601
|
Faridi S, Nodehi RN, Sadeghian S, Tajdini M, Hoseini M, Yunesian M, Nazmara S, Hassanvand MS, Naddafi K. Can respirator face masks in a developing country reduce exposure to ambient particulate matter? JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:606-617. [PMID: 32317771 DOI: 10.1038/s41370-020-0222-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/14/2020] [Accepted: 03/27/2020] [Indexed: 05/16/2023]
Abstract
Respirator face masks (RFMs) as a personal-level intervention is increasingly being utilized to reduce ambient particulate matter (PM) exposure, globally. We tested the effectiveness of 50 commercially available ones in reducing the exposure of ambient particle number concentrations (PNC), PM10, PM2.5, and PM1 (PM ≤ 10, 2.5, and 1 μm in diameter, respectively) in a traffic-affected urban site in Tehran. To examine the efficiency of RFMs, we applied a specific experimental setup including vacuum pumps, dummy heads, connecting tubes, glass chambers, and GRIMM Aerosol Spectrometer to measure all metrics after dummy heads. The average effectiveness of RFMs was in the range of 0.7-83.5%, 3.5-68.1%, 0.8-46.1%, and 0.4-32.2% in reducing ambient PNC, PM10, PM2.5, and PM1, respectively. Considering all metrics, the highest effectiveness was observed always for Biomask, followed by 3 M 9332, due to their well-designed physical characteristics (e.g., adjustable nose clip for any face/nose shape, and size, soft inner material in the nose panel to provide a secure seal against leakage, adjustable or elasticated straps/ear loops to better adjust on any face). Biomask reduced ambient PM10 with a mean value of 94.6 μg m-3 (minimum-maximum: 51.7-100.3 μg m-3), whereas it filtered on average just 29.0 μg m-3 (25.7-43.5 μg m-3) of ambient PM2.5 and 18.2 μg m-3 (14.7-21.8 μg m-3) of PM1. A fuzzy analytical hierarchy process to find the most important design-related factors of RFMs affecting their effectiveness, which showed the exhalation valve and its diaphragm (20.4%), nose clip (19.7%), and cheek flaps (18.6%) are ranked as the main design-related variables. The fuzzy technique for order preference by similarity to ideal solution indicated that Biomask and 3M 9332 had scores of 1 and 0.97, the highest scores compared with other RFMs. This study provides crucial evidence-based results to elucidate the effectiveness and design-related factors of RFMs in real-environmental circumstances.
Collapse
Affiliation(s)
- Sasan Faridi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh Nodehi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Sadeghian
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masih Tajdini
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Research Methodology and Data Analysis (CRMDA), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Nazmara
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
602
|
Dujardin CE, Mars RAT, Manemann SM, Kashyap PC, Clements NS, Hassett LC, Roger VL. Impact of air quality on the gastrointestinal microbiome: A review. ENVIRONMENTAL RESEARCH 2020; 186:109485. [PMID: 32289569 DOI: 10.1016/j.envres.2020.109485] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/20/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Poor air quality is increasingly associated with several gastrointestinal diseases suggesting a possible association between air quality and the human gut microbiome. However, details on this remain largely unexplored as current available research is scarce. The aim of this comprehensive rigorous review was to summarize the existing reports on the impact of indoor or outdoor airborne pollutants on the animal and human gut microbiome and to outline the challenges and suggestions to expand this field of research. METHODS AND RESULTS A comprehensive search of several databases (inception to August 9, 2019, humans and animals, English language only) was designed and conducted by an experienced librarian to identify studies describing the impact of air pollution on the human gut microbiome. The retrieved articles were assessed independently by two reviewers. This process yielded six original research papers on the animal GI gastrointestinal microbiome and four on the human gut microbiome. β-diversity analyses from selected animal studies demonstrated a significantly different composition of the gut microbiota between control and exposed groups but changes in α-diversity were less uniform. No consistent findings in α or β-diversity were reported among the human studies. Changes in microbiota at the phylum level disclosed substantial discrepancies across animal and human studies. CONCLUSIONS A different composition of the gut microbiome, particularly in animal models, is associated with exposure to air pollution. Air pollution is associated with various taxa changes, which however do not follow a clear pattern. Future research using standardized methods are critical to replicate these initial findings and advance this emerging field.
Collapse
Affiliation(s)
- Charlotte E Dujardin
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ruben A T Mars
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sheila M Manemann
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Nicholas S Clements
- Well Living Lab, Inc., 221 First Avenue SW, Rochester, MN, 55902, USA; Department of General Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Leslie C Hassett
- Library Public Services, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Véronique L Roger
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA; Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
603
|
DuPré NC, Heng YJ, Raby BA, Glass K, Hart JE, Chu JH, Askew C, Eliassen AH, Hankinson SE, Kraft P, Laden F, Tamimi RM. Involvement of fine particulate matter exposure with gene expression pathways in breast tumor and adjacent-normal breast tissue. ENVIRONMENTAL RESEARCH 2020; 186:109535. [PMID: 32668536 PMCID: PMC7368092 DOI: 10.1016/j.envres.2020.109535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/18/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Fine particulate matter (PM2.5) has been associated with breast cancer specific mortality, particularly for women with Stage I cancer. We examined the biological pathways that are perturbed by PM2.5 exposures by analyzing gene expression measurements from breast tissue specimens. METHODS The Nurses' Health Studies (NHS and NHSII) are prospective cohorts with archival breast tissue specimens from breast cancer cases. Global gene expression data were ascertained with the Affymetrix Glue Human Transcriptome Array 3.0. PM2.5 was estimated using spatio-temporal models linked to participants' home addresses. All analyses were performed separately in tumor (n = 591) and adjacent-normal (n = 497) samples, and stratified by estrogen receptor (ER) status and stage. We used multivariable linear regression, gene-set enrichment analyses (GSEA), and the least squares kernel machine (LSKM) to assess whether 3-year cumulative average pre-diagnosis PM2.5 exposure was associated with breast-tissue gene expression pathways among predominately Stage I and II women (90.7%) and postmenopausal (81.2%) women. Replication samples (tumor, n = 245; adjacent-normal, n = 165) were measured on Affymetrix Human Transcriptome Array (HTA 2.0). RESULTS Overall, no pathways in the tumor area were significantly associated with PM2.5 exposure. Among 272 adjacent-normal samples from Stage I ER-positive women, PM2.5 was associated with perturbations in the oxidative phosphorylation, protein secretion, and mTORC1 signaling pathways (GSEA and LSKM p-values <0.05); however, results were not replicated in a small set of replication samples (n = 80). CONCLUSIONS PM2.5 was generally not associated with breast tissue gene expression though was suggested to perturb oxidative phosphorylation and regulation of proteins and cellular signaling in adjacent-normal breast tissue. More research is needed on the biological role of PM2.5 that influences breast tumor progression.
Collapse
Affiliation(s)
- Natalie C DuPré
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology and Population Health, University of Louisville School of Public Health and Information Sciences, Louisville, KY, USA.
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Jaime E Hart
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jen-Hwa Chu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Catherine Askew
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Susan E Hankinson
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Francine Laden
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
604
|
Worrying decrease in hospital admissions for myocardial infarction during the COVID-19 pandemic. Arch Cardiovasc Dis 2020; 113:443-447. [PMID: 32636131 PMCID: PMC7316064 DOI: 10.1016/j.acvd.2020.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/07/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
Background How coronavirus 2019 (COVID-19) is affecting management of myocardial infarction is a matter of concern, as medical resources have been massively reorientated and the population has been in lockdown since 17 March 2020 in France. Aims To describe how lockdown has affected the evolution of the weekly rate of myocardial infarctions (non-ST-segment and ST-segment elevation) hospital admissions in Lyon, the second largest city in France. To verify the trend observed, the same analysis was conducted for an identical time window during 2018–2019 and for an unavoidable emergency, i.e. birth. Methods Based on the national hospitalisation database [Programme de médicalisation des systèmes d’information (PMSI)], all patients admitted to the main public hospitals for a principal diagnosis of myocardial infarction or birth during the 2nd to the 14th week of 2020 were included. These were compared with the average number of patients admitted for the same diagnosis during the same time window in 2018 and 2019. Results Before lockdown, the number of admissions for myocardial infarction in 2020 differed from that in 2018–2019 by less than 10%; after the start of lockdown, it decreased by 31% compared to the corresponding time window in 2018–2019. Conversely, the numbers of births remained stable across years and before and after the start of lockdown. Conclusion This study strongly suggests a decrease in the number of admissions for myocardial infarction during lockdown. Although we do not have a long follow-up to determine whether this trend will endure, this is an important warning for the medical community and health authorities.
Collapse
|
605
|
Corina A, Abrudan MB, Nikolic D, Cӑtoi AF, Chianetta R, Castellino G, Citarrella R, Stoian AP, Pérez-Martínez P, Rizzo M. Effects of Aging and Diet on Cardioprotection and Cardiometabolic Risk Markers. Curr Pharm Des 2020; 25:3704-3714. [PMID: 31692432 DOI: 10.2174/1381612825666191105111232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
The prevalence of several diseases increases by age, including cardiovascular diseases, which are the leading cause of morbidity and mortality worldwide. Aging, as a complex process characterized by senescence, triggers various pathways, such as oxidative stress, systemic inflammation, metabolism dysfunction, telomere shortening, mitochondrial dysfunction and deregulated autophagy. A better understanding of the mechanisms underlying senescence may lead to the development of new therapeutic targets and strategies for age-related pathologies and extend the healthy lifespan. Modulating lifestyle risk factors and adopting healthy dietary patterns remain significant tools in delaying the aging process, decreasing age-associated comorbidities and mortality, increasing life expectancy and consequently, preventing the development of cardiovascular disease. Furthermore, such a strategy represents the most cost-effective approach, and the quality of life of the subjects may be significantly improved. An integrated, personalized approach targeting cardiometabolic aging and frailty is suggested in daily clinical practice. However, it should be initiated from an early age. Moreover, there is a need for further well designed and controlled studies in order to elucidate a link between the time of feeding, longevity and cardiovascular prevention. In the future, it is expected that the pharmacological treatment in cardioprotective management will be necessary, accompanied by equally important lifestyle interventions and adjunctive exercise.
Collapse
Affiliation(s)
- Andreea Corina
- Lipids and Atherosclerosis Research Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Maria B Abrudan
- Department of Pharmaceutical Technology and Biopharmaceutics, "Iuliu Hațieganu", University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Dragana Nikolic
- PROMISE Department, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Adriana F Cӑtoi
- Pathophysiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roberta Chianetta
- PROMISE Department, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Giuseppa Castellino
- PROMISE Department, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | | | - Anca P Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Pablo Pérez-Martínez
- Lipids and Atherosclerosis Research Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Manfredi Rizzo
- PROMISE Department, University of Palermo, Palermo, Italy
| |
Collapse
|
606
|
Rajagopalan S, Al-Kindi SG. Reply: Pollution and Organ Transplantation. J Am Coll Cardiol 2020; 75:2876. [PMID: 32498819 DOI: 10.1016/j.jacc.2020.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
|
607
|
Feng L, Ning R, Liu J, Liang S, Xu Q, Liu Y, Liu W, Duan J, Sun Z. Silica nanoparticles induce JNK-mediated inflammation and myocardial contractile dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122206. [PMID: 32036317 DOI: 10.1016/j.jhazmat.2020.122206] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Increasing environmental exposure to silica nanoparticles (SiNPs) and limited cardiotoxicity studies posed a challenge for the safety evaluation and management of these materials. This study aimed to explore the adverse effects and underlying mechanisms of subacute exposure to SiNPs on cardiac function in rats. Results from echocardiographic, ultrastructural and histopathological analysis found that SiNPs induced cardiac contractile dysfunction, accompanied by incomplete myocardial structures, disordered sarcomere segments, interstitial edema and myocyte apoptosis in heart. Levels of myocardial enzymes and inflammatory factors were markedly increased in both serum and heart tissue, accompanied by elevated levels of oxidative damage occurred in the hearts of SiNPs-treated rats. SiNPs significantly upregulated the expressions of inflammation and contraction-related proteins, including JNK, p-JNK, c-Jun, TF and PAR1. Lentivirus transfection of JNK shRNA showed the low-expression of JNK-facilitated F-actin and inhibited TF in the SiNPs-treated cardiomyocytes. Moreover, SiNPs activated the mRNA and protein levels of JNK/TF/PAR1 pathway, and these effects were significantly dampened after JNK knock down. Our results demonstrate that SiNPs trigger myocardial contractile dysfunction via JNK/TF/PAR1 signaling pathway.
Collapse
Affiliation(s)
- Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ruihong Ning
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jiangyan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qing Xu
- Core Facilities for Electrophysiology, Core Facility Center, Capital Medical University, Beijing, 100069, PR China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China
| | - Wei Liu
- Cardiology Department, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
608
|
Wu Y, Tian Y, Wang M, Wang X, Wu J, Wang Z, Hu Y. Short-term exposure to air pollution and its interaction effects with two ABO SNPs on blood lipid levels in northern China: A family-based study. CHEMOSPHERE 2020; 249:126120. [PMID: 32062209 DOI: 10.1016/j.chemosphere.2020.126120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
We examined the main effects of ambient particulate matters, as well as whether single-nucleotide polymorphisms (SNPs), located within ABO gene would modify the relationship. Data were collected from a family-based study conducted in Northern China. A generalized additive model with a Gaussian link and with each family as a stratum was applied to estimate the percentage change in blood lipid levels following a 10 μg/m3 increase in ambient particulate matter concentrations. Interaction analyses were conducted by including a cross-product term of PM2.5 or PM10 by SNP. Results showed that a 10 μg/m3 increase in Particulate matter with aerodynamic diameter <2.5 μm (PM2.5) concentrations corresponded to the highest 0.010% (95% CI: 0.002%-0.018%), 0.018% (95% CI: 0.006%-0.029%), 0.019% (95% CI: 0.010%-0.029%) increase in total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), respectively and 0.005% (95% CI: 0.002%-0.008%) decrease in high density lipoprotein cholesterol (HDL-C)-to-LDL-C ratio. As for the PM10, similar results were observed. Furthermore, our finding showed an interaction effect of PM10 and rs505922/rs579459 C allele on TG. Specifically, individuals carrying the rs505922 and rs579459 T allele have higher TG concentrations following PM10 exposure, with a 10 μg/m3 increase in PM10 concentrations corresponding to the highest 0.028% and 0.034% increase in TG, respectively. In conclusion, short-term exposures to ambient particulate matters are associated with a higher blood lipid level, which can be modified by ABO polymorphism. The findings may be useful in identifying vulnerable population according to genetic background.
Collapse
Affiliation(s)
- Yao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yaohua Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xiaowen Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Junhui Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zijing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
609
|
Schikowski T, Altuğ H. The role of air pollution in cognitive impairment and decline. Neurochem Int 2020; 136:104708. [DOI: 10.1016/j.neuint.2020.104708] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 11/25/2022]
|
610
|
Zhao Y, Xue L, Chen Q, Kou M, Wang Z, Wu S, Huang J, Guo X. Cardiorespiratory responses to fine particles during ambient PM 2.5 pollution waves: Findings from a randomized crossover trial in young healthy adults. ENVIRONMENT INTERNATIONAL 2020; 139:105590. [PMID: 32278195 DOI: 10.1016/j.envint.2020.105590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/29/2020] [Accepted: 02/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND PM2.5 pollution waves (PPWs) are severe air pollution events with extremely high-level concentration of ambient PM2.5. PPWs, such as haze days, were suggested to be associated with increased cardiopulmonary mortality and morbidity. However, the biological mechanism response to ambient PM2.5 during PPWs is still unclear. METHODS A randomized crossover trial was conducted on 29 healthy young adults. Repeated health measurements were performed before, during and after two typical PPWs under filtered and sham indoor air purification, with a washout interval of at least 2 weeks. Health parameters including blood pressure (BP), pulmonary function, fractional exhaled nitric oxide (FeNO) and circulating biomarkers which reflect platelet activation, blood coagulation and systematic oxidative stress were measured. RESULTS Ambient PM2.5 levels elevated apparently during PPWs. Under sham purification, significant increase in FeNO and soluble P-selectin (sP-selectin) and decreases in pulmonary function were observed from pre-PPWs period to during-PPWs period. The changes in health biomarkers as mentioned above became attenuated and insignificant under filtered condition. For instance, sP-selectin increased by 12.0% (95% CI: 3.8%, 20.8%) during-PPWs periods compared with pre-PPWs periods under sham purification, while non-significant change was observed under filtered condition. Significant associations between time-weighted personal PM2.5 exposure and increased levels of health biomarkers including FeNO, sP-selectin, oxidized low-density lipoprotein (ox-LDL) and 8-isoprostane (8-isoPGF2α) were found. CONCLUSION PPWs could affect cardiopulmonary health through systematic oxidative stress, platelet activation and respiratory inflammation in healthy adults, and short-term indoor air purification could alleviate the adverse cardiopulmonary effects.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Lijun Xue
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Qiao Chen
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Minghao Kou
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Zemin Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| |
Collapse
|
611
|
Manrique-Acevedo C, Chinnakotla B, Padilla J, Martinez-Lemus LA, Gozal D. Obesity and cardiovascular disease in women. Int J Obes (Lond) 2020; 44:1210-1226. [PMID: 32066824 PMCID: PMC7478041 DOI: 10.1038/s41366-020-0548-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
As the prevalence of obesity continues to grow worldwide, the health and financial burden of obesity-related comorbidities grows too. Cardiovascular disease (CVD) is clearly associated with increased adiposity. Importantly, women are at higher risk of CVD when obese and insulin resistant, in particular at higher risk of developing heart failure with preserved ejection fraction and ischemic heart disease. Increased aldosterone and mineralocorticoid receptor activation, aberrant estrogenic signaling and elevated levels of androgens are among some of the proposed mechanisms explaining the heightened CVD risk. In addition to traditional cardiovascular risk factors, understanding nontraditional risk factors specific to women, like excess weight gain during pregnancy, preeclampsia, gestational diabetes, and menopause are central to designing personalized interventions aimed to curb the epidemic of CVD. In the present review, we examine the available evidence supporting a differential cardiovascular impact of increased adiposity in women compared with men and the proposed pathophysiological mechanisms behind these differences. We also discuss women-specific cardiovascular risk factors associated with obesity and insulin resistance.
Collapse
Affiliation(s)
- Camila Manrique-Acevedo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Bhavana Chinnakotla
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Department of Child Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
612
|
Hystad P, Larkin A, Rangarajan S, AlHabib KF, Avezum Á, Calik KBT, Chifamba J, Dans A, Diaz R, du Plessis JL, Gupta R, Iqbal R, Khatib R, Kelishadi R, Lanas F, Liu Z, Lopez-Jaramillo P, Nair S, Poirier P, Rahman O, Rosengren A, Swidan H, Tse LA, Wei L, Wielgosz A, Yeates K, Yusoff K, Zatoński T, Burnett R, Yusuf S, Brauer M. Associations of outdoor fine particulate air pollution and cardiovascular disease in 157 436 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet Planet Health 2020; 4:e235-e245. [PMID: 32559440 PMCID: PMC7457447 DOI: 10.1016/s2542-5196(20)30103-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/19/2020] [Accepted: 04/21/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Most studies of long-term exposure to outdoor fine particulate matter (PM2·5) and cardiovascular disease are from high-income countries with relatively low PM2·5 concentrations. It is unclear whether risks are similar in low-income and middle-income countries (LMICs) and how outdoor PM2·5 contributes to the global burden of cardiovascular disease. In our analysis of the Prospective Urban and Rural Epidemiology (PURE) study, we aimed to investigate the association between long-term exposure to PM2·5 concentrations and cardiovascular disease in a large cohort of adults from 21 high-income, middle-income, and low-income countries. METHODS In this multinational, prospective cohort study, we studied 157 436 adults aged 35-70 years who were enrolled in the PURE study in countries with ambient PM2·5 estimates, for whom follow-up data were available. Cox proportional hazard frailty models were used to estimate the associations between long-term mean community outdoor PM2·5 concentrations and cardiovascular disease events (fatal and non-fatal), cardiovascular disease mortality, and other non-accidental mortality. FINDINGS Between Jan 1, 2003, and July 14, 2018, 157 436 adults from 747 communities in 21 high-income, middle-income, and low-income countries were enrolled and followed up, of whom 140 020 participants resided in LMICs. During a median follow-up period of 9·3 years (IQR 7·8-10·8; corresponding to 1·4 million person-years), we documented 9996 non-accidental deaths, of which 3219 were attributed to cardiovascular disease. 9152 (5·8%) of 157 436 participants had cardiovascular disease events (fatal and non-fatal incident cardiovascular disease), including 4083 myocardial infarctions and 4139 strokes. Mean 3-year PM2·5 at cohort baseline was 47·5 μg/m3 (range 6-140). In models adjusted for individual, household, and geographical factors, a 10 μg/m3 increase in PM2·5 was associated with increased risk for cardiovascular disease events (hazard ratio 1·05 [95% CI 1·03-1·07]), myocardial infarction (1·03 [1·00-1·05]), stroke (1·07 [1·04-1·10]), and cardiovascular disease mortality (1·03 [1·00-1·05]). Results were similar for LMICs and communities with high PM2·5 concentrations (>35 μg/m3). The population attributable fraction for PM2·5 in the PURE cohort was 13·9% (95% CI 8·8-18·6) for cardiovascular disease events, 8·4% (0·0-15·4) for myocardial infarction, 19·6% (13·0-25·8) for stroke, and 8·3% (0·0-15·2) for cardiovascular disease mortality. We identified no consistent associations between PM2·5 and risk for non-cardiovascular disease deaths. INTERPRETATION Long-term outdoor PM2·5 concentrations were associated with increased risks of cardiovascular disease in adults aged 35-70 years. Air pollution is an important global risk factor for cardiovascular disease and a need exists to reduce air pollution concentrations, especially in LMICs, where air pollution levels are highest. FUNDING Full funding sources are listed at the end of the paper (see Acknowledgments).
Collapse
Affiliation(s)
- Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA; Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada.
| | - Andrew Larkin
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Sumathy Rangarajan
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Khalid F AlHabib
- Department of Cardiac Sciences, King Fahad Cardiac Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Álvaro Avezum
- Department of Medicine, Universidade de Santo Amaro, Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
| | | | - Jephat Chifamba
- Department of Physiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Antonio Dans
- Department of Cardiac Sciences, University of Philippines, Manila, Philippines
| | - Rafael Diaz
- Estudios Clínicos Latinoamérica (ECLA), Rosario, Santa Fe, Argentina
| | - Johan L du Plessis
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Rajeev Gupta
- Eternal Heart Care Centre and Research Institute, Jaipur, India
| | - Romaina Iqbal
- Department of Community Health Sciences and Medicine, Aga Khan University, Karachi, Pakistan
| | - Rasha Khatib
- Institute for Community and Public Health, Birzeit University, Birzeit, Palestine; Advocate Health Care, Chicago, IL, USA
| | - Roya Kelishadi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fernando Lanas
- Department of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Zhiguang Liu
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Patricio Lopez-Jaramillo
- Fundación Oftalmológica de Santander Clínica Carlos Ardila Lulle (FOSCAL), Bucaramanga, Colombia; Escuela de Medicina, Universidad de Santander, Bucaramanga, Colombia
| | - Sanjeev Nair
- Health Action by People, Thiruvananthapuram, India
| | - Paul Poirier
- Faculty of Pharmacy, University Institute of Cardiology and Respirology of Quebec, Laval University, Québec, QC, Canada
| | | | - Annika Rosengren
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hany Swidan
- Dubai Health Authority, Dubai, United Arab Emirates
| | - Lap Ah Tse
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Li Wei
- National Centre for Cardiovascular Diseases, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Andreas Wielgosz
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Karen Yeates
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Khalid Yusoff
- Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia; UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Tomasz Zatoński
- Department of Otolaryngology Head and Neck Surgery, Wrocław Medical University, Wrocław, Poland
| | - Rick Burnett
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Salim Yusuf
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
613
|
|
614
|
Gangwar RS, Bevan GH, Palanivel R, Das L, Rajagopalan S. Oxidative stress pathways of air pollution mediated toxicity: Recent insights. Redox Biol 2020; 34:101545. [PMID: 32505541 PMCID: PMC7327965 DOI: 10.1016/j.redox.2020.101545] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023] Open
Abstract
Ambient air pollution is a leading environmental cause of morbidity and mortality globally with most of the outcomes of cardiovascular origin. While numerous mechanisms are proposed to explain the link between air pollutants and cardiovascular events, the evidence supports a role for oxidative stress as a critical intermediary pathway in the transduction of systemic responses in the cardiovascular system. Indeed, alterations in vascular function are a critical step in the development of cardiometabolic disorders such as hypertension, diabetes, and atherosclerosis. This review will provide an overview of the impact of particulate and gaseous pollutants on oxidative stress from human and animal studies published in the last five years. We discuss current gaps in knowledge and evidence to date implicating the role of oxidative stress with an emphasis on inhalational exposures. We conclude with the identification of gaps, and an exhortation for further studies to elucidate the impact of oxidative stress in air pollution mediated effects. Particulate matter air pollution is the leading risk factor for cardiovascular morbidity and mortality globally. Mechanisms of oxidative stress mediated pathways. How does lung inflammation crucial to inhalational exposure mediate systemic toxicity? Review of recent animal and human exposure studies providing insights into oxidative stress pathways.
Collapse
Affiliation(s)
- Roopesh Singh Gangwar
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rengasamy Palanivel
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lopa Das
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
615
|
Cao L, Lindstedt I, Edvinsson ML, Ping NN, Cao YX, Edvinsson L. Secondhand cigarette smoke induces increased expression of contractile endothelin receptors in rat coronary arteries via a MEK1/2 sensitive mechanism. SCAND CARDIOVASC J 2020; 55:50-55. [PMID: 32400208 DOI: 10.1080/14017431.2020.1762916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Cigarette smoke, a strong risk factor for cardiovascular diseases, upregulates contractile endothelin (ET) receptors in coronary arteries. The present study examined the effects of second hand cigarette smoke exposure on the contractile endothelin receptors and the role of the MEK1/2 pathway in rat coronary arteries. Design: Rats were exposed to secondhand smoke (SHS) for 8 weeks followed by intraperitoneal injection of a MEK1/2 inhibitor, U0126 daily for another 4 weeks. Contractile responses of isolated coronary arteries were recorded by a sensitive wire myograph. The receptor protein expression levels were examined by Western blotting. Results: The results showed that SHS in vivo caused increased expression of ET receptors ETA and ETB, and that the MEK1/2 blocker U0126 significantly reversed SHS exposure-increased ETA-mediated contractile responses and protein levels. Similar alterations were observed in ETB receptors. U0126 showed dose-dependent effects on SHS-induced response on contractile property and protein levels of the ETB receptor. However, only the higher dose U0126 (15 mg/kg) had inhibitory effects on the ETA receptor. Conclusions: Taken together, our data show that SHS increases contractile ET receptors and MEK1/2 pathway inhibitor offsets SHS exposure-induced ETA and ETB receptor upregulation in rat coronary arteries.
Collapse
Affiliation(s)
- Lei Cao
- Division of Experimental Vascular Research, Institute of Clinical Sciences in Lund, Lund University, Lund, Sweden.,Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Isak Lindstedt
- Division of Experimental Vascular Research, Institute of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Marie-Louise Edvinsson
- Division of Experimental Vascular Research, Institute of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Na-Na Ping
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lars Edvinsson
- Division of Experimental Vascular Research, Institute of Clinical Sciences in Lund, Lund University, Lund, Sweden
| |
Collapse
|
616
|
de Havenon A, Ney J, Callaghan B, Delic A, Hohmann S, Shippey E, Yaghi S, Anadani M, Esper G, Majersik J. A Rapid Decrease in Stroke, Acute Coronary Syndrome, and Corresponding Interventions at 65 United States Hospitals Following Emergence of COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.05.07.20083386. [PMID: 32511563 PMCID: PMC7274244 DOI: 10.1101/2020.05.07.20083386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Following the emergence of coronavirus disease 2019 (COVID-19), early reports suggested a decrease in stroke and acute coronary syndrome (ACS). We sought to provide descriptive statistics for stroke and ACS from a sample of hospitals throughout the United States, comparing data from March 2020 to similar months pre-COVID. Methods We performed a retrospective analysis of 65 academic and community hospitals in the Vizient Clinical Data Base. The primary outcome is monthly count of stroke and ACS, and acute procedures for both, from February and March in 2020 compared to the same months in 2018 and 2019. Results are aggregated for all hospitals and reported by Census Region. Results We identified 51,246 strokes (42,780 ischemic, 8,466 hemorrhagic), 1,043 mechanical thrombectomies (MT), 836 tissue plasminogen activator (tPA) administrations, 36,551 ACS, and 3,925 percutaneous coronary interventions (PCI) for ACS. In February 2020, relative to February 2018 and 2019, hospitalizations with any discharge diagnosis of stroke and ACS increased by 9.8% and 12.1%, respectively, while in March 2020 they decreased 18.5% and 7.5%, relative to March 2018 and 2019. When only including hospitalizations with the primary discharge diagnosis of stroke or ACS, in March 2020 they decreased 17.6% and 25.7%, respectively. In March 2020, tPA decreased 3.3%, MT increased 18.8%, although in February 2020 it had increased 36.8%, and PCI decreased 14.7%. These decreases were observed in all Census regions. Conclusions Following greater recognition of the risks of COVID-19, hospitalizations with stroke and ACS were markedly diminished in a geographically diverse sample of United States hospitals. Because the most likely explanation is that some patients with stroke and ACS did not seek medical care, the underlying reasons for this decrease warrant additional study to inform public health efforts and clinical care during this and future pandemics.
Collapse
|
617
|
Malik AO, Jones PG, Chan PS, Peri-Okonny PA, Hejjaji V, Spertus JA. Association of Long-Term Exposure to Particulate Matter and Ozone With Health Status and Mortality in Patients After Myocardial Infarction. Circ Cardiovasc Qual Outcomes 2020; 12:e005598. [PMID: 30950650 DOI: 10.1161/circoutcomes.119.005598] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Long-term exposure to particulate matter <2.5 µm in diameter (PM2.5) and ozone has been associated with the development and progression of cardiovascular disease and, in the case of PM2.5, higher cardiovascular mortality. Whether exposure to PM2.5 and ozone is associated with patients' health status and quality of life is unknown. We used data from 2 prospective myocardial infarction (MI) registries to assess the relationship between long-term PM2.5 and ozone exposure with health status outcomes 1 year after an MI. METHODS AND RESULTS TRIUMPH (Translational Research Investigating Underlying Disparities in Acute Myocardial Infarction) and PREMIER (Prospective Registry Evaluating Myocardial Infarction: Events and Recovery) enrolled patients presenting with MI at 31 US hospitals between 2003 and 2008. One year later, patients were assessed with the disease-specific Seattle Angina Questionnaire, and 5-year mortality was assessed with the Centers for Disease Control's National Death Index. Individual patients' exposures to PM2.5 and ozone over the year after their MI were estimated from the Environment Protection Agency's Fused Air Quality Surface Using Downscaling tool that integrates monitoring station data and atmospheric models to predict daily air pollution exposure at the census tract level. We assessed the association of exposure to ozone and PM2.5 with 1-year health status and mortality over 5 years using regression models adjusting for age, sex, race, socioeconomic status, date of enrollment, and comorbidities. In completely adjusted models, higher PM2.5 and ozone exposure were independently associated with poorer Seattle Angina Questionnaire summary scores at 1-year (β estimate per +1 SD increase =-0.8 [95% CI, -1.4 to -0.3; P=0.002] for PM2.5 and -0.9 [95% CI, -1.3 to -0.4; P<0.001] for ozone). Moreover, higher PM2.5 exposure, but not ozone, was independently associated with greater mortality risk (hazard ratio =1.13 per +1 SD [95% CI, 1.07-1.20; P<0.001]). CONCLUSIONS In our study, greater exposure to PM2.5 and ozone was associated with poorer 1-year health status following an MI, and PM2.5 was associated with increased risk of 5-year death.
Collapse
Affiliation(s)
- Ali O Malik
- Department of Cardiology, University of Missouri-Kansas City. Department of Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, MO
| | - Philip G Jones
- Department of Cardiology, University of Missouri-Kansas City. Department of Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, MO
| | - Paul S Chan
- Department of Cardiology, University of Missouri-Kansas City. Department of Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, MO
| | - Poghni A Peri-Okonny
- Department of Cardiology, University of Missouri-Kansas City. Department of Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, MO
| | - Vittal Hejjaji
- Department of Cardiology, University of Missouri-Kansas City. Department of Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, MO
| | - John A Spertus
- Department of Cardiology, University of Missouri-Kansas City. Department of Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, MO
| |
Collapse
|
618
|
Rajagopalan S, Huang S, Brook RD. Flattening the curve in COVID-19 using personalised protective equipment: lessons from air pollution. Heart 2020; 106:1286-1288. [PMID: 32398246 PMCID: PMC7246096 DOI: 10.1136/heartjnl-2020-317104] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sanjay Rajagopalan
- University Hospitals, Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sui Huang
- Institute of Systems Biology, Seattle, Washington, USA
| | - Robert D Brook
- Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
619
|
de Aguiar Pontes Pamplona Y, Arbex MA, Braga ALF, Pereira LAA, Martins LC. Relationship between air pollution and hospitalizations for congestive heart failure in elderly people in the city of São Paulo. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18208-18220. [PMID: 32172424 DOI: 10.1007/s11356-020-08216-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/24/2020] [Indexed: 05/22/2023]
Abstract
To evaluate the effects of air pollutants on hospitalizations of elderly people for congestive heart failure (CHF) in the city of São Paulo, stratified by sex, exploring lag structures, from 2000 to 2013. Ecological time series study using information on hospitalization of elderly patients for CHF (ICD-10th: I50) obtained from DATASUS for the city of São Paulo. Information on O3, PM10, NO2, SO2, CO, temperature and humidity was obtained from CETESB. Descriptive analyses, Pearson correlation, and generalized linear Poisson regression model were applied to estimate the effects of pollutants. The interquartile variations of O3 (52.45 μg/m3), PM10 (24.28 μg/m3), NO2 (7.63 μg/m3), SO2 (50.22 μg/m3), and CO (1.28 ppm) were associated with increased hospitalizations for CHF. Air pollutants continue to be a factor that contributes to the increase in the number of hospitalizations due to CHF.
Collapse
Affiliation(s)
| | - Marcos Abdo Arbex
- Centro Universitário de Araraquara- UNIARA, Araraquara, SP, 14801-320, Brazil
| | - Alfésio Luís Ferreira Braga
- Programa de Pós-Graduação em Saúde Coletiva da Universidade Católica de Santos, Santos, SP, 11045-003, Brazil
| | - Luiz Alberto Amador Pereira
- Programa de Pós-Graduação em Saúde Coletiva da Universidade Católica de Santos, Santos, SP, 11045-003, Brazil
| | - Lourdes Conceição Martins
- Programa de Pós-Graduação em Saúde Coletiva da Universidade Católica de Santos, Santos, SP, 11045-003, Brazil
| |
Collapse
|
620
|
Touyz RM, Rios FJ, Alves-Lopes R, Neves KB, Camargo LL, Montezano AC. Oxidative Stress: A Unifying Paradigm in Hypertension. Can J Cardiol 2020; 36:659-670. [PMID: 32389339 PMCID: PMC7225748 DOI: 10.1016/j.cjca.2020.02.081] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
The etiology of hypertension involves complex interactions among genetic, environmental, and pathophysiologic factors that influence many regulatory systems. Hypertension is characteristically associated with vascular dysfunction, cardiovascular remodelling, renal dysfunction, and stimulation of the sympathetic nervous system. Emerging evidence indicates that the immune system is also important and that activated immune cells migrate and accumulate in tissues promoting inflammation, fibrosis, and target-organ damage. Common to these processes is oxidative stress, defined as an imbalance between oxidants and antioxidants in favour of the oxidants that leads to a disruption of oxidation-reduction (redox) signalling and control and molecular damage. Physiologically, reactive oxygen species (ROS) act as signalling molecules and influence cell function through highly regulated redox-sensitive signal transduction. In hypertension, oxidative stress promotes posttranslational modification (oxidation and phosphorylation) of proteins and aberrant signalling with consequent cell and tissue damage. Many enzymatic systems generate ROS, but NADPH oxidases (Nox) are the major sources in cells of the heart, vessels, kidneys, and immune system. Expression and activity of Nox are increased in hypertension and are the major systems responsible for oxidative stress in cardiovascular disease. Here we provide a unifying concept where oxidative stress is a common mediator underlying pathophysiologic processes in hypertension. We focus on some novel concepts whereby ROS influence vascular function, aldosterone/mineralocorticoid actions, and immunoinflammation, all important processes contributing to the development of hypertension.
Collapse
Affiliation(s)
- Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom.
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
621
|
Kim IS, Yang PS, Lee J, Yu HT, Kim TH, Uhm JS, Kim JY, Pak HN, Lee MH, Joung B. Long-term fine particulate matter exposure and cardiovascular mortality in the general population: a nationwide cohort study. J Cardiol 2020; 75:549-558. [DOI: 10.1016/j.jjcc.2019.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/21/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
|
622
|
Groves CP, Butland BK, Atkinson RW, Delaney AP, Pilcher DV. Intensive care admissions and outcomes associated with short-term exposure to ambient air pollution: a time series analysis. Intensive Care Med 2020; 46:1213-1221. [PMID: 32355989 DOI: 10.1007/s00134-020-06052-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/10/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Short-term exposure to outdoor air pollution has been positively associated with numerous measures of acute morbidity and mortality, most consistently as excess cardiorespiratory disease associated with fine particulate matter (PM2.5), particularly in vulnerable populations. It is unknown if the critically ill, a vulnerable population with high levels of cardiorespiratory disease, is affected by air pollution. METHODS We performed a time series analysis of emergency cardiorespiratory, stroke and sepsis intensive care (ICU) admissions for the years 2008-2016, using data from the Australian and New Zealand Intensive Care Society Adult Patient Database (ANZICS-APD). Case-crossover analysis was conducted to assess the relationship between air pollution and the frequency and severity of ICU admissions having adjusted for temperature, humidity, public holidays and influenza activity. RESULTS 46,965 episodes in 87 separate ICUs were analysed. We found no statistically significant associations with admission counts. However, ICU admissions ending in death within 30 days were significantly positively associated with short-term exposure to PM2.5 [RR 1.18, 95% confidence interval (CI) 1.02-1.37, per 10 µg/m3 increase]. This association was more pronounced in those aged 65 and over (RR 1.33, 95% CI 1.11-1.58, per 10 µg/m3). CONCLUSIONS Increased ICU mortality was associated with higher levels of PM2.5. Larger studies are required to determine if the frequency of ICU admissions is positively associated with short-term exposure to air pollution.
Collapse
Affiliation(s)
- Christopher P Groves
- Department of Intensive Care, Royal North Shore Hospital, Sydney, NSW, Australia.
| | - Barbara K Butland
- Population Health Research Institute, St George's, University of London, London, UK
| | - Richard W Atkinson
- Population Health Research Institute, St George's, University of London, London, UK
| | - Anthony P Delaney
- Department of Intensive Care, Royal North Shore Hospital, Sydney, NSW, Australia
| | - David V Pilcher
- Department of Intensive Care, Alfred Hospital, Melbourne, VIC, Australia.,Australia and New Zealand Intensive Care Society (ANZICS), Centre for Outcomes and Resource Evaluation (CORE), Carlton, VIC, Australia
| |
Collapse
|
623
|
Affiliation(s)
- Neal Chatterjee
- Electrophysiology Section, Division of Cardiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
624
|
|
625
|
Abstract
Unhealthy diet, lack of exercise, psychosocial stress, and insufficient sleep are increasingly prevalent modifiable risk factors for cardiovascular disease. Accumulating evidence indicates that these risk factors may fuel chronic inflammatory processes that are active in atherosclerosis and lead to myocardial infarction and stroke. In concert with hyperlipidemia, maladaptive immune system activities can contribute to disease progression and increase the probability of adverse events. In this review, we discuss recent insight into how the above modifiable risk factors influence innate immunity. Specifically, we focus on pathways that raise systemic myeloid cell numbers and modulate immune cell phenotypes, reviewing hematopoiesis, leukocyte trafficking, and innate immune cell accumulation in cardiovascular organs. Often, relevant mechanisms that begin with lifestyle choices and lead to cardiovascular events span multiple organ systems, including the central nervous, endocrine, metabolic, hematopoietic, immune and, finally, the cardiovascular system. We argue that deciphering such pathways provides not only support for preventive interventions but also opportunities to develop biomimetic immunomodulatory therapeutics that mitigate cardiovascular inflammation.
Collapse
Affiliation(s)
- Maximilian J Schloss
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.).,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.N.).,Department of Internal Medicine I, University Hospital Wuerzburg, Germany (M.N.)
| |
Collapse
|
626
|
Feriani A, Tir M, Hachani R, Gómez-Caravaca AM, Contreras MDM, Taamalli A, Talhaoui N, Segura-Carretero A, Ghazouani L, Mufti A, Tlili N, El Feki A, Harrath AH, Allagui MS. Zygophyllum album saponins prevent atherogenic effect induced by deltamethrin via attenuating arterial accumulation of native and oxidized LDL in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110318. [PMID: 32105945 DOI: 10.1016/j.ecoenv.2020.110318] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
The current study aimed to examine, for the first time, the relationship between exposure to deltamethrin (DLM) and atherogenic lipid profile disorders in adult Wistar rats, as well as, to verify the mechanism of the beneficial role of Zygophyllum album leaves extracts (ZALE). The experimental study was assessed using DLM (4 mg/kg b.w) either alone or co administered with ZALE (400 mg/kg b.w) orally for 90 days in rats. RP-HPLC-DAD-ESI-QTOF-MS was used to identify the bioactive metabolites present in ZALE. Plasmatic and aortic total cholesterol (TC), LDL-cholesterol (LDL-C), native LDL (LDL-apo B-100) and oxidized LDL (ox-LDL) were evaluated using auto-analyzer and a sandwich ELISA, respectively. The protein expressions of LDLR (native LDL receptor) and CD36 (Scavenger receptor class B) were evaluated in aorta or liver with a Western blot. The pathology has been confirmed with lipid stain (Oil Red O). Phytochemicals analysis revealed the presence of fifteen saponins in ZALE. Rats intoxicated with DLM revealed a significant increase in plasmatic and aortic lipid profile (TC, LDL-C, LDL-apo B-100 and ox-LDL), as well as, the concentration of the plasmatic cytokines include TNF-α, IL-2 and IL-6, compared to control. Hepatic native LDL and aortic CD36 receptor expression were increased in DLM treated group, however aortic LDL-R does not present any modification, when compared to control. The detected disturbances in lipid parameters were supported by Oil Red O applied. Due to their antioxidant activity, the bioactive compounds in ZALE as powerful agents able to prevent the pro-atherogenic effect observed in DLM-treated animals. These metabolites modulated most of inflammatory markers, prevented accumulation of lipid and lipoprotein biomarkers, regulated the major receptor regulators of hepatic cholesterol metabolism, as well as normalize lipid distribution in liver and aorta tissue.
Collapse
Affiliation(s)
- Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Gafsa, Tunisia.
| | - Meriam Tir
- Laboratoire des Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, LR18ES41, Faculté des Sciences de Tunis, Université Tunis EL Manar, 2092, Tunis, Tunisia
| | - Rafik Hachani
- Université de Carthage, Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, 7021, Jarzouna, Tunisia; Laboratoire d'Etude de la Microcirculation (EA 3509), Faculté de Médecine Lariboisière-St. Louis, Université Paris VII, France
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, Edificio Bioregión, 18016, Granada, Spain
| | - María Del Mar Contreras
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Amani Taamalli
- Department of Chemistry, College of Sciences, University of Hafr Al Batin, P.O Box 1803, Hafr Al-Batin 31991, Saudi Arabia
| | - Nassima Talhaoui
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, Edificio Bioregión, 18016, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, Edificio Bioregión, 18016, Granada, Spain
| | - Lakhdar Ghazouani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Gafsa, Tunisia
| | - Afoua Mufti
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Gafsa, Tunisia
| | - Nizar Tlili
- Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El-Manar, Tunis, 2092, Tunisia; Institut Supérieur des Sciences et Technologies de l'Environnement, Université de Carthage, Tunisia.
| | - Abdelfattah El Feki
- Laboratory of Animal Ecophysiology, Faculty of Science of Sfax, 3018, Sfax, Tunisia
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
627
|
Power ML, Snead C, Reed EG, Schulkin J. Integrating evolution into medical education for women's health care practitioners. Evol Med Public Health 2020; 2020:60-67. [PMID: 32382419 PMCID: PMC7196338 DOI: 10.1093/emph/eoaa009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
Evolution is a fundamental principle in biology; however, it has been neglected in medical education. We argue that an evolutionary perspective is especially important for women's health care providers, as selection will act strongly on reproductive parameters, and the biological costs of female reproduction are generally more resource expensive than for men (e.g. due to gestation and lactation) with greater effects on health and wellbeing. An evolutionary perspective is needed to understand antibiotic resistance, disease and health risks associated with mismatches between our evolved adaptations and current conditions, the importance of the microbiome and the maternal role in how infants acquire and develop their early-life microbiome (vaginal birth, lactation), and the importance of breastmilk as a biochemical signal from mothers to their babies. We present data that obstetrician-gynecologists' views regarding the inclusion of evolution within their training is generally positive, but many barriers are perceived. Requiring coursework in evolutionary biology with an emphasis on evolutionary medicine prior to enrollment in medical school may be a solution.
Collapse
Affiliation(s)
- Michael L Power
- Smithsonian National Zoological Park and Conservation Biology Institute, Washington, DC 20013-7012, USA
- American College of Obstetricians and Gynecologists, Washington, DC 20024-2188, USA
| | - Carrie Snead
- American College of Obstetricians and Gynecologists, Washington, DC 20024-2188, USA
| | - Eda G Reed
- Smithsonian National Zoological Park and Conservation Biology Institute, Washington, DC 20013-7012, USA
- Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jay Schulkin
- Obstetrics & Gynecology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
628
|
Shin WY, Kim JH, Lee G, Choi S, Kim SR, Hong YC, Park SM. Exposure to ambient fine particulate matter is associated with changes in fasting glucose and lipid profiles: a nationwide cohort study. BMC Public Health 2020; 20:430. [PMID: 32245477 PMCID: PMC7119167 DOI: 10.1186/s12889-020-08503-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/11/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Ambient fine particulate matter is a rising concern for global public health. It was recently suggested that exposure to fine particulate matter may contribute to the development of diabetes and dyslipidaemia. This study aims to examine the potential associations of ambient particulate matter exposure with changes in fasting glucose and lipid profiles in Koreans. METHOD We used the data from the National Health Insurance Service-National Sample Cohort (NHIS-NSC), a nationwide database representative of the Korean population. A total of 85,869 individuals aged ≥20 years were included. Multiple regression analyses were conducted to assess the associations between exposure to particulate matter and changes in fasting glucose and lipid profiles at 2-year intervals after adjusting for confounders. RESULTS Significant associations were observed between an increase in interquartile range for particulate matter < 2.5 μm in diameter (PM2.5) and elevated levels of fasting glucose and low-density lipoprotein cholesterol (p for trend = 0.015 and 0.010, respectively), while no association for particulate matter sized 2.5-10 μm in diameter (PM10-2.5) was noted after adjusting for the other covariates. Sub-group analyses showed stronger associations in individuals who were older (≥60 years) or physically inactive. CONCLUSIONS Fine particulate matter exposure affects worsening fasting glucose and low-density lipoprotein cholesterol levels, with no evidence of an association for coarse particulate matter.
Collapse
Affiliation(s)
- Woo-Young Shin
- Department of Family Medicine, Chung-ang University Medical Center, Seoul, 06973, Republic of Korea.
| | - Jung-Ha Kim
- Department of Family Medicine, Chung-ang University Medical Center, Seoul, 06973, Republic of Korea
| | - Gyeongsil Lee
- Department of Family Medicine and Biomedical Sciences, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Seulggie Choi
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03087, Republic of Korea
| | - Seong Rae Kim
- Department of Medicine, College of Medicine, Seoul National University, Seoul, 03087, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, 03087, Republic of Korea.,Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, 03087, Republic of Korea.,Environmental Health Center, College of Medicine, Seoul National University, Seoul, 03087, Republic of Korea
| | - Sang Min Park
- Department of Family Medicine and Biomedical Sciences, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03087, Republic of Korea.
| |
Collapse
|
629
|
Johnson M, Brook JR, Brook RD, Oiamo TH, Luginaah I, Peters PA, Spence JD. Traffic-Related Air Pollution and Carotid Plaque Burden in a Canadian City With Low-Level Ambient Pollution. J Am Heart Assoc 2020; 9:e013400. [PMID: 32237976 PMCID: PMC7428640 DOI: 10.1161/jaha.119.013400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background The association between fine particulate matter and cardiovascular disease has been convincingly demonstrated. The role of traffic‐related air pollutants is less clear. To better understand the role of traffic‐related air pollutants in cardiovascular disease development, we examined associations between NO2, carotid atherosclerotic plaque, and cardiometabolic disorders associated with cardiovascular disease. Methods and Results Cross‐sectional analyses were conducted among 2227 patients (62.9±13.8 years; 49.5% women) from the Stroke Prevention and Atherosclerosis Research Centre (SPARC) in London, Ontario, Canada. Total carotid plaque area measured by ultrasound, cardiometabolic disorders, and residential locations were provided by SPARC medical records. Long‐term outdoor residential NO2 concentrations were generated by a land use regression model. Associations between NO2, total carotid plaque area, and cardiometabolic disorders were examined using multiple regression models adjusted for age, sex, smoking, and socioeconomic status. Mean NO2 was 5.4±1.6 ppb in London, Ontario. NO2 was associated with a significant increase in plaque (3.4 mm2 total carotid plaque area per 1 ppb NO2), exhibiting a linear dose‐response. NO2 was also positively associated with triglycerides, total cholesterol, and the ratio of low‐ to high‐density lipoprotein cholesterol (P<0.05). Diabetes mellitus mediated the relationship between NO2 and total carotid plaque area (P<0.05). Conclusions Our results demonstrate that even low levels of traffic‐related air pollutants are linked to atherosclerotic plaque burden, an association that may be partially attributable to pollution‐induced diabetes mellitus. Our findings suggest that reducing ambient concentrations in cities with NO2 below current standards would result in additional health benefits. Given the billions of people exposed to traffic emissions, our study supports the global public health significance of reducing air pollution.
Collapse
Affiliation(s)
- Markey Johnson
- Air Health Science Division Health Canada Ottawa Ontario Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health and Department of Chemical Engineering and Applied Chemistry University of Toronto Ontario Canada
| | - Robert D Brook
- Department of Internal Medicine University of Michigan Ann Arbor MI
| | - Tor H Oiamo
- Department of Geography and Environmental Studies Ryerson University Toronto Ontario Canada
| | - Isaac Luginaah
- Department of Geography Western University London Ontario Canada
| | - Paul A Peters
- Department of Health Sciences Carleton University Ottawa Ontario Canada
| | - J David Spence
- Department of Neurology and Clinical Pharmacology Western University London Ontario Canada.,Stroke Prevention and Atherosclerosis Research Centre Robarts Research Institute Western University London Ontario Canada
| |
Collapse
|
630
|
Pope CA, Coleman N, Pond ZA, Burnett RT. Fine particulate air pollution and human mortality: 25+ years of cohort studies. ENVIRONMENTAL RESEARCH 2020; 183:108924. [PMID: 31831155 DOI: 10.1016/j.envres.2019.108924] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 05/02/2023]
Abstract
Much of the key epidemiological evidence that long-term exposure to fine particulate matter air pollution (PM2.5) contributes to increased risk of mortality comes from survival studies of cohorts of individuals. Although the first two of these studies, published in the mid-1990s, were highly controversial, much has changed in the last 25 + years. The objectives of this paper are to succinctly compile and summarize the findings of these cohort studies using meta-analytic tools and to address several of the key controversies. Independent reanalysis and substantial extended analysis of the original cohort studies have been conducted and many additional studies using a wide variety of cohorts, including cohorts constructed from public data and leveraging natural experiments have been published. Meta-analytic estimates of the mean of the distribution of effects from cohort studies that are currently available, provide substantial evidence of adverse air pollution associations with all-cause, cardiopulmonary, and lung cancer mortality.
Collapse
Affiliation(s)
- C Arden Pope
- Department of Economics, Brigham Young University, Provo, UT, USA.
| | - Nathan Coleman
- Department of Economics, Brigham Young University, Provo, UT, USA
| | - Zachari A Pond
- Department of Economics, Brigham Young University, Provo, UT, USA
| | | |
Collapse
|
631
|
Sarkar S, Khanna P, Garg R. Air pollution: A new challenge for anaesthesiologists! Indian J Anaesth 2020; 64:333-337. [PMID: 32489211 PMCID: PMC7259419 DOI: 10.4103/ija.ija_927_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/14/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Soumya Sarkar
- Department of Anaesthesiology, Critical Care and Pain Medicine, Dr. BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Puneet Khanna
- Department of Anaesthesiology, Critical Care and Pain Medicine, Dr. BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Garg
- Department of Onco-anaesthesia and Palliative Medicine, Dr. BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
- Address for correspondence: Dr. Rakesh Garg, Room No 139, Fist Floor, Department of Onco-anaesthesia and Palliative Medicine, Dr. BRAIRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - 110 029, India. E-mail:
| |
Collapse
|
632
|
Cui L, Shi L, Li D, Li X, Su X, Chen L, Jiang Q, Jiang M, Luo J, Ji A, Chen C, Wang J, Tang J, Pi J, Chen R, Chen W, Zhang R, Zheng Y. Real-Ambient Particulate Matter Exposure-Induced Cardiotoxicity in C57/B6 Mice. Front Pharmacol 2020; 11:199. [PMID: 32296328 PMCID: PMC7136766 DOI: 10.3389/fphar.2020.00199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that exposure to particulate matter (PM) increases the risk of cardiovascular-related morbidity and mortality, though the exact mechanism behind this has yet to be elucidated. Oxidative stress plays a potentially important role in the mechanism of toxicity, with Nrf2 serving as a major antioxidant gene. In the current study, a Nrf2 knockout mouse model was used in combination with an individual ventilated cage (IVC)-based real-ambient PM exposure system to assess the potential cardiotoxicity induced by real-ambient PM exposure and the potential role of Nrf2 and related signaling in this endpoint. After 6- or 11-weeks exposure to PM, ICP-mass spectrometry was used to assess the metal depositions in the heart tissue following PM exposure. Functional and morphological changes in the hearts were investigated with echocardiography and histopathology, and oxidative stress levels were assessed with a serum malondialdehyde content assay. In the further mechanistic study, an RNA-seq technique was utilized to assess the gene transcription status in the hearts of C57/B6 mice exposed to PM with or without Nrf2 knockout. The expression levels of genes of interest were then further investigated with quantitative real-time PCR and western blotting. The results indicated that PM exposure resulted in significant elevation of sodium, potassium, selenium, and ferrum levels in mouse heart tissue. Meanwhile, significantly altered heart function and morphology were observed. Interestingly, Nrf2 knockout led to abolishment of PM-induced effects in several functional parameters but not the morphological changes. Meanwhile, elevated malondialdehyde content was observed in Nrf2 knockout animals. RNA-seq results revealed thousands of genes altered by PM exposure and/or Nrf2 knockout, and this affected several pathways, such as MAPK, phagosome, calcium signaling, and JAK-STAT. In subsequent molecular studies, enhanced nuclear translocation of Nrf2 was also observed following PM exposure, while the MAPK signaling pathway along with related JAK-STAT and TGF-β1 pathway genes, such as p38MAPK, AKT, TAK1, JAK1, STAT3, GRB2, TGFb1, and SMAD2, were confirmed to be affected by PM exposure and/or Nrf2 knockout. The data suggested that PM may induce cardiotoxicity in C57/B6 mice in which Nrf2 plays both protective and detrimental roles involving cardiac-related pathways, such as MAPK, JAK-STAT, and TGF-β1.
Collapse
Affiliation(s)
- Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Limei Shi
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xuan Su
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Menghui Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jing Luo
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Andong Ji
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chen Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - JingLong Tang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
633
|
Lelieveld J, Pozzer A, Pöschl U, Fnais M, Haines A, Münzel T. Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. Cardiovasc Res 2020; 116:1910-1917. [PMID: 32123898 PMCID: PMC7449554 DOI: 10.1093/cvr/cvaa025] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS Long-term exposure of humans to air pollution enhances the risk of cardiovascular and respiratory diseases. A novel Global Exposure Mortality Model (GEMM) has been derived from many cohort studies, providing much-improved coverage of the exposure to fine particulate matter (PM2.5). We applied the GEMM to assess excess mortality attributable to ambient air pollution on a global scale and compare to other risk factors. METHODS AND RESULTS We used a data-informed atmospheric model to calculate worldwide exposure to PM2.5 and ozone pollution, which was combined with the GEMM to estimate disease-specific excess mortality and loss of life expectancy (LLE) in 2015. Using this model, we investigated the effects of different pollution sources, distinguishing between natural (wildfires, aeolian dust) and anthropogenic emissions, including fossil fuel use. Global excess mortality from all ambient air pollution is estimated at 8.8 (7.11-10.41) million/year, with an LLE of 2.9 (2.3-3.5) years, being a factor of two higher than earlier estimates, and exceeding that of tobacco smoking. The global mean mortality rate of about 120 per 100 000 people/year is much exceeded in East Asia (196 per 100 000/year) and Europe (133 per 100 000/year). Without fossil fuel emissions, the global mean life expectancy would increase by 1.1 (0.9-1.2) years and 1.7 (1.4-2.0) years by removing all potentially controllable anthropogenic emissions. Because aeolian dust and wildfire emission control is impracticable, significant LLE is unavoidable. CONCLUSION Ambient air pollution is one of the main global health risks, causing significant excess mortality and LLE, especially through cardiovascular diseases. It causes an LLE that rivals that of tobacco smoking. The global mean LLE from air pollution strongly exceeds that by violence (all forms together), i.e. by an order of magnitude (LLE being 2.9 and 0.3 years, respectively).
Collapse
Affiliation(s)
- Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.,Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
| | - Andrea Pozzer
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Ulrich Pöschl
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Mohammed Fnais
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Andy Haines
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas Münzel
- University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research, Mainz, Germany
| |
Collapse
|
634
|
Kario K, Chia Y, Sukonthasarn A, Turana Y, Shin J, Chen C, Buranakitjaroen P, Nailes J, Hoshide S, Siddique S, Sison J, Soenarta AA, Sogunuru GP, Tay JC, Teo BW, Zhang Y, Park S, Minh HV, Tomitani N, Kabutoya T, Verma N, Wang T, Wang J. Diversity of and initiatives for hypertension management in Asia-Why we need the HOPE Asia Network. J Clin Hypertens (Greenwich) 2020; 22:331-343. [PMID: 31773883 PMCID: PMC8029896 DOI: 10.1111/jch.13733] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022]
Abstract
The Hypertension Cardiovascular Outcome Prevention and Evidence in Asia (HOPE Asia) Network was set up to improve the management of hypertension in Asia with the ultimate goal of achieving "zero" cardiovascular events. Asia is a diverse continent, and the prevalence of hypertension has increased over the last 30 years. There are a number of Asia-specific features of hypertension and hypertension-related cardiovascular complications, which means that a region-specific approach is needed. White-coat hypertension will become more of an issue over time as Asian populations age, and masked hypertension is more prevalent in Asian than in Western countries. Identifying and treating masked hypertension is important to reduce cardiovascular risk. Abnormal patterns of blood pressure (BP) variability common in Asia include exaggerated early morning BP surge and nocturnal hypertension. These are also important cardiovascular risk factors that need to be managed. Home blood pressure monitoring (HBPM) is an important tool for detecting white-coat and masked hypertension, and monitoring BP variability, and practices in Asia are variable. Use of HBPM is important given the Asia-specific features of hypertension, and strategies are needed to improve and standardize HBPM usage. Development of HBPM devices capable of measuring nocturnal BP along with other information and communication technology-based strategies are key developments in the widespread implementation of anticipation medicine strategies to detect and prevent cardiovascular events in patients with hypertension. Region-wide differences in hypertension prevalence, control, and management practices in Asia highlight the importance of information sharing to facilitate best practices.
Collapse
Affiliation(s)
- Kazuomi Kario
- Division of Cardiovascular MedicineDepartment of MedicineJichi Medical University School of MedicineTochigiJapan
| | - Yook‐Chin Chia
- Department of Medical SciencesSchool of Healthcare and Medical SciencesSunway UniversityBandar SunwayMalaysia
- Department of Primary Care MedicineFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Apichard Sukonthasarn
- Cardiology DivisionDepartment of Internal MedicineFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Yuda Turana
- Faculty of Medicine and Health SciencesAtma Jaya Catholic University of IndonesiaJakartaIndonesia
| | - Jinho Shin
- Faculty of Cardiology ServiceHanyang University Medical CenterSeoulKorea
| | - Chen‐Huan Chen
- Department of MedicineSchool of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
| | - Peera Buranakitjaroen
- Department of MedicineFaculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Jennifer Nailes
- University of the East Ramon Magsaysay Memorial Medical Center Inc.Quezon CityPhilippines
| | - Satoshi Hoshide
- Division of Cardiovascular MedicineDepartment of MedicineJichi Medical University School of MedicineTochigiJapan
| | | | - Jorge Sison
- Section of CardiologyDepartment of MedicineMedical Center ManilaManilaPhilippines
| | - Arieska Ann Soenarta
- Department of Cardiology and Vascular MedicineFaculty of MedicineUniversity of Indonesia‐National Cardiovascular Center, Harapan KitaJakartaIndonesia
| | - Guru Prasad Sogunuru
- MIOT International HospitalChennaiIndia
- College of Medical SciencesKathmandu UniversityBharatpurNepal
| | - Jam Chin Tay
- Department of General MedicineTan Tock Seng HospitalSingapore CitySingapore
| | - Boon Wee Teo
- Division of NephrologyDepartment of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| | - Yu‐Qing Zhang
- Divisions of Hypertension and Heart FailureFu Wai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Sungha Park
- Division of CardiologyCardiovascular HospitalYonsei Health SystemSeoulKorea
| | - Huynh Van Minh
- Department of Internal MedicineUniversity of Medicine and PharmacyHue UniversityHue CityVietnam
| | - Naoko Tomitani
- Division of Cardiovascular MedicineDepartment of MedicineJichi Medical University School of MedicineTochigiJapan
| | - Tomoyuki Kabutoya
- Division of Cardiovascular MedicineDepartment of MedicineJichi Medical University School of MedicineTochigiJapan
| | - Narsingh Verma
- Department of PhysiologyKing George's Medical UniversityLucknowIndia
| | - Tzung‐Dau Wang
- Department of Internal MedicineCardiovascular Center and Division of CardiologyNational Taiwan University Hospital and National Taiwan University College of MedicineTaipei CityTaiwan
| | - Ji‐Guang Wang
- Department of HypertensionCentre for Epidemiological Studies and Clinical Trialsthe Shanghai Institute of HypertensionShanghai Key Laboratory of HypertensionRuijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
635
|
Zhang J, Liang S, Ning R, Jiang J, Zhang J, Shen H, Chen R, Duan J, Sun Z. PM 2.5-induced inflammation and lipidome alteration associated with the development of atherosclerosis based on a targeted lipidomic analysis. ENVIRONMENT INTERNATIONAL 2020; 136:105444. [PMID: 31935561 DOI: 10.1016/j.envint.2019.105444] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/30/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Epidemiological studies have confirmed that PM2.5 could contribute to the development of atherosclerosis accompanied with lipids dysregulation. However, the lipids biomarkers involved in this progress remain largely unknown. In this study, a targeted lipidomic approach was used to find out the possible lipid biomarkers involved in the development of atherosclerosis after PM2.5 exposure or during a recovery period. Also, we assessed the pro-atherosclerosis effects of PM2.5 and follow-up influence using pulse wave (PW) Doppler ultrasound, oil red O staining and H&E staining. The vascular stiffness was elevated after 2-month PM2.5 exposure and might persist after 1-month recovery. While the lesions mostly concentrated in the aortic arch was significantly increased in 2-month PM2.5 exposure group and remained an increasing trend after 1-month recovery. The expressions of pro-inflammatory cytokines detected by Mouse Inflammation Array were elevated after ApoE-/- mice treated with PM2.5 for 2-month and restored following 1-month recovery. Yet, IL-10 was significantly decreased during 1-month recovery. Additionally, the targeted lipidomic analysis demonstrated that cholesterol ester (CE), phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM) were significantly increased while lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC), diacylglycerol (DG), triacylglycerol (TG) were reduced after 2-month PM2.5 exposure, indicating that PM2.5 could disrupt glycerophospholipids, glycerolipids and sphingolipids metabolism. And a persistent impact of PM2.5 on glycerophospholipids and glycerolipids metabolism was found after 1-month recovery. Our study demonstrated that PM2.5-induced inflammation response might promote atherosclerotic lesions probably through lipid dysregulation, and the influence probably persisted after 1-month recovery.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Ruihong Ning
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jinjin Jiang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Rui Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
636
|
Rajagopalan S, Al-Kindi S. Getting in Shape for the World's Leading Environmental Risk Factor. J Am Coll Cardiol 2020; 75:718-721. [PMID: 32081279 PMCID: PMC7579749 DOI: 10.1016/j.jacc.2019.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Case Western Reserve University, Cleveland, Ohio.
| | - Sadeer Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
637
|
Baumgartner J, Brauer M, Ezzati M. The role of cities in reducing the cardiovascular impacts of environmental pollution in low- and middle-income countries. BMC Med 2020; 18:39. [PMID: 32089131 PMCID: PMC7038592 DOI: 10.1186/s12916-020-1499-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND As low- and middle-income countries urbanize and industrialize, they must also cope with pollution emitted from diverse sources. MAIN TEXT Strong and consistent evidence associates exposure to air pollution and lead with increased risk of cardiovascular disease occurrence and death. Further, increasing evidence, mostly from high-income countries, indicates that exposure to noise and to both high and low temperatures may also increase cardiovascular risk. There is considerably less research on the cardiovascular impacts of environmental conditions in low- and middle-income countries (LMICs), where the levels of pollution are often higher and the types and sources of pollution markedly different from those in higher-income settings. However, as such evidence gathers, actions to reduce exposures to pollution in low- and middle-income countries are warranted, not least because such exposures are very high. Cities, where pollution, populations, and other cardiovascular risk factors are most concentrated, may be best suited to reduce the cardiovascular burden in LMICs by applying environmental standards and policies to mitigate pollution and by implementing interventions that target the most vulnerable. The physical environment of cities can be improved though municipal processes, including infrastructure development, energy and transportation planning, and public health actions. Local regulations can incentivize or inhibit the polluting behaviors of industries and individuals. Environmental monitoring can be combined with public health warning systems and publicly available exposure maps to inform residents of environmental hazards and encourage the adoption of pollution-avoiding behaviors. Targeted individual or neighborhood interventions that identify and treat high-risk populations (e.g., lead mitigation, portable air cleaners, and preventative medications) can also be leveraged in the very near term. Research will play a key role in evaluating whether these approaches achieve their intended benefits, and whether these benefits reach the most vulnerable. CONCLUSION Cities in LMICs can play a defining role in global health and cardiovascular disease prevention in the next several decades, as they are well poised to develop innovative, multisectoral approaches to pollution mitigation, while also protecting the most vulnerable.
Collapse
Affiliation(s)
- Jill Baumgartner
- Institute for Health and Social Policy, McGill University, Montreal, QC, Canada.
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, 1110 Pine Avenue West, Montreal, QC, H3A 1A3, Canada.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
| | - Michael Brauer
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Majid Ezzati
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC Center for Environment and Health, Imperial College London, London, UK
- WHO Collaborating Centre for NCD Surveillance and Epidemiology, Imperial College London, London, UK
| |
Collapse
|
638
|
Rajagopalan S, Brook RD. Fishin' Mission on Emissions. J Am Coll Cardiol 2020; 73:2086-2088. [PMID: 31023433 DOI: 10.1016/j.jacc.2018.12.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 12/30/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, Ohio; Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio.
| | - Robert D Brook
- Michigan Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
639
|
Koohsari MJ, McCormack GR, Nakaya T, Oka K. Neighbourhood built environment and cardiovascular disease: knowledge and future directions. Nat Rev Cardiol 2020; 17:261-263. [DOI: 10.1038/s41569-020-0343-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
640
|
Ishii M, Seki T, Kaikita K, Sakamoto K, Nakai M, Sumita Y, Nishimura K, Miyamoto Y, Noguchi T, Yasuda S, Kanaoka K, Terasaki S, Saito Y, Tsutsui H, Komuro I, Ogawa H, Tsujita K, Kawakami K. Association of short-term exposure to air pollution with myocardial infarction with and without obstructive coronary artery disease. Eur J Prev Cardiol 2020; 28:1435-1444. [PMID: 34695220 DOI: 10.1177/2047487320904641] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
Abstract
Background Air pollution including particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5) increases the risk of acute myocardial infarction. However, whether short-term exposure to PM2.5 triggers the onset of myocardial infarction with nonobstructive coronary arteries, compared with myocardial infarction with coronary artery disease, has not been elucidated. This study aimed to estimate the association between short-term exposure to PM2.5 and admission for acute myocardial infarction, myocardial infarction with coronary artery disease, and myocardial infarction with nonobstructive coronary arteries. Design This was a time-stratified case-crossover study and multicenter validation study. Methods This study used a nationwide administrative database in Japan between April 2012–March 2016. Of 137,678 acute myocardial infarction cases, 123,633 myocardial infarction with coronary artery disease and 14,045 myocardial infarction with nonobstructive coronary arteries were identified by a validated algorithm combined with International Classification of Disease (10th revision), diagnostic, and procedure codes. Air pollutants and meteorological data were obtained from the monitoring station nearest to the admitting hospital. Results In spring (March–May), the short-term increase of 10 µg/m3 in PM2.5 2 days before admission was significantly associated with admission for acute myocardial infarction, myocardial infarction with nonobstructive coronary arteries, and myocardial infarction with coronary artery disease after adjustment for meteorological variables (odds ratio 1.060, 95% confidence interval 1.038–1.082; odds ratio 1.151, 1.079–1.227; odds ratio 1.049, 1.026–1.073, respectively), while the association was not significant in other variables. These associations were also observed after adjustment for other co-pollutants. The risk for myocardial infarction with nonobstructive coronary arteries (vs myocardial infarction with coronary artery disease) was associated with an even lower concentration of PM2.5 under the current environmental standards. Conclusions This study showed the seasonal difference of acute myocardial infarction risk attributable to PM2.5 and the difference in the threshold of triggering the onset of acute myocardial infarction subtype.
Collapse
Affiliation(s)
- Masanobu Ishii
- Graduate School of Medical Sciences, Kumamoto University, Japan
- Graduate School of Medicine and Public Health, Kyoto University, Japan
- National Cerebral and Cardiovascular Center, Japan
| | - Tomotsugu Seki
- Graduate School of Medicine and Public Health, Kyoto University, Japan
| | - Koichi Kaikita
- Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Kenji Sakamoto
- Graduate School of Medical Sciences, Kumamoto University, Japan
| | | | - Yoko Sumita
- National Cerebral and Cardiovascular Center, Japan
| | | | | | | | | | | | | | | | | | - Issei Komuro
- Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Japan
| | - Hisao Ogawa
- National Cerebral and Cardiovascular Center, Japan
| | - Kenichi Tsujita
- Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Koji Kawakami
- Graduate School of Medicine and Public Health, Kyoto University, Japan
| | | |
Collapse
|
641
|
Miller MR, Newby DE. Air pollution and cardiovascular disease: car sick. Cardiovasc Res 2020; 116:279-294. [PMID: 31583404 DOI: 10.1093/cvr/cvz228] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The cardiovascular effects of inhaled particle matter (PM) are responsible for a substantial morbidity and mortality attributed to air pollution. Ultrafine particles, like those in diesel exhaust emissions, are a major source of nanoparticles in urban environments, and it is these particles that have the capacity to induce the most significant health effects. Research has shown that diesel exhaust exposure can have many detrimental effects on the cardiovascular system both acutely and chronically. This review provides an overview of the cardiovascular effects on PM in air pollution, with an emphasis on ultrafine particles in vehicle exhaust. We consider the biological mechanisms underlying these cardiovascular effects of PM and postulate that cardiovascular dysfunction may be implicated in the effects of PM in other organ systems. The employment of multiple strategies to tackle air pollution, and especially ultrafine particles from vehicles, is likely to be accompanied by improvements in cardiovascular health.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH4 3RL, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH4 3RL, UK
| |
Collapse
|
642
|
Erkens R, Kelm M. Fine particulate matter: An underestimated cardiovascular risk factor? Eur J Prev Cardiol 2020; 28:e9-e10. [PMID: 33611425 DOI: 10.1177/2047487319899122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ralf Erkens
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf, Germany.,CARID, Cardiovascular Research Institute Duesseldorf, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf, Germany.,CARID, Cardiovascular Research Institute Duesseldorf, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
643
|
Mariani J, Favero C, Carugno M, Pergoli L, Ferrari L, Bonzini M, Cattaneo A, Pesatori AC, Bollati V. Nasal Microbiota Modifies the Effects of Particulate Air Pollution on Plasma Extracellular Vesicles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020611. [PMID: 31963616 PMCID: PMC7013854 DOI: 10.3390/ijerph17020611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Air pollution exposure has been linked to modifications of both extracellular vesicle (EV) concentration and nasal microbiota structure (NMB), which might act as the respiratory health gatekeeper. This study aimed to assess whether an unbalanced NMB could modify the effect of particulate matter (PM) exposure on plasmatic EV levels. Due to two different NMB taxonomical profiles characterized by a widely different relative abundance of the Moraxella genus, the enrolled population was stratified into Mor- (balanced NMB) and Mor+ (unbalanced NMB) groups (Moraxella genus's cut-off ≤25% and >25%, respectively). EV features were assessed by nanoparticle tracking analysis (NTA) and flow-cytometry (FC). Multivariable analyses were applied on EV outcomes to evaluate a possible association between PM10 and PM2.5 and plasmatic EV levels. The Mor- group revealed positive associations between PM levels and plasmatic CD105+ EVs (GMR = 4.39 p = 0.02) as for total EV count (GMR = 1.92 p = 0.02). Conversely, the Mor+ group showed a negative association between exposure and EV outcomes (CD66+ GMR = 0.004 p = 0.01; EpCAM+ GMR = 0.005 p = 0.01). Our findings provide an insight regarding how a balanced NMB may help to counteract PM exposure effects in terms of plasmatic EV concentration. Further research is necessary to understand the relationship between the host and the NMB to disentangle the mechanism exerted by inhaled pollutants in modulating EVs and NMB.
Collapse
Affiliation(s)
- Jacopo Mariani
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Chiara Favero
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Michele Carugno
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Laura Pergoli
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Luca Ferrari
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Matteo Bonzini
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy;
| | - Angela Cecilia Pesatori
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-503-20147
| |
Collapse
|
644
|
Li J, Zhou C, Xu H, Brook RD, Liu S, Yi T, Wang Y, Feng B, Zhao M, Wang X, Zhao Q, Chen J, Song X, Wang T, Liu S, Zhang Y, Wu R, Gao J, Pan B, Pennathur S, Rajagopalan S, Huo Y, Zheng L, Huang W. Ambient Air Pollution Is Associated With HDL (High-Density Lipoprotein) Dysfunction in Healthy Adults. Arterioscler Thromb Vasc Biol 2020; 39:513-522. [PMID: 30700134 DOI: 10.1161/atvbaha.118.311749] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective- We aimed to assess whether exposure to higher levels of ambient air pollution impairs HDL (high-density lipoprotein) function and to elucidate the underlying biological mechanisms potentially involved. Approach and Results- In the Beijing AIRCHD study (Air Pollution and Cardiovascular Dysfunction in Healthy Adults), 73 healthy adults (23.3±5.4 years) were followed-up with 4 repeated study visits in 2014 to 2016. During each visit, ambient air pollution concentrations, HDL function metrics, and parameters of inflammation and oxidative stress were measured. Average daily concentrations of ambient particulate matter in diameter <2.5 μm were 62.9 µg/m3 (8.1-331.0 µg/m3). We observed significant decreases in HDL cholesterol efflux capacity of 2.3% (95% CI, -4.3 to -0.3) to 5.0% (95% CI, -7.6 to -2.4) associated with interquartile range increases in moving average concentrations of particulate matter in diameter <2.5 μm and traffic-related air pollutants (black carbon, nitrogen dioxide, and carbon monoxide) during the 1 to 7 days before each participant's clinic visit. Higher ambient air pollutant levels were also associated with significant reductions in circulating HDL cholesterol and apoA-I (apolipoprotein A-I), as well as elevations in HDL oxidation index, oxidized LDL (low-density lipoprotein), malondialdehyde, and high-sensitivity C-reactive protein. Conclusions- Higher ambient air pollution concentrations were associated with impairments in HDL functionality, potentially because of systemic inflammation and oxidative stress. These novel findings further our understanding of the mechanisms whereby air pollutants promote cardiometabolic disorders.
Collapse
Affiliation(s)
- Jianping Li
- From the Division of Cardiology, Peking University First Hospital, Beijing (J.L., S.L., T.Y., Y.H.).,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center (J.L., C.Z., H.X., S.L., T.Y., B.F., M.Z., X.W., Q.Z., S.L., Y.Z., R.W., X.S., T.W., J.G., B.P., Y.H., L.Z., W.H.), Peking University, Beijing
| | - Changping Zhou
- Institute of Cardiovascular Sciences (C.Z., M.Z., X.W., J.G., B.P., L.Z.), Peking University School of Basic Medical Sciences, Beijing.,Institute of Systems Biomedicine (C.Z., M.Z., X.W., J.G., B.P., L.Z.), Peking University School of Basic Medical Sciences, Beijing.,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center (J.L., C.Z., H.X., S.L., T.Y., B.F., M.Z., X.W., Q.Z., S.L., Y.Z., R.W., X.S., T.W., J.G., B.P., Y.H., L.Z., W.H.), Peking University, Beijing
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, Peking University Institute of Environmental Medicine (H.X., B.F., Q.Z., S.L., Y.Z., R.W., X.S., T.W., W.H., J.C.).,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center (J.L., C.Z., H.X., S.L., T.Y., B.F., M.Z., X.W., Q.Z., S.L., Y.Z., R.W., X.S., T.W., J.G., B.P., Y.H., L.Z., W.H.), Peking University, Beijing
| | - Robert D Brook
- Division of Cardiovascular Medicine (R.D.B.), University of Michigan, Ann Arbor
| | - Shengcong Liu
- From the Division of Cardiology, Peking University First Hospital, Beijing (J.L., S.L., T.Y., Y.H.).,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center (J.L., C.Z., H.X., S.L., T.Y., B.F., M.Z., X.W., Q.Z., S.L., Y.Z., R.W., X.S., T.W., J.G., B.P., Y.H., L.Z., W.H.), Peking University, Beijing
| | - Tieci Yi
- From the Division of Cardiology, Peking University First Hospital, Beijing (J.L., S.L., T.Y., Y.H.)
| | - Yang Wang
- Department of Prevention and Health Care, Hospital of Health Science Center (Y.W.), Peking University, Beijing
| | - Baihuan Feng
- Department of Occupational and Environmental Health, Peking University School of Public Health, Peking University Institute of Environmental Medicine (H.X., B.F., Q.Z., S.L., Y.Z., R.W., X.S., T.W., W.H., J.C.)
| | - Mingming Zhao
- Institute of Cardiovascular Sciences (C.Z., M.Z., X.W., J.G., B.P., L.Z.), Peking University School of Basic Medical Sciences, Beijing.,Institute of Systems Biomedicine (C.Z., M.Z., X.W., J.G., B.P., L.Z.), Peking University School of Basic Medical Sciences, Beijing
| | - Xu Wang
- Institute of Cardiovascular Sciences (C.Z., M.Z., X.W., J.G., B.P., L.Z.), Peking University School of Basic Medical Sciences, Beijing.,Institute of Systems Biomedicine (C.Z., M.Z., X.W., J.G., B.P., L.Z.), Peking University School of Basic Medical Sciences, Beijing
| | - Qian Zhao
- Department of Occupational and Environmental Health, Peking University School of Public Health, Peking University Institute of Environmental Medicine (H.X., B.F., Q.Z., S.L., Y.Z., R.W., X.S., T.W., W.H., J.C.)
| | - Jie Chen
- Department of Occupational and Environmental Health, Peking University School of Public Health, Peking University Institute of Environmental Medicine (H.X., B.F., Q.Z., S.L., Y.Z., R.W., X.S., T.W., W.H., J.C.).,Institute for Risk Assessment Sciences (J.C.), University Medical Centre Utrecht, University of Utrecht, the Netherlands.,Julius Centre for Health Sciences and Primary Care (J.C.), University Medical Centre Utrecht, University of Utrecht, the Netherlands
| | - Xiaoming Song
- Department of Occupational and Environmental Health, Peking University School of Public Health, Peking University Institute of Environmental Medicine (H.X., B.F., Q.Z., S.L., Y.Z., R.W., X.S., T.W., W.H., J.C.).,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center (J.L., C.Z., H.X., S.L., T.Y., B.F., M.Z., X.W., Q.Z., S.L., Y.Z., R.W., X.S., T.W., J.G., B.P., Y.H., L.Z., W.H.), Peking University, Beijing
| | - Tong Wang
- Department of Occupational and Environmental Health, Peking University School of Public Health, Peking University Institute of Environmental Medicine (H.X., B.F., Q.Z., S.L., Y.Z., R.W., X.S., T.W., W.H., J.C.).,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center (J.L., C.Z., H.X., S.L., T.Y., B.F., M.Z., X.W., Q.Z., S.L., Y.Z., R.W., X.S., T.W., J.G., B.P., Y.H., L.Z., W.H.), Peking University, Beijing
| | - Shuo Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, Peking University Institute of Environmental Medicine (H.X., B.F., Q.Z., S.L., Y.Z., R.W., X.S., T.W., W.H., J.C.)
| | - Yi Zhang
- Department of Occupational and Environmental Health, Peking University School of Public Health, Peking University Institute of Environmental Medicine (H.X., B.F., Q.Z., S.L., Y.Z., R.W., X.S., T.W., W.H., J.C.).,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center (J.L., C.Z., H.X., S.L., T.Y., B.F., M.Z., X.W., Q.Z., S.L., Y.Z., R.W., X.S., T.W., J.G., B.P., Y.H., L.Z., W.H.), Peking University, Beijing
| | - Rongshan Wu
- Department of Occupational and Environmental Health, Peking University School of Public Health, Peking University Institute of Environmental Medicine (H.X., B.F., Q.Z., S.L., Y.Z., R.W., X.S., T.W., W.H., J.C.).,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center (J.L., C.Z., H.X., S.L., T.Y., B.F., M.Z., X.W., Q.Z., S.L., Y.Z., R.W., X.S., T.W., J.G., B.P., Y.H., L.Z., W.H.), Peking University, Beijing
| | - Jianing Gao
- Institute of Cardiovascular Sciences (C.Z., M.Z., X.W., J.G., B.P., L.Z.), Peking University School of Basic Medical Sciences, Beijing.,Institute of Systems Biomedicine (C.Z., M.Z., X.W., J.G., B.P., L.Z.), Peking University School of Basic Medical Sciences, Beijing.,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center (J.L., C.Z., H.X., S.L., T.Y., B.F., M.Z., X.W., Q.Z., S.L., Y.Z., R.W., X.S., T.W., J.G., B.P., Y.H., L.Z., W.H.), Peking University, Beijing
| | - Bing Pan
- Institute of Cardiovascular Sciences (C.Z., M.Z., X.W., J.G., B.P., L.Z.), Peking University School of Basic Medical Sciences, Beijing.,Institute of Systems Biomedicine (C.Z., M.Z., X.W., J.G., B.P., L.Z.), Peking University School of Basic Medical Sciences, Beijing.,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center (J.L., C.Z., H.X., S.L., T.Y., B.F., M.Z., X.W., Q.Z., S.L., Y.Z., R.W., X.S., T.W., J.G., B.P., Y.H., L.Z., W.H.), Peking University, Beijing
| | | | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Case Western Reserve Medical School, Cleveland OH (S.R.), Peking University, Beijing
| | - Yong Huo
- From the Division of Cardiology, Peking University First Hospital, Beijing (J.L., S.L., T.Y., Y.H.).,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center (J.L., C.Z., H.X., S.L., T.Y., B.F., M.Z., X.W., Q.Z., S.L., Y.Z., R.W., X.S., T.W., J.G., B.P., Y.H., L.Z., W.H.), Peking University, Beijing
| | - Lemin Zheng
- Institute of Cardiovascular Sciences (C.Z., M.Z., X.W., J.G., B.P., L.Z.), Peking University School of Basic Medical Sciences, Beijing.,Institute of Systems Biomedicine (C.Z., M.Z., X.W., J.G., B.P., L.Z.), Peking University School of Basic Medical Sciences, Beijing.,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center (J.L., C.Z., H.X., S.L., T.Y., B.F., M.Z., X.W., Q.Z., S.L., Y.Z., R.W., X.S., T.W., J.G., B.P., Y.H., L.Z., W.H.), Peking University, Beijing
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, Peking University Institute of Environmental Medicine (H.X., B.F., Q.Z., S.L., Y.Z., R.W., X.S., T.W., W.H., J.C.).,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center (J.L., C.Z., H.X., S.L., T.Y., B.F., M.Z., X.W., Q.Z., S.L., Y.Z., R.W., X.S., T.W., J.G., B.P., Y.H., L.Z., W.H.), Peking University, Beijing
| |
Collapse
|
645
|
Manson JE, Bassuk SS, Cook NR, Lee IM, Mora S, Albert CM, Buring JE. Vitamin D, Marine n-3 Fatty Acids, and Primary Prevention of Cardiovascular Disease Current Evidence. Circ Res 2020; 126:112-128. [PMID: 31895658 PMCID: PMC7001886 DOI: 10.1161/circresaha.119.314541] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Whether marine omega-3 fatty acid (n-3 FA) or vitamin D supplementation can prevent cardiovascular disease (CVD) in general populations at usual risk for this outcome is unknown. A major goal of VITAL (Vitamin D and Omega-3 Trial) was to fill this knowledge gap. In this article, we review the results of VITAL, discuss relevant mechanistic studies regarding n-3 FAs, vitamin D, and vascular disease, and summarize recent meta-analyses of the randomized trial evidence on these agents. VITAL was a nationwide, randomized, placebo-controlled, 2×2 factorial trial of marine n-3 FAs (1 g/d) and vitamin D3 (2000 IU/d) in the primary prevention of CVD and cancer among 25 871 US men aged ≥50 and women aged ≥55 years, including 5106 blacks. Median treatment duration was 5.3 years. Supplemental n-3 FAs did not significantly reduce the primary cardiovascular end point of major CVD events (composite of myocardial infarction, stroke, and CVD mortality; hazard ratio [HR], 0.92 [95% CI, 0.80-1.06]) but were associated with significant reductions in total myocardial infarction (HR, 0.72 [95% CI, 0.59-0.90]), percutaneous coronary intervention (HR, 0.78 [95% CI, 0.63-0.95]), and fatal myocardial infarction (HR, 0.50 [95% CI, 0.26-0.97]) but not stroke or other cardiovascular end points. For major CVD events, a treatment benefit was seen in those with dietary fish intake below the cohort median of 1.5 servings/wk (HR, 0.81 [95% CI, 0.67-0.98]) but not in those above (P interaction=0.045). For myocardial infarction, the greatest risk reductions were in blacks (HR, 0.23 [95% CI, 0.11-0.47]; P interaction by race, 0.001). Vitamin D supplementation did not reduce major CVD events (HR, 0.97 [95% CI, 0.85-1.12]) or other cardiovascular end points. Updated meta-analyses that include VITAL and other recent trials document coronary risk reduction from supplemental marine n-3 FAs but no clear CVD risk reduction from supplemental vitamin D. Additional research is needed to determine which individuals may be most likely to derive net benefit from supplementation. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01169259.
Collapse
Affiliation(s)
- JoAnn E Manson
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (J.E.M., N.R.C., I.-M.L., J.E.B.)
| | - Shari S Bassuk
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
| | - Nancy R Cook
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (J.E.M., N.R.C., I.-M.L., J.E.B.)
| | - I-Min Lee
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (J.E.M., N.R.C., I.-M.L., J.E.B.)
| | - Samia Mora
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
| | - Christine M Albert
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
- the Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA (C.M.A.)
| | - Julie E Buring
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (J.E.M., N.R.C., I.-M.L., J.E.B.)
| |
Collapse
|
646
|
Zhao B, Johnston FH, Salimi F, Kurabayashi M, Negishi K. Short-term exposure to ambient fine particulate matter and out-of-hospital cardiac arrest: a nationwide case-crossover study in Japan. Lancet Planet Health 2020; 4:e15-e23. [PMID: 31999950 DOI: 10.1016/s2542-5196(19)30262-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND PM2·5 is an important but modifiable environmental risk factor, not only for pulmonary diseases and cancers, but for cardiovascular health. However, the evidence regarding the association between air pollution and acute cardiac events, such as out-of-hospital cardiac arrest (OHCA), is inconsistent, especially at concentrations lower than the WHO daily guideline (25 μg/m3). This study aimed to determine the associations between exposure to ambient air pollution and the incidence of OHCA. METHODS In this nationwide case-crossover study, we linked prospectively collected population-based registry data for OHCA in Japan from Jan 1, 2014, to Dec 31, 2015, with daily PM2·5, carbon monoxide (CO), nitrogen dioxide (NO2), photochemical oxidants (Ox), and sulphur dioxide (SO2) exposure on the day of the arrest (lag 0) or 1-3 days before the arrest (lags 1-3), as well as the moving average across days 0-1 and days 0-3. Daily exposure was calculated by averaging the measurements from all PM2·5 monitoring stations in the same prefecture. The effect of PM2·5 on risk of all-cause or cardiac OHCA was estimated using a time-stratified case-crossover design coupled with conditional logistic regression analysis, adjusted for daily temperature and relative humidity. Single-pollutant models were also investigated for the individual gaseous pollutants (CO, NO2, Ox, and SO2), as well as two-pollutant models for PM2·5 with these gaseous pollutants. Subgroup analyses were done by sex and age. FINDINGS Over the 2 years, 249 372 OHCAs were identified, with 149 838 (60·1%) presumed of cardiac origin. The median daily PM2·5 was 11·98 μg/m3 (IQR 8·13-17·44). Each 10 μg/m3 increase in PM2·5 was associated with increased risk of all-cause OHCA on the same day (odds ratio [OR] 1·016, 95% CI 1·009-1·023) and at lags of up to 3 days, ranging from OR 1·015 (1·008-1·022) at lag 1 to 1·033 (1·023-1·043) at lag 0-3. Results for cardiac OHCA were similar (ORs ranging from 1·016 [1·007-1·025] at lags 1 and 2 to 1·034 [1·021-1·047] at lag 0-3). Patients older than 65 years were more susceptible to PM2·5 exposure than younger age groups but no sex differences were identified. CO, Ox, and SO2 were also positively associated with OHCA while NO2 was not. However, in two-pollutant models of PM2·5 and gaseous pollutants, only PM2·5 (positive association) and NO2 (negative association) were independently associated with increased risk of OHCA. INTERPRETATION Short-term exposure to PM2·5 was associated with an increased risk of OHCA even at relatively low concentrations. Regulatory standards and targets need to incorporate the potential health gains from continual air quality improvement even in locations already meeting WHO standards. FUNDING None.
Collapse
Affiliation(s)
- Bing Zhao
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Farhad Salimi
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia; University Centre for Rural Health-North Coast, School of Public Health, University of Sydney, Lismore, NSW, Australia
| | - Masahiko Kurabayashi
- Department of Cardiology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kazuaki Negishi
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia; Department of Cardiology, Graduate School of Medicine, Gunma University, Maebashi, Japan; Department of Cardiology, Sydney Medical School Nepean, Faculty of Medicine and Health, Charles Perkins Centre Nepean, The University of Sydney, Kingswood, NSW, Australia.
| |
Collapse
|
647
|
Pope CA, Bhatnagar A. Does Air Pollution Increase Risk of Mortality After Cardiac Transplantation? J Am Coll Cardiol 2019; 74:3036-3038. [PMID: 31865971 DOI: 10.1016/j.jacc.2019.07.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 10/25/2022]
Affiliation(s)
- C Arden Pope
- Department of Economics, Brigham Young University, Provo, Utah.
| | - Aruni Bhatnagar
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky. https://twitter.com/aruni_bhatnagar
| |
Collapse
|
648
|
Ambient Air Pollution and Mortality After Cardiac Transplantation. J Am Coll Cardiol 2019; 74:3026-3035. [PMID: 31865970 DOI: 10.1016/j.jacc.2019.09.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Heart transplant recipients are at high risk for mortality, with traditional risk scores performing modestly in predicting post-transplant survival, underscoring the importance of as yet unidentified factors in determining prognosis. In this analysis, the association between PM2.5 exposure levels and survival after heart transplantation were investigated. OBJECTIVES This study sought to study the association between PM2.5 exposure and mortality following heart transplantation. METHODS On the basis of the zip code of residence, mortality data in patients who underwent heart transplantation (2004 to 2015) in the United Network for Organ Sharing (UNOS) database were linked with validated estimates of fine particulate matter concentrations (particles with diameter <2.5 μm [PM2.5]; 1 × 1-km grids) for each calendar year during which a UNOS cardiac transplant recipient was at risk for death. Cox proportional hazard models were used to estimate the relationship between exposure and overall mortality adjusting for recipient, donor, and neighborhood variables. RESULTS A total of 21,800 patients with 86,713 patient-years of follow-up was included. Mean age at transplantation was 52.6 ± 12.6 years, 75% were male, 69% were white, and 39% had ischemic etiology of heart failure. Mean annual exposure to PM2.5 was 10.6 ± 2.3 μg/m3. At a median follow-up of 4.8 (95% confidence interval: 2.0 to 7.8) years, 5,208 patients (23.9%) had died. The estimated mortality hazard ratio, per 10 μg/m3 increment increase in annual PM2.5 exposure was 1.43 (95% confidence interval: 1.21 to 1.49). After adjusting for 30 recipient, donor, and neighborhood variables, the estimated mortality hazard ratio per 10 μg/m3 increment in annual exposure to PM2.5 was 1.26 (95% confidence interval: 1.11 to 1.43) relative increase in hazard of mortality. This association was consistent across subgroups. CONCLUSIONS This study provides evidence linking air pollution with mortality after heart transplantation. These results suggest an important influence of a key environmental factor in outcomes following heart transplantation, and supports the need for further studies in this population.
Collapse
|
649
|
Wann LS, Narula J, Blankstein R, Thompson RC, Frohlich B, Finch CE, Thomas GS. Atherosclerosis in 16th-Century Greenlandic Inuit Mummies. JAMA Netw Open 2019; 2:e1918270. [PMID: 31880790 PMCID: PMC6991216 DOI: 10.1001/jamanetworkopen.2019.18270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This case series examines 4 Greenlandic Inuit mummies from approximately the 16th century for evidence of atherosclerosis.
Collapse
Affiliation(s)
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | | | - Gregory S. Thomas
- Memorial Care Heart & Vascular Institute, Fountain Valley, California
| |
Collapse
|
650
|
Short-term effects of ambient air pollution and outdoor temperature on biomarkers of myocardial damage, inflammation and oxidative stress in healthy adults. Environ Epidemiol 2019; 3:e078. [PMID: 33778346 PMCID: PMC7939428 DOI: 10.1097/ee9.0000000000000078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/24/2019] [Indexed: 01/02/2023] Open
Abstract
Supplemental Digital Content is available in the text. The mechanisms whereby ambient air pollution and temperature changes promote cardiac events remain incompletely described. Seventy-three nonsmoking healthy adults (mean age 23.3, SD 5.4 years) were followed with up to four repeated visits across 15 months in Beijing in 2014–2016. Biomarkers relevant to myocardial damage (high-sensitivity cardiac troponin I [hs-cTnI]), inflammation (growth differentiation factor-15 [GDF-15]), and oxidative stress (8-hydroxy-2′-deoxyguanosine [8-OHdG]) were measured at each visit, while ambient air pollution and temperature were monitored throughout the study. Linear mixed-effects models coupled with distributed lag nonlinear models were used to assess the impacts of each exposure measure on study outcomes. During follow-up, average daily concentrations of fine particulate matter and outdoor temperature were 62.9 µg/m3 (8.1–331.0 µg/m3) and 10.1 °C (−6.5°C to 29.5°C). Serum hs-cTnI levels were detectable in 18.2% of blood samples, with 27.4% of individuals having ≥1 detectable values. Higher levels of ambient particulates and gaseous pollutants (per interquartile range) up to 14 days before clinical visits were associated with significant alterations in hs-cTnI levels of 22.9% (95% CI, 6.4, 39.4) to 154.7% (95% CI, 94.4, 215.1). These changes were accompanied by elevations of circulating GDF-15 and urinary 8-OHdG levels. Both low (5th percentile, −2.5 °C) and high (95th percentile, 24.8°C) outdoor temperatures, with breakpoint at ~13.0°C as the reference level, were also associated with elevations of hs-cTnI levels. Short-term exposure to ambient air pollution and temperature was associated with cardiac troponin, a biomarker of myocardial damage, along with increased inflammation and oxidative stress responses. These findings extend our understanding of the biological mechanisms linking pervasive environmental exposure to adverse cardiac events.
Collapse
|