601
|
Quadri MM, Fatima SS, Che RC, Zhang AH. Mitochondria and Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:501-524. [PMID: 31399982 DOI: 10.1007/978-981-13-8871-2_25] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondria are important organelles in eukaryotic cells and perform a variety of biosynthetic and metabolic functions. Many human diseases are closely related to mitochondrial dysfunction. Kidney is an organ with high-energy requirements, which is distributed with a large number of mitochondria. Mitochondrial dysfunction plays a crucial role in the pathogenesis of kidney disease, and studies have shown that mitochondrial dysfunction is involved in the physiological process of renal fibrosis. This review introduced the biogenesis and pathophysiology of mitochondria, illustrated the involvement of mitochondrial dysfunction in renal fibrosis based on various kinds of cells, and finally summarized the latest mitochondria-targeted therapies.
Collapse
Affiliation(s)
| | - Syeda-Safoorah Fatima
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ruo-Chen Che
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ai-Hua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
602
|
Mennerich D, Kellokumpu S, Kietzmann T. Hypoxia and Reactive Oxygen Species as Modulators of Endoplasmic Reticulum and Golgi Homeostasis. Antioxid Redox Signal 2019; 30:113-137. [PMID: 29717631 DOI: 10.1089/ars.2018.7523] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Eukaryotic cells execute various functions in subcellular compartments or organelles for which cellular redox homeostasis is of importance. Apart from mitochondria, hypoxia and stress-mediated formation of reactive oxygen species (ROS) were shown to modulate endoplasmic reticulum (ER) and Golgi apparatus (GA) functions. Recent Advances: Research during the last decade has improved our understanding of disulfide bond formation, protein glycosylation and secretion, as well as pH and redox homeostasis in the ER and GA. Thus, oxygen (O2) itself, NADPH oxidase (NOX) formed ROS, and pH changes appear to be of importance and indicate the intricate balance of intercompartmental communication. CRITICAL ISSUES Although the interplay between hypoxia, ER stress, and Golgi function is evident, the existence of more than 20 protein disulfide isomerase family members and the relative mild phenotypes of, for example, endoplasmic reticulum oxidoreductin 1 (ERO1)- and NOX4-knockout mice clearly suggest the existence of redundant and alternative pathways, which remain largely elusive. FUTURE DIRECTIONS The identification of these pathways and the key players involved in intercompartmental communication needs suitable animal models, genome-wide association, as well as proteomic studies in humans. The results of those studies will be beneficial for the understanding of the etiology of diseases such as type 2 diabetes, Alzheimer's disease, and cancer, which are associated with ROS, protein aggregation, and glycosylation defects.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| |
Collapse
|
603
|
Du X, Zhang P, Fu H, Ahsan HM, Gao J, Chen Q. Smart mitochondrial-targeted cancer therapy: Subcellular distribution, selective TrxR2 inhibition accompany with declined antioxidant capacity. Int J Pharm 2019; 555:346-355. [DOI: 10.1016/j.ijpharm.2018.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/30/2018] [Accepted: 11/20/2018] [Indexed: 01/10/2023]
|
604
|
Liang J, Wu J, Wang F, Zhang P, Zhang X. Semaphoring 4D is required for the induction of antioxidant stress and anti-inflammatory effects of dihydromyricetin in colon cancer. Int Immunopharmacol 2018; 67:220-230. [PMID: 30562683 DOI: 10.1016/j.intimp.2018.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022]
Abstract
Semaphorin 4D (Sema4D) has been involved in cancer progression, the expression of which is associated with the poor clinical outcomes of some cancer patients. Dihydromyricetin (DMY) has antitumor potentials for different types of human cancer cells. However, the pharmacological effects of DMY on colon cancer (CC) or the regulatory effects of Sema4D on this process remain largely unknown. In the present study, we aimed to evaluate the effects of DMY on CC, and to elucidate the role of Sema4D in DMY-induced antitumor effects. DMY inhibited the proliferation and growth of Colo-205 colon cancer cells significantly in vivo and in vitro. DMY inhibited reactive oxygen species (ROS) and malondialdehyde (MDA) levels, but increased glutathione (GSH) level. Moreover, the activities of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and heme oxygenase 1 (HO-1) were enhanced by DMY treatment in vitro, showing strong anti-oxidative stress effect. In addition, DMY inhibited the secretion of interleukin 1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor (TNF-α) in the supernatant of Colo-205 culture medium. Besides, the expressions of cyclooxygenase (COX-2) and inducible nitric oxide synthase (iNOS) were suppressed by DMY in dose-dependent manners in vivo, showing potent anti-inflammatory effect. Further investigations showed that DMY suppressed the expression and secretion of Sema4D in Colo-205 cells and tissues. Interestingly, overexpression of Sema4D significantly weakened the regulatory effects of DMY on oxidative stress. Furthermore, overexpression of Sema4D significantly attenuated the anti-inflammatory effects of DMY. Collectively, we drew a conclusion that the anti-colon cancer effect of DMY was attributed to its negative modulation on oxidative stress and inflammation via suppression of Sema4D. The findings broaden the width and depth of molecular mechanisms involved in the DMY action, facilitating the development of DMY in anti-colon cancer therapies.
Collapse
Affiliation(s)
- Jun Liang
- Oncology Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Fei Wang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Pengfei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuemei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
605
|
Volatilomic insight of head and neck cancer via the effects observed on saliva metabolites. Sci Rep 2018; 8:17725. [PMID: 30531924 PMCID: PMC6286361 DOI: 10.1038/s41598-018-35854-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/05/2018] [Indexed: 01/12/2023] Open
Abstract
Head and neck cancer (HNC) is a heterogeneous malignant disease with distinct global distribution. Metabolic adaptations of HNC are significantly gaining clinical interests nowadays. Here, we investigated effects of HNC on differential expression of volatile metabolites in human saliva. We applied headspace solid phase microextraction coupled with gas chromatography-mass spectrometry analysis of saliva samples collected from 59 human subjects (HNC − 32, Control − 27). We identified and quantified 48 volatile organic metabolites (VOMs) and observed profound effects of HNC on these metabolites. These effects were VOM specific and significantly differed in the biologically comparable healthy controls. HNC induced changes in salivary VOM composition were well attributed to in vivo metabolic effects. A panel of 15 VOMs with variable importance in projection (VIP) score >1, false discovery rate (FDR) corrected p-value < 0.05 and log2 fold change (log2 FC) value of ≥0.58/≤−0.58 were regarded as discriminatory metabolites of pathophysiological importance. Afterwards, receiver operator characteristic curve (ROC) projected certain VOMs viz., 1,4-dichlorobenzene, 1,2-decanediol, 2,5-bis1,1-dimethylethylphenol and E-3-decen-2-ol with profound metabolic effects of HNC and highest class segregation potential. Moreover, metabolic pathways analysis portrayed several dysregulated pathways in HNC, which enhanced our basic understanding on salivary VOM changes. Our observations could redefine several known/already investigated systemic phenomenons (e.g. biochemical pathways). These findings will inspire further research in this direction and may open unconventional avenues for non-invasive monitoring of HNC and its therapy in the future.
Collapse
|
606
|
Moniruzzaman R, Rehman MU, Zhao QL, Jawaid P, Mitsuhashi Y, Imaue S, Fujiwara K, Ogawa R, Tomihara K, Saitoh JI, Noguchi K, Kondo T, Noguchi M. Roles of intracellular and extracellular ROS formation in apoptosis induced by cold atmospheric helium plasma and X-irradiation in the presence of sulfasalazine. Free Radic Biol Med 2018; 129:537-547. [PMID: 30355525 DOI: 10.1016/j.freeradbiomed.2018.10.434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
Sulfasalazine (SSZ) is a well-known anti-inflammatory drug and also an inhibitor of the cystine-glutamate antiporter that is known to reduce intracellular glutathione (GSH) level and increase cellular oxidative stress, indicating its anti-tumor potential. However, the combination of SSZ with other physical modalities remains unexplored. Here, the effects of SSZ on cold atmospheric helium plasma (He-CAP), which produces approximately 24 x higher concentration of hydroxyl radicals (. OH) compared to X-irradiation (IR) in aqueous solution, and on IR-induced apoptosis in human leukemia Molt-4 cells were studied to elucidate the mechanism of apoptosis enhancement. Both the Annexin V-FITC/PI and DNA fragmentation assay revealed that pre-treatment of cells with SSZ significantly enhanced He-CAP and IR-induced apoptosis. Similar enhancement was observed during the loss of mitochondrial membrane potential, intracellular Ca2+ ions, and mitochondria- and endoplasmic reticulum-related proteins. The concentration of intracellular reactive oxygen species (ROS) was much higher in He-CAP treated cells than in X-irradiated cells. On the other hand, strong enhancement of Fas expression and caspase-8 and -3 activities were only observed in X-irradiated cells. It might be possible that the higher concentration of intracellular and extracellular ROS suppressed caspase activities and Fas expression in He-CAP-treated cells. Notably, pretreating the cells with an antioxidant N-acetyl-L-cysteine (NAC) dramatically decreased apoptosis in cells treated by He-CAP, but not by IR. These results suggest that IR-induced apoptosis is due to specific and effective ROS distribution since intracellular ROS formation is marginal and the high production of ROS inside and outside of cells plays unique roles in He-CAP induced apoptosis. We conclude that our data provides efficacy and mechanistic insights for SSZ, which might be helpful for establishing SSZ as a future sensitizer in He-CAP or IR therapy for cancer.
Collapse
Affiliation(s)
- Rohan Moniruzzaman
- Department of Oral & Maxillofacial Surgery, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mati Ur Rehman
- Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Qing-Li Zhao
- Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Paras Jawaid
- Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yohei Mitsuhashi
- Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shuichi Imaue
- Department of Oral & Maxillofacial Surgery, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kumiko Fujiwara
- Department of Oral & Maxillofacial Surgery, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ryohei Ogawa
- Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kei Tomihara
- Department of Oral & Maxillofacial Surgery, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Jun-Ichi Saitoh
- Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kyo Noguchi
- Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takashi Kondo
- Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Makoto Noguchi
- Department of Oral & Maxillofacial Surgery, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
607
|
Zhou L, Yi Y, Yuan Q, Zhang J, Li Y, Wang P, Xu M, Xie S. VAOS, a novel vanadyl complexes of alginate saccharides, inducing apoptosis via activation of AKT-dependent ROS production in NSCLC. Free Radic Biol Med 2018; 129:177-185. [PMID: 30223019 DOI: 10.1016/j.freeradbiomed.2018.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/05/2018] [Accepted: 09/14/2018] [Indexed: 02/04/2023]
Abstract
Previous studies have confirmed that protein tyrosine phosphatase 1B (PTP1B) can promote tumour progression in non-small cell lung cancer (NSCLC). Vanadyl alginate oligosaccharides (VAOS) is a new coordination compounds that possesses a good PTP1B inhibitory activity. However, the potent anticancer efficacy of VAOS in human NSCLC requires further study. In this study, VAOS exhibited effective inhibitory effects in NSCLC both in cultured cells and in a xenograft mouse model. VAOS was further identified to induce NSCLC cell apoptosis through activating protein kinase B (AKT) to elevate intracellular reactive oxygen species (ROS) levels by increasing in oxygen consumption and impairing the ROS-scavenging system. Neither silencing of PTP1B by siRNA nor transient overexpression of PTP1B had an effect on the AKT phosphorylation triggered by VAOS, indicating that PTP1B inhibition was not involved in VAOS-induced apoptosis. Through phosphorus colorimetric assay, we demonstrated that VAOS notably inhibited phosphatase and tensin homologue deleted on chromosome 10 (PTEN) dephosphorylation activity, another member of the protein tyrosine phosphatases (PTPases)-upstream factor of AKT. Interestingly, PTEN knockdown sensitized cells to VAOS, whereas ectopic expression of PTEN markedly rescued VAOS-mediated lethality. In vivo, VAOS treatment markedly reduced PTEN activity and tumour cell burden with low systemic toxicity. Thus, our data not only provided a new therapeutic drug candidate for NSCLC, but presented new understanding into the pharmacological research of VAOS.
Collapse
MESH Headings
- A549 Cells
- Alginates/chemical synthesis
- Alginates/pharmacology
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Survival/drug effects
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- PTEN Phosphohydrolase/antagonists & inhibitors
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Tumor Burden/drug effects
- Vanadates/chemical synthesis
- Vanadates/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ling Zhou
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China; The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Yuetao Yi
- Yantai Institute of Coastal Zone Research Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qing Yuan
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Jing Zhang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Youjie Li
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, YanTai, ShanDong 264003, PR China.
| | - Shuyang Xie
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China.
| |
Collapse
|
608
|
Stevens JF, Revel JS, Maier CS. Mitochondria-Centric Review of Polyphenol Bioactivity in Cancer Models. Antioxid Redox Signal 2018; 29:1589-1611. [PMID: 29084444 PMCID: PMC6207154 DOI: 10.1089/ars.2017.7404] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Humans are exposed daily to polyphenols in milligram-to-gram amounts through dietary consumption of fruits and vegetables. Polyphenols are also available as components of dietary supplements for improving general health. Although polyphenols are often advertised as antioxidants to explain health benefits, experimental evidence shows that their beneficial cancer preventing and controlling properties are more likely due to stimulation of pro-oxidant and proapoptotic pathways. Recent Advances: The understanding of the biological differences between cancer and normal cell, and especially the role that mitochondria play in carcinogenesis, has greatly advanced in recent years. These advances have resulted in a wealth of new information on polyphenol bioactivity in cell culture and animal models of cancer. Polyphenols appear to target oxidative phosphorylation and regulation of the mitochondrial membrane potential (MMP), glycolysis, pro-oxidant pathways, and antioxidant (adaptive) stress responses with greater selectivity in tumorigenic cells. CRITICAL ISSUES The ability of polyphenols to dissipate the MMP (Δψm) by a protonophore mechanism has been known for more than 50 years. However, researchers focus primarily on the downstream molecular effects of Δψm dissipation and mitochondrial uncoupling. We argue that the physicochemical properties of polyphenols are responsible for their anticancer properties by virtue of their protonophoric and pro-oxidant properties rather than their specific effects on downstream molecular targets. FUTURE DIRECTIONS Polyphenol-induced dissipation of Δψm is a physicochemical process that cancer cells cannot develop resistance against by gene mutation. Therefore, polyphenols should receive more attention as agents for cotherapy with cancer drugs to gain synergistic activity. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Jan F. Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Johana S. Revel
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
- Department of Chemistry, Oregon State University, Corvallis, Oregon
| | - Claudia S. Maier
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
- Department of Chemistry, Oregon State University, Corvallis, Oregon
| |
Collapse
|
609
|
Alharbi M, Zuñiga F, Elfeky O, Guanzon D, Lai A, Rice GE, Perrin L, Hooper J, Salomon C. The potential role of miRNAs and exosomes in chemotherapy in ovarian cancer. Endocr Relat Cancer 2018; 25:R663-R685. [PMID: 30400025 DOI: 10.1530/erc-18-0019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Chemoresistance is one of the major obstacles in the treatment of cancer patients. It poses a fundamental challenge to the effectiveness of chemotherapy and is often linked to relapse in patients. Chemoresistant cells can be identified in different types of cancers; however, ovarian cancer has one of the highest rates of chemoresistance-related relapse (50% of patients within 5 years). Resistance in cells can either develop through prolonged cycles of treatment or through intrinsic pathways. Mechanistically, the problem of drug resistance is complex mainly because numerous factors are involved, such as overexpression of drug efflux pumps, drug inactivation, DNA repair mechanisms and alterations to and/or mutations in the drug target. Additionally, there is strong evidence that circulating miRNAs participate in the development of chemoresistance. Recently, miRNAs have been identified in exosomes, where they are encapsulated and hence protected from degradation. These miRNAs within exosomes (exo-miRNAs) can regulate the gene expression of target cells both locally and systemically. Exo-miRNAs play an important role in disease progression and can potentially facilitate chemoresistance in cancer cells. In addition, and from a diagnostic perspective, exo-miRNAs profiles may contribute to the development of predictive models to identify responder and non-responder chemotherapy. Such model may also be used for monitoring treatment response and disease progression. Exo-miRNAs may ultimately serve as both a predictive biomarker for cancer response to therapy and as a prognostic marker for the development of chemotherapy resistance. Therefore, this review examines the potential role of exo-miRNAs in chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
- Mona Alharbi
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Felipe Zuñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Omar Elfeky
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Gregory E Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
- Perinatology Research Branch, NICHD/NIH, Wayne State University, Detroit, Michigan, USA
| | - Lewis Perrin
- Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland, Australia
| | - John Hooper
- Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| |
Collapse
|
610
|
do Carmo MAV, Pressete CG, Marques MJ, Granato D, Azevedo L. Polyphenols as potential antiproliferative agents: scientific trends. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
611
|
El-Mohtadi F, d'Arcy R, Tirelli N. Oxidation-Responsive Materials: Biological Rationale, State of the Art, Multiple Responsiveness, and Open Issues. Macromol Rapid Commun 2018; 40:e1800699. [DOI: 10.1002/marc.201800699] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/13/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Farah El-Mohtadi
- Division of Pharmacy and Optometry; School of Health Sciences; Faculty of Biology; Medicine, and Health; The University of Manchester; Manchester M13 9PT UK
| | - Richard d'Arcy
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; 16163 Genova Italy
| | - Nicola Tirelli
- Division of Pharmacy and Optometry; School of Health Sciences; Faculty of Biology; Medicine, and Health; The University of Manchester; Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; 16163 Genova Italy
| |
Collapse
|
612
|
Sastre-Serra J, Ahmiane Y, Roca P, Oliver J, Pons DG. Xanthohumol, a hop-derived prenylflavonoid present in beer, impairs mitochondrial functionality of SW620 colon cancer cells. Int J Food Sci Nutr 2018; 70:396-404. [DOI: 10.1080/09637486.2018.1540558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain Illes Balears
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Spain Palma de Mallorca Illes Balears
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, Madrid, Spain
| | - Youssef Ahmiane
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain Illes Balears
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain Illes Balears
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Spain Palma de Mallorca Illes Balears
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, Madrid, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain Illes Balears
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Spain Palma de Mallorca Illes Balears
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, Madrid, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain Illes Balears
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Spain Palma de Mallorca Illes Balears
| |
Collapse
|
613
|
Chaiswing L, St. Clair WH, St. Clair DK. Redox Paradox: A Novel Approach to Therapeutics-Resistant Cancer. Antioxid Redox Signal 2018; 29:1237-1272. [PMID: 29325444 PMCID: PMC6157438 DOI: 10.1089/ars.2017.7485] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Cancer cells that are resistant to radiation and chemotherapy are a major problem limiting the success of cancer therapy. Aggressive cancer cells depend on elevated intracellular levels of reactive oxygen species (ROS) to proliferate, self-renew, and metastasize. As a result, these aggressive cancers maintain high basal levels of ROS compared with normal cells. The prominence of the redox state in cancer cells led us to consider whether increasing the redox state to the condition of oxidative stress could be used as a successful adjuvant therapy for aggressive cancers. Recent Advances: Past attempts using antioxidant compounds to inhibit ROS levels in cancers as redox-based therapy have met with very limited success. However, recent clinical trials using pro-oxidant compounds reveal noteworthy results, which could have a significant impact on the development of strategies for redox-based therapies. CRITICAL ISSUES The major objective of this review is to discuss the role of the redox state in aggressive cancers and how to utilize the shift in redox state to improve cancer therapy. We also discuss the paradox of redox state parameters; that is, hydrogen peroxide (H2O2) as the driver molecule for cancer progression as well as a target for cancer treatment. FUTURE DIRECTIONS Based on the biological significance of the redox state, we postulate that this system could potentially be used to create a new avenue for targeted therapy, including the potential to incorporate personalized redox therapy for cancer treatment.
Collapse
Affiliation(s)
- Luksana Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky-Lexington, Lexington, Kentucky
| | - William H. St. Clair
- Department of Radiation Medicine, University of Kentucky-Lexington, Lexington, Kentucky
| | - Daret K. St. Clair
- Department of Toxicology and Cancer Biology, University of Kentucky-Lexington, Lexington, Kentucky
| |
Collapse
|
614
|
Bhat AV, Hora S, Pal A, Jha S, Taneja R. Stressing the (Epi)Genome: Dealing with Reactive Oxygen Species in Cancer. Antioxid Redox Signal 2018; 29:1273-1292. [PMID: 28816066 DOI: 10.1089/ars.2017.7158] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Growing evidence indicates cross-talk between reactive oxygen species (ROS) and several key epigenetic processes such as DNA methylation, histone modifications, and miRNAs in normal physiology and human pathologies including cancer. This review focuses on how ROS-induced oxidative stress, metabolic intermediates, and epigenetic processes influence each other in various cancers. Recent Advances: ROS alter chromatin structure and metabolism that impact the epigenetic landscape in cancer cells. Several site-specific DNA methylation changes have been identified in different cancers and are discussed in the review. We also discuss the interplay of epigenetic enzymes and miRNAs in influencing malignant transformation in an ROS-dependent manner. CRITICAL ISSUES Loss of ROS-mediated signaling mostly by epigenetic regulation may promote tumorigenesis. In contrast, augmented oxidative stress because of high ROS levels may precipitate epigenetic alterations to effect various phases of carcinogenesis. We address both aspects in the review. FUTURE DIRECTIONS Several drugs targeting ROS are under various stages of clinical development. Recent analysis of human cancers has revealed pervasive deregulation of the epigenetic machinery. Thus, a better understanding of the cross-talk between ROS and epigenetic alterations in cancer could lead to the identification of new drug targets and more effective treatment modalities.
Collapse
Affiliation(s)
- Akshay V Bhat
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Shainan Hora
- 2 Cancer Science Institute, National University of Singapore , Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Ananya Pal
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Sudhakar Jha
- 2 Cancer Science Institute, National University of Singapore , Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
615
|
Peters KM, Carlson BA, Gladyshev VN, Tsuji PA. Selenoproteins in colon cancer. Free Radic Biol Med 2018; 127:14-25. [PMID: 29793041 PMCID: PMC6168369 DOI: 10.1016/j.freeradbiomed.2018.05.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 02/07/2023]
Abstract
Selenocysteine-containing proteins (selenoproteins) have been implicated in the regulation of various cell signaling pathways, many of which are linked to colorectal malignancies. In this in-depth excurse into the selenoprotein literature, we review possible roles for human selenoproteins in colorectal cancer, focusing on the typical hallmarks of cancer cells and their tumor-enabling characteristics. Human genome studies of single nucleotide polymorphisms in various genes coding for selenoproteins have revealed potential involvement of glutathione peroxidases, thioredoxin reductases, and other proteins. Cell culture studies with targeted down-regulation of selenoproteins and studies utilizing knockout/transgenic animal models have helped elucidate the potential roles of individual selenoproteins in this malignancy. Those selenoproteins, for which strong links to development or progression of colorectal cancer have been described, may be potential future targets for clinical interventions.
Collapse
Affiliation(s)
- Kristin M Peters
- Dept. of Biological Sciences, Towson University, 8000 York Rd, Towson, MD 21252, United States.
| | - Bradley A Carlson
- National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States.
| | - Vadim N Gladyshev
- Dept. of Medicine, Brigham & Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| | - Petra A Tsuji
- Dept. of Biological Sciences, Towson University, 8000 York Rd, Towson, MD 21252, United States.
| |
Collapse
|
616
|
Naumova N, Hlukhova H, Barannik A, Gubin A, Protsenko I, Cherpak N, Vitusevich S. Microwave characterization of low-molecular-weight antioxidant specific biomarkers. Biochim Biophys Acta Gen Subj 2018; 1863:226-231. [PMID: 30342155 DOI: 10.1016/j.bbagen.2018.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/19/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
Antioxidants play a crucial role in the life sciences, as the regulators of biochemical reactions. We studied the dielectric properties of the low-molecular weight antioxidant specific biomarkers sodium ascorbate and glutathione in solutions of different concentrations. The biomarkers are multifunctional metabolites relevant to the reactive oxygen species (ROS) scavenging system of cells. The newly developed high-Q microwave whispering-gallery-mode (WGM) dielectric resonator based technique was applied. The technique allows investigation of liquids of nanoliter volumes filled in microfluidic channel within several milliseconds. The revealed peculiarities in the dependence of permittivity on concentrations of the sodium ascorbate and glutathione solutions are explained by differences in relaxation times and loses introduced by molecules of different shapes. We suggest that this novel approach offers the potential for the detection and characterization of ROS-relevant biomarkers with millisecond-time resolution.
Collapse
Affiliation(s)
- Natalia Naumova
- Forschungszentrum Jülich, Bioelectronics (ICS-8), Jülich 52425, Germany
| | - Hanna Hlukhova
- Forschungszentrum Jülich, Bioelectronics (ICS-8), Jülich 52425, Germany
| | - Alexander Barannik
- National Academy of Sciences of Ukraine, Usikov Institute for Radiophysics and Electronics, Kharkov 61085, Ukraine
| | - Alexey Gubin
- National Academy of Sciences of Ukraine, Usikov Institute for Radiophysics and Electronics, Kharkov 61085, Ukraine
| | - Irina Protsenko
- National Academy of Sciences of Ukraine, Usikov Institute for Radiophysics and Electronics, Kharkov 61085, Ukraine
| | - Nickolay Cherpak
- National Academy of Sciences of Ukraine, Usikov Institute for Radiophysics and Electronics, Kharkov 61085, Ukraine
| | | |
Collapse
|
617
|
Harachi M, Masui K, Okamura Y, Tsukui R, Mischel PS, Shibata N. mTOR Complexes as a Nutrient Sensor for Driving Cancer Progression. Int J Mol Sci 2018; 19:ijms19103267. [PMID: 30347859 PMCID: PMC6214109 DOI: 10.3390/ijms19103267] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 02/06/2023] Open
Abstract
Recent advancement in the field of molecular cancer research has clearly revealed that abnormality of oncogenes or tumor suppressor genes causes tumor progression thorough the promotion of intracellular metabolism. Metabolic reprogramming is one of the strategies for cancer cells to ensure their survival by enabling cancer cells to obtain the macromolecular precursors and energy needed for the rapid growth. However, an orchestration of appropriate metabolic reactions for the cancer cell survival requires the precise mechanism to sense and harness the nutrient in the microenvironment. Mammalian/mechanistic target of rapamycin (mTOR) complexes are known downstream effectors of many cancer-causing mutations, which are thought to regulate cancer cell survival and growth. Recent studies demonstrate the intriguing role of mTOR to achieve the feat through metabolic reprogramming in cancer. Importantly, not only mTORC1, a well-known regulator of metabolism both in normal and cancer cell, but mTORC2, an essential partner of mTORC1 downstream of growth factor receptor signaling, controls cooperatively specific metabolism, which nominates them as an essential regulator of cancer metabolism as well as a promising candidate to garner and convey the nutrient information from the surrounding environment. In this article, we depict the recent findings on the role of mTOR complexes in cancer as a master regulator of cancer metabolism and a potential sensor of nutrients, especially focusing on glucose and amino acid sensing in cancer. Novel and detailed molecular mechanisms that amino acids activate mTOR complexes signaling have been identified. We would also like to mention the intricate crosstalk between glucose and amino acid metabolism that ensures the survival of cancer cells, but at the same time it could be exploitable for the novel intervention to target the metabolic vulnerabilities of cancer cells.
Collapse
Affiliation(s)
- Mio Harachi
- Department of Pathology, Division of Pathological Neuroscience, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Kenta Masui
- Department of Pathology, Division of Pathological Neuroscience, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Yukinori Okamura
- Department of Pathology, Division of Pathological Neuroscience, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Ryota Tsukui
- Department of Pathology, Division of Pathological Neuroscience, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA.
| | - Noriyuki Shibata
- Department of Pathology, Division of Pathological Neuroscience, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
618
|
SPARC Inhibits Metabolic Plasticity in Ovarian Cancer. Cancers (Basel) 2018; 10:cancers10100385. [PMID: 30332737 PMCID: PMC6209984 DOI: 10.3390/cancers10100385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 01/22/2023] Open
Abstract
The tropism of ovarian cancer (OvCa) to the peritoneal cavity is implicated in widespread dissemination, suboptimal surgery, and poor prognosis. This tropism is influenced by stromal factors that are not only critical for the oncogenic and metastatic cascades, but also in the modulation of cancer cell metabolic plasticity to fulfill their high energy demands. In this respect, we investigated the role of Secreted Protein Acidic and Rich in Cysteine (SPARC) in metabolic plasticity of OvCa. We used a syngeneic model of OvCa in Sparc-deficient and proficient mice to gain comprehensive insight into the paracrine effect of stromal-SPARC in metabolic programming of OvCa in the peritoneal milieu. Metabolomic and transcriptomic profiling of micro-dissected syngeneic peritoneal tumors revealed that the absence of stromal-Sparc led to significant upregulation of the enzymes involved in glycolysis, TCA cycle, and mitochondrial electron transport chain (ETC), and their metabolic intermediates. Absence of stromal-Sparc increased reactive oxygen species and perturbed redox homeostasis. Recombinant SPARC exerted a dose-dependent inhibitory effect on glycolysis, mitochondrial respiration, ATP production and ROS generation. Comparative analysis with human tumors revealed that SPARC-regulated ETC-signature inversely correlated with SPARC transcripts. Targeting mitochondrial ETC by phenformin treatment of tumor-bearing Sparc-deficient and proficient mice mitigated the effect of SPARC-deficiency and significantly reduced tumor burden, ROS, and oxidative tissue damage in syngeneic tumors. In summary, our findings provide novel insights into the role of SPARC in regulating metabolic plasticity and bioenergetics in OvCa, and shines light on its potential therapeutic efficacy.
Collapse
|
619
|
Cordani M, Butera G, Dando I, Torrens-Mas M, Butturini E, Pacchiana R, Oppici E, Cavallini C, Gasperini S, Tamassia N, Nadal-Serrano M, Coan M, Rossi D, Gaidano G, Caraglia M, Mariotto S, Spizzo R, Roca P, Oliver J, Scupoli MT, Donadelli M. Mutant p53 blocks SESN1/AMPK/PGC-1α/UCP2 axis increasing mitochondrial O 2-· production in cancer cells. Br J Cancer 2018; 119:994-1008. [PMID: 30318520 PMCID: PMC6203762 DOI: 10.1038/s41416-018-0288-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The TP53 tumor suppressor gene is the most frequently altered gene in tumors and mutant p53 gain-of-function isoforms actively promote cancer malignancy. METHODS A panel of wild-type and mutant p53 cancer cell lines of different tissues, including pancreas, breast, skin, and lung were used, as well as chronic lymphocytic leukemia (CLL) patients with different TP53 gene status. The effects of mutant p53 were evaluated by confocal microscopy, reactive oxygen species production assay, immunoblotting, and quantitative reverse transcription polymerase chain reaction after cellular transfection. RESULTS We demonstrate that oncogenic mutant p53 isoforms are able to inhibit SESN1 expression and consequently the amount of SESN1/AMPK complex, resulting in the downregulation of the AMPK/PGC-1α/UCP2 axis and mitochondrial O2-· production. We also show a correlation between the decrease of reduced thiols with a poorer clinical outcome of CLL patients bearing mutant TP53 gene. The restoration of the mitochondrial uncoupling protein 2 (UCP2) expression, as well as the addition of the radical scavenger N-acetyl-L-cysteine, reversed the oncogenic effects of mutant p53 as cellular hyper-proliferation, antiapoptotic effect, and resistance to drugs. CONCLUSIONS The inhibition of the SESN1/AMPK/PGC-1α/UCP2 axis contributes to the pro-oxidant and oncogenic effects of mutant p53, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing mutant TP53 gene.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.,Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120, Palma de Mallorca, Illes Balears, Spain
| | - Elena Butturini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Chiara Cavallini
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy
| | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Michela Coan
- Division of Molecular Oncology, Department of Translational Research, CRO National Cancer Institute Aviano, Aviano, Italy
| | - Davide Rossi
- Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Institute of Oncology Research, Bellinzona, Switzerland
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Sofia Mariotto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Riccardo Spizzo
- Division of Molecular Oncology, Department of Translational Research, CRO National Cancer Institute Aviano, Aviano, Italy
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120, Palma de Mallorca, Illes Balears, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120, Palma de Mallorca, Illes Balears, Spain
| | - Maria Teresa Scupoli
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| |
Collapse
|
620
|
NOX2 inhibition reduces oxidative stress and prolongs survival in murine KRAS-induced myeloproliferative disease. Oncogene 2018; 38:1534-1543. [PMID: 30323311 PMCID: PMC6372471 DOI: 10.1038/s41388-018-0528-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/16/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023]
Abstract
Mutations leading to constitutive RAS activation contribute in myeloid leukemogenesis. RAS mutations in myeloid cells are accompanied by excessive formation of reactive oxygen species (ROS), but the source of ROS and their role for the initiation and progression of leukemia have not been clearly defined. To determine the role of NOX2-derived ROS in RAS-driven leukemia, double transgenic LSL-KrasG12D × Mx1-Cre mice expressing oncogenic KRAS in hematopoietic cells (M-KrasG12D) were treated with Nα-methyl-histamine (NMH) that targeted the production of NOX2-derived ROS in leukemic cells by agonist activity at histamine H2 receptors. M-KrasG12D mice developed myeloid leukemia comprising mature CD11b+Gr1+ myeloid cells that produced NOX2-derived ROS. Treatment of M-KrasG12D mice with NMH delayed the development of myeloproliferative disease and prolonged survival. In addition, NMH-treated M-KrasG12D mice showed reduction of intracellular ROS along with reduced DNA oxidation and reduced occurence of double-stranded DNA breaks in myeloid cells. The in vivo expansion of leukemia was markedly reduced in triple transgenic mice where KRAS was expressed in hematopoietic cells of animals with genetic NOX2 deficiency (Nox2−/− × LSL-KrasG12D × Mx1-Cre). Treatment with NMH did not alter in vivo expansion of leukemia in these NOX2-deficient transgenic mice. We propose that NOX2-derived ROS may contribute to the progression of KRAS-induced leukemia and that strategies to target NOX2 merit further evaluation in RAS-mutated hematopoietic cancer.
Collapse
|
621
|
Xue Z, Wang J, Chen Z, Ma Q, Guo Q, Gao X, Chen H. Antioxidant, antihypertensive, and anticancer activities of the flavonoid fractions from green, oolong, and black tea infusion waste. J Food Biochem 2018. [DOI: 10.1111/jfbc.12690] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| | - Jingya Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| | - Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| | - Qiqi Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| | - Qingwen Guo
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| | - Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| |
Collapse
|
622
|
Paul S, Ghosh S, Mandal S, Sau S, Pal M. NRF2 transcriptionally activates the heat shock factor 1 promoter under oxidative stress and affects survival and migration potential of MCF7 cells. J Biol Chem 2018; 293:19303-19316. [PMID: 30309986 DOI: 10.1074/jbc.ra118.003376] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/02/2018] [Indexed: 01/07/2023] Open
Abstract
Functional up-regulation of heat shock factor 1 (HSF1) activity through different posttranslational modifications has been implicated in the survival and proliferation of various cancers. It is increasingly recognized that the HSF1 gene is also up-regulated at the transcriptional level, a phenomenon correlated with poor prognosis for patients with different cancers, including breast cancer. Here, we analyzed the transcriptional up-regulation of HSF1 in human cells upon arsenite- or peroxide-induced oxidative stress. Sequential promoter truncation coupled with bioinformatics analysis revealed that this activation is mediated by two antioxidant response elements (AREs) located between 1707 and 1530 bp upstream of the transcription start site of the HSF1 gene. Using shRNA-mediated down-regulation, ChIP of NRF2, site-directed mutagenesis of the AREs, and DNase I footprinting of the HSF1 promoter, we confirmed that nuclear factor erythroid-derived 2-like 2 (NRF2, also known as NFE2L2) interacts with these AREs and up-regulates HSF1 expression. We also found that BRM/SWI2-related gene 1 (BRG1), a catalytic subunit of SWI2/SNF2-like chromatin remodeler, is involved in this process. We further show that NRF2-dependent HSF1 gene regulation plays a crucial role in cancer cell biology, as interference with NRF2-mediated HSF1 activation compromised survival, migration potential, and the epithelial-to-mesenchymal transition and autophagy in MCF7 breast cancer cells exposed to oxidative stress. Taken together, our findings unravel the mechanistic basis of HSF1 gene regulation in cancer cells and provide molecular evidence supporting a direct interaction between HSF1 and NRF2, critical regulators of two cytoprotective mechanisms exploited by cancer cells.
Collapse
Affiliation(s)
| | | | - Sukhendu Mandal
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, India 700054
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, India 700054
| | | |
Collapse
|
623
|
Li J, Guo L, Tian Z, Zhang S, Xu Z, Han Y, Li R, Li Y, Liu Z. Half-Sandwich Iridium and Ruthenium Complexes: Effective Tracking in Cells and Anticancer Studies. Inorg Chem 2018; 57:13552-13563. [DOI: 10.1021/acs.inorgchem.8b02161] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- JuanJuan Li
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Shumiao Zhang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Zhishan Xu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
- Department of Chemistry and Chemical Engineering, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Yali Han
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Ruixia Li
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Yan Li
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
624
|
Del Favero G, Zaharescu R, Marko D. Functional impairment triggered by altertoxin II (ATXII) in intestinal cells in vitro: cross-talk between cytotoxicity and mechanotransduction. Arch Toxicol 2018; 92:3535-3547. [PMID: 30276433 PMCID: PMC6290659 DOI: 10.1007/s00204-018-2317-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Intestinal cells are able to continuously integrate response to multiple stimuli/stressors; these include the concomitant activation of “chemically driven” pathways, of paramount importance in the response to toxicants, as well as physical stimulation derived from motility. Altertoxin II (ATXII, 0.1, 1 and 10 µM), a mycotoxin produced by the food contaminant fungus Alternaria alternata was studied in HT-29 intestinal adenocarcinoma cells and in non-transformed intestinal epithelial cells, HCEC. One-hour incubation with ATXII was sufficient to trigger irreversible cytotoxicity in both cell types, as well as to modify cellular responses to concomitant pro-oxidant challenge (H2O2, 100–500 µM, DCF-DA assay) suggesting that even relatively short-time exposure of the intestinal cells could be sufficient to alter their functionality. Combination of ATXII (1 µM) with physical stimulation typical of the intestinal compartment (shear stress) revealed differential response of tumor-derived epithelial cells HT-29 in comparison to HCEC, in particular in the localization of the transcription factor Nrf2 (NF-E2-related factor 2). Moreover, ATXII reduced the migratory potential of HCEC as well as their membrane fluidity, but had no respective impact on HT-29 cells. Taken together, ATXII appeared to alter predominantly membrane functionality in HCEC thus hampering crucial functions for cellular motility/turnover, as well as barrier function of healthy intestinal cells and had very limited activity on the tumor counterparts.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090, Vienna, Austria.
| | - Ronita Zaharescu
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090, Vienna, Austria
| |
Collapse
|
625
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
626
|
Hsu PC, Gopinath RK, Hsueh YA, Shieh SY. CHK2-mediated regulation of PARP1 in oxidative DNA damage response. Oncogene 2018; 38:1166-1182. [PMID: 30254210 DOI: 10.1038/s41388-018-0506-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 09/02/2018] [Accepted: 09/02/2018] [Indexed: 12/22/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is a DNA damage sensor, which upon activation, recruits downstream proteins by poly(ADP-ribosyl)ation (PARylation). However, it remains largely unclear how PARP1 activity is regulated. Interestingly, the data obtained through this study revealed that PARP1 was co-immunoprecipitated with checkpoint kinase 2 (CHK2), and the interaction was increased after oxidative DNA damage. Moreover, CHK2 depletion resulted in a reduction in overall PARylation. To further explore the functional relationship between PARP1 and CHK2, this study employed H2O2 to induce an oxidative DNA damage response in cells. Here, we showed that CHK2 and PARP1 interact in vitro and in vivo through the CHK2 SCD domain and the PARP1 BRCT domain. Furthermore, CHK2 stimulates the PARylation activity of PARP1 through CHK2-dependent phosphorylation. Consequently, the impaired repair associated with PARP1 depletion could be rescued by re-expression of wild-type PARP1 and the phospho-mimic but not the phospho-deficient mutant. Mechanistically, we showed that CHK2-dependent phosphorylation of PARP1 not only regulates its cellular localization but also promotes its catalytic activity and its interaction with XRCC1. These findings indicate that CHK2 exerts a multifaceted impact on PARP1 in response to oxidative stress to facilitate DNA repair and to maintain cell survival.
Collapse
Affiliation(s)
- Pei-Ching Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, 128 Sec 2, Academia Road, Taipei, 115, Taiwan
| | | | - Yi-An Hsueh
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec 2, Academia Road, Taipei, 115, Taiwan
| | - Sheau-Yann Shieh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, 128 Sec 2, Academia Road, Taipei, 115, Taiwan.
| |
Collapse
|
627
|
Aliakbari M, Mohammadian E, Esmaeili A, Pahlevanneshan Z. Differential effect of polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles on BT-474 human breast cancer cell viability. Toxicol In Vitro 2018; 54:114-122. [PMID: 30266435 DOI: 10.1016/j.tiv.2018.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
Abstract
Polyvinylpyrrolidone superparamagnetic iron oxide nanoparticles (PVP-SPIONs) have unique properties. Due to these characteristics, PVP-SPIONs have been used in several medical applications such as magnetic resonance imaging (MRI) contrast agent or drug delivery system. However, a more comprehensive understanding of the environmental safety of PVP-SPIONs is vital for consumption of these nanomaterials. In this study, we describe the effects of PVP-SPIONs on cell viability of the BT-474 human breast cancer cells. Cell viability of the BT-474 cells treated with PVP-SPIONs (10-800 μg/ml) was assessed by MTT assay. MRC-5 cell line was used as a control. Quantitative real-time PCR was performed to investigate the mRNA expression levels of apoptotic (caspase 3) and anti-apoptotic (BCL2) genes Confluent BT-474 monolayers exposed to PVP-SPIONs showed biphasic effects on cell proliferation. PVP-SPIONs at 10-100 μg /ml promote proliferation of BT-474 cells but not the MRC-5 cells. At higher dosage, PVP-SPIONs have toxicity on BT-474 cells. The results of real-time PCR was in line with MTT assay. The increase of cell proliferation at low PVP-SPIONs concentrations is different from what would be expected for these nanoparticles. Our results suggest that more attentions are needed to ensure the safer use of SPION in nanomedicine.
Collapse
Affiliation(s)
- Maryam Aliakbari
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Elham Mohammadian
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Abolghasem Esmaeili
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - Zari Pahlevanneshan
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan, Iran
| |
Collapse
|
628
|
Vattulainen-Collanus S, Southwood M, Yang XD, Moore S, Ghatpande P, Morrell NW, Lagna G, Hata A. Bone morphogenetic protein signaling is required for RAD51-mediated maintenance of genome integrity in vascular endothelial cells. Commun Biol 2018; 1:149. [PMID: 30272025 PMCID: PMC6155317 DOI: 10.1038/s42003-018-0152-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
The integrity of blood vessels is fundamental to vascular homeostasis. Inactivating mutations in the bone morphogenetic protein (BMP) receptor type II (BMPR2) gene cause hereditary vascular disorders, including pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia, suggesting that BMPR2 and its downstream signaling pathway are pivotal to the maintenance of vascular integrity through an unknown molecular mechanism. Here we report that inactivation of BMPR2 in pulmonary vascular endothelial cells results in a deficit of RAD51, an enzyme essential for DNA repair and replication. Loss of RAD51, which causes DNA damage and cell death, is also detected in animal models and human patients with pulmonary arterial hypertension. Restoration of BMPR2 or activation of the BMP signaling pathway rescues RAD51 and prevents DNA damage. This is an unexpected role of BMP signaling in preventing the accumulation of DNA damage and the concomitant loss of endothelial integrity and vascular remodeling associated with vascular disorders. Sanna Vattulainen-Collanus et al. report that mutations in the BMPR2 gene, which is associated with pulmonary arterial hypertension, result in a deficit of RAD51 and altered DNA repair and replication. They were able to rescue the RAD51-deficient phenotype by restoring BMPR2 activity in cell culture.
Collapse
Affiliation(s)
- Sanna Vattulainen-Collanus
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, 94143, CA, USA
| | - Mark Southwood
- Department of Pathology, Papworth Hospital, Papworth Everad, Cambridge, CB23 3RE, UK
| | - Xu Dong Yang
- Department of Medicine, University of Cambridge, Addenbrook's Hospital, Cambridge, CB2 0QQ, UK
| | - Stephen Moore
- Department of Medicine, University of Cambridge, Addenbrook's Hospital, Cambridge, CB2 0QQ, UK
| | - Prajakta Ghatpande
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, 94143, CA, USA
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Addenbrook's Hospital, Cambridge, CB2 0QQ, UK
| | - Giorgio Lagna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, 94143, CA, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, 94143, CA, USA. .,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, 94143, CA, USA.
| |
Collapse
|
629
|
Calahorra J, Martínez-Lara E, De Dios C, Siles E. Hypoxia modulates the antioxidant effect of hydroxytyrosol in MCF-7 breast cancer cells. PLoS One 2018; 13:e0203892. [PMID: 30235254 PMCID: PMC6147459 DOI: 10.1371/journal.pone.0203892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/29/2018] [Indexed: 12/30/2022] Open
Abstract
Although cancer is multifactorial, a strong correlation between this pathology and increased oxidative stress has long been stablished. Hypoxia, inherent to solid tumors, increases reactive oxygen species and should be taken into account when analyzing the response of tumor cells to antioxidants. The Mediterranean diet has been related to a lower incidence of cancer, and particularly of breast cancer. Given that hydroxytyrosol (HT) is largely responsible for the antioxidant properties of olive oil, we have performed a comprehensive and comparative study of its effect on the oxidative stress response of the human breast cancer cell line MCF-7 in hypoxia and normoxia. Our results demonstrate that the antioxidant action of HT is particularly effective in a hypoxic environment. Moreover, we have observed that this polyphenol modulates the transcription and translation of members of the PGC-1α/ERRα and PGC-1α/Nrf2 pathways. However, while the transcriptional effects of HT are similar in normoxic and hypoxic conditions, its translational action is less prominent and partially attenuated in hypoxia, and therefore cannot completely explain the antioxidant effect of HT. Consequently, our results underscore that the hypoxic environment of tumor cells should be considered when analyzing the effect of bioactive compounds. Besides, this study also points to the importance of assessing the regulatory role of HT at both mRNA and protein level to get a complete picture of its effects.
Collapse
Affiliation(s)
- Jesús Calahorra
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, Jaén, Spain
| | - Esther Martínez-Lara
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, Jaén, Spain
| | - Cristina De Dios
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, Jaén, Spain
| | - Eva Siles
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, Jaén, Spain
| |
Collapse
|
630
|
Systemic redox status in lung cancer patients is related to altered glucose metabolism. PLoS One 2018; 13:e0204173. [PMID: 30235348 PMCID: PMC6147499 DOI: 10.1371/journal.pone.0204173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/03/2018] [Indexed: 01/04/2023] Open
Abstract
Altered systemic redox status is often observed in lung cancer. However, detailed information on factors other, than smoking, which influence this perturbation is rather scarce. Elevated oxidative stress has been linked with disturbances in glucose metabolism before, but such associations have not been investigated in lung cancer. The aim of this study was to evaluate the relationship between systemic parameters of glucose metabolism and redox status in lung cancer patients (LC). Biochemical variables related to circulating glucose, i.e. glucose, insulin, c-peptide, fructosamine (FA), and glucose metabolism, i.e. β-hydroxybutyrate (BHB), lactate (LACT), non-esterified fatty acids (NEFAs), as well as redox status i.e. total antioxidant status (TAS) and total oxidant status (TOS) were determined for LC (n = 122) and control subjects (CS) (n = 84). HOMA-IR and the oxidative stress index (OSI) were calculated. LC patients had an altered redox status and glucose metabolism compared to CS. Positive correlations in LC were observed between TOS, OSI and circulating glucose as well as FA, while TAS positively correlated with BHB and NEFAs. In contrast, in metastatic LC, NEFAs and BHB positively correlated with OSI. Smoking status additionally stratified the observed relationships. In conclusion, we found that parameters related to circulating glucose or non-enzymatic glycation were correlated with oxidative stress (TOS and OSI), while metabolites such as BHB and NEFAs were correlated with antioxidant capacity (TAS). Metastasis prevalence and smoking seem to influence these correlations. However, the detailed mechanism of this relationship requires further research, in particular as regards the surprising positive correlation between NEFAs and TAS.
Collapse
|
631
|
Dropping in on lipid droplets: insights into cellular stress and cancer. Biosci Rep 2018; 38:BSR20180764. [PMID: 30111611 PMCID: PMC6146295 DOI: 10.1042/bsr20180764] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Lipid droplets (LD) have increasingly become a major topic of research in recent years following its establishment as a highly dynamic organelle. Contrary to the initial view of LDs being passive cytoplasmic structures for lipid storage, studies have provided support on how they act in concert with different organelles to exert functions in various cellular processes. Although lipid dysregulation resulting from aberrant LD homeostasis has been well characterised, how this translates and contributes to cancer progression is poorly understood. This review summarises the different paradigms on how LDs function in the regulation of cellular stress as a contributing factor to cancer progression. Mechanisms employed by a broad range of cancer cell types in differentially utilising LDs for tumourigenesis will also be highlighted. Finally, we discuss the potential of targeting LDs in the context of cancer therapeutics.
Collapse
|
632
|
LKB1 loss is associated with glutathione deficiency under oxidative stress and sensitivity of cancer cells to cytotoxic drugs and γ-irradiation. Biochem Pharmacol 2018; 156:479-490. [PMID: 30222967 DOI: 10.1016/j.bcp.2018.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/13/2018] [Indexed: 01/25/2023]
Abstract
The liver kinase B1 (LKB1) gene is a tumor suppressor associated with the hereditary Peutz-Jeghers syndrome and frequently mutated in non-small cell lung cancer and in cervical cancer. Previous studies showed that the LKB1/AMPK axis is involved in regulation of cell death and survival under metabolic stress. By using isogenic pairs of cancer cell lines, we report here that the genetic loss of LKB1 was associated with increased intracellular levels of total choline containing metabolites and, under oxidative stress, it impaired maintenance of glutathione (GSH) levels. This resulted in markedly increased intracellular reactive oxygen species (ROS) levels and sensitivity to ROS-induced cell death. These effects were rescued by re-expression of LKB1 or pre-treatment with the anti-oxidant and GSH replenisher N-acetyl cysteine. This role of LKB1 in response to ROS-inducing agents was largely AMPK-dependent. Finally, we observed that LKB1 defective cells are highly sensitive to cisplatin and γ-irradiation in vitro, suggesting that LKB1 mutated tumors could be targeted by oxidative stress-inducing therapies.
Collapse
|
633
|
Protective effect of 1950 MHz electromagnetic field in human neuroblastoma cells challenged with menadione. Sci Rep 2018; 8:13234. [PMID: 30185877 PMCID: PMC6125585 DOI: 10.1038/s41598-018-31636-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/15/2018] [Indexed: 12/15/2022] Open
Abstract
This study aims to assess whether a 1950 MHz radiofrequency (RF) electromagnetic field could protect human neuroblastoma SH-SY5Y cells against a subsequent treatment with menadione, a chemical agent inducing DNA damage via reactive oxygen species formation. Cells were pre-exposed for 20 h to specific absorption rate of either 0.3 or 1.25 W/kg, and 3 h after the end of the exposure, they were treated with 10 µM menadione (MD) for 1 h. No differences were observed between sham- and RF-exposed samples. A statistically significant reduction in menadione-induced DNA damage was detected in cells pre-exposed to either 0.3 or 1.25 W/kg (P < 0.05). Moreover, our analyses of gene expression revealed that the pre-exposure to RF almost inhibited the dramatic loss of glutathione peroxidase-based antioxidant scavenging efficiency that was induced by MD, and in parallel strongly enhanced the gene expression of catalase-based antioxidant protection. In addition, RF abolished the MD-dependent down-regulation of oxoguanine DNA glycosylase, which is a critical DNA repairing enzyme. Overall, our findings suggested that RF pre-exposure reduced menadione-dependent DNA oxidative damage, most probably by enhancing antioxidant scavenging efficiency and restoring DNA repair capability. Our results provided some insights into the molecular mechanisms underlying the RF-induced adaptive response in human neuroblastoma cells challenged with menadione.
Collapse
|
634
|
Zein-polysaccharide nanoparticles as matrices for antioxidant compounds: A strategy for prevention of chronic degenerative diseases. Food Res Int 2018; 111:451-471. [DOI: 10.1016/j.foodres.2018.05.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023]
|
635
|
Uthaman S, Huh KM, Park IK. Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications. Biomater Res 2018; 22:22. [PMID: 30155269 PMCID: PMC6108142 DOI: 10.1186/s40824-018-0132-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer is one of the deadliest threats to human health. Abnormal physiochemical conditions and dysregulated biosynthetic intermediates in the tumor microenvironment (TME) play a significant role in modulating cancer cells to evade or defend conventional anti-cancer therapy such as surgery, chemotherapy and radiotherapy. One of the most important challenges in the development of anti-tumor therapy is the successful delivery of therapeutic and imaging agents specifically to solid tumors. MAIN BODY The recent progresses in development of TME responsive nanoparticles offers promising strategies for combating cancer by making use of the common attributes of tumor such as acidic and hypoxic microenvironments. In this review, we discussed the prominent strategies utilized in the development of tumor microenvironment-responsive nanoparticles and mode of release of therapeutic cargo. CONCLUSION Tumor microenvironment-responsive nanoparticles offers a universal approach for anti-cancer therapy.
Collapse
Affiliation(s)
- Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju, 61469 Republic of Korea
| |
Collapse
|
636
|
Whongsiri P, Pimratana C, Wijitsettakul U, Jindatip D, Sanpavat A, Schulz WA, Hoffmann MJ, Goering W, Boonla C. LINE-1 ORF1 Protein Is Up-regulated by Reactive Oxygen Species and Associated with Bladder Urothelial Carcinoma Progression. Cancer Genomics Proteomics 2018; 15:143-151. [PMID: 29496693 DOI: 10.21873/cgp.20072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIM Reactivation of long interspersed nuclear element-1 (LINE-1) and oxidative stress are suggested to have oncogenic potential to drive tumorigenesis and cancer progression. We previously demonstrated that reactive oxygen species (ROS) caused hypomethylation of LINE-1 elements in bladder cancer cells. In this study, we investigated the expression of LINE-1-encoded protein (ORF1p) and oxidative stress marker 4-hydroxynonenal (4-HNE) in human bladder cancer tissues, as well as induction of ORF1p expression by ROS in bladder cancer cell lines. MATERIALS AND METHODS Thirty-six cancerous and 15 non-cancerous adjacent tissues were immunohistochemically stained for ORF1p and 4-HNE. ORF1p expression and cell migration were determined in bladder cancer cells exposed to H2O2 Results: ORF1p and 4-HNE expression was higher in cancerous than non-cancerous tissues. Elevated ORF1p expression was associated with increased 4-HNE expression and with advanced tumors. H2O2 provoked oxidative stress and up-regulated ORF1p expression in VM-CUB-1 compared to the untreated control, and to a lesser degree in TCCSUP. H2O2 exposure enhanced cell migration in UM-UC-3, TCCSUP and VM-CUB-1. CONCLUSION Elevated ORF1p expression is associated with tumor progression. ROS experimentally induce ORF1p expression and promote migration in bladder cancer cells.
Collapse
Affiliation(s)
- Patcharawalai Whongsiri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Depicha Jindatip
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anapat Sanpavat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Goering
- Department of Pathology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Chanchai Boonla
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
637
|
Rosenzweig A, Blenis J, Gomes AP. Beyond the Warburg Effect: How Do Cancer Cells Regulate One-Carbon Metabolism? Front Cell Dev Biol 2018; 6:90. [PMID: 30159313 PMCID: PMC6103474 DOI: 10.3389/fcell.2018.00090] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 12/16/2022] Open
Abstract
Altered metabolism in cancer cells is critical for tumor growth. One of the most notable aspects of this metabolic reprogramming lies in one-carbon metabolism. Cells require one-carbon units for nucleotide synthesis, methylation reactions, and for the generation of reducing cofactors. Therefore, the ability to rewire and fine-tune one-carbon metabolism is essential for the maintenance of cellular homeostasis. In this review, we describe how the major nutrient, energy, and redox sensors of the cell play a significant role in the regulation of flux through one-carbon metabolism to enable cell fate decisions. We will also discuss how dysregulated oncogenic signaling hijacks these regulatory mechanisms to support and sustain high rates of proliferation and cell survival essential for tumor growth.
Collapse
Affiliation(s)
- Adam Rosenzweig
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Ana P Gomes
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
638
|
Scott AJ, Walker SA, Krank JJ, Wilkinson AS, Johnson KM, Lewis EM, Wilkinson JC. AIF promotes a JNK1-mediated cadherin switch independently of respiratory chain stabilization. J Biol Chem 2018; 293:14707-14722. [PMID: 30093403 DOI: 10.1074/jbc.ra118.004022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/26/2018] [Indexed: 12/18/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein occasionally involved in cell death that primarily regulates mitochondrial energy metabolism under normal cellular conditions. AIF catalyzes the oxidation of NADH in vitro, yet the significance of this redox activity in cells remains unclear. Here, we show that through its enzymatic activity AIF is a critical factor for oxidative stress-induced activation of the mitogen-activated protein kinases JNK1 (c-Jun N-terminal kinase), p38, and ERK (extracellular signal-regulated kinase). AIF-dependent JNK1 signaling culminates in the cadherin switch, and genetic reversal of this switch leads to apoptosis when AIF is suppressed. Notably, this widespread ability of AIF to promote JNK signaling can be uncoupled from its more limited role in respiratory chain stabilization. Thus, AIF is a transmitter of extra-mitochondrial signaling cues with important implications for human development and disease.
Collapse
Affiliation(s)
- Andrew J Scott
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Sierra A Walker
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Joshua J Krank
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Amanda S Wilkinson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Kaitlyn M Johnson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Eric M Lewis
- the Department of Chemistry, Mathematics and Physics, Clarion University of Pennsylvania, Clarion, Pennsylvania 16214
| | - John C Wilkinson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| |
Collapse
|
639
|
Jeong J, Essafi M, Lee C, Haoues M, Diouani MF, Kim H, Kim Y. Ultrasensitive detection of hazardous reactive oxygen species using flexible organic transistors with polyphenol-embedded conjugated polymer sensing layers. JOURNAL OF HAZARDOUS MATERIALS 2018; 355:17-24. [PMID: 29763797 DOI: 10.1016/j.jhazmat.2018.04.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Here we report that superoxide, one of the hazardous reactive oxygen species (ROS), can be quickly detected by flexible organic field-effect transistors (OFETs) with the polyphenol-embedded conjugated polymer micro-channels. Rutin, one of the abundant polyphenols found in a variety of plants, was employed as a sensing molecule and embedded in the poly(3-hexylthiophene) (P3HT) matrix. The rutin-embedded P3HT layers showed randomly distributed micro-domains, which became bigger as the rutin content increased. The best transistor performance was achieved at the rutin content of 10 wt%, while the OFETs exhibited proper and controllable transistor performances even in the phosphate buffer solutions. The sensing test revealed that the present OFET sensors could stably detect superoxide using very small amount (<10 μl) of samples at extremely low concentrations (500 pM), while they exhibited outstanding stability and durability upon repeated detection and storage-reuse tests. Finally, the present flexible OFET sensors could deliver confident sensing results for the detection of superoxide generated from the mouse RAW264.7 macrophages.
Collapse
Affiliation(s)
- Jaehoon Jeong
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Makram Essafi
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, LR11IPT02, Tunis-Belvédère 1002, and Université Tunis El Manar, Tunis 1068, Tunisia
| | - Chulyeon Lee
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Meriam Haoues
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, LR11IPT02, Tunis-Belvédère 1002, and Université Tunis El Manar, Tunis 1068, Tunisia
| | - Mohamed Fethi Diouani
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Institut Pasteur de Tunis, LR11IPT02, Tunis-Belvédère 1002, and Université Tunis El Manar, Tunis 1068, Tunisia
| | - Hwajeong Kim
- Priority Research Center, Research Institute of Advanced Energy Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Youngkyoo Kim
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
640
|
Beberok A, Rzepka Z, Respondek M, Rok J, Sierotowicz D, Wrześniok D. GSH depletion, mitochondrial membrane breakdown, caspase-3/7 activation and DNA fragmentation in U87MG glioblastoma cells: New insight into the mechanism of cytotoxicity induced by fluoroquinolones. Eur J Pharmacol 2018; 835:94-107. [PMID: 30086267 DOI: 10.1016/j.ejphar.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
Abstract
Fluoroquinolones are a known synthetic group of antibiotics that have been the subject of many research interests. This class of antibiotics was shown to be cytotoxic towards various cancer cell lines, thus representing a potentially important source of new anticancer agents. The present study was designed to examine the effect of ciprofloxacin and moxifloxacin on cell viability, redox balance and apoptosis in U87MG glioblastoma cells. Herein, we found that both fluoroquinolones decrease the viability and exert an anti-proliferative effect on U87MG cells. The EC50 values were found to be as 0.75 µmol/ml, 0.57 µmol/ml, 0.53 µmol/ml for ciprofloxacin and 24, 48, 72 h incubation time, respectively, and 0.48 µmol/ml, 0.22 µmol/ml, 0.15 µmol/ml for moxifloxacin and 24, 48, 72 h incubation time, respectively. Ciprofloxacin and moxifloxacin have also induced the intracellular GSH depletion and apoptosis as shown by externalization of phosphatidylserine, caspase-3/7 activation, S and sub-G1 cell cycle arrest, nuclear morphological changes induction and DNA fragmentation. The mechanism of apoptosis was related to the loss of mitochondrial membrane potential suggesting activation of the intrinsic mitochondrial pathway. This is the first study that may provide the basis for understanding potential cellular and molecular mechanism underlying ciprofloxacin and moxifloxacin cytotoxic and pro-apoptotic effect towards U87MG glioblastoma cells, suggesting that these fluoroquinolone derivatives may have value for the development as anti-glioma agents.
Collapse
Affiliation(s)
- Artur Beberok
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Zuzanna Rzepka
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Michalina Respondek
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Jakub Rok
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Daniel Sierotowicz
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
641
|
Wang Y, Sun B, Han B, Hu M. New ferrocene modified retinoic acid with enhanced efficacy against melanoma cells via GSH depletion. RSC Adv 2018; 8:27740-27745. [PMID: 35542710 PMCID: PMC9083447 DOI: 10.1039/c8ra04078h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/16/2018] [Indexed: 11/21/2022] Open
Abstract
Malignant melanoma is a highly lethal disease, and advanced stages of melanoma have proven to be resistant to many chemotherapeutic drugs. Cancer stem cells (CSCs) and high levels of intracellular glutathione (GSH) have been proven to play important roles in drug resistance. Retinoic acid (RA) is a promising anticancer agent, which can inhibit proliferation and induce differentiation of CSCs, but its clinical use has been limited by its water insolubility and weak cancer cell killing effect when used alone. Herein, by combining RA and ferrocene, a new type of derivative of retinoic acid (FCRA) was synthesized and then oxidized by FeCl3. The oxidized FCRA (FCRA+) was exploited as a novel anticancer agent. Compared with RA, FCRA+ not only has improved water solubility and stronger anti-cancer effect to melanoma cells through depleting intracellular GSH of the cancer cells, but also can inhibit proliferation and induce differentiation of melanoma CSCs, such as free RA. Therefore, FCRA+ has better application prospects than RA and may replace RA for clinical applications.
Collapse
Affiliation(s)
- Yibo Wang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University Changchun 130041 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 P. R. China
| | - Bin Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 P. R. China
- Department of Oral and Maxilloficial Surgery, School and Hospital of Stomatology, Jilin University Changchun 130041 P. R. China
| | - Bin Han
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 P. R. China
- Department of Oral and Maxilloficial Surgery, School and Hospital of Stomatology, Jilin University Changchun 130041 P. R. China
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University Changchun 130041 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 P. R. China
| |
Collapse
|
642
|
Diwanji N, Bergmann A. An unexpected friend - ROS in apoptosis-induced compensatory proliferation: Implications for regeneration and cancer. Semin Cell Dev Biol 2018; 80:74-82. [PMID: 28688927 PMCID: PMC5756134 DOI: 10.1016/j.semcdb.2017.07.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 12/21/2022]
Abstract
Apoptosis-induced compensatory proliferation (AiP) is a form of compensatory proliferation that is triggered by apoptotic cell death to maintain tissue homeostasis. As such, AiP is essential for many tissue repair processes including regeneration. The apoptotic effectors, termed caspases, not only execute apoptosis, but are also directly involved in the generation of the signals required for AiP. Reactive oxygen species (ROS) play an important role for regenerative processes. Recently, it was shown in Drosophila that apoptotic caspases can mediate the generation of ROS for promoting AiP. This review summarizes and discusses these findings in the context of regenerative processes and cancer.
Collapse
Affiliation(s)
- Neha Diwanji
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street - LRB419, Worcester, MA, 01605, USA.
| | - Andreas Bergmann
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street - LRB419, Worcester, MA, 01605, USA.
| |
Collapse
|
643
|
Chen PH, Chi JT, Boyce M. Functional crosstalk among oxidative stress and O-GlcNAc signaling pathways. Glycobiology 2018; 28:556-564. [PMID: 29548027 PMCID: PMC6054262 DOI: 10.1093/glycob/cwy027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/14/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
In metazoans, thousands of intracellular proteins are modified with O-linked β-N-acetylglucosamine (O-GlcNAc) in response to a wide range of stimuli and stresses. In particular, a complex and evolutionarily conserved interplay between O-GlcNAcylation and oxidative stress has emerged in recent years. Here, we review the current literature on the connections between O-GlcNAc and oxidative stress, with a particular emphasis on major signaling pathways, such as KEAP1/NRF2, FOXO, NFκB, p53 and cell metabolism. Taken together, this work sheds important light on the signaling functions of protein glycosylation and the mechanisms of stress responses alike and illuminates how the two are integrated in animal cell physiology.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Biochemistry
- Department of Molecular Genetics and Microbiology
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
644
|
Diedrich JD, Herroon MK, Rajagurubandara E, Podgorski I. The Lipid Side of Bone Marrow Adipocytes: How Tumor Cells Adapt and Survive in Bone. Curr Osteoporos Rep 2018; 16:443-457. [PMID: 29869753 PMCID: PMC6853185 DOI: 10.1007/s11914-018-0453-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Bone marrow adipocytes have emerged in recent years as key contributors to metastatic progression in bone. In this review, we focus specifically on their role as the suppliers of lipids and discuss pro-survival pathways that are closely linked to lipid metabolism, affected by the adipocyte-tumor cell interactions, and likely impacting the ability of the tumor cell to thrive in bone marrow space and evade therapy. RECENT FINDINGS The combined in silico, pre-clinical, and clinical evidence shows that in adipocyte-rich tissues such as bone marrow, tumor cells rely on exogenous lipids for regulation of cellular energetics and adaptation to harsh metabolic conditions of the metastatic niche. Adipocyte-supplied lipids have a potential to alter the cell's metabolic decisions by regulating glycolysis and respiration, fatty acid oxidation, lipid desaturation, and PPAR signaling. The downstream effects of lipid signaling on mitochondrial homeostasis ultimately control life vs. death decisions, providing a mechanism for gaining survival advantage and reduced sensitivity to treatment. There is a need for future research directed towards identifying the key metabolic and signaling pathways that regulate tumor dependence on exogenous lipids and consequently drive the pro-survival behavior in the bone marrow niche.
Collapse
Affiliation(s)
- Jonathan D Diedrich
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Rm 6304, Detroit, MI, 48201, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mackenzie K Herroon
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Rm 6304, Detroit, MI, 48201, USA
| | - Erandi Rajagurubandara
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Rm 6304, Detroit, MI, 48201, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Rm 6304, Detroit, MI, 48201, USA.
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
645
|
Fashioning blood vessels by ROS signalling and metabolism. Semin Cell Dev Biol 2018; 80:35-42. [DOI: 10.1016/j.semcdb.2017.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022]
|
646
|
Purushothaman B, Arumugam P, Ju H, Kulsi G, Samson AAS, Song JM. Novel ruthenium(II) triazine complex [Ru(bdpta)(tpy)]2+ co-targeting drug resistant GRP78 and subcellular organelles in cancer stem cells. Eur J Med Chem 2018; 156:747-759. [DOI: 10.1016/j.ejmech.2018.07.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022]
|
647
|
Lodewijk L, Willems SM, Dreijerink KMA, de Keizer B, van Diest PJ, Schepers A, Morreau H, Bonenkamp HJ, Van Engen-van Grunsven IACH, Kruijff S, van Hemel BM, Links TP, Nieveen van Dijkum E, van Eeden S, Valk GD, Borel Rinkes IHM, Vriens MR. The theranostic target prostate-specific membrane antigen is expressed in medullary thyroid cancer. Hum Pathol 2018; 81:245-254. [PMID: 30055186 DOI: 10.1016/j.humpath.2018.06.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/30/2018] [Accepted: 06/30/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Lutske Lodewijk
- University Medical Center Utrecht, Department of Surgery, 3584CX Utrecht, The Netherlands
| | - Stefan M Willems
- University Medical Center Utrecht, Department of Pathology, 3584CX Utrecht, The Netherlands
| | - Koen M A Dreijerink
- University Medical Center Utrecht, Department of Endocrine Oncology, 3584CX Utrecht, The Netherlands
| | - Bart de Keizer
- University Medical Center Utrecht, Department of Radiology, 3584CX Utrecht, The Netherlands
| | - Paul J van Diest
- University Medical Center Utrecht, Department of Pathology, 3584CX Utrecht, The Netherlands
| | - Abbey Schepers
- Leiden University Medical Center, Department of Surgery, 2333ZA Leiden, The Netherlands
| | - Hans Morreau
- Leiden University Medical Center, Department of Pathology, 2333ZA Leiden, The Netherlands
| | - Han J Bonenkamp
- Radboud University Medical Center, Department of Surgery, Nijmegen 6525GA, The Netherlands
| | | | - Schelto Kruijff
- University Medical Center Groningen, Department of Surgery, 9700RB, Groningen, The Netherlands
| | - Bettien M van Hemel
- University Medical Center Groningen, Department of Pathology, 9700RB, Groningen, The Netherlands
| | - Thera P Links
- University Medical Center Groningen, Department of Internal Medicine, 9700RB, Groningen, The Netherlands
| | - Els Nieveen van Dijkum
- Academic Medical Center Amsterdam, Department of Surgery, 1105AZ, Amsterdam, The Netherlands
| | - Susanne van Eeden
- Academic Medical Center Amsterdam, Department of Pathology, 1105AZ, Amsterdam, The Netherlands
| | - Gerlof D Valk
- University Medical Center Utrecht, Department of Endocrine Oncology, 3584CX Utrecht, The Netherlands
| | - Inne H M Borel Rinkes
- University Medical Center Utrecht, Department of Surgery, 3584CX Utrecht, The Netherlands
| | - Menno R Vriens
- University Medical Center Utrecht, Department of Surgery, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
648
|
Singh K, Rotaru AM, Beharry AA. Fluorescent Chemosensors as Future Tools for Cancer Biology. ACS Chem Biol 2018; 13:1785-1798. [PMID: 29579380 DOI: 10.1021/acschembio.8b00014] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is well established that aberrant cellular biochemical activity is strongly linked to the formation and progression of various cancers. Assays that could aid in cancer diagnostics, assessing anticancer drug resistance, and in the discovery of new anticancer drugs are highly warranted. In recent years, a large number of small molecule-based fluorescent chemosensors have been developed for monitoring the activity of enzymes and small biomolecular constituents. These probes have shown several advantages over traditional methods, such as the ability to directly and selectively measure activity of their targets within complex cellular environments. This review will summarize recently developed fluorescent chemosensors that have potential applications in the field of cancer biology.
Collapse
Affiliation(s)
- Kamalpreet Singh
- Department of Chemistry and Department of Chemical and Physical Sciences, University of Toronto, Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Adrian M. Rotaru
- Department of Chemistry and Department of Chemical and Physical Sciences, University of Toronto, Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Andrew A. Beharry
- Department of Chemistry and Department of Chemical and Physical Sciences, University of Toronto, Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
649
|
Rubini E, Altieri F, Chichiarelli S, Giamogante F, Carissimi S, Paglia G, Macone A, Eufemi M. STAT3, a Hub Protein of Cellular Signaling Pathways, Is Triggered by β-Hexaclorocyclohexane. Int J Mol Sci 2018; 19:ijms19072108. [PMID: 30036966 PMCID: PMC6073614 DOI: 10.3390/ijms19072108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Organochlorine pesticides (OCPs) are widely distributed in the environment and their toxicity is mostly associated with the molecular mechanisms of endocrine disruption. Among OCPs, particular attention was focused on the effects of β-hexaclorocyclohexane (β-HCH), a widely common pollutant. A detailed epidemiological study carried out on exposed population in the "Valle del Sacco" found correlations between the incidence of a wide range of diseases and the occurrence of β-HCH contamination. Taking into account the pleiotropic role of the protein signal transducer and activator of transcription 3 (STAT3), its function as a hub protein in cellular signaling pathways triggered by β-HCH was investigated in different cell lines corresponding to tissues that are especially vulnerable to damage by environmental pollutants. MATERIALS AND METHODS Human prostate cancer (LNCaP), human breast cancer (MCF-7 and MDA-MB 468), and human hepatoma (HepG2) cell lines were treated with 10 μM β-HCH in the presence or absence of specific inhibitors for different receptors. All samples were subjected to analysis by immunoblotting and RT-qPCR. RESULTS AND CONCLUSIONS The preliminary results allow us to hypothesize the involvement of STAT3, through both its canonical and non-canonical pathways, in response to β-HCH. Moreover, we ascertained the role of STAT3 as a master regulator of energy metabolism via the altered expression and localization of HIF-1α and PKM2, respectively, resulting in a Warburg-like effect.
Collapse
Affiliation(s)
- Elisabetta Rubini
- Department of Biochemical Sciences, A. Rossi Fanelli, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Fabio Altieri
- Department of Biochemical Sciences, A. Rossi Fanelli, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Silvia Chichiarelli
- Department of Biochemical Sciences, A. Rossi Fanelli, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Flavia Giamogante
- Department of Biochemical Sciences, A. Rossi Fanelli, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Stefania Carissimi
- Department of Biochemical Sciences, A. Rossi Fanelli, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Giuliano Paglia
- Department of Biochemical Sciences, A. Rossi Fanelli, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Alberto Macone
- Department of Biochemical Sciences, A. Rossi Fanelli, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Margherita Eufemi
- Department of Biochemical Sciences, A. Rossi Fanelli, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
650
|
Onodera Y, Nam JM, Horikawa M, Shirato H, Sabe H. Arf6-driven cell invasion is intrinsically linked to TRAK1-mediated mitochondrial anterograde trafficking to avoid oxidative catastrophe. Nat Commun 2018; 9:2682. [PMID: 29992963 PMCID: PMC6041267 DOI: 10.1038/s41467-018-05087-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
Mitochondria dynamically alter their subcellular localization during cell movement, although the underlying mechanisms remain largely elusive. The small GTPase Arf6 and its signaling pathway involving AMAP1 promote cell invasion via integrin recycling. Here we show that the Arf6–AMAP1 pathway promote the anterograde trafficking of mitochondria. Blocking the Arf6-based pathway causes mitochondrial aggregation near the microtubule-organizing center, and subsequently induces detrimental reactive oxygen species (ROS) production, likely via a mitochondrial ROS-induced ROS release-like mechanism. The Arf6-based pathway promotes the localization of ILK to focal adhesions to block RhoT1–TRAK2 association, which controls mitochondrial retrograde trafficking. Blockade of the RhoT1–TRAK1 machinery, rather than RhoT1–TRAK2, impairs cell invasion, but not two-dimensional random cell migration. Weakly or non-invasive cells do not notably express TRAK proteins, whereas they clearly express their mRNAs. Our results identified a novel association between cell movement and mitochondrial dynamics, which is specific to invasion and is necessary for avoiding detrimental ROS production. Mitochondria subcellular localization is dynamically regulated during migration. Here, the authors show that Arf6–AMAP1 dependent ILK localization at focal adhesions reduces mitochondrial retrograde trafficking in migratory cells and prevents mitochondrial aggregation and detrimental ROS production.
Collapse
Affiliation(s)
- Yasuhito Onodera
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Japan. .,Global Institution for Collaborative Research and Education, Hokkaido University, 060-8638, Sapporo, Japan.
| | - Jin-Min Nam
- Global Institution for Collaborative Research and Education, Hokkaido University, 060-8638, Sapporo, Japan.,Department of Radiation Medicine, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Japan
| | - Mei Horikawa
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Japan
| | - Hiroki Shirato
- Global Institution for Collaborative Research and Education, Hokkaido University, 060-8638, Sapporo, Japan.,Department of Radiation Medicine, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Japan.
| |
Collapse
|