551
|
Godos J, Currenti W, Angelino D, Mena P, Castellano S, Caraci F, Galvano F, Del Rio D, Ferri R, Grosso G. Diet and Mental Health: Review of the Recent Updates on Molecular Mechanisms. Antioxidants (Basel) 2020; 9:antiox9040346. [PMID: 32340112 PMCID: PMC7222344 DOI: 10.3390/antiox9040346] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Over the last decades, there has been a substantial increase in the prevalence of mental health disorders, including an increased prevalence of depression, anxiety, cognitive, and sleep disorders. Diet and its bioactive components have been recognized among the modifiable risk factors, possibly influencing their pathogenesis. This review aimed to summarize molecular mechanisms underlying the putative beneficial effects toward brain health of different dietary factors, such as micro- and macronutrient intake and habits, such as feeding time and circadian rhythm. The role of hormonal homeostasis in the context of glucose metabolism and adiponectin regulation and its impact on systemic and neuro-inflammation has also been considered and deepened. In addition, the effect of individual bioactive molecules exerting antioxidant activities and acting as anti-inflammatory agents, such as omega-3 fatty acids and polyphenols, considered beneficial for the central nervous system via modulation of adult neurogenesis, synaptic and neuronal plasticity, and microglia activation has been summarized. An overview of the regulation of the gut–brain axis and its effect on the modulation of systemic inflammation and oxidative stress has been provided. Finally, the impact of bioactive molecules on inflammation and oxidative stress and its association with brain health has been summarized.
Collapse
Affiliation(s)
- Justyna Godos
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.C.); (R.F.)
- Correspondence:
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (W.C.); (F.G.); (G.G.)
| | - Donato Angelino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy;
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy;
| | - Filippo Caraci
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.C.); (R.F.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (W.C.); (F.G.); (G.G.)
| | - Daniele Del Rio
- School of Advanced Studies on Food and Nutrition, University of Parma, 43125 Parma, Italy;
- Department of Veterinary Medicine, University of Parma, 43125 Parma, Italy
| | - Raffaele Ferri
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.C.); (R.F.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (W.C.); (F.G.); (G.G.)
| |
Collapse
|
552
|
Meroni M, Longo M, Rustichelli A, Dongiovanni P. Nutrition and Genetics in NAFLD: The Perfect Binomium. Int J Mol Sci 2020; 21:ijms21082986. [PMID: 32340286 PMCID: PMC7215858 DOI: 10.3390/ijms21082986] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a global healthcare burden since it is epidemiologically related to obesity, type 2 diabetes (T2D) and Metabolic Syndrome (MetS). It embraces a wide spectrum of hepatic injuries, which include simple steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The susceptibility to develop NAFLD is highly variable and it is influenced by several cues including environmental (i.e., dietary habits and physical activity) and inherited (i.e., genetic/epigenetic) risk factors. Nonetheless, even intestinal microbiota and its by-products play a crucial role in NAFLD pathophysiology. The interaction of dietary exposure with the genome is referred to as 'nutritional genomics,' which encompasses both 'nutrigenetics' and 'nutriepigenomics.' It is focused on revealing the biological mechanisms that entail both the acute and persistent genome-nutrient interactions that influence health and it may represent a promising field of study to improve both clinical and health nutrition practices. Thus, the premise of this review is to discuss the relevance of personalized nutritional advices as a novel therapeutic approach in NAFLD tailored management.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Alice Rustichelli
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
- Correspondence: ; Tel.: +39-02-5503-3467; Fax: +39-02-5503-4229
| |
Collapse
|
553
|
Plaza-Diaz J, Pastor-Villaescusa B, Rueda-Robles A, Abadia-Molina F, Ruiz-Ojeda FJ. Plausible Biological Interactions of Low- and Non-Calorie Sweeteners with the Intestinal Microbiota: An Update of Recent Studies. Nutrients 2020; 12:E1153. [PMID: 32326137 PMCID: PMC7231174 DOI: 10.3390/nu12041153] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Sweeteners that are a hundred thousand times sweeter than sucrose are being consumed as sugar substitutes. The effects of sweeteners on gut microbiota composition have not been completely elucidated yet, and numerous gaps related to the effects of nonnutritive sweeteners (NNS) on health still remain. The NNS aspartame and acesulfame-K do not interact with the colonic microbiota, and, as a result, potentially expected shifts in the gut microbiota are relatively limited, although acesulfame-K intake increases Firmicutes and depletes Akkermansia muciniphila populations. On the other hand, saccharin and sucralose provoke changes in the gut microbiota populations, while no health effects, either positive or negative, have been described; hence, further studies are needed to clarify these observations. Steviol glycosides might directly interact with the intestinal microbiota and need bacteria for their metabolization, thus they could potentially alter the bacterial population. Finally, the effects of polyols, which are sugar alcohols that can reach the colonic microbiota, are not completely understood; polyols have some prebiotics properties, with laxative effects, especially in patients with inflammatory bowel syndrome. In this review, we aimed to update the current evidence about sweeteners' effects on and their plausible biological interactions with the gut microbiota.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Belén Pastor-Villaescusa
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- LMU–Ludwig-Maximilians-University of Munich, Division of Metabolic and Nutritional Medicine, von Hauner Children’s Hospital, University of Munich Medical Center, 80337 Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Centre for Environmental Health, 85764 Neuherberg, Germany
| | - Ascensión Rueda-Robles
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain
| | - Francisco Abadia-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- RG Adipocytes and metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85764 Neuherberg, Munich, Germany
| |
Collapse
|
554
|
Meng X, Ma J, Kang SY, Jung HW, Park YK. Jowiseungki decoction affects diabetic nephropathy in mice through renal injury inhibition as evidenced by network pharmacology and gut microbiota analyses. Chin Med 2020; 15:24. [PMID: 32190104 PMCID: PMC7066842 DOI: 10.1186/s13020-020-00306-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background Jowiseungki decoction (JSD) is a prescription commonly used for the treatment of diabetic complications or diabetic nephropathy (DN) in traditional medicine clinics. However, the underlying therapeutic mechanisms of JSD are still unclear. Methods Streptozotocin (STZ)-induced DN mice were administered 100 and 500 mg/kg JSD for 4 weeks, and the therapeutic mechanisms and targets of JSD were analyzed by network pharmacology and gut microbiota analyses. Results JSD significantly decreased the increase in food and water intake, urine volume, fasting blood glucose, serum glucose and triglyceride levels, and urinary albumin excretion. JSD administration significantly increased the decrease in insulin secretion and creatinine clearance and reduced the structural damage to the kidney tissues. Moreover, JSD administration significantly inhibited the expression of protein kinase C-alpha (PKC-α), transforming growth factor beta-1 (TGF-β1), α-smooth muscle actin (α-SMA), nuclear factor-κB (NF-κB), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in the kidney tissues of DN mice, while it significantly increased the phosphorylation of insulin receptor substrate 1 (IRS-1), phosphatidylinositol-3-kinase (PI3K), and protein kinase B (Akt). In the network pharmacological analysis, JSD obviously influenced phosphatase binding, protein serine/threonine kinase, and mitogen-activated protein kinase (MAPK)-related signaling pathways. Our data suggest that JSD can improve symptoms in STZ-induced DN mice through the inhibition of kidney dysfunction, in particular, by regulating the PKCα/PI3K/Akt and NF-κB/α-SMA signaling pathways. Gut microbiota analysis can help to discover the pharmaco-mechanisms of the influence of JSD on bacterial diversity and flora structures in DN. Conclusion JSD can improve the symptoms of DN, and the underlying mechanism of this effect is renal protection through the inhibition of fibrosis and inflammation. JSD can also change bacterial diversity and community structures in DN.
Collapse
Affiliation(s)
- Xianglong Meng
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea.,Experimental Teaching Center, College of Chinese Materia Medica, Shanxi University of Chinese Medicine, Jinzhong, 030619 China
| | - Junnan Ma
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| | - Seok Yong Kang
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| | - Hyo Won Jung
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| | - Yong-Ki Park
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| |
Collapse
|
555
|
Kotzé-Hörstmann LM, Sadie-Van Gijsen H. Modulation of Glucose Metabolism by Leaf Tea Constituents: A Systematic Review of Recent Clinical and Pre-clinical Findings. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2973-3005. [PMID: 32105058 DOI: 10.1021/acs.jafc.9b07852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Leaf teas are widely used as a purported treatment for dysregulated glucose homeostasis. The objective of this study was to systematically evaluate the clinical and cellular-metabolic evidence, published between January 2013 and May 2019, and indexed on PubMed, ScienceDirect, and Web of Science, supporting the use of leaf teas for this purpose. Fourteen randomized controlled trials (RCTs) (13 on Camellia sinensis teas) were included, with mixed results, and providing scant mechanistic information. In contrast, 74 animal and cell culture studies focusing on the pancreas, liver, muscle, and adipose tissue yielded mostly positive results and highlighted enhanced insulin signaling as a recurring target associated with the effects of teas on glucose metabolism. We conclude that more studies, including RCTs and pre-clinical studies examining teas from a wider variety of species beyond C. sinensis, are required to establish a stronger evidence base on the use of leaf teas to normalize glucose metabolism.
Collapse
Affiliation(s)
- Liske M Kotzé-Hörstmann
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Parow 7505, South Africa
| | - Hanél Sadie-Van Gijsen
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Parow 7505, South Africa
| |
Collapse
|
556
|
Kim H, Kim S, Jung S. Instruction of microbiome taxonomic profiling based on 16S rRNA sequencing. J Microbiol 2020; 58:193-205. [DOI: 10.1007/s12275-020-9556-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 01/09/2023]
|
557
|
Ghosh SS, Wang J, Yannie PJ, Ghosh S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J Endocr Soc 2020; 4:bvz039. [PMID: 32099951 PMCID: PMC7033038 DOI: 10.1210/jendso/bvz039] [Citation(s) in RCA: 316] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/05/2020] [Indexed: 12/24/2022] Open
Abstract
The intestinal barrier is complex and consists of multiple layers, and it provides a physical and functional barrier to the transport of luminal contents to systemic circulation. While the epithelial cell layer and the outer/inner mucin layer constitute the physical barrier and are often referred to as the intestinal barrier, intestinal alkaline phosphatase (IAP) produced by epithelial cells and antibacterial proteins secreted by Panneth cells represent the functional barrier. While antibacterial proteins play an important role in the host defense against gut microbes, IAP detoxifies bacterial endotoxin lipopolysaccharide (LPS) by catalyzing the dephosphorylation of the active/toxic Lipid A moiety, preventing local inflammation as well as the translocation of active LPS into systemic circulation. The causal relationship between circulating LPS levels and the development of multiple diseases underscores the importance of detailed examination of changes in the “layers” of the intestinal barrier associated with disease development and how this dysfunction can be attenuated by targeted interventions. To develop targeted therapies for improving intestinal barrier function, it is imperative to have a deeper understanding of the intestinal barrier itself, the mechanisms underlying the development of diseases due to barrier dysfunction (eg, high circulating LPS levels), the assessment of intestinal barrier function under diseased conditions, and of how individual layers of the intestinal barrier can be beneficially modulated to potentially attenuate the development of associated diseases. This review summarizes the current knowledge of the composition of the intestinal barrier and its assessment and modulation for the development of potential therapies for barrier dysfunction-associated diseases.
Collapse
Affiliation(s)
| | - Jing Wang
- Department of Internal Medicine, VCU Medical Center, Richmond, Virginia
| | - Paul J Yannie
- Hunter Homes McGuire VA Medical Center, Richmond, Virginia
| | - Shobha Ghosh
- Department of Internal Medicine, VCU Medical Center, Richmond, Virginia.,Hunter Homes McGuire VA Medical Center, Richmond, Virginia
| |
Collapse
|
558
|
Bao N, Chen F, Dai D. The Regulation of Host Intestinal Microbiota by Polyphenols in the Development and Prevention of Chronic Kidney Disease. Front Immunol 2020; 10:2981. [PMID: 31969882 PMCID: PMC6960133 DOI: 10.3389/fimmu.2019.02981] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Polyphenols are essential antioxidants in our regular diet, and have shown potential antibacterial effects. Other important biological effects, such as anticancer or antibacterial activities, have been demonstrated by some polyphenols. In recent years, the benefits of polyphenols to human health have attracted increasing attention from the scientific community. Recent studies have shown that polyphenols such as anthocyanin, catechin, chlorogenic acid, and resveratrol can inhibit pathogenic bacteria such as Escherichia coli and Salmonella to help regulate intestinal microflora. An imbalance of intestinal microflora and the destruction of intestinal barrier function have been found to have a potential relationship with the occurrence of chronic kidney disease (CKD). Specifically, they can aberrantly trigger the immune system to cause inflammation, increase the production of uremic toxins, and further worsen the condition of CKD. Therefore, the maintenance of intestinal microflora and the intestinal tract in a stable and healthy state may be able to "immunize" patients against CKD, and treat pre-existing disease. The use of common antibiotics may lead to drug resistance in pathogens, and thus beneficial polyphenols may be suitable natural substitutes for antibiotics. Herein we review the ability of different polyphenols, such as anthocyanin, catechin, chlorogenic acid, and resveratrol, to regulate intestinal microorganisms, inhibit pathogenic bacteria, and improve inflammation. In addition, we review the ability of different polyphenols to reduce kidney injury, as described in recent studies.
Collapse
Affiliation(s)
- Naren Bao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Fangjie Chen
- Department of Medical Genetics, School of Life Sciences, China Medical University, Shenyang, China
| | - Di Dai
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
559
|
Kansra AR, Lakkunarajah S, Jay MS. Childhood and Adolescent Obesity: A Review. Front Pediatr 2020; 8:581461. [PMID: 33511092 PMCID: PMC7835259 DOI: 10.3389/fped.2020.581461] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a complex condition that interweaves biological, developmental, environmental, behavioral, and genetic factors; it is a significant public health problem. The most common cause of obesity throughout childhood and adolescence is an inequity in energy balance; that is, excess caloric intake without appropriate caloric expenditure. Adiposity rebound (AR) in early childhood is a risk factor for obesity in adolescence and adulthood. The increasing prevalence of childhood and adolescent obesity is associated with a rise in comorbidities previously identified in the adult population, such as Type 2 Diabetes Mellitus, Hypertension, Non-alcoholic Fatty Liver disease (NAFLD), Obstructive Sleep Apnea (OSA), and Dyslipidemia. Due to the lack of a single treatment option to address obesity, clinicians have generally relied on counseling dietary changes and exercise. Due to psychosocial issues that may accompany adolescence regarding body habitus, this approach can have negative results. Teens can develop unhealthy eating habits that result in Bulimia Nervosa (BN), Binge- Eating Disorder (BED), or Night eating syndrome (NES). Others can develop Anorexia Nervosa (AN) as they attempt to restrict their diet and overshoot their goal of "being healthy." To date, lifestyle interventions have shown only modest effects on weight loss. Emerging findings from basic science as well as interventional drug trials utilizing GLP-1 agonists have demonstrated success in effective weight loss in obese adults, adolescents, and pediatric patients. However, there is limited data on the efficacy and safety of other weight-loss medications in children and adolescents. Nearly 6% of adolescents in the United States are severely obese and bariatric surgery as a treatment consideration will be discussed. In summary, this paper will overview the pathophysiology, clinical, and psychological implications, and treatment options available for obese pediatric and adolescent patients.
Collapse
Affiliation(s)
- Alvina R Kansra
- Division of Endocrinology, Diabetes and Metabolism, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sinduja Lakkunarajah
- Division of Adolescent Medicine, Department of Pediatrics, Medical College of Wisconsin Affiliated Hospitals, Milwaukee, WI, United States
| | - M Susan Jay
- Division of Adolescent Medicine, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
560
|
Xi M, Yao Q, Ge W, Chen Y, Cao B, Wang Z, Cui X, Sun Q. Effects of stachyose on intestinal microbiota and immunity in mice infected with enterotoxigenic Escherichia coli. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
561
|
Lactobacillus acidophilus JCM 1132 Strain and Its Mutant with Different Bacteriocin-Producing Behaviour Have Various in Situ Effects on the Gut Microbiota of Healthy Mice. Microorganisms 2019; 8:microorganisms8010049. [PMID: 31881756 PMCID: PMC7022661 DOI: 10.3390/microorganisms8010049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
The production of bacteriocin is considered to be a probiotic trait of lactic acid bacteria (LAB). However, not all strains of LAB harbour bacteriocin genes, even within the same species. Moreover, the effects of bacteriocins on the host gut microbiota and on host physiological indicators are rarely studied. This study evaluated the effects of the bacteriocin-producing Lactobacillus acidophilus strain JCM1132 and its non-producing spontaneous mutant, L. acidophilus CCFM720, on the physiological statuses and gut microbiota of healthy mice. Mice that received the bacteriocin-producing strain JCM1132 exhibited reduced water and food intake. Furthermore, the administration of these strains induced significant changes in the compositional abundance of faecal microbiota at the phylum and genus levels, and some of these changes were more pronounced after one week of withdrawal. The effects of CCFM720 treatment on the gut microbiota seemed to favour the prevention of metabolic diseases to some extent. However, individuals that received JCM1132 treatment exhibited weaker inflammatory responses than those that received CCFM720 treatment. Our results indicate that treatment with bacteriocin-producing or non-producing strains can have different effects on the host. Accordingly, this trait should be considered in the applications of LAB.
Collapse
|
562
|
Landberg R, Hanhineva K. Biomarkers of a Healthy Nordic Diet-From Dietary Exposure Biomarkers to Microbiota Signatures in the Metabolome. Nutrients 2019; 12:E27. [PMID: 31877633 PMCID: PMC7019922 DOI: 10.3390/nu12010027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Whole diets and dietary patterns are increasingly highlighted in modern nutrition and health research instead of single food items or nutrients alone. The Healthy Nordic Diet is a dietary pattern typically associated with beneficial health outcomes in observational studies, but results from randomized controlled trials are mixed. Dietary assessment is one of the greatest challenges in observational studies and compliance is a major challenge in dietary interventions. During the last decade, research has shown the great importance of the gut microbiota in health and disease. Studies have have both shown that the Nordic diet affects the gut microbiota and that the gut microbiota predicts the effects of such a diet. Rapid technique developments in the area of high-throughput mass spectrometry have enabled the large-scale use of metabolomics both as an objective measurement of dietary intake as well as in providing the final readout of the endogenous metabolic processes and the impact of the gut microbiota. In this review, we give an update on the current status on biomarkers that reflect a Healthy Nordic Diet or individual components thereof (food intake biomarkers), biomarkers that show the effects of a Healthy Nordic Diet and biomarkers reflecting the role of a Healthy Nordic Diet on the gut microbiota as well as how the gut microbiota or derived molecules may be used to predict the effects of a Healthy Nordic Diet on different outcomes.
Collapse
Affiliation(s)
- Rikard Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| | - Kati Hanhineva
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70210 Kuopio, Finland
| |
Collapse
|
563
|
Undigested Food and Gut Microbiota May Cooperate in the Pathogenesis of Neuroinflammatory Diseases: A Matter of Barriers and a Proposal on the Origin of Organ Specificity. Nutrients 2019; 11:nu11112714. [PMID: 31717475 PMCID: PMC6893834 DOI: 10.3390/nu11112714] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
As food is an active subject and may have anti-inflammatory or pro-inflammatory effects, dietary habits may modulate the low-grade neuroinflammation associated with chronic neurodegenerative diseases. Food is living matter different from us, but made of our own nature. Therefore, it is at the same time foreign to us (non-self), if not yet digested, and like us (self), after its complete digestion. To avoid the efflux of undigested food from the lumen, the intestinal barrier must remain intact. What and how much we eat shape the composition of gut microbiota. Gut dysbiosis, as a consequence of Western diets, leads to intestinal inflammation and a leaky intestinal barrier. The efflux of undigested food, microbes, endotoxins, as well as immune-competent cells and molecules, causes chronic systemic inflammation. Opening of the blood-brain barrier may trigger microglia and astrocytes and set up neuroinflammation. We suggest that what determines the organ specificity of the autoimmune-inflammatory process may depend on food antigens resembling proteins of the organ being attacked. This applies to the brain and neuroinflammatory diseases, as to other organs and other diseases, including cancer. Understanding the cooperation between microbiota and undigested food in inflammatory diseases may clarify organ specificity, allow the setting up of adequate experimental models of disease and develop targeted dietary interventions.
Collapse
|
564
|
Meroni M, Longo M, Dongiovanni P. The Role of Probiotics in Nonalcoholic Fatty Liver Disease: A New Insight into Therapeutic Strategies. Nutrients 2019; 11:nu11112642. [PMID: 31689910 PMCID: PMC6893730 DOI: 10.3390/nu11112642] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of pathological hepatic conditions ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), which may predispose to liver cirrhosis and hepatocellular carcinoma (HCC). Due to the epidemic obesity, NAFLD is representing a global health issue and the leading cause of liver damage worldwide. The pathogenesis of NAFLD is closely related to insulin resistance (IR), adiposity and physical inactivity as well as genetic and epigenetic factors corroborate to the development and progression of hepatic steatosis and liver injury. Emerging evidence has outlined the implication of gut microbiota and gut-derived endotoxins as actively contributors to NAFLD pathophysiology probably due to the tight anatomo-functional crosstalk between the gut and the liver. Obesity, nutrition and environmental factors might alter intestinal permeability producing a favorable micro-environment for bacterial overgrowth, mucosal inflammation and translocation of both invasive pathogens and harmful byproducts, which, in turn, influence hepatic fat composition and exacerbated pro-inflammatory and fibrotic processes. To date, no therapeutic interventions are available for NAFLD prevention and management, except for modifications in lifestyle, diet and physical exercise even though they show discouraging results due to the poor compliance of patients. The premise of this review is to discuss the role of gut–liver axis in NAFLD and emphasize the beneficial effects of probiotics on gut microbiota composition as a novel attractive therapeutic strategy to introduce in clinical practice.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy.
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy.
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
| |
Collapse
|
565
|
Does the Microbiota Play a Pivotal Role in the Pathogenesis of Irritable Bowel Syndrome? J Clin Med 2019; 8:jcm8111808. [PMID: 31671546 PMCID: PMC6912670 DOI: 10.3390/jcm8111808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
|
566
|
Robles-Vera I, Callejo M, Ramos R, Duarte J, Perez-Vizcaino F. Impact of Vitamin D Deficit on the Rat Gut Microbiome. Nutrients 2019; 11:nu11112564. [PMID: 31652902 PMCID: PMC6893507 DOI: 10.3390/nu11112564] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
Inadequate immunologic, metabolic and cardiovascular homeostasis has been related to either an alteration of the gut microbiota or to vitamin D deficiency. We analyzed whether vitamin D deficiency alters rat gut microbiota. Male Wistar rats were fed a standard or a vitamin D-free diet for seven weeks. The microbiome composition was determined in fecal samples by 16S rRNA gene sequencing. The vitamin D-free diet produced mild changes on α- diversity but no effect on β-diversity in the global microbiome. Markers of gut dysbiosis like Firmicutes-to-Bacteroidetes ratio or the short chain fatty acid producing bacterial genera were not significantly affected by vitamin D deficiency. Notably, there was an increase in the relative abundance of the Enterobacteriaceae, with significant rises in its associated genera Escherichia, Candidatus blochmannia and Enterobacter in vitamin D deficient rats. Prevotella and Actinomyces were also increased and Odoribacteraceae and its genus Butyricimonas were decreased in rats with vitamin D-free diet. In conclusion, vitamin D deficit does not induce gut dysbiosis but produces some specific changes in bacterial taxa, which may play a pathophysiological role in the immunologic dysregulation associated with this hypovitaminosis.
Collapse
Affiliation(s)
- Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, Universidad de Granada, 18071 Granada, Spain.
- Ciber Enfermedades Cardiovasculares (CiberCV), 28029 Madrid, Spain.
| | - María Callejo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (Ciberes), 28029 Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), 28007 Madrid, Spain.
| | - Ricardo Ramos
- Fundación Parque Científico de Madrid, 28049 Madrid, Spain.
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, Universidad de Granada, 18071 Granada, Spain.
- Ciber Enfermedades Cardiovasculares (CiberCV), 28029 Madrid, Spain.
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (Ciberes), 28029 Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), 28007 Madrid, Spain.
| |
Collapse
|
567
|
Gut DNA Virome Diversity and Its Association with Host Bacteria Regulate Inflammatory Phenotype and Neuronal Immunotoxicity in Experimental Gulf War Illness. Viruses 2019; 11:v11100968. [PMID: 31640184 PMCID: PMC6832151 DOI: 10.3390/v11100968] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
Gulf War illness (GWI) is characterized by the persistence of inflammatory bowel disease, chronic fatigue, neuroinflammation, headache, cognitive impairment, and other medically unexplained conditions. Results using a murine model show that enteric viral populations especially bacteriophages were altered in GWI. The increased viral richness and alpha diversity correlated positively with gut bacterial dysbiosis and proinflammatory cytokines. Altered virome signature in GWI mice also had a concomitant weakening of intestinal epithelial tight junctions with a significant increase in Claudin-2 protein expression and decrease in ZO1 and Occludin mRNA expression. The altered virome signature in GWI, decreased tight junction protein level was followed by the presence an activation of innate immune responses such as increased Toll-like receptor (TLR) signaling pathways. The altered virome diversity had a positive correlation with serum IL-6, IL-1β, and IFN-γ, intestinal inflammation (IFN-γ), and decreased Brain-Derived Neurotrophic Factor (BDNF), a neurogenesis marker. The co-exposure of Gulf War chemical and antibiotic (for gut sterility) or Gulf War chemical and Ribavirin, an antiviral compound to suppress virus alteration in the gut showed significant improvement in epithelial tight junction protein, decreased intestinal-, systemic-, and neuroinflammation. These results showed that the observed enteric viral dysbiosis could activate enteric viral particle-induced innate immune response in GWI and could be a novel therapeutic target in GWI.
Collapse
|
568
|
Getachew B, Tizabi Y. Effects of C-Terminal Domain of the Heavy Chain of Tetanus Toxin on Gut Microbiota in a Rat Model of Depression. CLINICAL PHARMACOLOGY AND TRANSLATIONAL MEDICINE 2019; 3:152-159. [PMID: 32159077 PMCID: PMC7063687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND/AIMS It is now well established that imbalance or dysbiosis in the gut microbiota (GM) plays a significant role in neuropsychiatric/neurodegenerative disorders. Recently it has been reported that the C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) may not only act as a neuroprotectant but may also exhibit antidepressant effects in Wistar-Kyoto (WKY) rats, a putative animal model of treatment-resistant depression. The aim of this study was to determine whether Hc-TeTx may also interact with GM implicated in mood regulation in these rats. METHODS Adult male WKY rats (5/group) were injected intramuscularly (IM) with 60 μg/kg Hc-TeTx or saline. Twenty-four hours after the injection, the animals were sacrificed, intestinal stools were collected and stored at -80°C. DNA was extracted from the samples for 16S rRNA gene-based microbiota analysis using 16S Metagenomics application. RESULTS Abundance of several bacteria at different taxonomic levels were distinguished between Hc-TeTx group and the control. At species-level, 11 operational taxonomic units (OTUs), particularly Bifidobacterium cholerium, a bacterium with a strong ability to degrade resistant starch, were enriched (69 fold) in the Hc-TeTx group. In addition, 5 species of probiotic Lactobacillus, two butyrate-forming species Sarcina, Butyrivibro proteovlasticus and Roseburia faecis, were enhanced by a minimum of 2-fold in Hc-TeTx group. In contrast, 24 species including five species of pathogenic Provettela (5-14 fold), two mucin-degrading Akkermansia muciniphila and Mucispirillum schaedleri, and four species of pathogenic Ruminoccus were reduced by a minimum of 2-fold by Hc-TeTx treatment. CONCLUSION Hc-TeTx enhanced probiotic species and suppressed the opportunistic pathogens. Since overall effect of Hc-TeTx appears to be promoting GM associated with mood enhancement (e.g. Bifidobacterium, Butyrivibro, and Lactobacillus) and suppressing GM associated with mood dysregulation (e.g. Mucispirillum, Provettela, and Ruminoccus) a novel mechanism of beneficial effects of Hc-TeTx may involve normalization of dysbiosis.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
569
|
Celiac Disease and the Microbiome. Nutrients 2019; 11:nu11102403. [PMID: 31597349 PMCID: PMC6835875 DOI: 10.3390/nu11102403] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
Growing evidence supports the hypothesis that changes in both the composition and function of the intestinal microbiome are associated with a number of chronic inflammatory diseases including celiac disease (CD). One of the major advances in the field of microbiome studies over the last few decades has been the development of culture-independent approaches to identify and quantify the components of the human microbiota. The study of nucleic acids DNA and RNA found in feces or other biological samples bypasses the need for tissue cultures and also allows the characterization of non-cultivable microbes. Current evidence on the composition of the intestinal microbiome and its role as a causative trigger for CD is highly heterogeneous and sometimes contradictory. This review is aimed at summarizing both pre-clinical (basic science data) and clinical (cross-sectional and prospective studies) evidence addressing the relationship between the intestinal microbiome and CD.
Collapse
|
570
|
The Gut Microbiota in Celiac Disease and probiotics. Nutrients 2019; 11:nu11102375. [PMID: 31590358 PMCID: PMC6836185 DOI: 10.3390/nu11102375] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
Celiac disease (CeD) is an immune-mediated enteropathy, and unique in that the specific trigger is known: gluten. The current mainstay of therapy is a gluten-free diet (GFD). As novel therapies are being developed, complementary strategies are also being studied, such as modulation of the gut microbiome. The gut microbiota is involved in the initiation and perpetuation of intestinal inflammation in several chronic diseases. Intestinal dysbiosis has been reported in CeD patients, untreated or treated with GFD, compared to healthy subjects. Several studies have identified differential bacterial populations associated with CeD patients and healthy subjects. However, it is still not clear if intestinal dysbiosis is the cause or effect of CeD. Probiotics have also been considered as a strategy to modulate the gut microbiome to an anti-inflammatory state. However, there is a paucity of data to support their use in treating CeD. Further studies are needed with therapeutic microbial formulations combined with human trials on the use of probiotics to treat CeD by restoring the gut microbiome to an anti-inflammatory state.
Collapse
|
571
|
Microbial regulation of microRNA expression in the brain-gut axis. Curr Opin Pharmacol 2019; 48:120-126. [PMID: 31590111 DOI: 10.1016/j.coph.2019.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022]
Abstract
The gut microbiome facilitates a consistent transfer of information between the gut and the brain and microRNAs may now represent a key signalling molecule that facilitates this relationship. This review will firstly examine how these small non-coding RNAs influence the gut microbiome, and secondly how the microbiome, when disturbed, may influence miRNA expression in the brain. In addition, we will examine the consequence that microbiome-related changes in miRNA expression have on neurodevelopment, behaviour and cognition. We will also discuss novel data that suggests miRNAs contained in our diet may influence our immune system in a positive manner, offering a further potential pathway for treatment of disorders of the gut-brain axis that are influenced by the microbiome.
Collapse
|
572
|
Morelli MB, Wang X, Santulli G. Functional role of gut microbiota and PCSK9 in the pathogenesis of diabetes mellitus and cardiovascular disease. Atherosclerosis 2019; 289:176-178. [PMID: 31431286 PMCID: PMC6790279 DOI: 10.1016/j.atherosclerosis.2019.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Marco Bruno Morelli
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The "Norman Fleischer" Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, NY, USA
| | - Xujun Wang
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The "Norman Fleischer" Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, NY, USA; Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The "Norman Fleischer" Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, NY, USA
| | - Gaetano Santulli
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine - Montefiore University Hospital, New York, NY, USA; Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The "Norman Fleischer" Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, NY, USA; Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.
| |
Collapse
|
573
|
Jayachandran M, Chung SSM, Xu B. A critical review on diet-induced microbiota changes and cardiovascular diseases. Crit Rev Food Sci Nutr 2019; 60:2914-2925. [PMID: 31552753 DOI: 10.1080/10408398.2019.1666792] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Cardiovascular diseases (CVDs) commonly denote the disorders that generally occur as a result of unhealthy food habits. Heart failure, cerebrovascular illness, rheumatic heart disease are the common CVDs. The prevalence of CVD is increased considerably in recent decades upon unhealthy food habits and varied alternative factors such as diabetes, smoking and excessive use of alcohol. A change into a healthy food habit can reverse the strategy during a course of time.Objectives of the study: The objective of this review is to summarize the research findings and elaborate the relationship between the diet, gut microbiota, and CVD.Results: The dietary products containing the least saturated, trans-fat and cholesterol have the tendency to scale back the burden of CVDs, for instance, vegetables and fruits. The potential reason for the cardioprotective activity of the diet ought to be its high-unsaturated fatty acid composition and less saturated fat. Recent studies have found that gut microbiota plays a key role in mediating disease prevention. The metabolism of dietary products into varied bioactive metabolites is regulated by gut microbiota. The contributory role of gut microbiota in dietary metabolism and CVD prevention studies are increasing with promising outcomes.Conclusion: Hence, the review was proposed to reach the researchers within this field of study and share the available knowledge in gut microbiota-mediated CVD prevention. In our current review, we have updated all the research findings within the field of diet-mediated cardiovascular prevention through gut microbiota.
Collapse
Affiliation(s)
- Muthukumaran Jayachandran
- Program of Food Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Stephen Sum Man Chung
- Program of Food Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Baojun Xu
- Program of Food Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| |
Collapse
|