)-induced mesangial cell proliferation. Given the importance of caveolin-1 (Cav-1) in transcytosis of albumin across the endothelial barrier, the present study was designed to elucidate whether SAL could inhibit Cav-1 phosphorylation and reduce the albumin transcytosis across glomerular endothelial cells (GECs) to alleviate diabetic albuminuria as well as to explore its upstream signaling pathway. To assess the therapeutic potential of SAL and the mechanisms involved in DN albuminuria, we orally administered SAL to db/db mice, and the effect of SAL on the albuminuria was measured. The albumin transcytosis across GECs was explored in a newly established in vitro cellular model. The ratio of albumin to creatinine was significantly reduced upon SAL treatment in db/db mice. SAL decreased the albumin transcytosis across GECs in both normoglycemic and hyperglycemic conditions. SAL reversed the HG-induced downregulation of AMP-activated protein kinase and upregulation of Src kinase and blocked the upregulation Cav-1 phosphorylation. Meanwhile, SAL decreased mitochondrial superoxide anion production and moderately depolarized mitochondrial membrane potential. We conclude that SAL exerts its proteinuria-alleviating effects by downregulation of Cav-1 phosphorylation and inhibition of albumin transcytosis across GECs. These studies provide the first evidence of interference with albumin transcytosis across GECs as a novel approach to the treatment of diabetic albuminuria.
Collapse
Affiliation(s)
- Dan Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Tao Zheng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Shasha Xing
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Jianghong Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Jiangyang Chi
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Fang Bian
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Wenjing Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Gao Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Xiangli Bai
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Guangjie Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Si Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
587
|
Lee WJ, Liu SH, Chiang CK, Lin SY, Liang KW, Chen CH, Tien HR, Chen PH, Wu JP, Tsai YC, Lai DW, Chang YC, Sheu WHH, Sheu ML. Aryl Hydrocarbon Receptor Deficiency Attenuates Oxidative Stress-Related Mesangial Cell Activation and Macrophage Infiltration and Extracellular Matrix Accumulation in Diabetic Nephropathy. Antioxid Redox Signal 2016; 24:217-231. [PMID: 26415004 DOI: 10.1089/ars.2015.6310] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS Activation of glomerular mesangial cells (MCs) and functional changes of renal tubular cells are due to metabolic abnormalities, oxidative stress, and matrix accumulation in the diabetic nephropathy (DN). Aryl hydrocarbon receptor (AhR) activation has been implicated in DN. In this study, we investigated the role of AhR in the pathophysiological processes of DN using AhR knockout (AhRKO) and pharmacological inhibitor α-naphthoflavone mouse models. RESULTS The increased blood glucose, glucose intolerance, MC activation, macrophage infiltration, and extracellular matrix (ECM) accumulation were significantly attenuated in AhRKO mice with diabetic inducer streptozotocin (STZ) treatment. AhR deficiency by genetic knockout or pharmacological inhibition also decreased the induction of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2), lipid peroxidation, oxidative stress, NADPH oxidase activity, and N-ɛ-carboxymethyllysine (CML, a major advanced glycation end product) in STZ-induced diabetic mice. CML showed remarkably increased AhR/COX-2 DNA-binding activity, protein-DNA interactions, gene regulation, and ECM formation in MCs and renal proximal tubular cells, which could be reversed by siRNA-AhR transfection. CML-increased AhR nuclear translocation and biological activity in MCs and renal proximal tubular cells could also be effectively attenuated by antioxidants. INNOVATION We elucidate for the first time that AhR plays an important role in MC activation, macrophage infiltration, and ECM accumulation in DN conferred by oxidative stress. CONCLUSIONS AhR-regulated COX-2/PGE2 expression and ECM deposition through oxidative stress cascade is involved in the CML-triggered MC activation and macrophage infiltration. These findings suggest new insights into the development of therapeutic approaches to reduce diabetic microvascular complications. Antioxid. Redox Signal. 24, 217-231.
Collapse
Affiliation(s)
- Wen-Jane Lee
- 1 Department of Medical Research, Taichung Veterans General Hospital , Taichung, Taiwan
| | - Shing-Hwa Liu
- 2 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan .,3 Department of Medical Research, China Medical University Hospital, China Medical University , Taichung, Taiwan
| | - Chih-Kang Chiang
- 2 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan .,4 Department of Internal Medicine, University Hospital and College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Shih-Yi Lin
- 5 Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital , Taichung, Taiwan
| | - Kae-Woei Liang
- 6 Cardiovascular Center, Taichung Veterans General Hospital , Taichung, Taiwan
| | - Cheng-Hsu Chen
- 7 Department of Internal Medicine, Taichung Veterans General Hospital , Chiayi, Taiwan .,8 Department of Life Science, Tunghai University , Taichung, Taiwan .,9 School of Medicine, College of Medicine, China Medical University , Taichung, Taiwan .,10 Division of Nephrology, Taichung Veterans General Hospital , Taichung, Taiwan
| | - Hsing-Ru Tien
- 11 Institute of Biomedical Sciences, National Chung Hsing University , Taichung, Taiwan
| | - Pei-Hsuan Chen
- 1 Department of Medical Research, Taichung Veterans General Hospital , Taichung, Taiwan
| | - Jen-Pey Wu
- 1 Department of Medical Research, Taichung Veterans General Hospital , Taichung, Taiwan
| | - Yi-Ching Tsai
- 1 Department of Medical Research, Taichung Veterans General Hospital , Taichung, Taiwan
| | - De-Wei Lai
- 11 Institute of Biomedical Sciences, National Chung Hsing University , Taichung, Taiwan
| | - Yi-Chieh Chang
- 11 Institute of Biomedical Sciences, National Chung Hsing University , Taichung, Taiwan
| | - Wayne Huey-Herng Sheu
- 5 Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital , Taichung, Taiwan .,11 Institute of Biomedical Sciences, National Chung Hsing University , Taichung, Taiwan .,12 Rong Hsing Research Center for Translational Medicine, National Chung Hsing University , Taichung, Taiwan
| | - Meei-Ling Sheu
- 1 Department of Medical Research, Taichung Veterans General Hospital , Taichung, Taiwan .,11 Institute of Biomedical Sciences, National Chung Hsing University , Taichung, Taiwan .,12 Rong Hsing Research Center for Translational Medicine, National Chung Hsing University , Taichung, Taiwan
| |
Collapse
|
588
|
Kanasaki K. Concerted efforts to combat diabetic complications. Kidney Int 2016; 89:269-71. [PMID: 26806828 DOI: 10.1016/j.kint.2015.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Kidney disease in diabetes is an important research topic in both clinical and basic science. Genetic analysis provides key translational data. In this regard, Jiang et al. emphasize some potential concerns over and problems with former genetics analysis methods, especially in common disease conditions such as kidney disease in diabetic patients.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan; Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| |
Collapse
|
589
|
Venner JM, Famulski KS, Reeve J, Chang J, Halloran PF. Relationships among injury, fibrosis, and time in human kidney transplants. JCI Insight 2016; 1:e85323. [PMID: 27699214 DOI: 10.1172/jci.insight.85323] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Kidney transplant biopsies offer an opportunity to understand the pathogenesis of organ fibrosis. We studied the relationships between the time of biopsy after transplant (TxBx), histologic fibrosis, diseases, and transcript expression. METHODS Expression microarrays from 681 kidney transplant indication biopsies taken either early (n = 282, <1 year) or late (n = 399, >1 year) after transplant were used to analyze the molecular landscape of fibrosis in relationship to histologic fibrosis and diseases. RESULTS Fibrosis was absent at transplantation but was present in some early biopsies by 4 months after transplant, apparently as a self-limited response to donation implantation injury not associated with progression to failure. The molecular phenotype of early biopsies represented the time sequence of the response to wounding: immediate expression of acute kidney injury transcripts, followed by fibrillar collagen transcripts after several weeks, then by the appearance of immunoglobulin and mast cell transcripts after several months as fibrosis appeared. Fibrosis in late biopsies correlated with injury, fibrillar collagen, immunoglobulin, and mast cell transcripts, but these were independent of time. Pathway analysis revealed epithelial response-to-wounding pathways such as Wnt/β-catenin. CONCLUSION Fibrosis in late biopsies had different associations because many kidneys had potentially progressive diseases and subsequently failed. Molecular correlations with fibrosis in late biopsies were independent of time, probably because ongoing injury obscured the response-to-wounding time sequence. The results indicate that fibrosis in kidney transplants is driven by nephron injury and that progression to failure reflects continuing injury, not autonomous fibrogenesis. TRIAL REGISTRATION INTERCOM study (www.clinicalTrials.gov; NCT01299168). FUNDING Canada Foundation for Innovation and Genome Canada.
Collapse
Affiliation(s)
- Jeffery M Venner
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada.,Department of Medicine, Division of Nephrology and Transplant Immunology, Edmonton, Alberta, Canada
| | - Konrad S Famulski
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jeff Reeve
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica Chang
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada
| | - Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada.,Department of Medicine, Division of Nephrology and Transplant Immunology, Edmonton, Alberta, Canada
| |
Collapse
|
590
|
Sen U, Pushpakumar S. Mini-review: diabetic renal complications, a potential stinky remedy. Am J Physiol Renal Physiol 2016; 310:F119-22. [PMID: 26538437 PMCID: PMC4719040 DOI: 10.1152/ajprenal.00299.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/02/2015] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease is associated with vasculitis and is also an independent risk factor for peripheral vascular and coronary artery disease in diabetic patients. Despite optimal management, a significant number of patients progress toward end-stage renal disease (ESRD), a suggestion that the disease mechanism is far from clear. A reduction in hydrogen sulfide (H2S) has been suggested to play a vital role in diabetic vascular complications including diabetic nephropathy (DN). This mini-review highlights the recent findings on the role of H2S in mitigating abnormal extracellular matrix metabolism in DN. A discussion on the development of the newer slow-releasing H2S compounds and its therapeutic potential is also included.
Collapse
Affiliation(s)
- Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
591
|
Abstract
Podocyte hypertrophy and apoptosis are two hallmarks of diabetic glomeruli, but the sequence in which these processes occur remains a matter of debate. Here we investigated the effects of inhibiting hypertrophy on apoptosis, and vice versa, in both podocytes and glomeruli, under diabetic conditions. Hypertrophy and apoptosis were inhibited using an epidermal growth factor receptor inhibitor (PKI 166) and a pan-caspase inhibitor (zAsp-DCB), respectively. We observed significant increases in the protein expression of p27, p21, phospho-eukaryotic elongation factor 4E-binding protein 1, and phospho-p70 S6 ribosomal protein kinase, in both cultured podocytes exposed to high-glucose (HG) medium, and streptozotocin-induced diabetes mellitus (DM) rat glomeruli. These increases were significantly inhibited by PKI 166, but not by zAsp-DCB. In addition, the amount of protein per cell, the relative cell size, and the glomerular volume were all significantly increased under diabetic conditions, and these changes were also blocked by treatment with PKI 166, but not zAsp-DCB. Increased protein expression of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase, together with increased Bax/Bcl-2 ratios, were also observed in HG-stimulated podocytes and DM glomeruli. Treatment with either zAsp-DCB or PKI 166 resulted in a significant attenuation of these effects. Both PKI 166 and zAsp-DCB also inhibited the increase in number of apoptotic cells, as assessed by Hoechst 33342 staining and TUNEL assay. Under diabetic conditions, inhibition of podocyte hypertrophy results in attenuated apoptosis, whereas blocking apoptosis has no effect on podocyte hypertrophy, suggesting that podocyte hypertrophy precedes apoptosis.
Collapse
|
592
|
Rieg JAD, Chirasani VR, Koepsell H, Senapati S, Mahata SK, Rieg T. Regulation of intestinal SGLT1 by catestatin in hyperleptinemic type 2 diabetic mice. J Transl Med 2016; 96:98-111. [PMID: 26552046 PMCID: PMC4695279 DOI: 10.1038/labinvest.2015.129] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/10/2015] [Accepted: 09/24/2015] [Indexed: 01/23/2023] Open
Abstract
The small intestine is the major site for nutrient absorption that is critical in maintenance of euglycemia. Leptin, a key hormone involved in energy homeostasis, directly affects nutrient transport across the intestinal epithelium. Catestatin (CST), a 21-amino acid peptide derived from proprotein chromogranin A, has been shown to modulate leptin signaling. Therefore, we reasoned that leptin and CST could modulate intestinal Na(+)-glucose transporter 1 (SGLT1) expression in the context of obesity and diabetes. We found that hyperleptinemic db/db mice exhibit increased mucosal mass, associated with an enhanced proliferative response and decreased apoptosis in intestinal crypts, a finding absent in leptin-deficient ob/ob mice. Intestinal SGLT1 abundance was significantly decreased in hyperleptinemic but not leptin-deficient mice, indicating leptin regulation of SGLT1 expression. Phlorizin, a SGLT1/2 inhibitor, was without effect in an oral glucose tolerance test in db/db mice. The alterations in architecture and SGLT1 abundance were not accompanied by changes in the localization of intestinal alkaline phosphatase, indicating intact differentiation. Treatment of db/db mice with CST restored intestinal SGLT1 abundance and intestinal turnover, suggesting a cross-talk between leptin and CST, without affecting plasma leptin levels. Consistent with this hypothesis, we identified structural homology between CST and the AB-loop of leptin and protein-protein docking revealed binding of CST and leptin with the Ig-like binding site-III of the leptin receptor. In summary, downregulation of SGLT1 in an obese type 2 diabetic mouse model with hyperleptinemia is presumably mediated via the short form of the leptin receptor and reduces overt hyperglycemia.
Collapse
Affiliation(s)
- Jessica A. Dominguez Rieg
- Department of Basic Sciences, Bastyr University California, San Diego, CA, USA,VA San Diego Healthcare System, San Diego, California; CA, USA
| | | | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | - Sanjib Senapati
- Department of Biotechnology, Institute of Technology Madras, Chennai, India
| | - Sushil K. Mahata
- VA San Diego Healthcare System, San Diego, California; CA, USA,Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Timo Rieg
- VA San Diego Healthcare System, San Diego, California; CA, USA,Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
593
|
Chowdhury TA, O'Toole S, Yaqoob MM. Managing blood glucose levels in patients with diabetes and renal impairment. Br J Hosp Med (Lond) 2016; 77:C10-3. [DOI: 10.12968/hmed.2016.77.1.c10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Sam O'Toole
- Specialist Trainee in Diabetes and Endocrinology is Department of Diabetes and Metabolism
| | - M Magdi Yaqoob
- Professor of Nephrology in the Department of Nephrology, Barts and the London School of Medicine and Dentistry, London E1 1BB
| |
Collapse
|
594
|
Chien HY, Chen CY, Chiu YH, Lin YC, Li WC. Differential microRNA Profiles Predict Diabetic Nephropathy Progression in Taiwan. Int J Med Sci 2016; 13:457-65. [PMID: 27279796 PMCID: PMC4893561 DOI: 10.7150/ijms.15548] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/09/2016] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Diabetic nephropathy (DN) is a major leading cause of kidney failure. Recent studies showed that serological microRNAs (miRs) could be utilized as biomarkers to identify disease pathogenesis; the DN-related miRs, however, remained to be explored. METHODS A prospective case-control study was conducted. The clinical significance of five potential miRs (miR-21, miR-29a, miR-29b, miR-29c and miR192) in type 2 Diabetes Mellitus (T2DM) patients who have existing diabetic retinopathy with differential Albumin:Creatinine Ratio (ACR) and estimated Glomerular Filtration Rate (eGFR) was performed using quantitative RT-PCR analysis. The subjects with diabetic retinopathy enrolled in Taipei City Hospital, Taiwan, were classified into groups of normal albuminuria (ACR<30mg/g; N=12); microalbuminuria (30mg/g<ACR<300mg/g; N=17) and overt proteinuria (ACR>300mg/g; N=21) as well as 18 low-eGFR (eGFR<60ml/min) and 32 high-eGFR (eGFR>60ml/min). The level of serum miRs was statistically correlated with age, Glucose AC, ACR, eGFR and DN progression. RESULTS The levels of miR-21, miR-29a and miR-192 were significantly enriched in the overt proteinuria group compared with microalbuminuria and/or overt proteinuria groups. It was shown that only miR-21 level was significantly up-regulated in low-eGFR group compared with high-eGFR patients. Interestingly, Pearson's correlation coefficient analysis demonstrated that DN progressors showed significantly greater levels of miR-21, miR-29a, miR-29b and miR-29c in comparison with non-progressors implying the clinical potential of DN associated miRs in monitoring and preventing disease advancement. CONCLUSION Our findings showed that miR-21, miR-29a/b/c and miR-192 could reflect DN pathogenesis and serve as biomarkers during DN progression.
Collapse
Affiliation(s)
- Hung-Yu Chien
- 1. Department of Endocrinology & Metabolism, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan
| | - Chang-Yi Chen
- 2. Institute of Oral Biology and Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Hui Chiu
- 3. Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Yi-Chun Lin
- 4. Division of Endocrinology &Metabolism, Taipei Veterans General Hospital, Taipei, Taiwan;; 5. Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Chun Li
- 2. Institute of Oral Biology and Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan;; 3. Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
595
|
Xu J, Zheng S, Kralik PM, Krishnan L, Huang H, Hoying JB, Cai L, Carlson EC, Tan Y, Epstein PN. Diabetes Induced Changes in Podocyte Morphology and Gene Expression Evaluated Using GFP Transgenic Podocytes. Int J Biol Sci 2016; 12:210-8. [PMID: 26884718 PMCID: PMC4737677 DOI: 10.7150/ijbs.13057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/26/2015] [Indexed: 01/15/2023] Open
Abstract
The effect of diabetes in vivo has not been examined on isolated podocytes. To achieve this, GFP was expressed constitutively in podocytes of PGFP transgenic mice which were bred to OVE mice to produce diabetic OVE-GFP mice. Viewing GFP fluorescence, foot processes of OVE-GFP podocytes were visually and measurably effaced, which did not occur with less severe STZ diabetes. Over 300,000 podocytes were purified from each PGFP mouse but only 49,000 podocytes per diabetic OVE-GFP mouse. The low yield from OVE-GFP mice appeared to be due to more fragile state of most OVE-GFP diabetic podocytes which did not survive the isolation process. Diabetic podocytes that were isolated had high levels of the lipid peroxidation product 4-HNE and they were more sensitive to death due to oxidative stress. Gene array analysis of OVE-GFP podocytes showed strong diabetes induction of genes involved in inflammation. Four CXC chemokines were induced at least 3-fold and the chemokine CXCL1 was shown for the first time to be specifically induced in podocytes by OVE, dbdb and STZ diabetes.
Collapse
Affiliation(s)
- Jianxiang Xu
- 1. Department of Pediatrics, University of Louisville
| | - Shirong Zheng
- 1. Department of Pediatrics, University of Louisville
| | | | | | - Hui Huang
- 1. Department of Pediatrics, University of Louisville;; 4. Children's Hospital of Jiangxi Province, China
| | - James B Hoying
- 2. Cardiovascular Innovations Institute, University of Louisville
| | - Lu Cai
- 1. Department of Pediatrics, University of Louisville
| | | | - Yi Tan
- 1. Department of Pediatrics, University of Louisville
| | | |
Collapse
|
596
|
Microbubbles and Ultrasound: Therapeutic Applications in Diabetic Nephropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:309-30. [PMID: 26486345 DOI: 10.1007/978-3-319-22536-4_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diabetic nephropathy (DN) remains one of the most common causes of end-stage renal disease. Current therapeutic strategies aiming at optimization of serum glucose and blood pressure are beneficial in early stage DN, but are unable to fully prevent disease progression. With the limitations of current medical therapies and the shortage of available donor organs for kidney transplantation, the need for novel therapies to address DN complications and prevent progression towards end-stage renal failure is crucial. The development of ultrasound technology for non-invasive and targeted in-vivo gene delivery using high power ultrasound and carrier microbubbles offers great therapeutic potential for the prevention and treatment of DN. The promising results from preclinical studies of ultrasound-mediated gene delivery (UMGD) in several DN animal models suggest that UMGD offers a unique, non-invasive platform for gene- and cell-based therapies targeted against DN with strong clinical translation potential.
Collapse
|
597
|
Huang S, Susztak K. Epithelial Plasticity versus EMT in Kidney Fibrosis. Trends Mol Med 2015; 22:4-6. [PMID: 26700490 DOI: 10.1016/j.molmed.2015.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/23/2015] [Indexed: 12/11/2022]
Abstract
Ten percent of the population worldwide suffers from chronic kidney disease (CKD), characterized by fibrotic changes in the kidney. Fibrosis is associated with loss of epithelial parenchyma, and accumulation of myofibroblasts, fibrillary collagen, and inflammatory cells. Two recent papers highlight the critical role of Twist and Snai1 transcription factors in kidney fibrosis.
Collapse
Affiliation(s)
- Shizheng Huang
- Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
598
|
Bhatt K, Lanting LL, Jia Y, Yadav S, Reddy MA, Magilnick N, Boldin M, Natarajan R. Anti-Inflammatory Role of MicroRNA-146a in the Pathogenesis of Diabetic Nephropathy. J Am Soc Nephrol 2015; 27:2277-88. [PMID: 26647423 DOI: 10.1681/asn.2015010111] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022] Open
Abstract
Inflammation has a critical role in the pathogenesis of diabetic complications, including diabetic nephropathy (DN). MicroRNAs have recently emerged as important regulators of DN. However, the role of microRNAs in the regulation of inflammation during DN is poorly understood. Here, we examined the in vivo role of microRNA-146a (miR-146a), a known anti-inflammatory microRNA, in the pathogenesis of DN. In a model of streptozotocin-induced diabetes, miR-146a(-/-) mice showed significantly exacerbated proteinuria, renal macrophage infiltration, glomerular hypertrophy, and fibrosis relative to the respective levels in control wild-type mice. Diabetes-induced upregulation of proinflammatory and profibrotic genes was significantly greater in the kidneys of miR-146a(-/-) than in the kidneys of wild-type mice. Notably, miR-146a expression increased in both peritoneal and intrarenal macrophages in diabetic wild-type mice. Mechanistically, miR-146a deficiency during diabetes led to increased expression of M1 activation markers and suppression of M2 markers in macrophages. Concomitant with increased expression of proinflammatory cytokines, such as IL-1β and IL-18, markers of inflammasome activation also increased in the macrophages of diabetic miR-146a(-/-) mice. These studies suggest that in early DN, miR-146a upregulation exerts a protective effect by downregulating target inflammation-related genes, resulting in suppression of proinflammatory and inflammasome gene activation. Loss of this protective mechanism in miR-146a(-/-) mice leads to accelerated DN. Taken together, these results identify miR-146a as a novel anti-inflammatory noncoding RNA modulator of DN.
Collapse
Affiliation(s)
| | | | - Ye Jia
- Department of Diabetes Complications
| | | | | | - Nathaniel Magilnick
- Department of Molecular and Cellular Biology, and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope National Medical Center, Duarte, California
| | - Mark Boldin
- Department of Molecular and Cellular Biology, and
| | | |
Collapse
|
599
|
Li R, Xing J, Mu X, Wang H, Zhang L, Zhao Y, Zhang Y. Sulodexide therapy for the treatment of diabetic nephropathy, a meta-analysis and literature review. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:6275-83. [PMID: 26664049 PMCID: PMC4671764 DOI: 10.2147/dddt.s87973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sulodexide is a heterogeneous group of sulfated glycosaminoglycans (GAGs) that is mainly composed of low-molecular-weight heparin. Clinical studies have demonstrated that sulodexide is capable of reducing urinary albumin excretion rates in patients with type 1 and type 2 diabetes, suggesting that sulodexide has renal protection. However, this efficacy remains inconclusive. In this article, we used meta-analysis to summarize the clinical results of all prospective clinical studies in order to determine the clinical efficacy and safety of sulodexide in diabetic patients with nephropathy. Overall, sulodexide therapy was associated with a significant reduction in urinary protein excretion. In the sulodexide group, 220 (17.7%) achieved at least a 50% decrease in albumin excretion rate compared with only 141 (11.5%) in the placebo. The odds ratio comparing proportions of patients with therapeutic success between the sulodexide and placebo groups was 3.28 (95% confidence interval, 1.34-8.06; P=0.01). These data suggest a renoprotective benefit of sulodexide in patients with diabetes and micro- and macroalbuminuria, which will provide important information for clinical use of this drug as a potential modality for diabetic nephropathy, specifically, the prevention of end-stage renal disease that is often caused by diabetes.
Collapse
Affiliation(s)
- Rui Li
- Emergency Department, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Jing Xing
- Emergency Department, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Xaojing Mu
- Dalian Hospital of Traditional Chinese Medicine, Dalian, People's Republic of China
| | - Hui Wang
- Emergency Department, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Lei Zhang
- Intensive Care Unit, Tianjin First Central Hospital, People's Republic of China
| | - Yu Zhao
- Emergency Department, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yu Zhang
- Emergency Department, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
600
|
Mende C. Management of Chronic Kidney Disease: The Relationship Between Serum Uric Acid and Development of Nephropathy. Adv Ther 2015; 32:1177-91. [PMID: 26650815 PMCID: PMC4679778 DOI: 10.1007/s12325-015-0272-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Chronic kidney disease (CKD) is increasingly recognized as a global health problem, and new and effective strategies are needed for the management of this condition. Recently, there has been renewed interest in the relationship between serum uric acid (SUA) levels and CKD, and several recent trials have demonstrated a possible link between SUA and the development and/or progression of CKD in patients with and without diabetes. The identification of key urate transporters such as urate transporter 1 and glucose transporter 9 has provided not only insights into the pathophysiology of hyperuricemia, but also possible links to other processes, such as glucose homeostasis. The renewed interest in the role of SUA in CKD has coincided with the development of sodium glucose co-transporter 2 inhibitors for the treatment of diabetes. In addition to improving glycemic control, these agents, acting via the kidneys in an insulin-independent manner, have also been shown to reduce SUA levels and potentially improve some measures of renal function. This review will discuss the role of uric acid in CKD treatment, and how SUA-lowering therapies may prevent or delay the progression of CKD. FUNDING Janssen Scientific Affairs.
Collapse
|