601
|
Abstract
PURPOSE OF REVIEW Strains of Salmonella enterica subsp. enterica are amongst the most commonly identified invasive bacterial pathogens in resource-poor settings, and cause significant mortality, particularly in children. In this study we review recent progress in the development of vaccines against S. Typhi, S. Paratyphi and nontyphoidal Salmonella for children. RECENT FINDINGS Typhoid remains common and S. Paratyphi A is increasingly recognized as a cause of enteric fever in Asia. In rural Africa, nontyphoidal salmonellae are among the most common invasive bacterial infections, although S. Typhi predominates in some urban centres. Licensed vaccines against typhoid have moderate but useful efficacy but neither of the two available vaccines can be used in infants. Although Ty21a may afford some cross-protection against S. Paratyphi B, there are no vaccines that specifically target paratyphoid or any nontyphoidal Salmonella. Several live attenuated vaccines are under development and may offer some advantages over Ty21a. Vi-conjugate vaccines should offer children excellent protection from typhoid once licensed. SUMMARY There are few effective vaccines against Salmonella sp. and those that do exist target only one serovar, S. Typhi. Research is urgently needed to combat emerging agents of enteric fever such as S. Paratyphi A as well as nontyphoidal serovars, which commonly cause invasive disease in Africa.
Collapse
|
602
|
Abstract
PURPOSE OF REVIEW Infection with Streptococcus pneumoniae (pneumococcus) results in colonization, which can lead to local or invasive disease, of which pneumonia is the most common manifestation. Despite the availability of pneumococcal vaccines, pneumococcal pneumonia is the leading cause of community and inhospital pneumonia in the United States and globally. This article discusses new insights into the pathogenesis of pneumococcal disease. RECENT FINDINGS The host-microbe interactions that determine whether pneumococcal colonization will result in clearance or invasive disease are highly complex. This article focuses on new information in three areas that bear on the pathogenesis of pneumococcal disease: factors that govern colonization, the prelude to invasive disease, including effects on colonization and invasion of capsular serotype, pneumolysin, surface proteins that regulate complement deposition, biofilm formation and agglutination; the effect of coinfection with other bacteria and viruses on pneumococcal growth and virulence, including the synergistic effect of influenza virus; and the contribution of the host inflammatory response to the pathogenesis of pneumococcal pneumonia, including the effects of pattern recognition molecules, cells that enhance and modulate inflammation, and therapies that modulate inflammation, such as statins. SUMMARY Recent research on pneumococcal pathogenesis reveals new mechanisms by which microbial factors govern the ability of pneumococcus to progress from the state of colonization to disease and host inflammatory responses contribute to the development of pneumonia. These mechanisms suggest that therapies which modulate the inflammatory response could hold promise for ameliorating damage stemming from the host inflammatory response in pneumococcal disease.
Collapse
|
603
|
Odutola A, Antonio M, Owolabi O, Bojang A, Foster-Nyarko E, Donkor S, Adetifa I, Taylor S, Bottomley C, Greenwood B, Ota M. Comparison of the prevalence of common bacterial pathogens in the oropharynx and nasopharynx of gambian infants. PLoS One 2013; 8:e75558. [PMID: 24086570 PMCID: PMC3781055 DOI: 10.1371/journal.pone.0075558] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/14/2013] [Indexed: 11/19/2022] Open
Abstract
Background CRM- based pneumococcal conjugate vaccines generally have little impact on the overall prevalence of pneumococcal carriage because of serotype replacement. In contrast, protein vaccines could substantially reduce the overall prevalence of pneumococcal carriage with potential microbiological and clinical consequences. Therefore, trials of pneumococcal protein vaccines need to evaluate their impact on carriage of other potentially pathogenic bacteria in addition to the pneumococcus. Methods As a prelude to a trial of an investigational pneumococcal vaccine containing pneumococcal polysaccharide conjugates and pneumococcal proteins, the prevalence of carriage of Streptococcus pneumoniae, Haemophilus influenzae, Moraxella species and Staphylococcus aureus in the nasopharynx of 1030 Gambian infants (median age 35 weeks) was determined. An oropharyngeal swab was obtained at the same time from the first 371 infants enrolled. Standard microbiological techniques were used to evaluate the bacterial flora of the pharynx and to compare that found in the oropharynx and in the nasopharynx. Results The overall pneumococcal carriage rate was high. Isolation rates of S. pneumoniae and Moraxella species were significantly higher using nasopharyngeal rather than oropharyngeal swabs (76.1% [95% CI 73.4%,78.7%] vs. 21.3% [95% CI 17.2%,25.8%] and 48.9% [95% CI 45.8%, 52.0%] vs. 20.5% % [95% CI 16.5%,25.0%] respectively). In contrast, S. aureus and H. influenzae were isolated more frequently from oropharyngeal than from nasopharyngeal swabs (65.0% [95% CI 59.9%, 69.8%] vs. 33.6% [95% CI 30.7%, 36.5%] and 31.8% [95% CI 16.5%, 25.0%] vs. 22.4% [95% CI 19.9%, 25.1%] respectively). No group A β haemolytic streptococci were isolated. Conclusion Collection of an oropharyngeal swab in addition to a nasopharyngeal swab will provide little additional information on the impact of a novel pneumococcal vaccine on pneumococcal carriage but it might provide additional, valuable information on the impact of the vaccine on the overall microbiota of the pharynx.
Collapse
Affiliation(s)
- Aderonke Odutola
- Vaccinology Theme, Medical Research Council Unit, Banjul, The Gambia
- * E-mail:
| | - Martin Antonio
- Vaccinology Theme, Medical Research Council Unit, Banjul, The Gambia
| | - Olumuyiwa Owolabi
- Vaccinology Theme, Medical Research Council Unit, Banjul, The Gambia
| | - Abdoulie Bojang
- Vaccinology Theme, Medical Research Council Unit, Banjul, The Gambia
| | | | - Simon Donkor
- Vaccinology Theme, Medical Research Council Unit, Banjul, The Gambia
| | - Ifedayo Adetifa
- Vaccinology Theme, Medical Research Council Unit, Banjul, The Gambia
| | - Sylvia Taylor
- Global Epidemiology, GlaxoSmithKline Vaccines, Wavre, Belgium
| | - Christian Bottomley
- Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Brian Greenwood
- Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Martin Ota
- Vaccinology Theme, Medical Research Council Unit, Banjul, The Gambia
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| |
Collapse
|
604
|
Ruiz-Aragón J, Márquez Peláez S, Molina-Linde JM, Grande-Tejada AM. Safety and immunogenicity of 13-valent pneumococcal conjugate vaccine in infants: a meta-analysis. Vaccine 2013; 31:5349-58. [PMID: 24055349 DOI: 10.1016/j.vaccine.2013.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/30/2022]
Abstract
Pneumococcal infections are a major cause of morbidity and mortality worldwide. Pneumococcal conjugate vaccines represent major progress in the prevention of invasive pneumococcal disease in the paediatric population. We performed a meta-analysis, in accordance with the PRISMA statement, in order to assess the immunogenicity and safety of 13-valent pneumococcal conjugate vaccines in infants. A literary search was conducted using electronic databases and specialized journals were searched manually. Inclusion criteria were: clinical trials with infants vaccinated with 13-valent pneumococcal conjugate, compared to 7-valent vaccine. We recorded the results in terms of the immunogenicity and safety of the vaccines. The quality of the studies included was assessed using the CASP and Jadad checklists. We included nine randomized clinical trials of 258 potentially relevant references in the meta-analysis. The studies included had high-moderate quality. Both vaccines were well tolerated in all groups of infants, and most local reactions and systemic events were of mild or medium intensity and typical of any injected vaccine. All studies included in the meta-analysis showed high immunogenicity for both pneumococcal vaccines in all tested serotypes. An anti-polysaccharide antibody concentration of ≥0.35 μg/mL was achieved in at least 89% of the infants. Our results suggest that the 13-valent pneumococcal conjugate vaccine has a similar safety profile, and is as effective as, the 7-valent vaccine in the prevention of invasive pneumococcal disease caused by the seven common serotypes, and could provide expanded protection against the six additional serotypes.
Collapse
Affiliation(s)
- J Ruiz-Aragón
- Research Group of Pediatrics Infectious Diseases, Virgen del Rocío UH, Seville, Spain.
| | | | | | | |
Collapse
|
605
|
Krone CL, van de Groep K, Trzciński K, Sanders EAM, Bogaert D. Immunosenescence and pneumococcal disease: an imbalance in host-pathogen interactions. THE LANCET RESPIRATORY MEDICINE 2013; 2:141-53. [PMID: 24503269 DOI: 10.1016/s2213-2600(13)70165-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Respiratory infections are among the most important causes of morbidity and mortality from infectious diseases worldwide. The most common causative bacterium, Streptococcus pneumoniae, frequently colonises the upper respiratory tract, where it resides mostly asymptomatically. Occasionally, however, S pneumoniae can cause severe disease such as pneumonia. Local host immunity is essential to control colonising pathogens by preventing overgrowth, spread, and invasion. However, age-related immune deficits in elderly people, known as immunosenescence, might contribute to increased disease burden. We review present knowledge about immunosenescence in the respiratory tract against Gram-positive bacteria, particularly S pneumoniae. We discuss the possible underdetection of pneumococcal colonisation in elderly people, and suggest changes to present surveillance methods to improve understanding of the relation between colonisation and disease. We conclude that present knowledge about alteration of host-pathogen interactions by immunosenescence in the respiratory tract is insufficient, and that research is needed to enable improved measures for prevention.
Collapse
Affiliation(s)
- Cassandra L Krone
- Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, WKZ, Utrecht, Netherlands
| | - Kirsten van de Groep
- Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, WKZ, Utrecht, Netherlands
| | - Krzysztof Trzciński
- Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, WKZ, Utrecht, Netherlands
| | - Elizabeth A M Sanders
- Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, WKZ, Utrecht, Netherlands
| | - Debby Bogaert
- Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, WKZ, Utrecht, Netherlands.
| |
Collapse
|
606
|
O’Grady KAF, Grimwood K, Cripps A, Mulholland EK, Morris P, Torzillo PJ, Wood N, Smith-Vaughan H, Revell A, Wilson A, Van Asperen P, Richmond P, Thornton R, Rablin S, Chang AB. Does a 10-valent pneumococcal-Haemophilus influenzae protein D conjugate vaccine prevent respiratory exacerbations in children with recurrent protracted bacterial bronchitis, chronic suppurative lung disease and bronchiectasis: protocol for a randomised controlled trial. Trials 2013; 14:282. [PMID: 24010917 PMCID: PMC3846146 DOI: 10.1186/1745-6215-14-282] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 08/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recurrent protracted bacterial bronchitis (PBB), chronic suppurative lung disease (CSLD) and bronchiectasis are characterised by a chronic wet cough and are important causes of childhood respiratory morbidity globally. Haemophilus influenzae and Streptococcus pneumoniae are the most commonly associated pathogens. As respiratory exacerbations impair quality of life and may be associated with disease progression, we will determine if the novel 10-valent pneumococcal-Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) reduces exacerbations in these children. METHODS A multi-centre, parallel group, double-blind, randomised controlled trial in tertiary paediatric centres from three Australian cities is planned. Two hundred six children aged 18 months to 14 years with recurrent PBB, CSLD or bronchiectasis will be randomised to receive either two doses of PHiD-CV or control meningococcal (ACYW₁₃₅) conjugate vaccine 2 months apart and followed for 12 months after the second vaccine dose. Randomisation will be stratified by site, age (<6 years and ≥6 years) and aetiology (recurrent PBB or CSLD/bronchiectasis). Clinical histories, respiratory status (including spirometry in children aged ≥6 years), nasopharyngeal and saliva swabs, and serum will be collected at baseline and at 2, 3, 8 and 14 months post-enrolment. Local and systemic reactions will be recorded on daily diaries for 7 and 30 days, respectively, following each vaccine dose and serious adverse events monitored throughout the trial. Fortnightly, parental contact will help record respiratory exacerbations. The primary outcome is the incidence of respiratory exacerbations in the 12 months following the second vaccine dose. Secondary outcomes include: nasopharyngeal carriage of H. influenzae and S. pneumoniae vaccine and vaccine- related serotypes; systemic and mucosal immune responses to H. influenzae proteins and S. pneumoniae vaccine and vaccine-related serotypes; impact upon lung function in children aged ≥6 years; and vaccine safety. DISCUSSION As H. influenzae is the most common bacterial pathogen associated with these chronic respiratory diseases in children, a novel pneumococcal conjugate vaccine that also impacts upon H. influenzae and helps prevent respiratory exacerbations would assist clinical management with potential short- and long-term health benefits. Our study will be the first to assess vaccine efficacy targeting H. influenzae in children with recurrent PBB, CSLD and bronchiectasis. TRIAL REGISTRATION Australia and New Zealand Clinical Trials Registry (ANZCTR) number: ACTRN12612000034831.
Collapse
Affiliation(s)
- Kerry-Ann F O’Grady
- Queensland Children’s Medical Research Institute, Royal Children’s Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Keith Grimwood
- Queensland Children’s Medical Research Institute, Royal Children’s Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Allan Cripps
- School of Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Edward K Mulholland
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- London School of Hygiene & Tropical Medicine, London, UK
| | - Peter Morris
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Department of Paediatrics, Royal Darwin Hospital, Darwin, NT, Australia
| | | | - Nicholas Wood
- National Centre for Immunisation Research & Surveillance, University of Sydney, Westmead, NSW, Australia
| | - Heidi Smith-Vaughan
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Amber Revell
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Andrew Wilson
- Department of Respiratory Medicine, Princess Margaret Hospital, Perth, WA, Australia
| | - Peter Van Asperen
- Department of Respiratory Medicine, The Children’s Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Peter Richmond
- School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Ruth Thornton
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Sheree Rablin
- Queensland Children’s Medical Research Institute, Royal Children’s Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Anne B Chang
- Queensland Children’s Medical Research Institute, Royal Children’s Hospital, The University of Queensland, Brisbane, QLD, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Queensland Children’s Respiratory Centre, Royal Children’s Hospital, Brisbane, QLD, Australia
| |
Collapse
|
607
|
Association of Streptococcus pneumoniae common protein antigen (CPA) antibodies and pneumococcal nasopharyngeal colonization in HIV-infected and HIV-uninfected African children. Vaccine 2013; 31:4421-7. [DOI: 10.1016/j.vaccine.2013.06.097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 11/22/2022]
|
608
|
Miyaji EN, Oliveira MLS, Carvalho E, Ho PL. Serotype-independent pneumococcal vaccines. Cell Mol Life Sci 2013; 70:3303-26. [PMID: 23269437 PMCID: PMC11113425 DOI: 10.1007/s00018-012-1234-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 12/14/2022]
Abstract
Streptococcus pneumoniae remains an important cause of disease with high mortality and morbidity, especially in children and in the elderly. The widespread use of the polysaccharide conjugate vaccines in some countries has led to a significant decrease in invasive disease caused by vaccine serotypes, but an increase in disease caused by non-vaccine serotypes has impacted on the overall efficacy of these vaccines on pneumococcal disease. The obvious solution to overcome such shortcomings would be the development of new formulations that provide serotype-independent immunity. This review focuses on the most promising approaches, including protein antigens, whole cell pneumococcal vaccines, and recombinant bacteria expressing pneumococcal antigens. The protective capacity of these vaccine candidates against the different stages of pneumococcal infection, including colonization, mucosal disease, and invasive disease in animal models is reviewed. Some of the human trials that have already been performed or that are currently ongoing are presented. Finally, the feasibility and the possible shortcomings of these candidates in relation to an ideal vaccine against pneumococcal infections are discussed.
Collapse
Affiliation(s)
- Eliane Namie Miyaji
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
| | | | - Eneas Carvalho
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
| | - Paulo Lee Ho
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
| |
Collapse
|
609
|
Gil E, Noursadeghi M, Brown JS. The clinical and ecological impact of childhood pneumococcal vaccination. Br J Hosp Med (Lond) 2013; 74:212-6. [PMID: 23571392 DOI: 10.12968/hmed.2013.74.4.212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eliza Gil
- Respiratory Medicine Department, University College, London, UK.
| | | | | |
Collapse
|
610
|
Pichichero ME. Protein carriers of conjugate vaccines: characteristics, development, and clinical trials. Hum Vaccin Immunother 2013; 9:2505-23. [PMID: 23955057 DOI: 10.4161/hv.26109] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products.
Collapse
|
611
|
Modified opsonization, phagocytosis, and killing assays to measure potentially protective antibodies against pneumococcal surface protein A. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1549-58. [PMID: 23925886 DOI: 10.1128/cvi.00371-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The standard opsonophagocytosis killing assay (OPKA) for antibodies to pneumococcal capsular polysaccharide was modified to permit an evaluation of the protection-mediating antibodies to pneumococcal surface protein A (PspA). We found that by increasing the incubation time with the complement and phagocytes from 45 min to 75 min, the protective activity was readily detected. In another modification, we used a capsule type 2 target strain that expressed PspA but not pneumococcal surface protein C (PspC). With these modifications separately or in combination, rabbit antisera to the recombinant α-helical or proline-rich domains of PspA mediated >50% killing of the target strain. The ability of normal human sera to mediate the killing of pneumococci in this modified OPKA correlated with their levels of antibodies to PspA and their ability to protect mice against fatal infection with a type 3 strain. Passive protection of mice against pneumococci and killing in the modified OPKA were lost when normal human sera were adsorbed with recombinant PspA (rPspA) on Sepharose, thus supporting the potential utility of the modified OPKA to detect protective antibodies to PspA. In the standard OPKA, monoclonal antibodies to PspA were strongly protective in the presence of subprotective amounts of anti-capsule. Thus, the currently established high-throughput OPKA for antibodies to capsule could be modified in one of two ways to permit an evaluation of the opsonic efficacy of antibodies to PspA.
Collapse
|
612
|
Multiple antigen-presenting system (MAPS) to induce comprehensive B- and T-cell immunity. Proc Natl Acad Sci U S A 2013; 110:13564-9. [PMID: 23898212 DOI: 10.1073/pnas.1307228110] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vaccines are among the most effective approaches to prevent and control many infectious diseases. Because of safety and reproducibility concerns, whole-cell vaccines (WCVs), made from live or killed microorganisms and including hundreds of antigenic components, have been mostly replaced by acellular or subunit vaccines composed of well-defined, purified antigen components. The efficacy of acellular vaccines is inferior to that of WCVs, however, for two major reasons: limited antigen diversity and reduced immunogenicity, especially in a lack of activation of antigen-specific T-cell immunity, which plays an important role in protection against mucosal and intracellular pathogens. Here we present the multiple antigen-presenting system (MAPS), which enables the creation of a macromolecular complex that mimics the properties of WCVs by integrating various antigen components, including polysaccharides and proteins, in the same construct and that induces multipronged immune responses, including antibody, Th1, and Th17 responses. Using antigens from various pathogens (Streptococcus pneumoniae, Salmonella typhi, and Mycobacterium tuberculosis), we demonstrate the versatility of the MAPS system and its feasibility for the design of unique defined-structure subunit vaccines to confer comprehensive protection via multiple immune mechanisms. Moreover, MAPS can serve as a tool for structure-activity analysis of cellular immunogens.
Collapse
|
613
|
Darrieux M, Goulart C, Briles D, Leite LCDC. Current status and perspectives on protein-based pneumococcal vaccines. Crit Rev Microbiol 2013; 41:190-200. [DOI: 10.3109/1040841x.2013.813902] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
614
|
Targeting imperfect vaccines against drug-resistance determinants: a strategy for countering the rise of drug resistance. PLoS One 2013; 8:e68940. [PMID: 23935910 PMCID: PMC3723804 DOI: 10.1371/journal.pone.0068940] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/05/2013] [Indexed: 01/31/2023] Open
Abstract
The growing prevalence of antimicrobial resistance in major pathogens is outpacing discovery of new antimicrobial classes. Vaccines mitigate the effect of antimicrobial resistance by reducing the need for treatment, but vaccines for many drug-resistant pathogens remain undiscovered or have limited efficacy, in part because some vaccines selectively favor pathogen strains that escape vaccine-induced immunity. A strain with even a modest advantage in vaccinated hosts can have high fitness in a population with high vaccine coverage, which can offset a strong selection pressure such as antimicrobial use that occurs in a small fraction of hosts. We propose a strategy to target vaccines against drug-resistant pathogens, by using resistance-conferring proteins as antigens in multicomponent vaccines. Resistance determinants may be weakly immunogenic, offering only modest specific protection against resistant strains. Therefore, we assess here how varying the specific efficacy of the vaccine against resistant strains would affect the proportion of drug-resistant vs. -sensitive strains population-wide for three pathogens--Streptococcus pneumoniae, Staphylococcus aureus, and influenza virus--in which drug resistance is a problem. Notably, if such vaccines confer even slightly higher protection (additional efficacy between 1% and 8%) against resistant variants than sensitive ones, they may be an effective tool in controlling the rise of resistant strains, given current levels of use for many antimicrobial agents. We show that the population-wide impact of such vaccines depends on the additional effect on resistant strains and on the overall effect (against all strains). Resistance-conferring accessory gene products or resistant alleles of essential genes could be valuable as components of vaccines even if their specific protective effect is weak.
Collapse
|
615
|
Olaya-Abril A, Jiménez-Munguía I, Gómez-Gascón L, Obando I, Rodríguez-Ortega MJ. Identification of potential new protein vaccine candidates through pan-surfomic analysis of pneumococcal clinical isolates from adults. PLoS One 2013; 8:e70365. [PMID: 23894641 PMCID: PMC3720901 DOI: 10.1371/journal.pone.0070365] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/17/2013] [Indexed: 11/23/2022] Open
Abstract
Purified polysaccharide and conjugate vaccines are widely used for preventing infections in adults and in children against the Gram-positive bacterium Streptococcus pneumoniae, a pathogen responsible for high morbidity and mortality rates, especially in developing countries. However, these polysaccharide-based vaccines have some important limitations, such as being serotype-dependent, being subjected to losing efficacy because of serotype replacement and high manufacturing complexity and cost. It is expected that protein-based vaccines will overcome these issues by conferring a broad coverage independent of serotype and lowering production costs. In this study, we have applied the “shaving” proteomic approach, consisting of the LC/MS/MS analysis of peptides generated by protease treatment of live cells, to a collection of 16 pneumococcal clinical isolates from adults, representing the most prevalent strains circulating in Spain during the last years. The set of unique proteins identified in all the isolates, called “pan-surfome”, consisted of 254 proteins, which included most of the protective protein antigens reported so far. In search of new candidates with vaccine potential, we identified 32 that were present in at least 50% of the clinical isolates analyzed. We selected four of them (Spr0012, Spr0328, Spr0561 and SP670_2141), whose protection capacity has not yet been tested, for assaying immunogenicity in human sera. All of them induced the production of IgM antibodies in infected patients, thus indicating that they could enter the pipeline for vaccine studies. The pan-surfomic approach shows its utility in the discovery of new proteins that can elicit protection against infectious microorganisms.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; Hospital Universitario Reina Sofía, Córdoba; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Jiménez-Munguía
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; Hospital Universitario Reina Sofía, Córdoba; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Ignacio Obando
- Sección de Enfermedades Infecciosas Pediátricas e Inmunopatología, Hospital Universitario Infantil Virgen del Rocío, Sevilla, Spain
| | - Manuel J. Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; Hospital Universitario Reina Sofía, Córdoba; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
616
|
Neves FPG, Pinto TCA, Corrêa MA, dos Anjos Barreto R, de Souza Gouveia Moreira L, Rodrigues HG, Cardoso CA, Barros RR, Teixeira LM. Nasopharyngeal carriage, serotype distribution and antimicrobial resistance of Streptococcus pneumoniae among children from Brazil before the introduction of the 10-valent conjugate vaccine. BMC Infect Dis 2013; 13:318. [PMID: 23849314 PMCID: PMC3718621 DOI: 10.1186/1471-2334-13-318] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 07/11/2013] [Indexed: 11/26/2022] Open
Abstract
Background Streptococcus pneumoniae remains a major cause of childhood morbidity and mortality worldwide. Nasopharyngeal colonization plays an important role in the development and transmission of pneumococcal diseases, and infants and young children are considered to be the main reservoir of this pathogen. The aim of this study was to evaluate the rates and characteristics associated with nasopharyngeal carriage, the distribution of serotypes and the antimicrobial resistance profiles of Streptococcus pneumoniae among children in a large metropolitan area in Brazil before the introduction of the 10-valent pneumococcal conjugate vaccine. Methods Between March and June 2010, nasopharyngeal swabs were collected from 242 children aged <6 years attending one day care center and the emergency room of a pediatric hospital. Pneumococcal isolates were identified by conventional methods and serotypes were determined by a sequential multiplex PCR assay and/or the Quellung reaction. The antimicrobial susceptibilities of the pneumococci were assessed by the disk diffusion method. MICs for erythromycin and penicillin were also performed. Erythromycin resistance genes were investigated by PCR. Results The overall colonization rate was 49.2% and it was considerably higher among children in the day care center. Pneumococcal carriage was more common among day care attenders and cohabitants with young siblings. The most prevalent serotypes were 6B, 19F, 6A, 14, 15C and 23F, which accounted for 61.2% of the isolates. All isolates were susceptible to clindamycin, levofloxacin, rifampicin and vancomycin. The highest rate of non-susceptibility was observed for sulphamethoxazole-trimethoprim (51.2%). Penicillin non-susceptible pneumococci (PNSP) accounted for 27.3% of the isolates (MICs of 0.12-4 μg/ml). Penicillin non-susceptibility was strongly associated with serotypes 14 and 23F. Hospital attendance and the presence of respiratory or general symptoms were frequently associated with PNSP carriage. The two erythromycin-resistant isolates (MICs of 2 and 4 μg/ml) belonged to serotype 6A, presented the M phenotype and harbored the mef(A/E) gene. Conclusions Correlations between serotypes, settings and penicillin non-susceptibility were observed. Serotypes coverage projected for the 10-valent pneumococcal conjugate vaccine was low (45.5%), but pointed out the potential reduction of PNSP nasopharyngeal colonization by nearly 20%.
Collapse
|
617
|
Link-Gelles R, Thomas A, Lynfield R, Petit S, Schaffner W, Harrison L, Farley MM, Aragon D, Nicols M, Kirley PD, Zansky S, Jorgensen J, Juni BA, Jackson D, Moore MR, Lipsitch M. Geographic and temporal trends in antimicrobial nonsusceptibility in Streptococcus pneumoniae in the post-vaccine era in the United States. J Infect Dis 2013; 208:1266-73. [PMID: 23852588 DOI: 10.1093/infdis/jit315] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We examined whether observed increases in antibiotic nonsusceptible nonvaccine serotypes after introduction of pneumococcal conjugate vaccine in the United States in 2000 were driven primarily by vaccine or antibiotic use. METHODS Using active surveillance data, we evaluated geographic and temporal differences in serotype distribution and within-serotype differences during 2000-2009. We compared nonsusceptibility to penicillin and erythromycin by geography after standardizing differences across time, place, and serotype by regressing standardized versus crude proportions. A regression slope (RS) approaching zero indicates greater importance of the standardizing factor. RESULTS Through 2000-2006, geographic differences in nonsusceptibility were better explained by within-serotype prevalence of nonsusceptibility (RS 0.32, 95% confidence interval [CI], .08-.55 for penicillin) than by geographic differences in serotype distribution (RS 0.71, 95% CI, .44-.97). From 2007-2009, serotype distribution differences became more important for penicillin (within-serotype RS 0.52, 95% CI, .11-.93; serotype distribution RS 0.57, 95% CI, .14-1.0). CONCLUSIONS Differential nonsusceptibility, within individual serotypes, accounts for most geographic variation in nonsusceptibility, suggesting selective pressure from antibiotic use, rather than differences in serotype distribution, mainly determines nonsusceptibility patterns. Recent trends suggest geographic differences in serotype distribution may be affecting the prevalence of nonsusceptibility, possibly due to decreases in the number of nonsusceptible serotypes.
Collapse
Affiliation(s)
- Ruth Link-Gelles
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
618
|
Griffin MR, Zhu Y, Moore MR, Whitney CG, Grijalva CG. U.S. hospitalizations for pneumonia after a decade of pneumococcal vaccination. N Engl J Med 2013; 369:155-63. [PMID: 23841730 PMCID: PMC4877190 DOI: 10.1056/nejmoa1209165] [Citation(s) in RCA: 391] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The introduction of 7-valent pneumococcal conjugate vaccine (PCV7) into the U.S. childhood immunization schedule in 2000 has substantially reduced the incidence of vaccine-serotype invasive pneumococcal disease in young children and in unvaccinated older children and adults. By 2004, hospitalizations associated with pneumonia from any cause had also declined markedly among young children. Because of concerns about increases in disease caused by nonvaccine serotypes, we wanted to determine whether the reduction in pneumonia-related hospitalizations among young children had been sustained through 2009 and whether such hospitalizations in older age groups had also declined. METHODS We estimated annual rates of hospitalization for pneumonia from any cause using the Nationwide Inpatient Sample database. The reason for hospitalization was classified as pneumonia if pneumonia was the first listed diagnosis or if it was listed after a first diagnosis of sepsis, meningitis, or empyema. Average annual rates of pneumonia-related hospitalizations from 1997 through 1999 (before the introduction of PCV7) and from 2007 through 2009 (well after its introduction) were used to estimate annual declines in hospitalizations due to pneumonia. RESULTS The annual rate of hospitalization for pneumonia among children younger than 2 years of age declined by 551.1 per 100,000 children (95% confidence interval [CI], 445.1 to 657.1), which translates to 47,000 fewer hospitalizations annually than expected on the basis of the rates before PCV7 was introduced. The rate for adults 85 years of age or older declined by 1300.8 per 100,000 (95% CI, 984.0 to 1617.6), which translates to 73,000 fewer hospitalizations annually. For the three age groups of 18 to 39 years, 65 to 74 years, and 75 to 84 years, the annual rate of hospitalization for pneumonia declined by 8.4 per 100,000 (95% CI, 0.6 to 16.2), 85.3 per 100,000 (95% CI, 7.0 to 163.6), and 359.8 per 100,000 (95% CI, 199.6 to 520.0), respectively. Overall, we estimated an age-adjusted annual reduction of 54.8 per 100,000 (95% CI, 41.0 to 68.5), or 168,000 fewer hospitalizations for pneumonia annually. CONCLUSIONS Declines in hospitalizations for childhood pneumonia were sustained during the decade after the introduction of PCV7. Substantial reductions in hospitalizations for pneumonia among adults were also observed. (Funded by the Centers for Disease Control and Prevention.).
Collapse
Affiliation(s)
- Marie R Griffin
- Department of Preventive Medicine, Vanderbilt University School of Medicine, Nashville, TN 37212, USA.
| | | | | | | | | |
Collapse
|
619
|
Field evaluation of culture plus latex sweep serotyping for detection of multiple pneumococcal serotype colonisation in infants and young children. PLoS One 2013; 8:e67933. [PMID: 23844133 PMCID: PMC3699458 DOI: 10.1371/journal.pone.0067933] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/23/2013] [Indexed: 11/19/2022] Open
Abstract
Background Nasopharyngeal swab (NPS) culture by World Health Organisation (WHO) methodology underestimates multiple pneumococcal serotype colonisation compared to a simple culture and latex sweep method. The impacts of this on descriptions of pneumococcal serotype distributions and colonisation dynamics in infancy are not clear. Methods 8,736 NPS collected from infants enrolled into a longitudinal study were processed to evaluate the field utility of the latex sweep method. 1,107 had previously been cultured by WHO methodology. Additionally, colonisation results were compared in 100 matched pairs of infants, where swabs from an individual were cultured either by WHO or latex sweep method. Results In 1,107 swabs cultured by both methods, the latex sweep method was three times more likely to detect colonisation with multiple pneumococcal serotypes than the WHO method (p<0.001). At least one common serotype was identified in 91.2% of swabs from which typeable pneumococci were detected by both methods. Agreement improved with increasing colonisation density (p = 0.03). Estimates of age at first pneumococcal acquisition and colonisation duration were not affected by culture/serotyping method. However, a greater number of serotype carriage episodes were detected in infants cultured by latex sweep (p = 0.03). The overall rate of non-vaccine type pneumococcal acquisition was also greater in infants cultured by latex sweep (p = 0.04). Conclusions Latex sweep serotyping was feasible to perform on a large specimen collection. Multiple serotype colonisation detection was significantly improved compared with WHO methodology. However, use of the latex sweep method is unlikely to significantly alter colonisation study serotype distribution or colonisation dynamics results.
Collapse
|
620
|
Al Waili BR, Alola S, Albanyan E. Emerging invasive nonvaccine pneumoccocal serotype 25. Ann Saudi Med 2013; 33:392-3. [PMID: 22750771 PMCID: PMC6078507 DOI: 10.5144/0256-4947.2012.01.7.1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a bacterial pathogen that causes invasive infections, including septicemia and meningitis, as well as noninvasive infections such as community-acquired pneumonia, sinusitis and acute otitis media. Vaccination with pneumococcal conjugate vaccine (PCV7) has significantly reduced the burden of pneumococcal disease; however it targets only seven of the more than 92 pneumococcal serotypes. Concerns have been raised that nonvaccine serotypes could increase in prevalence and reduce the benefits of vaccination. We report one case with invasive nonvaccine serotype 25 that presented with meningitis.
Collapse
Affiliation(s)
- Badria Rashid Al Waili
- Suleiman Al Alola, MD, Department of Pediatrics,, Infectious Disease Division,, King Abdulaziz Medical City,, PO Box 22490, Riyadh, 11426,, Saudi Arabia,
| | | | | |
Collapse
|
621
|
Dagan R, Patterson S, Juergens C, Greenberg D, Givon-Lavi N, Porat N, Gurtman A, Gruber WC, Scott DA. Comparative immunogenicity and efficacy of 13-valent and 7-valent pneumococcal conjugate vaccines in reducing nasopharyngeal colonization: a randomized double-blind trial. Clin Infect Dis 2013; 57:952-62. [PMID: 23804191 DOI: 10.1093/cid/cit428] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The 13-valent pneumococcal conjugate vaccine (PCV13) was licensed to replace the 7-valent pneumococcal conjugate vaccine (PCV7) based on serological noninferiority criteria. To date no randomized PCV13 pediatric trial has included clinical endpoints. METHODS This randomized double-blind trial compared the impact of PCV13 versus PCV7 on nasopharyngeal (NP) colonization and immunogenicity. Healthy infants were randomized (1:1) to receive PCV7 or PCV13 at ages 2, 4, 6, and 12 months; NP swabs were collected at 2, 4, 6, 7, 12, 13, 18, and 24 months, and blood was drawn at 7 and 13 months. Rates of NP acquisition and prevalence, and serotype-specific immunoglobulin G (IgG) concentrations were assessed. RESULTS The per protocol analysis population included 881 PCV13 and 873 PCV7 recipients. PCV13 significantly reduced NP acquisition of the additional PCV13 serotypes 1, 6A, 7F, and 19A; the cross-reacting serotype 6C; and the common PCV7 serotype 19F. For serotype 3, and the other PCV7 serotypes, there were no significant differences between the vaccine groups. There were too few serotype 5 events to draw inference. The impact on prevalence at predefined time points was similar to that observed with NP acquisition. PCV13 elicited significantly higher IgG responses for PCV13 additional serotypes and serotype 19F, and similar or lower responses for 6/7 PCV7 serotypes. CONCLUSIONS PCV13 resulted in lower acquisition and prevalence of NP colonization than PCV7 did for 4 additional PCV13 serotypes, and serotypes 6C and 19F. It was comparable with PCV7 for all other common serotypes. These findings predict vaccine effectiveness through both direct and indirect protection. CLINICAL TRIALS REGISTRATION NCT00508742.
Collapse
Affiliation(s)
- Ron Dagan
- Pediatric Infectious Disease Unit, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
622
|
Carvalho MDG, Pimenta FC, Moura I, Roundtree A, Gertz RE, Li Z, Jagero G, Bigogo G, Junghae M, Conklin L, Feikin DR, Breiman RF, Whitney CG, Beall BW. Non-pneumococcal mitis-group streptococci confound detection of pneumococcal capsular serotype-specific loci in upper respiratory tract. PeerJ 2013; 1:e97. [PMID: 23825797 PMCID: PMC3698467 DOI: 10.7717/peerj.97] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/10/2013] [Indexed: 11/20/2022] Open
Abstract
We performed culture-based and PCR-based tests for pneumococcal identification and serotyping from carriage specimens collected in rural and urban Kenya. Nasopharyngeal specimens from 237 healthy children <5 years old (C-NPs) and combined nasopharyngeal/oropharyngeal specimens from 158 adults (A-NP/OPs, 118 HIV-positive) were assessed using pneumococcal isolation (following broth culture enrichment) with Quellung-based serotyping, real-time lytA-PCR, and conventional multiplexed PCR-serotyping (cmPCR). Culture-based testing from C-NPs, HIV-positive A-NP/OPs, and HIV-negative A-NP/OPs revealed 85.2%, 40.7%, and 12.5% pneumococcal carriage, respectively. In contrast, cmPCR serotypes were found in 93.2%, 98.3%, and 95.0% of these sets, respectively. Two of 16 lytA-negative C-NPs and 26 of 28 lytA-negative A-NP/OPs were cmPCR-positive for 1–10 serotypes (sts) or serogroups (sgs). A-NP/OPs averaged 5.5 cmPCR serotypes/serogroups (5.2 in HIV-positive, 7.1 in HIV-negative) and C-NPs averaged 1.5 cmPCR serotypes/serogroups. cmPCR serotypes/serogroups from lytA-negative A-NP/OPs included st2, st4, sg7F/7A, sg9N/9L, st10A, sg10F/10C/33C, st13, st17F, sg18C/18A/18B/18F, sg22F/22A, and st39. Nine strains of three non-pneumococcal species (S. oralis, S. mitis, and S. parasanguinis) (7 from A-OP, 1 from both A-NP and A-OP, and 1 from C-NP) were each cmPCR-positive for one of 7 serotypes/serogroups (st5, st13, sg15A/15F, sg10F/10C/33C, sg33F/33A/37, sg18C/18A/18B/18F, sg12F/12A/12B/ 44/46) with amplicons revealing 83.6–99.7% sequence identity to pneumococcal references. In total, 150 cmPCR amplicons from carriage specimens were sequenced, including 25 from lytA-negative specimens. Amplicon sequences derived from specimens yielding a pneumococcal isolate with the corresponding serotype were identical or highly conserved (>98.7%) with the reference cmPCR amplicon for the st, while cmPCR amplicons from lytA-negative specimens were generally more divergent. Separate testing of 56 A-OPs and 56 A-NPs revealed that ∼94% of the positive cmPCR results from A-NP/OPs were from OP microbiota. In contrast, A-NPs yielded >2-fold more pneumococcal isolates than A-OPs. Verified and suspected non-pneumococcal cmPCR serotypes/serogroups appeared to be relatively rare in C-NPs and A-NPs compared to A-OPs. Our findings indicate that non-pneumococcal species can confound serotype-specific PCR and other sequence-based assays due to evolutionarily conserved genes most likely involved in biosynthesis of surface polysaccharide structures.
Collapse
Affiliation(s)
- Maria da Gloria Carvalho
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention , Atlanta , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
623
|
Maiden MCJ. The impact of protein-conjugate polysaccharide vaccines: an endgame for meningitis? Philos Trans R Soc Lond B Biol Sci 2013; 368:20120147. [PMID: 23798695 PMCID: PMC3720045 DOI: 10.1098/rstb.2012.0147] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The development and implementation of conjugate polysaccharide vaccines against invasive bacterial diseases, specifically those caused by the encapsulated bacteria Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae, has been one of the most effective public health innovations of the last 25 years. These vaccines have resulted in significant reductions in childhood morbidity and mortality worldwide, with their effectiveness due in large part to their ability to induce long-lasting immunity in a range of age groups. At the population level this immunity reduces carriage and interrupts transmission resulting in herd immunity; however, these beneficial effects can be counterbalanced by the selection pressures that immunity against carriage can impose, potentially promoting the emergence and spread of virulent vaccine escape variants. Studies following the implementation of meningococcal serogroup C vaccines improved our understanding of these effects in relation to the biology of accidental pathogens such as the meningococcus. This understanding has enabled the refinement of the implementation of conjugate polysaccharide vaccines against meningitis-associated bacteria, and will be crucial in maintaining and improving vaccine control of these infections. To date there is little evidence for the spread of virulent vaccine escape variants of the meningococcus and H. influenzae, although this has been reported in pneumococci.
Collapse
Affiliation(s)
- Martin C J Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
624
|
|
625
|
Opatowski L, Varon E, Dupont C, Temime L, van der Werf S, Gutmann L, Boëlle PY, Watier L, Guillemot D. Assessing pneumococcal meningitis association with viral respiratory infections and antibiotics: insights from statistical and mathematical models. Proc Biol Sci 2013; 280:20130519. [PMID: 23782877 DOI: 10.1098/rspb.2013.0519] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pneumococcus is an important human pathogen, highly antibiotic resistant and a major cause of bacterial meningitis worldwide. Better prevention requires understanding the drivers of pneumococcal infection incidence and antibiotic susceptibility. Although respiratory viruses (including influenza) have been suggested to influence pneumococcal infections, the underlying mechanisms are still unknown, and viruses are rarely considered when studying pneumococcus epidemiology. Here, we propose a novel mathematical model to examine hypothetical relationships between Streptococcus pneumoniae meningitis incidence (SPMI), acute viral respiratory infections (AVRIs) and antibiotic exposure. French time series of SPMI, AVRI and penicillin consumption over 2001-2004 are analysed and used to assess four distinct virus-bacteria interaction submodels, ascribing the interaction on pneumococcus transmissibility and/or pathogenicity. The statistical analysis reveals strong associations between time series: SPMI increases shortly after AVRI incidence and decreases overall as the antibiotic-prescription rate rises. Model simulations require a combined impact of AVRI on both pneumococcal transmissibility (up to 1.3-fold increase at the population level) and pathogenicity (up to threefold increase) to reproduce the data accurately, along with diminished epidemic fitness of resistant pneumococcal strains causing meningitis (0.97 (0.96-0.97)). Overall, our findings suggest that AVRI and antibiotics strongly influence SPMI trends. Consequently, vaccination protecting against respiratory virus could have unexpected benefits to limit invasive pneumococcal infections.
Collapse
Affiliation(s)
- Lulla Opatowski
- Unité de Pharmaco-épidémiologie et Maladies Infectieuses PhEMI, Institut Pasteur, 75015 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
626
|
Selection of distinctive colony morphologies for detection of multiple carriage of Streptococcus pneumoniae. Pediatr Infect Dis J 2013; 32:703-4. [PMID: 23838735 DOI: 10.1097/inf.0b013e31828692be] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
627
|
Davis SM, Deloria-Knoll M, Kassa HT, O'Brien KL. Impact of pneumococcal conjugate vaccines on nasopharyngeal carriage and invasive disease among unvaccinated people: review of evidence on indirect effects. Vaccine 2013; 32:133-45. [PMID: 23684824 DOI: 10.1016/j.vaccine.2013.05.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Invasive disease due to Streptococcus pneumoniae remains an important worldwide cause of morbidity and mortality, particularly in young children and the elderly. The development and use of pneumococcal conjugate vaccines (PCVs) have had a dramatic impact on rates of vaccine-type invasive pneumococcal disease (IPD) not only in the pediatric population targeted for vaccination but in non-vaccinated age-groups as well. This indirect effect is directly mediated by a reduction of vaccine-type nasopharyngeal carriage and thus transmission by vaccinated children. Current PCV licensing procedures do not take into consideration nasopharyngeal carriage impact, and thus the indirect effect. This review summarizes the evidence for the indirect effect of PCV on vaccine-type disease and its correlation with changes in carriage among unvaccinated populations, to assess the basis for inclusion of carriage in the PCV licensing process. METHODS Randomized controlled trials, surveillance and other observational studies published between 1994 and 2013 were systematically identified from global, regional and review databases and conference abstracts. We included as primary evidence, studies in non-vaccinated groups addressing changes in both vaccine-type IPD and carriage between pre- and post-PCV introduction periods; studies missing one of these four components were included as supporting rather than primary evidence. RESULTS We identified studies from 14 countries, nearly all developed countries. Vaccine-type IPD and carriage in non-targeted populations consistently decreased after PCV introduction, with the magnitude of decrease growing over time. Where IPD and carriage were observed in the same population, VT-decreases occurred contemporaneously. These relationships held true across age-groups and between indigenous and non-indigenous populations in the US and Australia. CONCLUSIONS Indirect PCV impact on VT-IPD and VT-carriage has been significant. Impact on carriage should be considered for inclusion in the PCV licensure process as a predictor of indirect effects.
Collapse
Affiliation(s)
- Stephanie M Davis
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Maria Deloria-Knoll
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Hilina T Kassa
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Katherine L O'Brien
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Center for American Indian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.
| |
Collapse
|
628
|
Cohen JM, Wilson R, Shah P, Baxendale HE, Brown JS. Lack of cross-protection against invasive pneumonia caused by heterologous strains following murine Streptococcus pneumoniae nasopharyngeal colonisation despite whole cell ELISAs showing significant cross-reactive IgG. Vaccine 2013; 31:2328-32. [DOI: 10.1016/j.vaccine.2013.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/27/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
|
629
|
Peppoloni S, Colombari B, Beninati C, Felici F, Teti G, Speziale P, Ricci S, Ardizzoni A, Manca L, Blasi E. The Spr1875 protein confers resistance to the microglia-mediated killing of Streptococcus pneumoniae. Microb Pathog 2013; 59-60:42-7. [PMID: 23587464 DOI: 10.1016/j.micpath.2013.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/27/2013] [Accepted: 04/03/2013] [Indexed: 12/11/2022]
Abstract
By screening a whole-genome λ-display library of Streptococcus pneumoniae, we have previously identified a novel surface protein, named Spr1875, that exhibited immunogenic properties and was closely related to pneumococcal virulence. In the present study, we investigated the role of the Spr1875 antigen in the interaction of S. pneumoniae with microglia, the resident brain macrophages. By using an in vitro infection model, the BV2 microglial cell line was challenged with the S. pneumoniae strain DP1004 and its isogenic spr1875-deleted mutant (Δspr1875). Both strains were phagocytosed by microglia efficiently and to a similar extent; however, the DP1004 strain was more resistant than the Δspr1875 mutant to the intracellular killing, as assessed by antibiotic protection and phagosome maturation assays. Moreover, significant differences between the two strains were also observed in terms of susceptibility to microglia-mediated killing. Taken together, these results indicate that S. pneumoniae-microglial cell interplay is influenced by the presence of Spr1875, suggesting that this protein may play a role in the pathogenesis of pneumococcal meningitis.
Collapse
Affiliation(s)
- Samuele Peppoloni
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia (Unimore), 41125 Modena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
630
|
Forecasting invasive pneumococcal disease trends after the introduction of 13-valent pneumococcal conjugate vaccine in the United States, 2010-2020. Vaccine 2013; 31:2572-7. [PMID: 23583813 DOI: 10.1016/j.vaccine.2013.03.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/01/2013] [Accepted: 03/28/2013] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Pneumococcal vaccines are highly effective at preventing invasive pneumococcal disease (IPD), a leading cause of global morbidity. Because pneumococcal vaccines can be expensive, it is useful to estimate what impact might be expected from their introduction. Our objective was to develop a statistical model that could predict rates of IPD following introduction of 13-valent pneumococcal conjugate vaccine (PCV13) in the U.S. METHODS We used active surveillance data to design and validate a Poisson model forecasting the reductions in IPD observed after U.S. introduction of 7-valent pneumococcal conjugate vaccine (PCV7) in 2000. We used this model to forecast rates of IPD from 2010 to 2020 in the presence of PCV13. Because increases in non-PCV7-type IPD were evident following PCV7 introduction, we evaluated varying levels of increase in non-PCV13-type IPD ("serotype replacement") by sensitivity analyses. RESULTS A total of 43,507 cases of IPD were identified during 1998-2009; cases from this period were used to develop the model, which accurately predicted indirect effects of PCV7 in adults, as well as serotype replacement. Assuming that PCV13 provides similar protection against PCV13 serotypes as PCV7 did against PCV7 serotypes, the base-case model predicted approximately 168,000 cases of IPD prevented from 2011 to 2020. When serotype replacement was varied in sensitivity analyses from 0 to levels comparable to that seen with serotype 19A (the most common replacement serotype since PCV7 was introduced), the model predicted 167,000-170,000 cases prevented. The base-case model predicted rates of IPD in children under five years of age decreasing from 21.9 to 9.3 cases per 100,000 population. CONCLUSIONS This model provides a "benchmark" for assessing progress in the prevention of IPD in the years after PCV13 introduction. The amount of serotype replacement is unlikely to greatly affect the overall number of cases prevented by PCV13.
Collapse
|
631
|
van Deursen AMM, van Mens SP, Sanders EAM, Vlaminckx BJM, de Melker HE, Schouls LM, de Greeff SC, van der Ende A. Invasive pneumococcal disease and 7-valent pneumococcal conjugate vaccine, the Netherlands. Emerg Infect Dis 2013; 18:1729-37. [PMID: 23092683 PMCID: PMC3559145 DOI: 10.3201/eid1811.120329] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Disease incidence and case fatality rates declined 4 years after introduction of the vaccine.
Collapse
|
632
|
Lima FA, Miyaji EN, Quintilio W, Raw I, Ho PL, Oliveira MLS. Pneumococcal Surface Protein A does not affect the immune responses to a combined diphtheria tetanus and pertussis vaccine in mice. Vaccine 2013; 31:2465-70. [PMID: 23541622 DOI: 10.1016/j.vaccine.2013.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 02/06/2013] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
Abstract
The Pneumococcal Surface Protein A (PspA) is a promising candidate for the composition of a protein vaccine against Streptococcus pneumoniae. We have previously shown that the whole cell Bordetella pertussis vaccine (wP) is a good adjuvant to PspA, inducing protective responses against pneumococcal infection in mice. In Brazil, wP is administered to children, formulated with diphtheria and tetanus toxoids (DTPw) and aluminum hydroxide (alum) as adjuvant. A single subcutaneous dose of PspA5-DTPlow (a formulation containing PspA from clade 5 and a new generation DTPw, containing low levels of B. pertussis LPS and Alum) induced high levels of systemic anti-PspA5 antibodies in mice and conferred protection against respiratory lethal challenges with two different pneumococcal strains. Here we evaluate the mucosal immune responses against PspA5 as well as the immune responses against the DTP antigens in mice vaccinated with PspA5-DTPlow. Subcutaneous immunization of mice with PspA5-DTPlow induced high levels of anti-PspA5 IgG in the airways but no IgA. In addition, no differences in the influx of cells to the respiratory mucosa, after the challenge, were observed in vaccinated mice, when compared with control mice. The levels of circulating anti-pertussis, -tetanus and -diphtheria antibodies were equivalent in mice vaccinated with DTPlow or PspA5-DTPlow. Antibodies induced by DTPlow or PspA5-DTPlow showed similar ability to neutralize the cytotoxic effects of the diphtheria toxin on Vero cells. Furthermore, combination with PspA5 did not affect protection against B. pertussis and tetanus toxin challenges in mice. Our results support the proposal for a combined PspA-DTP vaccine.
Collapse
Affiliation(s)
- Fernanda A Lima
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
633
|
Dunne EM, Smith-Vaughan HC, Robins-Browne RM, Mulholland EK, Satzke C. Nasopharyngeal microbial interactions in the era of pneumococcal conjugate vaccination. Vaccine 2013; 31:2333-42. [PMID: 23523773 DOI: 10.1016/j.vaccine.2013.03.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/27/2013] [Accepted: 03/12/2013] [Indexed: 02/07/2023]
Abstract
The nasopharynx of children is often colonised by microorganisms such as Streptococcus pneumoniae (the pneumococcus) that can cause infections including pneumonia and otitis media. In this complex environment, bacteria and viruses may impact each other through antagonistic as well as synergistic interactions. Vaccination may alter colonisation dynamics, evidenced by the rise in non-vaccine serotypes following pneumococcal conjugate vaccination. Discovery of an inverse relationship between S. pneumoniae and Staphylococcus aureus carriage generated concern that pneumococcal vaccination could increase S. aureus carriage and disease. Here we review data on co-colonisation of pathogens in the nasopharynx, focusing on S. pneumoniae and the impact of pneumococcal vaccination. Thus far, pneumococcal vaccination has not had a sustained impact on S. aureus carriage but it is associated with an increase in non-typeable Haemophilus influenzae in acute otitis media aetiology. Advances in bacterial and viral detection methodologies have facilitated research in nasopharyngeal microbiology and will aid investigation of potential vaccine-induced changes, particularly when baseline studies can be conducted prior to pneumococcal vaccine introduction.
Collapse
Affiliation(s)
- Eileen M Dunne
- Pneumococcal Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.
| | | | | | | | | |
Collapse
|
634
|
Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae. Infect Immun 2013; 81:1625-34. [PMID: 23460513 DOI: 10.1128/iai.00240-13] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To establish a safer and more effective vaccine against pneumococcal respiratory infections, current knowledge regarding the antigens common among pneumococcal strains and improvements to the system for delivering these antigens across the mucosal barrier must be integrated. We developed a pneumococcal vaccine that combines the advantages of pneumococcal surface protein A (PspA) with a nontoxic intranasal vaccine delivery system based on a nanometer-sized hydrogel (nanogel) consisting of a cationic cholesteryl group-bearing pullulan (cCHP). The efficacy of the nanogel-based PspA nasal vaccine (cCHP-PspA) was tested in murine pneumococcal airway infection models. Intranasal vaccination with cCHP-PspA provided protective immunity against lethal challenge with Streptococcus pneumoniae Xen10, reduced colonization and invasion by bacteria in the upper and lower respiratory tracts, and induced systemic and nasal mucosal Th17 responses, high levels of PspA-specific serum immunoglobulin G (IgG), and nasal and bronchial IgA antibody responses. Moreover, there was no sign of PspA delivery by nanogel to either the olfactory bulbs or the central nervous system after intranasal administration. These results demonstrate the effectiveness and safety of the nanogel-based PspA nasal vaccine system as a universal mucosal vaccine against pneumococcal respiratory infection.
Collapse
|
635
|
Singleton R, Wenger J, Klejka JA, Bulkow LR, Thompson A, Sarkozy D, Emini EA, Gruber WC, Scott DA. The 13-valent pneumococcal conjugate vaccine for invasive pneumococcal disease in Alaska native children: results of a clinical trial. Pediatr Infect Dis J 2013; 32:257-63. [PMID: 23001026 DOI: 10.1097/inf.0b013e3182748ada] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND During 1996 to 2000, Alaska Native children aged <5 years from Yukon Kuskokwim Delta (YKD) had invasive pneumococcal disease (IPD) rates 10-fold higher than non-Alaska Native children (547/100,000/yr versus 56/100,000/yr). After 7-valent pneumococcal conjugate vaccine (PCV7) introduction, IPD rates decreased to 148 per 100,000 during 2001 to 2004, increasing to 426 per 100,000 during 2005 to 2007 due to non-vaccine serotype disease. In 2009, we evaluated safety, immunogenicity and impact of 13-valent PCV (PCV13) in YKD children. METHODS In a prelicensure open-label clinical trial, eligible YKD children aged <5 years were offered PCV13 as appropriate for age and prior PCV7 history. PCV13 impact was assessed using existing Alaska-wide IPD surveillance. Serotype-specific anti-pneumococcal IgG levels were measured postinfant series and posttoddler dose in a subset of subjects. Adverse events and serious adverse events were collected in all; local reactions and systemic events were collected in toddlers. All YKD children were offered licensed PCV13 when it became available. RESULTS Three hundred seventy-two subjects received PCV13 during the clinical trial and 3342 postlicensure (April 2010 to August 2011). Adverse events were typically mild, or generally consistent with common childhood illnesses. IgG levels following PCV13 were similar to other populations. In YKD children aged <5 years, 52 IPD cases (31 PCV13-serotype) occurred during 2005 to 2008 (399.0/100,000/yr) versus 9 (7 PCV13-serotype) during January 2009 to August 2011 (106.7/100,000/yr; P < 0.001). No PCV13-serotype cases occurred among PCV13 recipients (3680 person follow-up years). CONCLUSIONS PCV13-serotype IPD incidence declined significantly after PCV13 introduction. Although non-PCV13-serotype IPD also declined significantly, absence of PCV13-serotype IPD in children who received PCV13 suggests a protective vaccine effect.
Collapse
|
636
|
Gritzfeld JF, Wright AD, Collins AM, Pennington SH, Wright AKA, Kadioglu A, Ferreira DM, Gordon SB. Experimental human pneumococcal carriage. J Vis Exp 2013:50115. [PMID: 23439027 PMCID: PMC3601207 DOI: 10.3791/50115] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Experimental human pneumococcal carriage (EHPC) is scientifically important because nasopharyngeal carriage of Streptococcus pneumoniae is both the major source of transmission and the prerequisite of invasive disease. A model of carriage will allow accurate determination of the immunological correlates of protection, the immunizing effect of carriage and the effect of host pressure on the pathogen in the nasopharyngeal niche. Further, methods of carriage detection useful in epidemiologic studies, including vaccine studies, can be compared.
Collapse
|
637
|
Otczyk DC, Cripps AW. Delivering vaccines for the prevention of pneumonia - programmatic and financial issues. Pneumonia (Nathan) 2013; 2:16-25. [PMID: 31463183 PMCID: PMC6707407 DOI: 10.15172/pneu.2013.2/244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/25/2012] [Indexed: 11/13/2022] Open
Abstract
Pneumonia is the leading cause of morbidity and mortality in children younger than 5 years. Vaccines are available against the main bacterial pathogens Haemophilus influenzae type b and Streptococcus pneumoniae. There are also vaccines against measles and pertussis; diseases that can predispose a child to pneumonia. Partners such as the Global Alliance for Vaccines and Immunisation (GAVI), the Hib Initiative, the Accelerated Development and Introduction Plan for pneumococcal vaccines and the Measles Initiative, have accelerated the introduction of vaccines into developing countries. Whilst significant improvements in vaccine coverage have occurred globally over the past decade, there still remains an urgent need to scale-up key pneumonia protection and treatment interventions as identified in the Global Action Plan for the Prevention and Control of Pneumonia (GAPP). There is promise that global immunisation will continue to improve child survival. However, there are several challenges to vaccine implementation that must first be addressed, including: a lack of access to under-served and marginalised populations; inadequate planning and management; a lack of political commitment; weak monitoring and surveillance programmes and assured sustainable finance and supply of quality vaccines. There is an urgent need to increase global awareness of the devastation that pneumonia brings to the worlds poorest communities.
Collapse
Affiliation(s)
- Diana C. Otczyk
- School of Medicine, Griffith Health Institute, Griffith University, Gold Coast Campus, Queensland, 4222 Australia
| | - Allan W. Cripps
- School of Medicine, Griffith Health Institute, Griffith University, Gold Coast Campus, Queensland, 4222 Australia
| |
Collapse
|
638
|
Nurhonen M, Cheng AC, Auranen K. Pneumococcal transmission and disease in silico: a microsimulation model of the indirect effects of vaccination. PLoS One 2013; 8:e56079. [PMID: 23457504 PMCID: PMC3566073 DOI: 10.1371/journal.pone.0056079] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/09/2013] [Indexed: 11/18/2022] Open
Abstract
Background The degree and time frame of indirect effects of vaccination (serotype replacement and herd immunity) are key determinants in assessing the net effectiveness of vaccination with pneumococcal conjugate vaccines (PCV) in control of pneumococcal disease. Using modelling, we aimed to quantify these effects and their dependence on coverage of vaccination and the vaccine's efficacy against susceptibility to pneumococcal carriage. Methods and Findings We constructed an individual-based simulation model that explores the effects of large-scale PCV programmes and applied it in a developed country setting (Finland). A population structure with transmission of carriage taking place within relevant mixing groups (families, day care groups, schools and neighbourhoods) was considered in order to properly assess the dependency of herd immunity on coverage of vaccination and vaccine efficacy against carriage. Issues regarding potential serotype replacement were addressed by employing a novel competition structure between multiple pneumococcal serotypes. Model parameters were calibrated from pre-vaccination data about the age-specific carriage prevalence and serotype distribution. The model predicts that elimination of vaccine-type carriage and disease among those vaccinated and, due to a substantial herd effect, also among the general population takes place within 5–10 years since the onset of a PCV programme with high (90%) coverage of vaccination and moderate (50%) vaccine efficacy against acquisition of carriage. A near-complete replacement of vaccine-type carriage by non-vaccine-type carriage occurs within the same time frame. Conclusions The changed patterns in pneumococcal carriage after PCV vaccination predicted by the model are unequivocal. The overall effect on disease incidence depends crucially on the magnitude of age- and serotype-specific case-to-carrier ratios of the remaining serotypes relative to those of the vaccine types. Thus the availability of reliable data on the incidence of both pneumococcal carriage and disease is essential in assessing the net effectiveness of PCV vaccination in a given epidemiological setting.
Collapse
Affiliation(s)
- Markku Nurhonen
- Department of Vaccination and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland.
| | | | | |
Collapse
|
639
|
Production of latex agglutination reagents for pneumococcal serotyping. BMC Res Notes 2013; 6:49. [PMID: 23379961 PMCID: PMC3570367 DOI: 10.1186/1756-0500-6-49] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/24/2013] [Indexed: 11/29/2022] Open
Abstract
Background The current ‘gold standard’ for serotyping pneumococci is the Quellung test. This technique is laborious and requires a certain level of training to correctly perform. Commercial pneumococcal latex agglutination serotyping reagents are available, but these are expensive. In-house production of latex agglutination reagents can be a cost-effective alternative to using commercially available reagents. This paper describes a method for the production and quality control (QC) of latex reagents, including problem solving recommendations, for pneumococcal serotyping. Results Here we describe a method for the production of latex agglutination reagents based on the passive adsorption of antibodies to latex particles. Sixty-five latex agglutination reagents were made using the PneuCarriage Project (PCP) method, of which 35 passed QC. The other 30 reagents failed QC due to auto-agglutination (n=2), no reactivity with target serotypes (n=8) or cross-reactivity with non-target serotypes (n=20). Dilution of antisera resulted in a further 27 reagents passing QC. The remaining three reagents passed QC when prepared without centrifugation and wash steps. Protein estimates indicated that latex reagents that failed QC when prepared using the PCP method passed when made with antiserum containing ≤ 500 μg/ml of protein. Sixty-one nasopharyngeal isolates were serotyped with our in-house latex agglutination reagents, with the results showing complete concordance with the Quellung reaction. Conclusions The method described here to produce latex agglutination reagents allows simple and efficient serotyping of pneumococci and may be applicable to latex agglutination reagents for typing or identification of other microorganisms. We recommend diluting antisera or removing centrifugation and wash steps for any latex reagents that fail QC. Our latex reagents are cost-effective, technically undemanding to prepare and remain stable for long periods of time, making them ideal for use in low-income countries.
Collapse
|
640
|
Wyres KL, Lambertsen LM, Croucher NJ, McGee L, von Gottberg A, Liñares J, Jacobs MR, Kristinsson KG, Beall BW, Klugman KP, Parkhill J, Hakenbeck R, Bentley SD, Brueggemann AB. Pneumococcal capsular switching: a historical perspective. J Infect Dis 2013; 207:439-49. [PMID: 23175765 PMCID: PMC3537446 DOI: 10.1093/infdis/jis703] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/18/2012] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Changes in serotype prevalence among pneumococcal populations result from both serotype replacement and serotype (capsular) switching. Temporal changes in serotype distributions are well documented, but the contribution of capsular switching to such changes is unknown. Furthermore, it is unclear to what extent vaccine-induced selective pressures drive capsular switching. METHODS Serotype and multilocus sequence typing data for 426 pneumococci dated from 1937 through 2007 were analyzed. Whole-genome sequence data for a subset of isolates were used to investigate capsular switching events. RESULTS We identified 36 independent capsular switch events, 18 of which were explored in detail with whole-genome sequence data. Recombination fragment lengths were estimated for 11 events and ranged from approximately 19.0 kb to ≥ 58.2 kb. Two events took place no later than 1960, and the imported DNA included the capsular locus and the nearby penicillin-binding protein genes pbp2x and pbp1a. CONCLUSIONS Capsular switching has been a regular occurrence among pneumococcal populations throughout the past 7 decades. Recombination of large DNA fragments (>30 kb), sometimes including the capsular locus and penicillin-binding protein genes, predated both vaccine introduction and widespread antibiotic use. This type of recombination has likely been an intrinsic feature throughout the history of pneumococcal evolution.
Collapse
Affiliation(s)
| | - Lotte M. Lambertsen
- Department of Microbiology Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
| | - Nicholas J. Croucher
- Pathogen Genomics Team, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Lesley McGee
- Streptococcus Laboratory, Centers for Disease Control and Prevention, and
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Gauteng, South Africa
| | - Josefina Liñares
- Department of Microbiology, Bellvitge Hospital-CIBERes-IDIBELL-UB, Barcelona, Spain
| | - Michael R. Jacobs
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Karl G. Kristinsson
- Clinical Microbiology Department, Landspitali University Hospital and University of Iceland, Reykjavik;
| | - Bernard W. Beall
- Streptococcus Laboratory, Centers for Disease Control and Prevention, and
| | - Keith P. Klugman
- Hubert Department of Global Health, Emory University, Atlanta, Georgia
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Gauteng, South Africa
| | - Julian Parkhill
- Pathogen Genomics Team, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Stephen D. Bentley
- Pathogen Genomics Team, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | |
Collapse
|
641
|
Harboe ZB, Valentiner-Branth P, Ingels H, Rasmussen JN, Andersen PHS, Bjerre CC, Goldblatt D, Ashton L, Haston M, Konradsen HB, Lambertsen L. Pediatric invasive pneumococcal disease caused by vaccine serotypes following the introduction of conjugate vaccination in Denmark. PLoS One 2013; 8:e51460. [PMID: 23365635 PMCID: PMC3554759 DOI: 10.1371/journal.pone.0051460] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/06/2012] [Indexed: 11/25/2022] Open
Abstract
A seven-valent pneumococcal conjugate vaccine (PCV7) was introduced in the Danish childhood immunization program (2+1 schedule) in October 2007, followed by PCV13 starting from April 2010. The nationwide incidence of IPD among children younger than 5 years nearly halved after the introduction of PCV7 in the program, mainly due to a decline in IPD caused by PCV7-serotypes. We report the results from a nationwide population-based cohort study of laboratory confirmed IPD cases in children younger than 5 years during October 1, 2007 to December 31, 2010 and describe the characteristics of children suspected to present with a vaccine failure. The period between April 19 and December 31, 2010 was considered a PCV7/PCV13 transitional period, where both vaccines were offered. We identified 45 episodes of IPD caused by a PCV7 serotype (23% of the total number) and 105 (55%) caused by one of the 6 additional serotypes in PCV13. Ten children had received at least one PCV7 dose before the onset of IPD caused by a PCV7 serotype. Seven children were considered to be incompletely vaccinated before IPD, but only three cases fulfilled the criteria of vaccine failure (caused by serotypes 14, 19F and 23F). One case of vaccine failure was observed in a severely immunosuppressed child following three PCV7 doses, and two cases were observed in immunocompetent children following two infant doses before they were eligible for their booster. None of the IPD cases caused by the additional PCV13 serotypes had been vaccinated by PCV13 and there were therefore no PCV13-vaccine failures in the first 8-months after PCV13 introduction in Denmark.
Collapse
Affiliation(s)
- Zitta B Harboe
- Neisseria and Streptococcus Reference Center, Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
642
|
Abstract
Streptococcus pneumoniae serotype 1 presents a high invasiveness index and is seldom isolated from its niche, the nasopharynx. We report an unusual serotype 1 carriage in a healthy pediatric population at the time of the heptavalent pneumococcal vaccine adoption in Belgium. Our sampling period coincides with an epidemic wave of serotype 1 invasive pneumococcal infections. Invasive and colonizing isolates were characterized by both antibiotic resistance profile and multilocus sequence typing and were shown to share the same backbone (ST306 and ST350).
Collapse
|
643
|
Feikin DR, Kagucia EW, Loo JD, Link-Gelles R, Puhan MA, Cherian T, Levine OS, Whitney CG, O’Brien KL, Moore MR. Serotype-specific changes in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: a pooled analysis of multiple surveillance sites. PLoS Med 2013; 10:e1001517. [PMID: 24086113 PMCID: PMC3782411 DOI: 10.1371/journal.pmed.1001517] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 08/12/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Vaccine-serotype (VT) invasive pneumococcal disease (IPD) rates declined substantially following introduction of 7-valent pneumococcal conjugate vaccine (PCV7) into national immunization programs. Increases in non-vaccine-serotype (NVT) IPD rates occurred in some sites, presumably representing serotype replacement. We used a standardized approach to describe serotype-specific IPD changes among multiple sites after PCV7 introduction. METHODS AND FINDINGS Of 32 IPD surveillance datasets received, we identified 21 eligible databases with rate data ≥ 2 years before and ≥ 1 year after PCV7 introduction. Expected annual rates of IPD absent PCV7 introduction were estimated by extrapolation using either Poisson regression modeling of pre-PCV7 rates or averaging pre-PCV7 rates. To estimate whether changes in rates had occurred following PCV7 introduction, we calculated site specific rate ratios by dividing observed by expected IPD rates for each post-PCV7 year. We calculated summary rate ratios (RRs) using random effects meta-analysis. For children <5 years old, overall IPD decreased by year 1 post-PCV7 (RR 0.55, 95% CI 0.46-0.65) and remained relatively stable through year 7 (RR 0.49, 95% CI 0.35-0.68). Point estimates for VT IPD decreased annually through year 7 (RR 0.03, 95% CI 0.01-0.10), while NVT IPD increased (year 7 RR 2.81, 95% CI 2.12-3.71). Among adults, decreases in overall IPD also occurred but were smaller and more variable by site than among children. At year 7 after introduction, significant reductions were observed (18-49 year-olds [RR 0.52, 95% CI 0.29-0.91], 50-64 year-olds [RR 0.84, 95% CI 0.77-0.93], and ≥ 65 year-olds [RR 0.74, 95% CI 0.58-0.95]). CONCLUSIONS Consistent and significant decreases in both overall and VT IPD in children occurred quickly and were sustained for 7 years after PCV7 introduction, supporting use of PCVs. Increases in NVT IPD occurred in most sites, with variable magnitude. These findings may not represent the experience in low-income countries or the effects after introduction of higher valency PCVs. High-quality, population-based surveillance of serotype-specific IPD rates is needed to monitor vaccine impact as more countries, including low-income countries, introduce PCVs and as higher valency PCVs are used. Please see later in the article for the Editors' Summary.
Collapse
Affiliation(s)
- Daniel R. Feikin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- National Center for Emerging and Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| | - Eunice W. Kagucia
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jennifer D. Loo
- Respiratory Disease Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ruth Link-Gelles
- Respiratory Disease Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Milo A. Puhan
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Thomas Cherian
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Orin S. Levine
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Cynthia G. Whitney
- Respiratory Disease Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Katherine L. O’Brien
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Matthew R. Moore
- Respiratory Disease Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | |
Collapse
|
644
|
Changes in molecular epidemiology of streptococcus pneumoniae causing meningitis following introduction of pneumococcal conjugate vaccination in England and Wales. J Clin Microbiol 2012; 51:820-7. [PMID: 23269742 DOI: 10.1128/jcm.01917-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The introduction of the 7-valent pneumococcal conjugate vaccine (PCV7) in September 2006 has markedly reduced the burden of invasive pneumococcal disease (IPD) including meningitis in England and Wales. This study examined changes in the molecular epidemiology of pneumococcal isolates causing meningitis from July 2004 to June 2009. The Health Protection Agency conducts enhanced pneumococcal surveillance in England and Wales. In addition to serotyping, pneumococcal isolates causing meningitis were genotyped by multilocus sequence typing (MLST). A total of 1,030 isolates were both serotyped and genotyped over the 5-year period. Fifty-two serotypes, 238 sequence types (STs), and 87 clonal complexes were identified, with no significant difference in the yearly Simpson's diversity index values (range, 0.974 to 0.984). STs commonly associated with PCV7 serotypes declined following PCV implementation, with a proportionally greater decline in ST124 (commonly associated with serotype 14). No other ST showed significant changes in distribution, even within individual serotypes. Replacement disease following PCV7 introduction was mainly due to serotypes 1, 3, 7F, 19A, 22F, and 33F through clonal expansion. A single instance of possible capsule switching was identified where one ST4327 clone expressed a serotype 14 capsule in 2005 and a serotype 28A capsule in 2009. In 2008 to 2009, ST191 (7F) became the most prevalent clone causing meningitis (10.3%). Case fatality (145 fatalities/1,030 cases; 14.1%) was high across all age groups and serotype groups. Thus, the introduction of PCV7 resulted in an increase in non-PCV7 serotypes, including some not covered by the 13-valent vaccine, such as serotypes 22F and 33F, emphasizing the importance of long-term epidemiological and molecular surveillance.
Collapse
|
645
|
Shak JR, Vidal JE, Klugman KP. Influence of bacterial interactions on pneumococcal colonization of the nasopharynx. Trends Microbiol 2012; 21:129-35. [PMID: 23273566 DOI: 10.1016/j.tim.2012.11.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/13/2012] [Accepted: 11/19/2012] [Indexed: 12/11/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is a common commensal inhabitant of the nasopharynx and a frequent etiologic agent in serious diseases such as pneumonia, otitis media, bacteremia, and meningitis. Multiple pneumococcal strains can colonize the nasopharynx, which is also home to many other bacterial species. Intraspecies and interspecies interactions influence pneumococcal carriage in important ways. Co-colonization by two or more pneumococcal strains has implications for vaccine serotype replacement, carriage detection, and pneumonia diagnostics. Interactions between the pneumococcus and other bacterial species alter carriage prevalence, modulate virulence, and affect biofilm formation. By examining these interactions, this review highlights how the bacterial ecosystem of the nasopharynx changes the nature and course of pneumococcal carriage.
Collapse
Affiliation(s)
- Joshua R Shak
- Molecules to Mankind Program and Graduate Program in Population Biology, Ecology, and Evolution, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
646
|
The ABC transporter encoded at the pneumococcal fructooligosaccharide utilization locus determines the ability to utilize long- and short-chain fructooligosaccharides. J Bacteriol 2012; 195:1031-41. [PMID: 23264576 DOI: 10.1128/jb.01560-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is an important human pathogen that requires carbohydrates for growth. The significance of carbohydrate acquisition is highlighted by the genome encoding more than 27 predicted carbohydrate transporters. It has long been known that about 60% of pneumococci could utilize the fructooligosaccharide inulin as a carbohydrate source, but the mechanism of utilization was unknown. Here we demonstrate that a predicted sucrose utilization locus is actually a fructooligosaccharide utilization locus and imparts the ability of pneumococci to utilize inulin. Genes in strain TIGR4 predicted to encode an ABC transporter (SP_1796-8) and a β-fructosidase (SP_1795) are required for utilization of several fructooligosaccharides longer than kestose, which consists of two β(2-1)-linked fructose molecules with a terminal α(1-2)-linked glucose molecule. Similar to other characterized pneumococcal carbohydrate utilization transporter family 1 transporters, growth is dependent on the gene encoding the ATPase MsmK. While the majority of pneumococcal strains encode SP_1796-8 at this genomic location, 19% encode an alternative transporter. Although strains encoding either transporter can utilize short-chain fructooligosaccharides for growth, only strains encoding SP_1796-8 can utilize inulin. Exchange of genes encoding the SP_1796-8 transporter for those encoding the alternative transporter resulted in a TIGR4 strain that could utilize short-chain fructooligosaccharide but not inulin. These data demonstrate that the transporter encoded at this locus determines the ability of the bacteria to utilize long-chain fructooligosaccharides and explains the variation in inulin utilization between pneumococcal strains.
Collapse
|
647
|
Neill DR, Smeaton S, Bangert M, Kadioglu A. Nasopharyngeal carriage with Streptococcus pneumoniae augments the immunizing effect of pneumolysin toxoid B. J Allergy Clin Immunol 2012; 131:1433-5.e1. [PMID: 23260752 DOI: 10.1016/j.jaci.2012.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/17/2012] [Accepted: 11/05/2012] [Indexed: 11/18/2022]
|
648
|
Basset A, Zhang F, Benes C, Sayeed S, Herd M, Thompson C, Golenbock DT, Camilli A, Malley R. Toll-like receptor (TLR) 2 mediates inflammatory responses to oligomerized RrgA pneumococcal pilus type 1 protein. J Biol Chem 2012; 288:2665-75. [PMID: 23233677 DOI: 10.1074/jbc.m112.398875] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The pneumococcal type 1 pilus is an inflammatory and adherence-promoting structure associated with increased virulence in mouse models. We show that RrgA, an ancillary pilus subunit devoid of a lipidation motif, particularly when presented as part of an oligomer, is a TLR2 agonist. The surface-exposed domain III, and in particular a 49-amino acid sequence (P3), of the protein is responsible for the TLR2 activity of RrgA. A pneumococcal mutant carrying RrgA with a deletion of the P3 region was significantly reduced in its ability to activate TLR2 and induce TNF-α responses after mouse intraperitoneal infection, whereas no such difference could be noted when TLR2(-/-) mice were challenged, further implicating this region in recognition by TLR2. Thus, we conclude that the type 1 pneumococcal pilus can activate cells via TLR2, and the ancillary pilus subunit RrgA is a key component of this activation.
Collapse
Affiliation(s)
- Alan Basset
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
649
|
Pneumococcal serotype distribution among meningitis cases from Togo and Burkina Faso during 2007–2009. Vaccine 2012; 30 Suppl 6:G41-5. [DOI: 10.1016/j.vaccine.2012.10.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
650
|
Mehr S, Wood N. Streptococcus pneumoniae--a review of carriage, infection, serotype replacement and vaccination. Paediatr Respir Rev 2012; 13:258-64. [PMID: 23069126 DOI: 10.1016/j.prrv.2011.12.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Invasive pneumococcal infection remains a leading global cause of morbidity and mortality in young children. In developed nations, a substantial decrease in the incidence of IPD has been achieved with inclusion of the 7 valent protein conjugated pneumococcal vaccines (7vPCV) into paediatric vaccine schedules. In contrast, the incidence of IPD has changed little in developing nations. This is likely due to poor access to medical care and pneumococcal vaccination, the accompanying HIV and malnutrition burden, and the fact that 7vPCV does not contain the most common serotypes (1,5, 6A) responsible for IPD in many developing nations. The battle against IPD in developed nations is not over, with the rise of non-7vPCV serotypes since routine 7vPCV vaccination. This has necessitated the development and distribution of pneumococcal vaccines containing 3 or 6 additional serotypes. This article provides an overview on pneumococcal carriage and risk factors for IPD, the rise of non-7vCPV serotypes in the era of 7vPCV vaccination, and the current and newly available broader valent pneumococcal vaccines.
Collapse
Affiliation(s)
- Sam Mehr
- Department of Immunology and Allergy, The Children's Hospital at Westmead, Sydney, Australia.
| | | |
Collapse
|