601
|
López-Bendito G, Shigemoto R, Kulik A, Paulsen O, Fairén A, Luján R. Expression and distribution of metabotropic GABA receptor subtypes GABABR1 and GABABR2 during rat neocortical development. Eur J Neurosci 2002; 15:1766-78. [PMID: 12081656 DOI: 10.1046/j.1460-9568.2002.02032.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To understand the possible contribution of metabotropic gamma-aminobutyric acid receptors (GABABR) in cortical development, we investigated the expression pattern and the cellular and subcellular localization of the GABABR1 and GABABR2 subtypes in the rat neocortex from embryonic day 14 (E14) to adulthood. At the light microscopic level, both GABABR1 and GABABR2 were detected as early as E14. During prenatal development, both subtypes were expressed highly in the cortical plate. Using double immunofluorescence, GABABR1 colocalized with GABABR2 in neurons of the marginal zone and subplate, indicating that these proteins are coexpressed and could be forming functional GABABRs during prenatal development in vivo. In contrast, only GABABR1 but not GABABR2 was detected in the tangentially migratory cells in the lower intermediate zone. During postnatal development, immunoreactivity for GABABR1 and GABABR2 was distributed mainly in pyramidal cells. Discrete GABABR1-immunopositive cell bodies of interneurons were present throughout the neocortex. In addition, GABABR1 but not GABABR2 was found in identified Cajal-Retzius cells in layer I. At the electron microscopic level, immunoreactivity for GABABR1 and GABABR2 was found in dendritic spines and dendritic shafts at extrasynaptic and perisynaptic sites throughout postnatal development. We further demonstrated the presynaptic localization of GABABR1 and GABABR2, as well as the association of the receptors with asymmetrical synaptic junctions. These results indicate potentially important roles for the GABABRs in the regulation of migratory processes during corticogenesis and in the modulation of synaptic transmission during early development of cortical circuitry.
Collapse
Affiliation(s)
- G López-Bendito
- Department of Human Anatomy and Genetics, University of Oxford, OX1 QX, UK.
| | | | | | | | | | | |
Collapse
|
602
|
Jensen AA, Mosbacher J, Elg S, Lingenhoehl K, Lohmann T, Johansen TN, Abrahamsen B, Mattsson JP, Lehmann A, Bettler B, Bräuner-Osborne H. The anticonvulsant gabapentin (neurontin) does not act through gamma-aminobutyric acid-B receptors. Mol Pharmacol 2002; 61:1377-84. [PMID: 12021399 DOI: 10.1124/mol.61.6.1377] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The actions of the anticonvulsant gabapentin [1-(aminomethyl)cyclohexaneacetic acid, Neurontin] have been somewhat enigmatic until recently, when it was claimed to be a gamma-aminobutyric acid-B (GABA(B)) receptor agonist acting exclusively at a heterodimeric complex containing the GABA(B(1a)) splice variant (Mol Pharmacol 2001;59:144-152). In this study, we have investigated the effects of gabapentin on recombinant GABA(B(1a)) and GABA(B(1b)) receptors coexpressed with GABA(B(2)) in five different functional recombinant assays, its ability to inhibit [(3)H]GABA binding in a GABA(B) receptor-selective binding assay using rat synaptic membranes, and its ability to inhibit transient lower esophageal sphincter relaxations in Labrador retriever dogs. Up to a concentration of 1 mM, gabapentin displayed no agonistic effects on either the GABA(B(1a,2)) or the GABA(B(1b,2)) heterodimer, when these were expressed in Xenopus laevis oocytes or mammalian cells and assayed by means of electrophysiology, calcium mobilization, inositol phosphate, and fluorometry assays. Gabapentin did not displace [(3)H]GABA from GABA(B) receptor sites in rat synaptic membranes. Finally, in contrast to the classic GABA(B) receptor agonist baclofen, gabapentin was unable to inhibit transient lower esophageal sphincter relaxations in dogs. Because of high levels of GABA(B(1a)) in the canine nodose ganglion, this finding indirectly supports the inactivity of gabapentin on the GABA(B(1a,2)) heterodimer demonstrated in various in vitro assays. In light of these results, we find it highly questionable that gabapentin is a GABA(B) receptor agonist. Hence, the anticonvulsive effects of the compound have to arise from GABA(B) receptor-independent mechanisms. This also implies that the first GABA(B) receptor splice variant-selective ligand remains to be discovered.
Collapse
Affiliation(s)
- Anders A Jensen
- NeuroScience PharmaBiotec Research Centre, Department of Medicinal Chemistry, the Royal Danish School of Pharmacy, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
603
|
Pfeiffer M, Koch T, Schröder H, Laugsch M, Höllt V, Schulz S. Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J Biol Chem 2002; 277:19762-72. [PMID: 11896051 DOI: 10.1074/jbc.m110373200] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterodimerization has been shown to modulate the ligand binding, signaling, and trafficking properties of G protein-coupled receptors. However, to what extent heterodimerization may alter agonist-induced phosphorylation and desensitization of these receptors has not been documented. We have recently shown that heterodimerization of sst(2A) and sst(3) somatostatin receptors results in inactivation of sst(3) receptor function (Pfeiffer, M., Koch, T., Schröder, H., Klutzny, M., Kirscht, S., Kreienkamp, H. J., Höllt, V., and Schulz, S. (2001) J. Biol. Chem. 276, 14027-14036). Here we examine dimerization of the sst(2A) somatostatin receptor and the mu-opioid receptor, members of closely related G protein-coupled receptor families. In coimmunoprecipitation studies using differentially epitope-tagged receptors, we provide direct evidence for heterodimerization of sst(2A) and MOR1 in human embryonic kidney 293 cells. Unlike heteromeric assembly of sst(2A) and sst(3), sst(2A)-MOR1 heterodimerization did not substantially alter the ligand binding or coupling properties of these receptors. However, exposure of the sst(2A)-MOR1 heterodimer to the sst(2A)-selective ligand L-779,976 induced phosphorylation, internalization, and desensitization of sst(2A) as well as MOR1. Similarly, exposure of the sst(2A)-MOR1 heterodimer to the mu-selective ligand [d-Ala(2),Me-Phe(4),Gly(5)-ol]enkephalin induced phosphorylation and desensitization of both MOR1 and sst(2A) but not internalization of sst(2A). Cross-phosphorylation and cross-desensitization of the sst(2A)-MOR1 heterodimer were selective; they were neither observed with the sst(2A)-sst(3) heterodimer nor with the endogenously expressed lysophosphatidic acid receptor. Heterodimerization may thus represent a novel regulatory mechanism that could either restrict or enhance phosphorylation and desensitization of G protein-coupled receptors.
Collapse
Affiliation(s)
- Manuela Pfeiffer
- Department of Pharmacology and Toxicology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
604
|
Fujimori S, Hinoi E, Yoneda Y. Functional GABA(B) receptors expressed in cultured calvarial osteoblasts. Biochem Biophys Res Commun 2002; 293:1445-52. [PMID: 12054677 DOI: 10.1016/s0006-291x(02)00405-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In immature and mature primary cultured rat calvarial osteoblasts, both mRNA and corresponding proteins were constitutively expressed for 2 splice variants of GABA(B) receptor (GABA(B)R) subunits but not for any known GABA(A) and GABA(C) receptor subunits. The agonist for GABA(B)R baclofen significantly inhibited cAMP formation induced by forskolin in a manner sensitive to the antagonist 2-hydroxysaclofen. Similar expression was seen with mRNA for GABA(B)R-1a and -1b splice variants in the murine calvarial osteoblast cell line MC3TC-E1 cells cultured for 7-21 days in vitro (DIV). In these MC3T3-E1 cells, baclofen not only inhibited the activity of alkaline phosphatase, but also exacerbated Ca2+ accumulation, throughout the culture period up to 28 DIV. These results suggest that GABA may play an unidentified role in mechanisms associated with cellular proliferation, differentiation, and/or development through functional GABA(B)R constitutively expressed in cultured osteoblasts.
Collapse
Affiliation(s)
- Sayumi Fujimori
- Department of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | | | | |
Collapse
|
605
|
Salim K, Fenton T, Bacha J, Urien-Rodriguez H, Bonnert T, Skynner HA, Watts E, Kerby J, Heald A, Beer M, McAllister G, Guest PC. Oligomerization of G-protein-coupled receptors shown by selective co-immunoprecipitation. J Biol Chem 2002; 277:15482-5. [PMID: 11854302 DOI: 10.1074/jbc.m201539200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have shown that G-protein-coupled receptors (GPCRs) can assemble as high molecular weight homo- and hetero-oligomeric complexes. This can result in altered receptor-ligand binding, signaling, or intracellular trafficking. We have co-transfected HEK-293 cells with differentially epitope-tagged GPCRs from different subfamilies and determined whether oligomeric complexes were formed by co-immunoprecipitation and immunoblot analysis. This gave the surprising result that the 5HT(1A) receptor was capable of forming hetero-oligomers with all GPCRs tested including the 5HT(1B), 5HT(1D), EDG(1), EDG(3), GPR(26), and GABA(B2) receptors. The testing of other GPCR combinations showed similar results with hetero-oligomer formation occurring for the 5HT(1D) with the 5HT(1B) and EDG(1) receptor. Control studies showed that these complexes were present in co-transfected cells before the time of lysis and that the hetero-oligomers were comprised of GPCRs at discrete stoichiometries. These findings suggest that GPCRs have a natural tendency to form oligomers when co-transfected into cells. Future studies should therefore investigate the presence and physiological role of GPCR hetero-oligomers in cells in which they are endogenously expressed.
Collapse
MESH Headings
- Cell Line
- GTP-Binding Proteins/chemistry
- GTP-Binding Proteins/isolation & purification
- GTP-Binding Proteins/metabolism
- Humans
- Immunoblotting
- Kidney
- Mutagenesis, Site-Directed
- Protein Subunits
- Proto-Oncogene Proteins c-myc/chemistry
- Receptor, Serotonin, 5-HT1B
- Receptor, Serotonin, 5-HT1D
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/isolation & purification
- Receptors, Cell Surface/metabolism
- Receptors, Serotonin/chemistry
- Receptors, Serotonin/isolation & purification
- Receptors, Serotonin/metabolism
- Receptors, Serotonin, 5-HT1
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Restriction Mapping
- Transfection
Collapse
Affiliation(s)
- Kamran Salim
- Neuroscience Research Centre, Merck Sharp & Dohme Research Laboratories, Harlow, Essex CM20 2QR, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
606
|
Hur EM, Kim KT. G protein-coupled receptor signalling and cross-talk: achieving rapidity and specificity. Cell Signal 2002; 14:397-405. [PMID: 11882384 DOI: 10.1016/s0898-6568(01)00258-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Activation of a given type of G protein-coupled receptor (GPCR) triggers a limited set of signalling events in a very rapid and specific manner. The classical paradigm of GPCR signalling was rather linear and sequential. Emerging evidence, however, has revealed that this is only a part of the complex signalling mediated by GPCR. Propagation of GPCR signalling involves cross-regulation of many but specific pathways, including cross-talks between different GPCRs as well as with other signalling pathways. Moreover, it is increasingly apparent that GPCRs can activate both heterotrimeric G protein-dependent and G protein-independent signalling pathways. In this review, we discuss how the signallings initiated by GPCRs achieve rapidity as well as specificity, and how the GPCRs can cross-regulate other specific signalling pathways at the same time. New concepts regarding GPCR signalling have been arising to address this issue, which include multiprotein signalling complex and signalling compartment in microdomain concepts that enable close colocalization or even contact among the proteins engaged in the specific signal transduction. The final outcome of a stimulation of GPCR will thus be the sum of its own specific set of intracellular signalling pathways it regulates.
Collapse
Affiliation(s)
- Eun Mi Hur
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyoja Dong, 790-784, Pohang, South Korea
| | | |
Collapse
|
607
|
Grünewald S, Schupp BJ, Ikeda SR, Kuner R, Steigerwald F, Kornau HC, Köhr G. Importance of the gamma-aminobutyric acid(B) receptor C-termini for G-protein coupling. Mol Pharmacol 2002; 61:1070-80. [PMID: 11961124 DOI: 10.1124/mol.61.5.1070] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Functional gamma-aminobutyric acid(B) (GABA(B)) receptors assemble from two subunits, GABA(B(1)) and GABA(B(2).) This heteromerization, which involves a C-terminal coiled-coil interaction, ensures efficient surface trafficking and agonist-dependent G-protein activation. In the present study, we took a closer look at the implications of the intracellular C termini of GABA(B(1)) and GABA(B(2)) for G-protein coupling. We generated a series of C-terminal mutants of GABA(B(1)) and GABA(B(2)) and tested them for physical interaction, surface trafficking, coupling to adenylyl cyclase, and G-protein-gated inwardly rectifying potassium channels in human embryonic kidney (HEK) 293 cells as well as on endogenous calcium channels in sympathetic neurons of the superior cervical ganglion (SCG). We found that the C-terminal interaction contributes only partly to the heterodimeric assembly of the subunits, indicating the presence of an additional interaction site. The described endoplasmic reticulum retention signal within the C terminus of GABA(B(1)) functioned only in the context of specific amino acids, which constitute part of the GABA(B(1)) coiled-coil sequence. This finding may provide a link between the retention signal and its shielding by the coiled coil of GABA(B(2).) In HEK293 cells, we observed that the two well-known GABA(B) receptor antagonists [S-(R*,R*)]-[3-[[1-(3,4-dichlorophenyl)ethyl]amino]-2-hydroxypropyl](cyclohexylmethyl) phosphinic acid (CGP54626) and (+)-(2S)-5,5-dimethyl-2-morpholineacetic acid (SCH50911) CGP54626 and SCH50911 function as inverse agonists. The C termini of GABA(B(1)) and GABA(B(2)) strongly influenced agonist-independent G-protein coupling, although they were not necessary for agonist-dependent G-protein coupling. The C-terminal GABA(B) receptor mutants described here demonstrate that the active receptor conformation is stabilized by the coiled-coil interaction. Thus, the C-terminal conformation of the GABA(B) receptor may determine its constitutive activity, which could be a therapeutic target for inverse agonists.
Collapse
|
608
|
Couve A, Thomas P, Calver AR, Hirst WD, Pangalos MN, Walsh FS, Smart TG, Moss SJ. Cyclic AMP-dependent protein kinase phosphorylation facilitates GABA(B) receptor-effector coupling. Nat Neurosci 2002; 5:415-24. [PMID: 11976702 DOI: 10.1038/nn833] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GABA (gamma-aminobutyric acid)(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Here we show that the functional coupling of GABA(B)R1/GABA(B)R2 receptors to inwardly rectifying K(+) channels rapidly desensitizes. This effect is alleviated after direct phosphorylation of a single serine residue (Ser892) in the cytoplasmic tail of GABA(B)R2 by cyclic AMP (cAMP)-dependent protein kinase (PKA). Basal phosphorylation of this residue is evident in rat brain membranes and in cultured neurons. Phosphorylation of Ser892 is modulated positively by pathways that elevate cAMP concentration, such as those involving forskolin and beta-adrenergic receptors. GABA(B) receptor agonists reduce receptor phosphorylation, which is consistent with PKA functioning in the control of GABA(B)-activated currents. Mechanistically, phosphorylation of Ser892 specifically enhances the membrane stability of GABA(B) receptors. We conclude that signaling pathways that activate PKA may have profound effects on GABA(B) receptor-mediated synaptic inhibition. These results also challenge the accepted view that phosphorylation is a universal negative modulator of G protein-coupled receptors.
Collapse
Affiliation(s)
- A Couve
- Medical Research Council Laboratory of Molecular Cell Biology and Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | |
Collapse
|
609
|
Dias JA, Cohen BD, Lindau-Shepard B, Nechamen CA, Peterson AJ, Schmidt A. Molecular, structural, and cellular biology of follitropin and follitropin receptor. VITAMINS AND HORMONES 2002; 64:249-322. [PMID: 11898394 DOI: 10.1016/s0083-6729(02)64008-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Follitropin and the follitropin receptor are essential for normal gamete development in males and females. This review discusses the molecular genetics and structural and cellular biology of the follitropin/follitropin receptor system. Emphasis is placed on the human molecules when possible. The structure and regulation of the genes for the follitropin beta subunit and the follitropin receptor is discussed. Control of systemic and cellular protein levels is explained. The structural biology of each protein is described, including protein structure, motifs, and activity relationships. Finally, the follitropin/follitropin receptor signal transduction system is discussed.
Collapse
Affiliation(s)
- James A Dias
- Wadsworth Center, David Axelrod Institute for Public Health, New York State Department of Health, Albany, New York 12208, USA
| | | | | | | | | | | |
Collapse
|
610
|
Easter A, Spruce AE. Recombinant GABA(B) receptors formed from GABA(B1) and GABA(B2) subunits selectively inhibit N-type Ca(2+) channels in NG108-15 cells. Eur J Pharmacol 2002; 440:17-25. [PMID: 11959084 DOI: 10.1016/s0014-2999(02)01343-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Efficient transfection of NG108-15 cells with GABA(B) receptor subunits was achieved using polyethylenimine. Baclofen modulated high voltage-activated Ca(2+) current in differentiated cells transfected with GABA(B1) and GABA(B2) receptor subunits or with the GABA(B2) subunit alone, but not with the GABA(B1) subunit alone. Characteristics of the current modulation were very similar for cells transfected with GABA(B1/2) and GABA(B2) subunits. Using antisense oligonucleotides against GABA(B1) subunits and also western immunoblotting, we are able to show that NG108-15 cells contain endogenous GABA(B1) subunits. Therefore, functional receptors can be formed by the combination of native GABA(B1) subunits with transfected GABA(B2) subunits, in agreement with the proposed heteromeric structure of GABA(B) receptors. Finally, we used selective channel blockers to identify the subtypes of Ca(2+) channels that are modulated by GABA(B) receptors. In fact, in differentiated NG108-15 cells, the recombinant GABA(B) receptors couple only to N-type Ca(2+) channels.
Collapse
Affiliation(s)
- Alison Easter
- Division of Neuroscience-Pharmacology, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
611
|
Angers S, Salahpour A, Bouvier M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 2002; 42:409-35. [PMID: 11807178 DOI: 10.1146/annurev.pharmtox.42.091701.082314] [Citation(s) in RCA: 437] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the last four to five years, the view that G protein-coupled receptors (GPCRs) function as monomeric proteins has been challenged by numerous studies, which suggests that GPCRs exist as dimers or even higher-structure oligomers. Recently, biophysical methods based on luminescence and fluorescence energy transfer have confirmed the existence of such oligomeric complexes in living cells. Although no consensus exists on the role of receptor dimerization, converging evidence suggests potential roles in various aspects of receptor biogenesis and function. In several cases, receptors appear to fold as constitutive dimers early after biosynthesis, whereas ligand-promoted dimerization at the cell surface has been proposed for others. The reports of heterodimerization between receptor subtypes suggest a potential level of receptor complexity that could account for previously unexpected pharmacological diversities. In addition to fundamentally changing our views on the structure and activation processes of GPCRs, the concept of homo- and heterodimerization could have dramatic impacts on drug development and screening.
Collapse
Affiliation(s)
- Stephane Angers
- Department of Biochemistry and Groupe de Recherche sur le Système Nerveux Autonome, Université de Montréal, Montréal, H3C 3J7, Canada.
| | | | | |
Collapse
|
612
|
Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E. Human receptors for sweet and umami taste. Proc Natl Acad Sci U S A 2002; 99:4692-6. [PMID: 11917125 PMCID: PMC123709 DOI: 10.1073/pnas.072090199] [Citation(s) in RCA: 939] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The three members of the T1R class of taste-specific G protein-coupled receptors have been hypothesized to function in combination as heterodimeric sweet taste receptors. Here we show that human T1R2/T1R3 recognizes diverse natural and synthetic sweeteners. In contrast, human T1R1/T1R3 responds to the umami taste stimulus l-glutamate, and this response is enhanced by 5'-ribonucleotides, a hallmark of umami taste. The ligand specificities of rat T1R2/T1R3 and T1R1/T1R3 correspond to those of their human counterparts. These findings implicate the T1Rs in umami taste and suggest that sweet and umami taste receptors share a common subunit.
Collapse
Affiliation(s)
- Xiaodong Li
- Senomyx, Inc., 11099 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
613
|
Harada N, Himeno A, Shigematsu K, Sumikawa K, Niwa M. Endothelin-1 binding to endothelin receptors in the rat anterior pituitary gland: possible formation of an ETA-ETB receptor heterodimer. Cell Mol Neurobiol 2002; 22:207-26. [PMID: 12363203 PMCID: PMC11533785 DOI: 10.1023/a:1019822107048] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
1. Interaction in the recognition of endothelin-1 (ET-1), a typical bivalent ET receptor-ligand, between ETA and ETB receptors was investigated in the rat anterior pituitary gland, using our quantitative receptor autoradiographic method with tissue sections preserving the cell-membrane structure and ET receptor-related compounds. 2. In saturation binding studies with increasing concentrations (0.77-200 pM) of 125I-ET-1 (nonselective bivalent radioligand), 125I-ET-1 binding to the rat anterior pituitary gland was saturable and single with a KD of 71 pM and a Bmax of 120 fmol mg(-1). When 1.0 microM BQ-123 (ETA antagonist) was added to the incubation buffer, binding parameters were 8.3 pM of KD and 8.0 fmol mg(-1) of Bmax, whereas 10 nM sarafotoxin S6c (ETB agonist) exerted little change in these binding parameters (KD, 72 pM; Bmax, 110 fmol mg(-1)). 3. Competition binding studies with a fixed amount (3.8 pM) of 125 I-ET-1 revealed that when 1.0 microM BQ-123 was present in the incubation buffer, ETB receptor-related compounds such as sarafotoxin S6c, ET-3, IRL1620 (ETB agonist), and BQ-788 (ETB antagonist) competitively inhibited 125I-ET-1 binding with K(i)s of 140,18,350 pM, and 14 nM, respectively, however, these compounds were not significant competitors for 125I-ET-1 binding in the case of absence of BQ-123. 4. In cold-ligand saturation studies with a fixed amount (390 pM) of 125I-IRL 1620 (ETB radioligand), IRL1620 bound to a single population of the ETB receptor, and no change was observed in binding characteristics in the presence of 1.0 microM BQ-123. 125I-IRL1620 binding was competitively inhibited by ET-1 and ET-3 in the absence of BQ-123, with K(i)s of 20 and 29 pM, respectively, the affinities being much the same as those of 29 nM, in the presence of 1.0 microM BQ-123. 5. Two nonbivalent ETA antagonists, BQ-123 and PD151242, were highly sensitive and full competitors for 125I-ET-1 binding (5.0 pM), in the presence of 10 nM sarafotoxin S6c. 6. Taken together with the present finding that mRNAs encoding the rat ETA and the ETB receptors are expressed in the anterior pituitary gland, we tentatively conclude that although there are ETA and ETB receptors with a functional binding capability for ET receptor-ligands, the ETB receptor does not independently recognize ET-1 without the aid of the ETA receptor. If this thesis is tenable, then ET-1 can bridge between the two receptors to form an ETA-ETB receptor heterodimer.
Collapse
MESH Headings
- Animals
- Azepines
- Binding Sites/drug effects
- Binding Sites/genetics
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Dimerization
- Endothelin-1/metabolism
- Endothelin-1/pharmacology
- Endothelins
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Iodine Radioisotopes
- Kinetics
- Ligands
- Male
- Oligopeptides
- Peptide Fragments
- Peptides, Cyclic
- Pituitary Gland, Anterior/cytology
- Pituitary Gland, Anterior/drug effects
- Pituitary Gland, Anterior/metabolism
- Protein Binding/drug effects
- Protein Binding/physiology
- RNA, Messenger/metabolism
- Radioligand Assay
- Rats
- Rats, Wistar
- Receptor, Endothelin A
- Receptor, Endothelin B
- Receptors, Endothelin/drug effects
- Receptors, Endothelin/genetics
- Receptors, Endothelin/metabolism
- Viper Venoms
Collapse
Affiliation(s)
- Noboru Harada
- Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki, Japan
| | | | | | | | | |
Collapse
|
614
|
Brady AE, Limbird LE. G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal 2002; 14:297-309. [PMID: 11858937 DOI: 10.1016/s0898-6568(01)00239-x] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mechanism by which G protein-coupled receptors (GPCRs) translate extracellular signals into cellular changes initially was envisioned as a simple linear model: activation of the receptor by agonist binding leads to dissociation of the heterotrimeric GTP-binding G protein into its alpha and betagamma subunits, both of which can activate or inhibit various downstream effector molecules. The plethora of recently described multidomain scaffolding proteins and accessory/chaperone molecules that interact with GPCR, including GPCR themselves as homo- or heterodimers, provides for diverse molecular mechanisms for ligand recognition, signalling specificity, and receptor trafficking. This review will summarize the recently described GPCR-interacting proteins and their individual functional roles, as understood. Implicit in the search for the functional relevance of these interactions is the expectation that enhancement or disruption of target cell-specific events could serve as highly selective therapeutic opportunities.
Collapse
Affiliation(s)
- Ashley E Brady
- Vanderbilt University Medical Center, 464A Robinson Research Building, 37232-6600, Nashville, TN, USA
| | | |
Collapse
|
615
|
Grillner P, Mercuri NB. Intrinsic membrane properties and synaptic inputs regulating the firing activity of the dopamine neurons. Behav Brain Res 2002; 130:149-69. [PMID: 11864731 DOI: 10.1016/s0166-4328(01)00418-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dopamine (DA) neurones of the ventral mesencephalon are involved in the control of reward related behaviour, cognitive functions and motor performances, and provide a critical site of action for major categories of neuropsychiatric drugs, such as antipsychotic agents, dependence producing drugs and anti-Parkinson medication. The midbrain DA neurones are mainly located in the substantia nigra pars compacta (SNPC) and the ventral tegmental area (VTA). Intrinsic membrane properties regulate the activity of these neurones. In fact, they possess several conductances that allow them to fire in a slow pacemaker-like mode. The internal set of membrane currents interact with afferent synaptic inputs which, especially in in vivo conditions, contribute to accelerate or decelerate the firing activity of the cells in accordance with the necessity to optimise the release of dopamine in the terminal fields. In particular, discrete excitatory and inhibitory inputs transform the firing from a low regular into a bursting pattern. The bursting activity promotes dopamine release being very important in cognition and motor performances. In the present paper we review electrophysiological data regarding the role of glutamatergic and cholinergic and GABAergic afferent inputs in regulating the midbrain DAergic neuronal activity.
Collapse
Affiliation(s)
- Pernilla Grillner
- Department of Physiology and Pharmacology, Karolinska Institutet, S171 77, Stockholm, Sweden.
| | | |
Collapse
|
616
|
Miret JJ, Rakhilina L, Silverman L, Oehlen B. Functional expression of heteromeric calcitonin gene-related peptide and adrenomedullin receptors in yeast. J Biol Chem 2002; 277:6881-7. [PMID: 11733510 DOI: 10.1074/jbc.m107384200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of G protein-coupled receptors (GPCRs) to form homo- and heteromeric complexes has important implications for the regulation of cellular events. A notable example of heteromer formation is the interaction of the calcitonin receptor-like receptor (CRLR) with different members of the receptor activity modifying protein (RAMP) family, which results in the formation of two different receptors, a calcitonin gene-related peptide (CGRP) receptor and an adrenomedullin receptor. To analyze the role of RAMPs in determining ligand specificity, we have co-expressed CRLR and RAMP proteins in the yeast Saccharomyces cerevisiae, which provides a null system to study the function of mammalian receptors. Co-expression of RAMP1 and CRLR reconstituted a CGRP receptor that was able to activate the pheromone-signaling pathway with pharmacological properties similar to those observed previously in mammalian cells. Co-expression of CRLR with RAMP2 or RAMP3 resulted in a response with the pharmacological properties of an adrenomedullin receptor. These data indicate that RAMPs are necessary and sufficient to determine ligand specificity of CRLR. Contrary to observations in mammalian cells, the glycosylation of CRLR was not affected by the presence of RAMPs in yeast, indicating that glycosylation of CRLR is not the prime determinant of ligand specificity. The first functional reconstitution of a heteromeric seven transmembrane receptor in yeast suggests this organism as a useful research tool to study the molecular nature of other heteromeric receptors.
Collapse
Affiliation(s)
- Juan J Miret
- OSI Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591-6705, USA
| | | | | | | |
Collapse
|
617
|
Yamaguchi M, Suzuki T, Abe S, Baba A, Hori T, Okado N. Repeated cocaine administration increases GABA(B(1)) subunit mRNA in rat brain. Synapse 2002; 43:175-80. [PMID: 11793422 DOI: 10.1002/syn.10037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of a single and repeated administration of cocaine on GABA(B) receptor subunit mRNA was investigated in rat brain by in situ hybridization. Following a single administration of cocaine, no significant change was observed in any brain regions examined, neither 1 h nor 24 h after administration. During repeated administration of cocaine, behavioral sensitization with increased stereotyped behavior was observed. A significant increase in the level of GABA(B(1)) mRNA was observed in the nucleus accumbens (11.4%), CA1 field of the hippocampus (16.8%), and thalamus (16.5%) 1 day after repeated administrations of cocaine for 14 consecutive days. The level of mRNA returned to the basal level 1 week after the final injection of repeated cocaine treatment. The observed changes in the mRNA level after the repeated cocaine may imply changes of GABA(B(1)) subunit in molecular mechanisms which underlie development of behavioral sensitization.
Collapse
Affiliation(s)
- Mika Yamaguchi
- Department of Psychiatry, Institute of Clinical Medicine, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
618
|
Abstract
In the search for yet unknown subtypes of GABAB receptors, the subunit architecture of GABAB receptors in the retina was analyzed using selective antisera. Immunopurification of the splice variants GABAB1a and GABAB1b demonstrated that both were associated with GABAB2. Quantitative immunoprecipitation experiments indicated that practical the entire GABAB receptor population in the retina consists of the receptor subtypes GABAB1a/GABAB2 and GABAB1b/GABAB2, although low levels of GABAB1c/GABAB2 cannot be excluded. The data rule out the existence of GABAB receptors containing the splice variants GABAB1d and GABAB1e. Moreover, no evidence for homomeric GABAB1 receptors was found. Among the splice variants, GABAB1a is by far the predominant one in neonatal and adult retina, whereas GABAB1b is expressed only late in postnatal development and in the adult retina. Since GABAB1a is expressed at high levels before functional synapses are formed, this specific receptor subtype might be involved in the maturation of the retina. Finally, subcellular fractionation demonstrated that GABAB1a, but not GABAB1b, is present in postsynaptic densities, suggesting a differential pre- and postsynaptic localisation of both splice variants.
Collapse
Affiliation(s)
- Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
619
|
Duthey B, Caudron S, Perroy J, Bettler B, Fagni L, Pin JP, Prézeau L. A single subunit (GB2) is required for G-protein activation by the heterodimeric GABA(B) receptor. J Biol Chem 2002; 277:3236-41. [PMID: 11711539 PMCID: PMC2566549 DOI: 10.1074/jbc.m108900200] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although G-protein-coupled receptors (GPCRs) have been shown to assemble into functional homo or heteromers, the role of each protomer in G-protein activation is not known. Among the GPCRs, the gamma-aminobutyric acid (GABA) type B receptor (GABA(B)R) is the only one known so far that needs two subunits, GB1 and GB2, to function. The GB1 subunit contains the GABA binding site but is unable to activate G-proteins alone. In contrast the GB2 subunit, which does not bind GABA, has an heptahelical domain able to activate G-proteins when assembled into homodimers (Galvez, T., Duthey, B., Kniazeff, J., Blahos, J., Rovelli, G., Bettler, B., Prézeau, L., and Pin, J.-P. (2001) EMBO J. 20, 2152-2159). In the present study, we have examined the role of each subunit within the GB1-GB2 heteromer, in G-protein coupling. To that end, point mutations in the highly conserved third intracellular loop known to prevent G-protein activation of the related Ca-sensing or metabotropic glutamate receptors were introduced into GB1 and GB2. One mutation, L686P introduced in GB2 prevents the formation of a functional receptor, even though the heteromer reaches the cell surface, and even though the mutated subunit still associates with GB1 and increases GABA affinity on GB1. This was observed either in HEK293 cells where the activation of the G-protein was assessed by measurement of inositol phosphate accumulation, or in cultured neurons where the inhibition of the Ca(2+) channel current was measured. In contrast, the same mutation when introduced into GB1 does not modify the G-protein coupling properties of the heteromeric GABA(B) receptor either in HEK293 cells or in neurons. Accordingly, whereas in all GPCRs the same protein is responsible for both agonist binding and G-protein activation, these two functions are assumed by two distinct subunits in the GABA(B) heteromer: one subunit, GB1, binds the agonists whereas the other, GB2, activates the G-protein. This illustrates the importance of a single subunit for G-protein activation within a dimeric receptor.
Collapse
|
620
|
Abstract
Chemosensory receptors are critical for the survival of many mammalian species, and their genes can comprise up to 1% of mammalian genomes. Odorant, taste, and vomeronasal receptors are being discovered and functionally characterized at a rapid pace which has been further accelerated by the availability of the human genome sequence. Five multigene families, consisting of >1,000 genes in the mouse, have been proposed to encode functional chemoreceptors. Although all of the chemoreceptor gene families encode G-protein coupled receptors, they are largely unrelated and uniquely specialized for the processing of different chemosensory modalities. Using members of the families as molecular probes, great insights are being gained into the different organizational strategies used by these sensory systems to encode information in both the periphery and the brain.
Collapse
Affiliation(s)
- Susan L Sullivan
- Section of Molecular Neuroscience, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| |
Collapse
|
621
|
Kulik A, Nakadate K, Nyíri G, Notomi T, Malitschek B, Bettler B, Shigemoto R. Distinct localization of GABA(B) receptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus. Eur J Neurosci 2002; 15:291-307. [PMID: 11849296 DOI: 10.1046/j.0953-816x.2001.01855.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Metabotropic gamma-aminobutyric acid receptors (GABA(B)Rs) are involved in modulation of synaptic transmission and activity of cerebellar and thalamic neurons. We used subtype-specific antibodies in pre- and postembedding immunohistochemistry combined with three-dimensional reconstruction of labelled profiles and quantification of immunoparticles to reveal the subcellular distribution of pre- and postsynaptic GABA(B)R1a/b and GABA(B)R2 in the rat cerebellum and ventrobasal thalamus. GABA(B)R1a/b and R2 were extensively colocalized in most brain regions including the cerebellum and thalamus. In the cerebellum, immunoreactivity for both subtypes was prevalent in the molecular layer. The most intense immunoreactivity was found in Purkinje cell spines with a high density of immunoparticles at extrasynaptic sites peaking at around 240 nm from glutamatergic synapses between spines and parallel fibre varicosities. This is in contrast to dendrites at sites around GABAergic synapses where sparse and random distribution was found for both subtypes. In addition, more than one-tenth of the synaptic membrane specialization of spine-parallel fibre synapses were labelled at pre- or postsynaptic sites. Weak immunolabelling for both subtypes was also seen in parallel fibres but only rarely in GABAergic axons. In the ventrobasal thalamus, immunolabelling for both receptor subtypes was intense over the dendritic field of thalamocortical cells. Electron microscopy demonstrated an extrasynaptic localization of GABA(B)R1a/b and R2 exclusively in postsynaptic elements. Quantitative analysis further revealed the density of GABA(B)R1a/b around GABAergic synapses was higher than glutamatergic synapses on thalamocortical cell dendrites. The distinct localization of GABA(B)Rs relative to synaptic sites in the cerebellum and ventrobasal thalamus suggests that GABA(B)Rs differentially regulate activity of different neuronal populations.
Collapse
Affiliation(s)
- Akos Kulik
- Division of Cerebral Structure, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
622
|
Margeta-Mitrovic M, Jan YN, Jan LY. Ligand-induced signal transduction within heterodimeric GABA(B) receptor. Proc Natl Acad Sci U S A 2001; 98:14643-8. [PMID: 11724957 PMCID: PMC64735 DOI: 10.1073/pnas.251554798] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
gamma-aminobutyric acid type B (GABA(B)) receptors, G protein-coupled receptors (GPCRs) for GABA, are obligate heterodimers of two homologous subunits, GB1 and GB2. Typical for family C GPCRs, the N termini of both GB1 and GB2 contain a domain with homology to bacterial periplasmic amino acid-binding proteins (PBPs), but only the GB1 PBP-like domain binds GABA. We found that both GB1 and GB2 extracellular N termini are required for normal coupling of GABA(B) receptors to their physiological effectors, G(i) and G protein-activated K(+) channels (GIRKs). Receptors with two GB2 N termini did not respond to GABA, whereas receptors with two GB1 N termini showed increased basal activity and responded to GABA with inhibition, rather than activation, of GIRK channels. This GABA-induced GIRK current inhibition depended on GABA binding to the chimeric GB(1/2) subunit (the GB1 N-terminal domain attached to the heptahelical domain of GB2), rather than the wild-type GB1 subunit. Interestingly, receptors with reciprocal exchange of N-terminal domains between the subunits were functionally indistinguishable from wild-type receptors. We also found that peptide linkers between GB1 and GB2 PBP-like domains and respective heptahelical domains could be altered without affecting receptor function. This finding suggests that other contacts between the PBP-like and heptahelical domains underlie ligand-induced signal transduction, a finding likely to be relevant for all family C GPCRs.
Collapse
Affiliation(s)
- M Margeta-Mitrovic
- The Howard Hughes Medical Institute, Departments of Physiology and Biochemistry, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
623
|
Margeta-Mitrovic M, Jan YN, Jan LY. Function of GB1 and GB2 subunits in G protein coupling of GABA(B) receptors. Proc Natl Acad Sci U S A 2001; 98:14649-54. [PMID: 11724956 PMCID: PMC64736 DOI: 10.1073/pnas.251554498] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Many G protein-coupled receptors (GPCRs) have recently been shown to dimerize, and it was suggested that dimerization may be a prerequisite for G protein coupling. gamma-aminobutyric acid type B (GABA(B)) receptors (GPCRs for GABA, a major inhibitory neurotransmitter in the brain) are obligate heterodimers of homologous GB1 and GB2 subunits, neither of which is functional on its own. This feature of GABA(B) receptors allowed us to examine which of the eight intracellular segments of the heterodimeric receptor were important for G protein activation. Replacing any of the three intracellular loops of GB2 with their GB1 counterparts resulted in nonfunctional receptors. The deletion of the complete GB2 C terminus significantly attenuated the receptor function; however, the proximal 36 residues were sufficient for reconstitution of wild type-like receptor activity. In contrast, the GB1 C terminus could be deleted and GB1 intracellular loops replaced with their GB2 or mGluR1 equivalents without affecting the receptor function. In addition, a large portion of the GB1 i2 loop could be replaced with a random coil peptide without any functional consequences. Thus, GB2 intracellular segments are solely responsible for specific coupling of GABA(B) receptors to their physiologic effectors, G(i) and G protein-activated K(+) channels. These findings strongly support a model in which a single GPCR monomer is sufficient for all of the specific G protein contacts.
Collapse
Affiliation(s)
- M Margeta-Mitrovic
- The Howard Hughes Medical Institute, Departments of Physiology and Biochemistry, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
624
|
Lanneau C, Green A, Hirst WD, Wise A, Brown JT, Donnier E, Charles KJ, Wood M, Davies CH, Pangalos MN. Gabapentin is not a GABAB receptor agonist. Neuropharmacology 2001; 41:965-75. [PMID: 11747901 DOI: 10.1016/s0028-3908(01)00140-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent experiments have demonstrated that formation of functional type B gamma-aminobutyric acid (GABA(B)) receptors requires co-expression of two receptor subunits, GABA(B1) and GABA(B2). Despite the identification of these subunits and a number of associated splice variants, there has been little convincing evidence of pharmacological diversity between GABA(B) receptors comprising different subunit combinations. However, Ng et al. [Mol. Pharmacol., 59 (2000) 144] have recently suggested a novel and important pharmacological difference between GABA(B) receptor heterodimers expressing the GABA(B1a) and GABA(B1b) receptor subunits. This study suggested that the antiepileptic GABA analogue gabapentin (Neurontin) is an agonist at GABA(B) receptors expressing the GABA(B1a) but not the GABA(B1b) receptor subunit. The importance of this finding with respect to identifying novel GABA(B) receptor subunit specific agonists prompted us to repeat these experiments in our own [35S]-GTPgammaS binding and second messenger assay systems. Here we report that gabapentin was completely inactive at recombinant GABA(B) heterodimers expressing either GABA(B1a) or GABA(B1b) receptor subunits in combination with GABA(B2) receptor subunits. In addition, in both CA1 and CA3 pyramidal neurones from rodent hippocampal slices we were unable to demonstrate any agonist-like effects of gabapentin at either pre- or post-synaptic GABA(B) receptors. In contrast, gabapentin activated a GABA(A) receptor mediated chloride conductance. Our data suggest that gabapentin is not a GABA(B)-receptor agonist let alone a GABA(B) receptor subunit selective agonist.
Collapse
Affiliation(s)
- C Lanneau
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park North, Third Avenue, Essex, CM19 5AW, Harlow, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
625
|
Hirono M, Yoshioka T, Konishi S. GABA(B) receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nat Neurosci 2001; 4:1207-16. [PMID: 11704764 DOI: 10.1038/nn764] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metabotropic gamma-aminobutyric acid type B (GABAB) and glutamate receptors (mGluRs) are postsynaptically co-expressed at cerebellar parallel fiber (PF)-Purkinje cell (PC) excitatory synapses, but their functional interactions are unclear. We found that mGluR1 agonist-induced currents and [Ca2+]i increases in PCs were enhanced following co-activation of GABAB receptors. A GABAB antagonist and a G-protein uncoupler suppressed these effects. Low-concentration baclofen, a GABAB agonist, augmented mGluR1-mediated excitatory synaptic current produced by stimulating PFs. These results indicate that postsynaptic GABAB receptors functionally interact with mGluR1 and enhance mGluR1-mediated excitatory transmission at PF-PC synapses. The interaction between the two types of metabotropic receptors provides a likely mechanism for regulating cerebellar synaptic plasticity.
Collapse
Affiliation(s)
- M Hirono
- Department of Molecular Neurobiology, Advanced Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | | | | |
Collapse
|
626
|
Li JL, Shigemoto R, Kulik A, Chen P, Nomura S, Kaneko T, Mizuno N. Immunocytochemical localization of GABA(B) receptors in mesencephalic trigeminal nucleus neurons in the rat. Neurosci Lett 2001; 315:93-7. [PMID: 11711223 DOI: 10.1016/s0304-3940(01)02321-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We examined immunoreactivities for gamma-aminobutyric acidB-receptor (GABA(B)R) subtypes, GABA(B)R1 and GABA(B)R2, in the mesencephalic trigeminal nucleus neurons (MTN neurons) of the rat. Immunoreactivity for GABA(B)R1 was prominent in cell bodies of MTN, whereas that for GABA(B)R2 was very weak, if existed. For electron microscopy, the immunogold-silver method for GABA(B)R1 was combined with the immunoperoxidase method for glutamic acid decarboxylase (GAD: the synthetic enzyme of GABA). Immunogold-silver particles indicating GABA(B)R1 immunoreactivity were distributed widely in the cytoplasm of the cell bodies postsynaptic to GAD-immunoreactive axon terminals, but were rarely associated with synaptic membrane specialization or extrasynaptic sites of plasma membrane. It has been indicated that GABA(B)R1 may not be transported to plasma membrane when no GABA(B)R2 exists. Thus, it was presumed that GABA(B)R1 in the cell body of the rat MTN neurons might not be involved in the synaptic transmission.
Collapse
Affiliation(s)
- J L Li
- Department of Anatomy and K. K. Leung Brain Research Center, The Fourth Military Medical University, 710032, Xi'an, PR China
| | | | | | | | | | | | | |
Collapse
|
627
|
Abstract
GABA(B) receptors are unique among G-protein-coupled receptors (GPCRs) in their requirement for heterodimerization between two homologous subunits, GABA(B1) and GABA(B2), for functional expression. Whereas GABA(B1) is capable of binding receptor agonists and antagonists, the role of each GABA(B) subunit in receptor signaling is unknown. Here we identified amino acid residues within the second intracellular domain of GABA(B2) that are critical for the coupling of GABA(B) receptor heterodimers to their downstream effector systems. Our results provide strong evidence for a functional role of the GABA(B2) subunit in G-protein coupling of the GABA(B) receptor heterodimer. In addition, they provide evidence for a novel "sequential" GPCR signaling mechanism in which ligand binding to one heterodimer subunit can induce signal transduction through the second partner of a heteromeric complex.
Collapse
|
628
|
Pin JP, Parmentier ML, Prézeau L. Positive allosteric modulators for gamma-aminobutyric acid(B) receptors open new routes for the development of drugs targeting family 3 G-protein-coupled receptors. Mol Pharmacol 2001; 60:881-4. [PMID: 11641414 DOI: 10.1124/mol.60.5.881] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- J P Pin
- Centre National de la Recherche Scientifique, Mécanismes Moléculaires des Communications Cellulaires, Montpellier, France.
| | | | | |
Collapse
|
629
|
Hermans E, Challiss RA. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 2001; 359:465-84. [PMID: 11672421 PMCID: PMC1222168 DOI: 10.1042/0264-6021:3590465] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In 1991 a new type of G-protein-coupled receptor (GPCR) was cloned, the type 1a metabotropic glutamate (mGlu) receptor, which, despite possessing the defining seven-transmembrane topology of the GPCR superfamily, bore little resemblance to the growing number of other cloned GPCRs. Subsequent studies have shown that there are eight mammalian mGlu receptors that, together with the calcium-sensing receptor, the GABA(B) receptor (where GABA is gamma-aminobutyric acid) and a subset of pheromone, olfactory and taste receptors, make up GPCR family C. Currently available data suggest that family C GPCRs share a number of structural, biochemical and regulatory characteristics, which differ markedly from those of the other GPCR families, most notably the rhodopsin/family A GPCRs that have been most widely studied to date. This review will focus on the group I mGlu receptors (mGlu1 and mGlu5). This subgroup of receptors is widely and differentially expressed in neuronal and glial cells within the brain, and receptor activation has been implicated in the control of an array of key signalling events, including roles in the adaptative changes needed for long-term depression or potentiation of neuronal synaptic connectivity. In addition to playing critical physiological roles within the brain, the mGlu receptors are also currently the focus of considerable attention because of their potential as drug targets for the treatment of a variety of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- E Hermans
- Laboratoire de Pharmacologie, Université Catholique de Louvain (54.10), B-1200 Brussels, Belgium.
| | | |
Collapse
|
630
|
Urwyler S, Mosbacher J, Lingenhoehl K, Heid J, Hofstetter K, Froestl W, Bettler B, Kaupmann K. Positive Allosteric Modulation of Native and Recombinant γ-Aminobutyric AcidB Receptors by 2,6-Di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its Aldehyde Analog CGP13501. Mol Pharmacol 2001. [DOI: 10.1124/mol.60.5.963] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
631
|
Rios CD, Jordan BA, Gomes I, Devi LA. G-protein-coupled receptor dimerization: modulation of receptor function. Pharmacol Ther 2001; 92:71-87. [PMID: 11916530 DOI: 10.1016/s0163-7258(01)00160-7] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G-protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors in the human genome that respond to a plethora of signals, including neurotransmitters, peptide hormones, and odorants, to name a few. They couple to second messenger signaling cascade mechanisms via heterotrimeric G-proteins. Recently, many studies have revealed that GPCRs exist as dimers, which may be present as homo- or heterodimers/oligomers. These recent findings have been met with skepticism, since they are contradictory to the dogma that GPCRs function as monomers. Although the existence of GPCR dimers/oligomers was predicted from early pharmacological and biochemical studies, further studies to critically evaluate this phenomenon were impeded by the lack of appropriate reagents. The availability of cDNAs for GPCRs, of highly selective ligands and of antibodies for these receptors has made it possible to visualize and investigate the functional effects of GPCR oligomers. Pharmacological studies, along with biochemical techniques, such as cross-linking and immunoprecipitation with differentially epitope-tagged receptors, have been employed to demonstrate the oligomerization of a number of GPCRs. Moreover, recent biophysical techniques, such as bioluminescence and fluorescence resonance energy transfer, now make it possible to examine GPCR dimerization/oligomerization in living cells. In this review, we provide a brief overview of some of the techniques employed to describe GPCR dimers, and we discuss their respective limitations. We also examine the implications of dimerization/oligomerization on GPCR function. In addition, we discuss domains of the receptors that are thought to facilitate dimerization/oligomerization. Finally, we consider recent evidence for the subcellular localization of the dimer/oligomer assembly.
Collapse
Affiliation(s)
- C D Rios
- Department of Pharmacology, New York University School of Medicine, MSB 408, 550 First Avenue, New York 10016, USA
| | | | | | | |
Collapse
|
632
|
Martin SC, Russek SJ, Farb DH. Human GABA(B)R genomic structure: evidence for splice variants in GABA(B)R1 but not GABA(B)R2. Gene 2001; 278:63-79. [PMID: 11707323 DOI: 10.1016/s0378-1119(01)00678-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The type B gamma-aminobutryic acid receptor (GABA(B)R) is a G protein coupled receptor that mediates slow pre- and post-synaptic inhibition in the nervous system. We find that the human GABA(B)R2 gene spans greater than 350 kb and contains 2.8 kb of coding region in 19 exons. The overall similarity in genomic structure with regard to conservation of intron position and exon size between human or Drosophila GABA(B)R1 and GABA(B)R2 genes suggests a common ancestral origin. Multiple transcripts GABA(B)R1a-c and GABA(B)R2a-c have been described and alternative splicing has been proposed to result in GABA(B)R1c, GABA(B)R2b and GABA(B)R2c. The results described here provide support for the existence of GABA(B)R1c but not for GABA(B)R2b and GABA(B)R2c. Splice junctions present in the GABA(B)R1 gene sequence are consistent with the formation of GABA(B)R1c by exon skipping of one sushi domain module. The GABA(B)R2 gene lacks canonical splice junctions for the reported variants. Consistent with this, RNA analysis demonstrates the presence of GABA(B)R1c and GABA(B)R2 transcripts in fetal and adult human brain RNA but GABA(B)R2b and GABA(B)R2c transcripts are not detected. These results provide insight into the evolution and transcript diversity of the mammalian GABA(B)R genes.
Collapse
Affiliation(s)
- S C Martin
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118-2394, USA
| | | | | |
Collapse
|
633
|
Wurch T, Matsumoto A, Pauwels PJ. Agonist-independent and -dependent oligomerization of dopamine D(2) receptors by fusion to fluorescent proteins. FEBS Lett 2001; 507:109-13. [PMID: 11682068 DOI: 10.1016/s0014-5793(01)02969-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oligomerization of the short (D(2S)) and long (D(2L)) isoforms of the dopamine D(2) receptor was explored in transfected Cos-7 cells by their C-terminal fusion to either an enhanced cyan or enhanced yellow fluorescent protein (ECFP or EYFP) and the fluorescent fusion protein interaction was monitored by a fluorescence resonance energy transfer (FRET) assay. The pharmacological properties of the fluorescent fusion proteins, as measured by both displacement of [(3)H]nemonapride binding and agonist-mediated stimulation of [(35)S]GTPgammaS binding upon co-expression with a G(alphao)Cys(351)Ile protein, were not different from the respective wild-type D(2S) and D(2L) receptors. Co-expression of D2S:ECFP+D2S:EYFP in a 1:1 ratio and D2L:ECFP+D2L:EYFP in a 27:1 ratio resulted, respectively, in an increase of 26% and 16% in the EYFP-specific fluorescent signal. These data are consistent with a close proximity of both D(2S) and D(2L) receptor pairs of fluorescent fusion proteins in the absence of ligand. The agonist-independent D(2S) receptor oligomerization could be attenuated by co-expression with either a wild-type, non-fluorescent D(2S) or D(2L) receptor subtype, but not with a distinct beta(2)-adrenoceptor. Incubation with the agonist (-)-norpropylapomorphine dose-dependently (EC(50): 0.23+/-0.06 nM) increased the FRET signal for the co-expression of D2S:ECFP and D2S:EYFP, in support of agonist-dependent D(2S) receptor oligomerization. In conclusion, our data strongly suggest the occurrence of dopamine D(2) receptor oligomers in intact Cos-7 cells.
Collapse
Affiliation(s)
- T Wurch
- Department of Cellular and Molecular Biology, Centre de Recherche Pierre Fabre, 17 avenue Jean Moulin, 81106 Cedex, Castres, France.
| | | | | |
Collapse
|
634
|
Gama L, Wilt SG, Breitwieser GE. Heterodimerization of calcium sensing receptors with metabotropic glutamate receptors in neurons. J Biol Chem 2001; 276:39053-9. [PMID: 11489900 DOI: 10.1074/jbc.m105662200] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Calcium sensing (CaR) and Group I metabotropic glutamate receptors exhibit overlapping expression patterns in brain, and share common signal transduction pathways. To determine whether CaR and Group I metabotropic glutamate receptors (mGluRs) (mGluR1alpha and mGluR5) can form heterodimers, we immunoprecipitated CaR from bovine brain and observed co-precipitation of mGluR1alpha. CaR and mGluR1alpha co-localize in hippocampal and cerebellar neurons, but are expressed separately in other brain regions. In vitro transfection studies in HEK-293 cells established the specificity and disulfide-linked nature of the CaR:mGluR1alpha (CaR:mGluR5) interactions. CaR:mGluR1alpha (CaR:mGluR5) heterodimers exhibit altered trafficking via Homer 1c when compared with CaR:CaR homodimers. CaR becomes sensitive to glutamate-mediated internalization when present in CaR:mGluR1alpha heterodimers. These results demonstrate cross-family covalent heterodimerization of CaR with Group I mGluRs, and increase the potential role(s) for CaR in modulating neuronal function.
Collapse
Affiliation(s)
- L Gama
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
635
|
Affiliation(s)
- E Biasi
- Istituto di Fisiologia Umana, Universita' di Parma, Via Volturno, 39, I-43100 Parma, Italy
| | | | | |
Collapse
|
636
|
Hogema BM, Gupta M, Senephansiri H, Burlingame TG, Taylor M, Jakobs C, Schutgens RB, Froestl W, Snead OC, Diaz-Arrastia R, Bottiglieri T, Grompe M, Gibson KM. Pharmacologic rescue of lethal seizures in mice deficient in succinate semialdehyde dehydrogenase. Nat Genet 2001; 29:212-6. [PMID: 11544478 DOI: 10.1038/ng727] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Succinate semialdehyde dehydrogenase (ALDH5A1, encoding SSADH deficiency is a defect of 4-aminobutyric acid (GABA) degradation that manifests in humans as 4-hydroxybutyric (gamma-hydroxybutyric, GHB) aciduria. It is characterized by a non-specific neurological disorder including psychomotor retardation, language delay, seizures, hypotonia and ataxia. The current therapy, vigabatrin (VGB), is not uniformly successful. Here we report the development of Aldh5a1-deficient mice. At postnatal day 16-22 Aldh5a1-/- mice display ataxia and develop generalized seizures leading to rapid death. We observed increased amounts of GHB and total GABA in urine, brain and liver homogenates and detected significant gliosis in the hippocampus of Aldh5a1-/- mice. We found therapeutic intervention with phenobarbital or phenytoin ineffective, whereas intervention with vigabatrin or the GABAB receptor antagonist CGP 35348 (ref. 2) prevented tonic-clonic convulsions and significantly enhanced survival of the mutant mice. Because neurologic deterioration coincided with weaning, we hypothesized the presence of a protective compound in breast milk. Indeed, treatment of mutant mice with the amino acid taurine rescued Aldh5a1-/- mice. These findings provide insight into pathomechanisms and may have therapeutic relevance for the human SSADH deficiency disease and GHB overdose and toxicity.
Collapse
Affiliation(s)
- B M Hogema
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, 2525 SW Third Avenue, Portland, Oregon 97201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
637
|
Devi LA. Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. Trends Pharmacol Sci 2001; 22:532-7. [PMID: 11583811 DOI: 10.1016/s0165-6147(00)01799-5] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although classical models predict that G-protein-coupled receptors (GPCRs) function as monomers, several recent studies acknowledge that GPCRs exist as dimeric or oligomeric complexes. In addition to homodimers, heterodimers between members of the GPCR family (both closely and distantly related) have been reported. In some cases heterodimerization is required for efficient agonist binding and signaling, and in others heterodimerization appears to lead to the generation of novel binding sites. In this article, the techniques used to study GPCR heterodimers, and the 'novel pharmacology' and functional implications resulting from heterodimerization will be discussed.
Collapse
Affiliation(s)
- L A Devi
- Dept. of Pharmacology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
638
|
Gouldson PR, Dean MK, Snell CR, Bywater RP, Gkoutos G, Reynolds CA. Lipid-facing correlated mutations and dimerization in G-protein coupled receptors. PROTEIN ENGINEERING 2001; 14:759-67. [PMID: 11739894 DOI: 10.1093/protein/14.10.759] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A correlated mutation analysis has been performed on the aligned protein sequences of a number of class A G-protein coupled receptor families, including the chemokine, neurokinin, opioid, somatostatin, thyrotrophin and the whole biogenic amine family. Many of the correlated mutations are observed flanking or neighbouring conserved residues. The correlated residues have been plotted onto the transmembrane portion of the rhodopsin crystal structure. The structure shows that a significant proportion of the correlated mutations are located on the external (lipid-facing) region of the helices. The occurrence of these highly correlated patterns of change amongst the external residues suggest that they are sites for protein-protein interactions. In particular, it is suggested that the correlated residues may be involved in either large conformational changes, the formation of heterodimers or homodimers (which may be domain swapped) or oligomers required for activation or internalization. The results are discussed in the light of the subtype-specific heterodimerization observed for the chemokine, opioid and somatostatin receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Dimerization
- GTP-Binding Proteins/chemistry
- GTP-Binding Proteins/genetics
- Lipids
- Models, Molecular
- Mutation
- Protein Binding
- Protein Structure, Quaternary/genetics
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Opioid/chemistry
- Receptors, Opioid/genetics
- Receptors, Somatostatin/chemistry
- Receptors, Somatostatin/genetics
- Receptors, Thyrotropin/chemistry
- Receptors, Thyrotropin/genetics
- Receptors, Thyrotropin/physiology
Collapse
Affiliation(s)
- P R Gouldson
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | | | | | | | | | | |
Collapse
|
639
|
Abstract
The basic module of signal transduction that involves G-protein-coupled receptors is usually portrayed as comprising a receptor, a heterotrimeric G protein and an effector. It is now well established that regulated interactions between receptors and arrestins, and between G proteins and regulators of G-protein signalling alter the effectiveness and kinetics of information transfer. However, more recent studies have begun to identify a host of other proteins that interact selectively with individual receptors at both the intracellular and extracellular face of the membrane. Although the functional relevance of many of these interactions is only beginning to be understood, current information indicates that these interactions might determine receptor properties, such as cellular compartmentalization or signal selection, and can promote protein scaffolding into complexes that integrate function.
Collapse
Affiliation(s)
- G Milligan
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK.
| | | |
Collapse
|
640
|
Blackshaw LA. Receptors and transmission in the brain-gut axis: potential for novel therapies. IV. GABA(B) receptors in the brain-gastroesophageal axis. Am J Physiol Gastrointest Liver Physiol 2001; 281:G311-5. [PMID: 11447009 DOI: 10.1152/ajpgi.2001.281.2.g311] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
GABA(B) receptors are inhibitory G protein-coupled receptors that are commonly associated with presynaptic inhibition of transmitter release in the central nervous system. In the brain-gastroesophageal axis, a role has recently been demonstrated for GABA(B) receptors on extrinsic afferent endings within the stomach and esophagus, where they reduce mechanosensitivity. This action is compounded by inhibition of communication centrally from these afferents in the brain stem and within central circuits. There is a final peripheral action on the motor pathway where GABA(B) receptors reduce output of acetylcholine from vagal preganglionic motoneurons. These potent, multiple actions of GABA(B) receptors may have therapeutic benefit by reducing the triggering of transient lower esophageal relaxations, which are the major cause of gastroesophageal reflux. An important clinical application is therefore emerging for this recent discovery.
Collapse
Affiliation(s)
- L A Blackshaw
- Nerve-Gut Research Laboratory, Department of Gastroenterology, Hepatology and General Medicine, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
641
|
Sadee W, Hoeg E, Lucas J, Wang D. Genetic variations in human G protein-coupled receptors: implications for drug therapy. AAPS PHARMSCI 2001; 3:E22. [PMID: 11741273 PMCID: PMC2751017 DOI: 10.1208/ps030322] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Numerous genes encode G protein-coupled receptors (GPCRs)-a main molecular target for drug therapy. Estimates indicate that the human genome contains approximately 600 GPCR genes. This article addresses therapeutic implications of sequence variations in GPCR genes. A number of inactivating and activating receptor mutations have been shown to cause a variety of (mostly rare) genetic disorders. However, pharmacogenetic and pharmacogenomic studies on GPCRs are scarce, and therapeutic relevance of variant receptor alleles often remains unclear. Confounding factors in assessing the therapeutic relevance of variant GPCR alleles include 1) interaction of a single drug with multiple closely related receptors, 2) poorly defined binding pockets that can accommodate drug ligands in different orientations or at alternative receptor domains, 3) possibility of multiple receptor conformations with distinct functions, and 4) multiple signaling pathways engaged by a single receptor. For example, antischizophrenic drugs bind to numerous receptors, several of which might be relevant to therapeutic outcome. Without knowing accurately what role a given receptor subtype plays in clinical outcome and how a sequence variation affects drug-induced signal transduction, we cannot predict the therapeutic relevance of a receptor variant. Genome-wide association studies with single nucleotide polymorphisms could identify critical target receptors for disease susceptibility and drug efficacy or toxicity.
Collapse
Affiliation(s)
- W Sadee
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco CA 94143-0446, USA.
| | | | | | | |
Collapse
|
642
|
Onali P, Olianas MC. Beta gamma-mediated enhancement of corticotropin-releasing hormone-stimulated adenylyl cyclase activity by activation of gamma-aminobutyric acid(B) receptors in membranes of rat frontal cortex. Biochem Pharmacol 2001; 62:183-90. [PMID: 11389876 DOI: 10.1016/s0006-2952(01)00659-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A number of studies have shown that activation of gamma-aminobutyric acid(B) (GABA(B)) receptors potentiates neurotransmitter-induced accumulation of cyclic AMP in brain slices, but the mechanisms involved in the facilitatory effect have not been fully elucidated. In the present study, we showed that in membranes of rat frontal cortex the GABA(B) receptor agonist (-)baclofen increased basal adenylyl cyclase activity and potentiated the maximal enzyme stimulation elicited by corticotropin-releasing hormone (CRH). The less active enantiomer (+)baclofen had no effect on cyclic AMP formation, whereas the natural agonist GABA mimicked the stimulatory action of (-)baclofen. In radioligand-binding experiments, the affinity and maximal binding capacity of (125)I-Tyr-CRH was not affected by (-)baclofen. The GABA(B) receptor antagonist CGP 55845A competitively counteracted the (-)baclofen potentiation of CRH-stimulated adenylyl cyclase activity with a pA(2) value of 6.70. Moreover, both (-)baclofen and GABA, but not (+)baclofen, caused a concentration-dependent stimulation of [(35)S]GTP gamma S binding to membrane G-proteins. The intracerebral injection of pertussis toxin significantly reduced the facilitatory effects of (-)baclofen on both basal and CRH-stimulated adenylyl cyclase activities. Moreover, membrane incubation with the GDP-bound form of the alpha subunit of transducin, a scavenger of G protein beta gamma subunits, blocked the stimulatory effects of (-)baclofen. The data indicate that in rat frontal cortex activation of GABA(B) receptors potentiates the CRH stimulation of adenylyl cyclase activity through a mechanism involving the beta gamma subunits of the pertussis toxin-sensitive G protein G(i)/G(o).
Collapse
Affiliation(s)
- P Onali
- Section of Biochemical Pharmacology, Department of Neuroscience, University of Cagliari, 09124 Cagliari, Italy.
| | | |
Collapse
|
643
|
Francis J, Jung BP, Zhang G, Ho W, Cheng J, McIntyre Burnham W, Eubanks JH. Perforant pathway kindling transiently induces the mRNA expression of GABA-B receptor subtypes R1A and R2 in the adult rat hippocampus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 91:159-62. [PMID: 11457504 DOI: 10.1016/s0169-328x(01)00122-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the gene expression responses of GABA-B R1A, R1B and R2 receptor subtypes in the hippocampus of perforant pathway-kindled rats at 24 h and 28 days after 15 consecutive daily stimulations. We found R1A expression, but not R1B expression, to be significantly induced in the dentate gyrus at 24 h. No change in the expression of R1A or R1B was observed at 28 days. R2 expression was induced throughout the hippocampus at 24 h, but also returned to control levels by 28 days. Thus, our results show that kindling induces a transient increase in GABA-B receptor mRNA in the hippocampus.
Collapse
Affiliation(s)
- J Francis
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, University Health Network, 399 Bathurst Street, Ontario M5T 2S8, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
644
|
Yang K, Wang D, Li YQ. Distribution and depression of the GABA(B) receptor in the spinal dorsal horn of adult rat. Brain Res Bull 2001; 55:479-85. [PMID: 11543948 DOI: 10.1016/s0361-9230(01)00546-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
gamma-Aminobutyric acid (GABA) is a principal inhibitory neurotransmitter in vertebrate nervous system. The metabotropic receptor for GABA, GABA(B) receptor, is characterized as a G protein-coupled receptor subtype. In the present study, GABA(B) receptor-like immunoreactivity (GABA(B)R-LI) in the rat spinal cord and dorsal root ganglion (DRG), as well as GABA(B) receptor-mediated depression in the spinal dorsal horn were examined by using immunohistochemistry and whole-cell voltage-clamp recording technique, respectively. Under light microscope, GABA(B)R-LI was densely found in laminae I and II of the dorsal horn. DRG cells of various diameters also showed GABA(B)R-LI. Electron microscopy further revealed that GABA(B)R-LI was also localized in terminals of myelinated, unmyelinated fibers as well as the somatodendritic sites of dorsal horn neurons. Bath application of a GABA(B) receptor agonist, baclofen (10 microM, 30 s), induced a slow outward (inhibitory) current in dorsal horn neurons. This slow current was depressed when the postsynaptic G protein-coupled receptor was inhibited, indicating the postsynaptic action of baclofen. Under the condition of postsynaptic GABA(B) receptor being inhibited, baclofen (10 microM, 60 s) depressed large (Abeta) and fine (C, Adelta) afferent fiber-evoked monosynaptic excitatory postsynaptic currents, indicating presynaptic inhibition of GABA(B) receptor on elicited neurotransmitter release. Taken together, the results suggest that baclofen-sensitive GABA(B) receptor is expressed pre- and postsynaptically on primary afferent fibers and neurons in the spinal dorsal horn; activation of GABA(B) receptor in the dorsal horn postsynaptically hyperpolarizes dorsal horn neurons and presynaptically inhibits primary afferents.
Collapse
Affiliation(s)
- K Yang
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | |
Collapse
|
645
|
Smith Y, Charara A, Paquet M, Kieval JZ, Paré JF, Hanson JE, Hubert GW, Kuwajima M, Levey AI. Ionotropic and metabotropic GABA and glutamate receptors in primate basal ganglia. J Chem Neuroanat 2001; 22:13-42. [PMID: 11470552 DOI: 10.1016/s0891-0618(01)00098-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The functions of glutamate and GABA in the CNS are mediated by ionotropic and metabotropic, G protein-coupled, receptors. Both receptor families are widely expressed in basal ganglia structures in primates and nonprimates. The recent development of highly specific antibodies and/or cDNA probes allowed the better characterization of the cellular localization of various GABA and glutamate receptor subtypes in the primate basal ganglia. Furthermore, the use of high resolution immunogold techniques at the electron microscopic level led to major breakthroughs in our understanding of the subsynaptic and subcellular localization of these receptors in primates. In this review, we will provide a detailed account of the current knowledge of the localization of these receptors in the basal ganglia of humans and monkeys.
Collapse
Affiliation(s)
- Y Smith
- Division of Neuroscience, Yerkes Regional Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
646
|
GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABA(A) autoreceptor/Cl- channels. J Neurosci 2001. [PMID: 11264309 DOI: 10.1523/jneurosci.21-07-02343.2001] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA emerges as a trophic signal during rat neocortical development in which it modulates proliferation of neuronal progenitors in the ventricular/subventricular zone (VZ/SVZ) and mediates radial migration of neurons from the VZ/SVZ to the cortical plate/subplate (CP/SP) region. In this study we investigated the role of GABA in the earliest phases of neuronal differentiation in the CP/SP. GABAergic-signaling components emerging during neuronal lineage progression were comprehensively characterized using flow cytometry and immunophenotyping together with physiological indicator dyes. During migration from the VZ/SVZ to the CP/SP, differentiating cortical neurons became predominantly GABAergic, and their dominant GABA(A) receptor subunit expression pattern changed from alpha4beta1gamma1 to alpha3beta3gamma2gamma3 coincident with an increasing potency of GABA on GABA(A) receptor-mediated depolarization. GABA(A) autoreceptor/Cl(-) channel activity in cultured CP/SP neurons dominated their baseline potential and indirectly their cytosolic Ca(2+) (Ca(2+)c) levels via Ca(2+) entry through L-type Ca(2+) channels. Block of this autocrine circuit at the level of GABA synthesis, GABA(A) receptor activation, intracellular Cl(-) ion homeostasis, or L-type Ca(2+) channels attenuated neurite outgrowth in most GABAergic CP/SP neurons. In the absence of autocrine GABAergic signaling, neuritogenesis could be preserved by depolarizing cells and elevating Ca(2+)c. These results reveal a morphogenic role for GABA during embryonic neocortical neuron development that involves GABA(A) autoreceptors and L-type Ca(2+) channels.
Collapse
|
647
|
Armstrong D, Strange PG. Dopamine D2 receptor dimer formation: evidence from ligand binding. J Biol Chem 2001; 276:22621-9. [PMID: 11278324 DOI: 10.1074/jbc.m006936200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined the binding of two radioligands ([(3)H]spiperone and [(3)H]raclopride) to D(2) dopamine receptors expressed in Chinese hamster ovary cells. In saturation binding experiments in the presence of sodium ions, both radioligands labeled a similar number of sites, whereas in the absence of sodium ions [(3)H]raclopride labeled about half the number of sites labeled by [(3)H]spiperone. In competition experiments in the absence of sodium ions, however, raclopride was able to inhibit [(3)H]spiperone binding fully. In saturation analyses with [(3)H]spiperone in the absence of sodium ions raclopride exerted noncompetitive effects, decreasing the number of sites labeled by the radioligand. These data are interpreted in terms of a model where the receptor exists as a dimer, and in the absence of sodium ions, raclopride exerts negative cooperativity across the dimer both for its own binding and the binding of spiperone. A model of the receptor has been produced that provides a good description of the experimental phenomena described here.
Collapse
Affiliation(s)
- D Armstrong
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, United Kingdom
| | | |
Collapse
|
648
|
Yoshioka K, Saitoh O, Nakata H. Heteromeric association creates a P2Y-like adenosine receptor. Proc Natl Acad Sci U S A 2001; 98:7617-22. [PMID: 11390975 PMCID: PMC34717 DOI: 10.1073/pnas.121587098] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adenosine and its endogenous precursor ATP are main components of the purinergic system that modulates cellular and tissue functions via specific adenosine and ATP receptors (P1 and P2 receptors), respectively. Although adenosine inhibits excitability and ATP functions as an excitatory transmitter in the central nervous system, little is known about the ability of P1 and P2 receptors to form new functional structures such as a heteromer to control the complex purinergic cascade. Here we have shown that G(i/o) protein-coupled A1 adenosine receptor (A1R) and Gq protein-coupled P2Y1 receptor (P2Y1R) coimmunoprecipitate in cotransfected HEK293T cells, suggesting the oligomeric association between distinct G protein-coupled P1 and P2 receptors. A1R and P2Y2 receptor, but not A1R and dopamine D2 receptor, also were found to coimmunoprecipitate in cotransfected cells. A1R agonist and antagonist binding to cell membranes were reduced by coexpression of A1R and P2Y1R, whereas a potent P2Y1R agonist adenosine 5'-O-(2-thiotriphosphate) (ADPbetaS) revealed a significant potency to A1R binding only in the cotransfected cell membranes. Moreover, the A1R/P2Y1R coexpressed cells showed an ADPbetaS-dependent reduction of forskolin-evoked cAMP accumulation that was sensitive to pertussis toxin and A1R antagonist, indicating that ADPbetaS binds A1R and inhibits adenylyl cyclase activity via G(i/o) proteins. Also, a high degree of A1R and P2Y1R colocalization was demonstrated in cotransfected cells by double immunofluorescence experiments with confocal laser microscopy. These results suggest that oligomeric association of A1R with P2Y1R generates A1R with P2Y1R-like agonistic pharmacology and provides a molecular mechanism for an increased diversity of purine signaling.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Adenylyl Cyclases/metabolism
- Animals
- Cell Line
- Cell Membrane/physiology
- Cyclic AMP/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/isolation & purification
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- Heterotrimeric GTP-Binding Proteins/chemistry
- Heterotrimeric GTP-Binding Proteins/isolation & purification
- Heterotrimeric GTP-Binding Proteins/physiology
- Humans
- Inositol 1,4,5-Trisphosphate/metabolism
- Kinetics
- Macromolecular Substances
- Purinergic P1 Receptor Agonists
- Radioligand Assay
- Rats
- Receptors, Dopamine D2/chemistry
- Receptors, Dopamine D2/isolation & purification
- Receptors, Dopamine D2/physiology
- Receptors, Purinergic P1/isolation & purification
- Receptors, Purinergic P1/physiology
- Receptors, Purinergic P2/chemistry
- Receptors, Purinergic P2/isolation & purification
- Receptors, Purinergic P2/physiology
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Transfection
- Tritium
- Xanthines/pharmacokinetics
Collapse
Affiliation(s)
- K Yoshioka
- Department of Molecular and Cellular Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan
| | | | | |
Collapse
|
649
|
Abstract
Two large and divergent families of G-protein-coupled receptors (V1Rs and V2Rs) are expressed in subsets of neurons in the vomeronasal organ. These receptors are likely to mediate pheromone responses, but it appears that many V2R genes may encode expressed pseudogenes rather than functional proteins. Therefore we have raised antibodies to representative V2Rs and show labeling of vomeronasal neurons demonstrating that V2R genes encode expressed receptors. V2R immunoreactivity was detected at the sensory surface of the vomeronasal organ in dendritic terminals, indicating that these receptors are capable of directly interacting with pheromones and mediating physiological responses. Immunohistochemistry confirmed that three V2R receptors are expressed in small subsets of sensory neurons. However, surprisingly we found that a subfamily of V2R genes is broadly expressed in the Goalpha-layer of the vomeronasal organ and are coexpressed in the same cells as other V2Rs. This is in direct contrast to the main olfactory epithelium where sensory neurons express only a single receptor. Thus, our results suggest that different modes of the information processing may occur in the main and accessory olfactory systems.
Collapse
|
650
|
The C-terminal domains of the GABA(b) receptor subunits mediate intracellular trafficking but are not required for receptor signaling. J Neurosci 2001. [PMID: 11160390 DOI: 10.1523/jneurosci.21-04-01203.2001] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA(B) receptors are G-protein-coupled receptors that mediate slow synaptic inhibition in the brain and spinal cord. These receptors are heterodimers assembled from GABA(B1) and GABA(B2) subunits, neither of which is capable of producing functional GABA(B) receptors on homomeric expression. GABA(B1,) although able to bind GABA, is retained within the endoplasmic reticulum (ER) when expressed alone. In contrast, GABA(B2) is able to access the cell surface when expressed alone but does not couple efficiently to the appropriate effector systems or produce any detectable GABA-binding sites. In the present study, we have constructed chimeric and truncated GABA(B1) and GABA(B2) subunits to explore further GABA(B) receptor signaling and assembly. Removal of the entire C-terminal intracellular domain of GABA(B1) results in plasma membrane expression without the production of a functional GABA(B) receptor. However, coexpression of this truncated GABA(B1) subunit with either GABA(B2) or a truncated GABA(B2) subunit in which the C terminal has also been removed is capable of functional signaling via G-proteins. In contrast, transferring the entire C-terminal tail of GABA(B1) to GABA(B2) leads to the ER retention of the GABA(B2) subunit when expressed alone. These results indicate that the C terminal of GABA(B1) mediates the ER retention of this protein and that neither of the C-terminal tails of GABA(B1) or GABA(B2) is an absolute requirement for functional coupling of heteromeric receptors. Furthermore although GABA(B1) is capable of producing GABA-binding sites, GABA(B2) is of central importance in the functional coupling of heteromeric GABA(B) receptors to G-proteins and the subsequent activation of effector systems.
Collapse
|