601
|
Ransley DG, See EJ, Mizrahi A, Robbins R, Bellomo R. Inpatient and outpatient nephrology management of critically ill patients with acute kidney injury. Nephrology (Carlton) 2020; 26:319-327. [PMID: 33263208 DOI: 10.1111/nep.13838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Acute kidney injury (AKI) during critical illness increases the risk of subsequent chronic kidney disease. Guidelines recommend inpatient nephrology assessment and review at 3 months. OBJECTIVES To quantify the prevalence and predictors of inpatient and outpatient nephrology follow-up of AKI patients admitted to critical care areas within a tertiary hospital. METHODS Retrospective study of all critically ill adults with AKI between January 1, 2012 and December 31, 2016 with a baseline estimated glomerular filtration rate (eGFR) >30 mL/min/1.73 m2 and alive and independent of renal replacement therapy for 30 days after hospital discharge. We used logistic regression models to examine the primary outcome of nephrology review at 3 months. Secondary outcomes included inpatient nephrology review, renal recovery at discharge and the development of a major adverse kidney event (MAKE) at 1 year. RESULTS Of 702 critically ill patients with AKI (mean age 66 years, 64% male, baseline eGFR 78 mL/min/1.73 m2 ), 43 patients (6%) received nephrology follow-up at 3 months and 63 patients (9%) at 1 year. Nephrology follow-up occurred more frequently in patients with a higher baseline creatinine, a higher discharge creatinine and greater severity of AKI. Seventy patients (10%) underwent inpatient nephrology review. Overall, 414 (59%) had recovery of renal function by the time of discharge and 239 (34%) developed a MAKE at 12 months. CONCLUSION Inpatient and outpatient nephrology follow-up of AKI patients after admission to a critical care area was uncommon although one-third developed a MAKE. These findings provide the rationale for controlled studies of nephrology follow-up.
Collapse
Affiliation(s)
- David G Ransley
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Emily J See
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia.,Centre for Integrated Critical Care, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Department for Continuing Education, University of Oxford, Oxford, UK
| | - Alice Mizrahi
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Ray Robbins
- Data Analytics Research and Evaluation Centre, The University of Melbourne and Austin Hospital, Melbourne, Victoria, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia.,Centre for Integrated Critical Care, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Data Analytics Research and Evaluation Centre, The University of Melbourne and Austin Hospital, Melbourne, Victoria, Australia.,School of Public Health and Preventative Medicine, Monash University, Melbourne, Victoria, Australia.,Department of Intensive Care, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
602
|
Liu KD, Goldstein SL, Vijayan A, Parikh CR, Kashani K, Okusa MD, Agarwal A, Cerdá J. AKI!Now Initiative: Recommendations for Awareness, Recognition, and Management of AKI. Clin J Am Soc Nephrol 2020; 15:1838-1847. [PMID: 32317329 PMCID: PMC7769012 DOI: 10.2215/cjn.15611219] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The American Society of Nephrology has established a new initiative, AKI!Now, with the goal of promoting excellence in the prevention and treatment of AKI by building a foundational program that transforms education and delivery of AKI care, aiming to reduce morbidity and associated mortality and to improve long-term outcomes. In this article, we describe our current efforts to improve early recognition and management involving inclusive interdisciplinary collaboration between providers, patients, and their families; discuss the ongoing need to change some of our current AKI paradigms and diagnostic methods; and provide specific recommendations to improve AKI recognition and care. In the hospital and the community, AKI is a common and increasingly frequent condition that generates risks of adverse events and high costs. Unfortunately, patients with AKI may frequently have received less than optimal quality of care. New classifications have facilitated understanding of AKI incidence and its impact on outcomes, but they are not always well aligned with AKI pathophysiology. Despite ongoing research efforts, treatments to promote or hasten kidney recovery remain ineffective. To avoid progression, the current approach to AKI emphasizes the promotion of early recognition and timely response. However, a lack of awareness of the importance of early recognition and treatment among health care team members and the heterogeneity of approaches within the health care teams assessing the patient remains a major challenge. Early identification is further complicated by differences in settings where AKI occurs (the community or the hospital), and by differences in patient populations and cultures between the intensive care unit and ward environments. To address these obstacles, we discuss the need to improve education at all levels of care and to generate specific guidance on AKI evaluation and management, including the development of a widely applicable education and an AKI management toolkit, engaging hospital administrators to incorporate AKI as a quality initiative, and raising awareness of AKI as a complication of other disease processes.
Collapse
Affiliation(s)
- Kathleen D. Liu
- University of California at San Francisco School of Medicine, University of California San Francisco, San Francisco, California
| | - Stuart L. Goldstein
- Center for Acute Nephrology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Anitha Vijayan
- Division of Nephrology, Washington University in St. Louis, St. Louis, Missouri
| | - Chirag R. Parikh
- Division of Nephrology, Johns Hopkins University, Baltimore, Maryland
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mark D. Okusa
- Division of Nephrology, University of Virginia, Charlottesville, Virginia
| | - Anupam Agarwal
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jorge Cerdá
- St. Peter’s Health Partners, Albany, New York
| | | |
Collapse
|
603
|
2-Methylquinazoline derivative 23BB as a highly selective histone deacetylase 6 inhibitor alleviated cisplatin-induced acute kidney injury. Biosci Rep 2020; 40:221748. [PMID: 31894849 PMCID: PMC6970081 DOI: 10.1042/bsr20191538] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 12/13/2019] [Accepted: 12/31/2019] [Indexed: 02/05/2023] Open
Abstract
Histone deacetylases 6 (HDAC6) has been reported to be involved in the pathogenesis of cisplatin-induced acute kidney injury (AKI). Selective inhibition of HDAC6 might be a potential treatment for AKI. In our previous study, a highly selective HDAC6 inhibitor (HDAC6i) 23BB effectively protected against rhabdomyolysis-induced AKI with good safety. However, whether 23BB possessed favorable renoprotection against cisplatin-induced AKI and the involved mechanisms remained unknown. In the study, cisplatin-injected mice developed severe AKI symptom as indicated by acute kidney dysfunction and pathological changes, companied by the overexpression of HDAC6 in tubular epithelial cells. Pharmacological inhibition of HDAC6 by the treatment of 23BB significantly attenuated sCr, BUN and renal tubular damage. Mechanistically, 23BB enhanced the acetylation of histone H3 to reduce the HDAC6 activity. Cisplatin-induced AKI triggered multiple signal mediators of endoplasmic reticulum (ER) stress including PERK, ATF6 and IRE1 pathway, as well as CHOP, GRP78, p-JNK and caspase 12 proteins. Oral administration of our HDAC6i 23BB at a dose of 40 mg/kg/d for 3 days notably improved above-mentioned responses in the injured kidney tissues. HDAC6 inhibition also reduced the number of TUNEL-positive tubular cells and regulated apoptosis-related protein expression. Overall, these data highlighted that HDAC6 inhibitor 23BB modulated apoptosis via the inhibition of ER stress in the tubular epithelial cells of cisplatin-induced AKI.
Collapse
|
604
|
Ahmed AR, Ebad CA, Stoneman S, Satti MM, Conlon PJ. Kidney injury in COVID-19. World J Nephrol 2020; 9:18-32. [PMID: 33312899 PMCID: PMC7701935 DOI: 10.5527/wjn.v9.i2.18] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to affect millions of people around the globe. As data emerge, it is becoming more evident that extrapulmonary organ involvement, particularly the kidneys, highly influence mortality. The incidence of acute kidney injury has been estimated to be 30% in COVID-19 non-survivors. Current evidence suggests four broad mechanisms of renal injury: Hypovolaemia, acute respiratory distress syndrome related, cytokine storm and direct viral invasion as seen on renal autopsy findings. We look to critically assess the epidemiology, pathophysiology and management of kidney injury in COVID-19.
Collapse
Affiliation(s)
- Adeel Rafi Ahmed
- Department of Nephrology, Beaumont Hospital, Dublin D09 V2N0, Ireland
| | | | - Sinead Stoneman
- Department of Nephrology, Beaumont Hospital, Dublin D09 V2N0, Ireland
| | | | - Peter J Conlon
- Department of Nephrology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin D09 V2N0, Ireland
| |
Collapse
|
605
|
Jiang GP, Liao YJ, Huang LL, Zeng XJ, Liao XH. Effects and molecular mechanism of pachymic acid on ferroptosis in renal ischemia reperfusion injury. Mol Med Rep 2020; 23:63. [PMID: 33215224 PMCID: PMC7716408 DOI: 10.3892/mmr.2020.11704] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical disease. Ferropotosis, a new type of regulatory cell death, serves an important regulatory role in AKI. Pachymic acid (PA), a lanostane‑type triterpenoid from Poria cocos, has been reported to be protective against AKI. However, the protective mechanism of PA in AKI is not yet fully understood. The present study aimed to investigate the effect and molecular mechanism of PA on ferroptosis in renal ischemia reperfusion injury in vivo. A total of 30 mice were intraperitoneally injected with 5, 10 and 20 mg/kg PA for 3 days. A bilateral renal pedicle clip was used for 40 min to induce renal ischemia‑reperfusion injury and establish the model. The results demonstrated that treatment with PA decreased serum creatinine and blood urea nitrogen, and ameliorated renal pathological damage. Transmission electron microscopy revealed no characteristic changes in ferroptosis in the mitochondria of the renal tissue in the high‑dose PA group, and only mild edema. Furthermore, treatment with PA increased glutathione expression, and decreased the expression levels of malondialdehyde and cyclooxygenase 2. Treatment with PA enhanced the protein and mRNA expression levels of the ferroptosis related proteins, glutathione peroxidase 4 (GPX4), solute carrier family 7 (cationic amino acid transporter, y+ system) member 11 (SLC7A11) and heme oxygenase 1 (HO‑1) in the kidney, and increased the expression levels of nuclear factor erythroid derived 2 like 2 (NRF2) signaling pathway members. Taken together, the results of the present study suggest that PA has a protective effect on ischemia‑reperfusion induced acute kidney injury in mice, which may be associated with the inhibition of ferroptosis in the kidneys through direct or indirect activation of NRF2, and upregulation of the expression of the downstream ferroptosis related proteins, GPX4, SLC7A11 and HO‑1.
Collapse
Affiliation(s)
- Gui-Ping Jiang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400000, P.R. China
| | - Yue-Juan Liao
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400000, P.R. China
| | - Li-Li Huang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400000, P.R. China
| | - Xu-Jia Zeng
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400000, P.R. China
| | - Xiao-Hui Liao
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400000, P.R. China
| |
Collapse
|
606
|
See EJ, Ransley DG, Polkinghorne KR, Toussaint N, Bailey M, Johnson D, Robbins R, Bellomo R. Practice patterns and predictors of outpatient care following acute kidney injury in an Australian healthcare setting. Intern Med J 2020; 52:79-88. [PMID: 33197133 DOI: 10.1111/imj.15138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Survivors of acute kidney injury (AKI) are at increased risk of major adverse kidney events and international guidelines recommend individuals be evaluated 3 months following AKI. AIMS We describe practice patterns and predictors of post-AKI care in an Australian tertiary hospital. METHODS A retrospective analysis was undertaken of adults with AKI (defined by KDIGO criteria) admitted to a single centre between 2012 and 2016. The primary outcome was outpatient nephrology review at 3 months. Secondary outcomes included inpatient nephrology review, and outpatient serum creatinine and urinary protein measurements. Data were analysed using multivariable logistic and competing risk regression. RESULTS Only 117 of 2111 patients with AKI (6%) were reviewed by a nephrologist at 3 months. Reviewed patients were more likely to have a higher discharge serum creatinine (OR 1.20 per 10 μmol/L increase, 95% CI 1.16-1.25) or a history of peripheral vascular disease (OR 1.77, 95% CI 1.00-3.14). They were less likely to be older (OR 0.66 per decade, 95% CI 0.57-0.76), or to have a history of liver (OR 0.47, 95% CI 0.26-0.87) or ischaemic heart disease (OR 0.50, 95% CI 0.27-0.94). AKI stage did not predict follow up. The median time from discharge to outpatient serum creatinine testing was 12 days (IQR 4-47) and proteinuria was measured in 538 patients (25%). CONCLUSIONS A minority of admitted AKI patients receive recommended post-AKI care. Studies in other Australian institutions are required to confirm or refute these concerning findings. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Emily J See
- Department of Intensive Care, Austin Hospital, Heidelberg, Australia.,School of Medicine, University of Melbourne, Melbourne, Australia.,Department for Continuing Education, University of Oxford, Oxford, United Kingdom
| | - David G Ransley
- Department of Intensive Care, Austin Hospital, Heidelberg, Australia
| | - Kevan R Polkinghorne
- Department of Medicine, Monash University, Melbourne, Australia.,Department of Nephrology, Monash Health, Clayton, Australia.,Department of Epidemiology and Preventative Medicine, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| | - Nigel Toussaint
- Department of Medicine, University of Melbourne, Melbourne, Australia.,Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia
| | - Michael Bailey
- School of Medicine, University of Melbourne, Melbourne, Australia.,Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| | - David Johnson
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Australia.,Centre for Kidney Disease Research, University of Queensland, Brisbane, Australia.,Australasian Kidney Trials Network, Brisbane, Australia.,Translational Research Institute, Brisbane, Australia
| | - Ray Robbins
- Data Analytics Research and Evaluation, The University of Melbourne and Austin Hospital, Melbourne, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Heidelberg, Australia.,School of Medicine, University of Melbourne, Melbourne, Australia.,Data Analytics Research and Evaluation, The University of Melbourne and Austin Hospital, Melbourne, Australia.,Department of Intensive Care, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
607
|
Liu C, Chen K, Wang H, Zhang Y, Duan X, Xue Y, He H, Huang Y, Chen Z, Ren H, Wang H, Zeng C. Gastrin Attenuates Renal Ischemia/Reperfusion Injury by a PI3K/Akt/Bad-Mediated Anti-apoptosis Signaling. Front Pharmacol 2020; 11:540479. [PMID: 33343341 PMCID: PMC7740972 DOI: 10.3389/fphar.2020.540479] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/24/2020] [Indexed: 12/25/2022] Open
Abstract
Ischemic/reperfusion (I/R) injury is the primary cause of acute kidney injury (AKI). Gastrin, a gastrointestinal hormone, is involved in the regulation of kidney function of sodium excretion. However, whether gastrin has an effect on kidney I/R injury is unknown. Here we show that cholecystokinin B receptor (CCKBR), the gastrin receptor, was significantly up-regulated in I/R-injured mouse kidneys. While pre-administration of gastrin ameliorated I/R-induced renal pathological damage, as reflected by the levels of serum creatinine and blood urea nitrogen, hematoxylin and eosin staining and periodic acid-Schiff staining. The protective effect could be ascribed to the reduced apoptosis for gastrin reduced tubular cell apoptosis both in vivo and in vitro. In vitro studies also showed gastrin preserved the viability of hypoxia/reoxygenation (H/R)-treated human kidney 2 (HK-2) cells and reduced the lactate dehydrogenase release, which were blocked by CI-988, a specific CCKBR antagonist. Mechanistically, the PI3K/Akt/Bad pathway participates in the pathological process, because gastrin treatment increased phosphorylation of PI3K, Akt and Bad. While in the presence of wortmannin (1 μM), a PI3K inhibitor, the gastrin-induced phosphorylation of Akt after H/R treatment was blocked. Additionally, wortmannin and Akt inhibitor VIII blocked the protective effect of gastrin on viability of HK-2 cells subjected to H/R treatment. These studies reveals that gastrin attenuates kidney I/R injury via a PI3K/Akt/Bad-mediated anti-apoptosis signaling. Thus, gastrin can be considered as a promising drug candidate to prevent AKI.
Collapse
Affiliation(s)
- Chao Liu
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Huaixiang Wang
- Department of Lishilu Outpatient, General Hospital of the PLA Rocket Force, Beijing, China
| | - Ye Zhang
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Xudong Duan
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yuanzheng Xue
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Hongye He
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Yu Huang
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Zhi Chen
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China.,Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
608
|
4-methylpyrazole protects against acetaminophen-induced acute kidney injury. Toxicol Appl Pharmacol 2020; 409:115317. [PMID: 33157119 DOI: 10.1016/j.taap.2020.115317] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is the most common cause of acute liver failure in the United States, and while a significant percentage of APAP overdose patients develop kidney injury, molecular mechanisms involved in APAP-induced nephrotoxicity are relatively unknown. We have shown that 4-methylpyrazole (4MP, Fomepizole) protects against APAP-induced liver injury by inhibiting reactive metabolite formation through Cyp2E1, and analysis of data from APAP overdose patients indicated that kidney dysfunction strongly correlated with severe liver injury. Since Cyp2E1 is also expressed in the kidney, this study explored protection by 4MP against APAP-induced nephrotoxicity. Male C57BL/6 J mice were treated with either 300 or 600 mg/kg APAP with or without 4MP for 2, 6 or 24 h, followed by measurement of APAP metabolism and tissue injury. Interestingly, levels of APAP and its non-oxidative metabolites were significantly higher in kidneys when compared to the liver. APAP-protein adducts were present in both tissues within 2 h, but were absent in kidney mitochondria, unlike in the liver. While GSH depletion was seen in both tissues, activation of c-jun N-terminal kinase and its translocation to the mitochondria, which is a critical feature of APAP-induced liver injury, was not detected in the kidney. Treatment with 4MP attenuated APAP oxidative metabolite generation, GSH depletion as well as kidney injury indicating its potential use in protection against APAP-induced nephrotoxicity. In conclusion, since reactive metabolite formation seems to be common in both liver and kidney, 4MP mediated inhibition of Cyp2E1 protects against APAP-induced nephrotoxicity. However, downstream mechanisms of APAP-induced nephrotoxicity seem distinct from the liver.
Collapse
|
609
|
Howarth M, Bhatt M, Benterud E, Wolska A, Minty E, Choi KY, Devrome A, Harrison TG, Baylis B, Dixon E, Datta I, Pannu N, James MT. Development and initial implementation of electronic clinical decision supports for recognition and management of hospital-acquired acute kidney injury. BMC Med Inform Decis Mak 2020; 20:287. [PMID: 33148237 PMCID: PMC7640650 DOI: 10.1186/s12911-020-01303-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/22/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is common in hospitalized patients and is associated with poor patient outcomes and high costs of care. The implementation of clinical decision support tools within electronic medical record (EMR) could improve AKI care and outcomes. While clinical decision support tools have the potential to enhance recognition and management of AKI, there is limited description in the literature of how these tools were developed and whether they meet end-user expectations. METHODS We developed and evaluated the content, acceptability, and usability of electronic clinical decision support tools for AKI care. Multi-component tools were developed within a hospital EMR (Sunrise Clinical Manager™, Allscripts Healthcare Solutions Inc.) currently deployed in Calgary, Alberta, and included: AKI stage alerts, AKI adverse medication warnings, AKI clinical summary dashboard, and an AKI order set. The clinical decision support was developed for use by multiple healthcare providers at the time and point of care on general medical and surgical units. Functional and usability testing for the alerts and clinical summary dashboard was conducted via in-person evaluation sessions, interviews, and surveys of care providers. Formal user acceptance testing with clinical end-users, including physicians and nursing staff, was conducted to evaluate the AKI order set. RESULTS Considerations for appropriate deployment of both non-disruptive and interruptive functions was important to gain acceptability by clinicians. Functional testing and usability surveys for the alerts and clinical summary dashboard indicated that the tools were operating as desired and 74% (17/23) of surveyed healthcare providers reported that these tools were easy to use and could be learned quickly. Over three-quarters of providers (18/23) reported that they would utilize the tools in their practice. Three-quarters of the participants (13/17) in user acceptance testing agreed that recommendations within the order set were useful. Overall, 88% (15/17) believed that the order set would improve the care and management of AKI patients. CONCLUSIONS Development and testing of EMR-based decision support tools for AKI with clinicians led to high acceptance by clinical end-users. Subsequent implementation within clinical environments will require end-user education and engagement in system-level initiatives to use the tools to improve care.
Collapse
Affiliation(s)
- Megan Howarth
- Department of Medicine, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Meha Bhatt
- Department of Medicine, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Eleanor Benterud
- Department of Medicine, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Anna Wolska
- Alberta Health Services, Calgary, AB, Canada
| | - Evan Minty
- Department of Medicine, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Kyoo-Yoon Choi
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrea Devrome
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tyrone G Harrison
- Department of Medicine, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Barry Baylis
- Department of Medicine, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Elijah Dixon
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Indraneel Datta
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Neesh Pannu
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Matthew T James
- Department of Medicine, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
610
|
Zhou Y, Ren Q, Chen G, Jin Q, Cui Q, Luo H, Zheng K, Qin Y, Li X. Chronic Kidney Diseases and Acute Kidney Injury in Patients With COVID-19: Evidence From a Meta-Analysis. Front Med (Lausanne) 2020; 7:588301. [PMID: 33224965 PMCID: PMC7670057 DOI: 10.3389/fmed.2020.588301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/29/2020] [Indexed: 01/08/2023] Open
Abstract
Renal involvement has been implicated in coronavirus disease 2019 (COVID-19), but the related prevalence and prognosis were largely unknown. In this meta-analysis, we searched the literature from PubMed, Embase, through bioRxiv, and medRxiv until April 26, 2020. Studies reporting chronic kidney diseases (CKDs) and/or acute kidney injury (AKI) were included. Demographics, relevant data of disease severity, and patient's prognosis were extracted and aggregated. Twenty-one thousand one hundred sixty-four patients from 52 peer-reviewed studies were included. Thirty-seven studies (n = 16,922) reported CKD in COVID-19 patients at diagnosis, and the pooled prevalence was 3.52% (95% CI, 1.98-5.48%; I 2 = 93%). Subgroup analysis showed that CKD prevalence was higher in severe cases [odds ratio (OR), 3.42; 95% CI 2.05-5.61; I 2 = 0%] compared to those with non-severe disease and deceased cases (6.46, 3.40-12.29; I 2 = 1%) compared with survivors. Pooled prevalence of CKD was lower in Chinese patients (2.56%; 95% CI, 1.79-3.47%; I 2 = 80%) compared to those outside of China (6.32%; 95% CI, 0.9-16.12%; I 2 = 93%) (p = 0.08). The summary estimates for AKI prevalence was 11.46% (95% CI, 6.93-16.94%). Patients with AKI had a higher prevalence of developing into severe cases (OR, 6.97; 95% CI, 3.53-13.75; I 2 = 0%) and mortality risk (45.79, 36.88-56.85; I 2 = 17%). The prevalence estimates of CKD or AKI were not significantly different from preprint publications (p > 0.05). Our study indicates that renal condition, either in CKD or AKI, is associated with COVID-19 prognosis, and taking care of such patients needs further awareness and investigations.
Collapse
Affiliation(s)
- Yangzhong Zhou
- Department of Nephrology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qidong Ren
- School of Medicine, Tsinghua University, Beijing, China
| | - Gang Chen
- Department of Nephrology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiao Jin
- School of Medicine, Tsinghua University, Beijing, China
| | - Quexuan Cui
- Department of Nephrology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huiting Luo
- Department of Nephrology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ke Zheng
- Department of Nephrology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Qin
- Department of Nephrology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuemei Li
- Department of Nephrology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
611
|
Rudman-Melnick V, Adam M, Potter A, Chokshi SM, Ma Q, Drake KA, Schuh MP, Kofron JM, Devarajan P, Potter SS. Single-Cell Profiling of AKI in a Murine Model Reveals Novel Transcriptional Signatures, Profibrotic Phenotype, and Epithelial-to-Stromal Crosstalk. J Am Soc Nephrol 2020; 31:2793-2814. [PMID: 33115917 DOI: 10.1681/asn.2020010052] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Current management of AKI, a potentially fatal disorder that can also initiate or exacerbate CKD, is merely supportive. Therefore, deeper understanding of the molecular pathways perturbed in AKI is needed to identify targets with potential to lead to improved treatment. METHODS We performed single-cell RNA sequencing (scRNA-seq) with the clinically relevant unilateral ischemia-reperfusion murine model of AKI at days 1, 2, 4, 7, 11, and 14 after AKI onset. Using real-time quantitative PCR, immunofluorescence, Western blotting, and both chromogenic and single-molecule in situ hybridizations, we validated AKI signatures in multiple experiments. RESULTS Our findings show the time course of changing gene expression patterns for multiple AKI stages and all renal cell types. We observed elevated expression of crucial injury response factors-including kidney injury molecule-1 (Kim1), lipocalin 2 (Lcn2), and keratin 8 (Krt8)-and of several novel genes (Ahnak, Sh3bgrl3, and Col18a1) not previously examined in kidney pathologies. AKI induced proximal tubule dedifferentiation, with a pronounced nephrogenic signature represented by Sox4 and Cd24a. Moreover, AKI caused the formation of "mixed-identity cells" (expressing markers of different renal cell types) that are normally seen only during early kidney development. The injured tubules acquired a proinflammatory and profibrotic phenotype; moreover, AKI dramatically modified ligand-receptor crosstalk, with potential pathologic epithelial-to-stromal interactions. Advancing age in AKI onset was associated with maladaptive response and kidney fibrosis. CONCLUSIONS The scRNA-seq, comprehensive, cell-specific profiles provide a valuable resource for examining molecular pathways that are perturbed in AKI. The results fully define AKI-associated dedifferentiation programs, potential pathologic ligand-receptor crosstalk, novel genes, and the improved injury response in younger mice, and highlight potential targets of kidney injury.
Collapse
Affiliation(s)
- Valeria Rudman-Melnick
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Andrew Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Saagar M Chokshi
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Keri A Drake
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Meredith P Schuh
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - J Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| |
Collapse
|
612
|
Untargeted Metabolomics Reveals the Protective Effect of a Traditional Chinese Herbal Decoction on Cisplatin-Induced Acute Kidney Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8524132. [PMID: 33101449 PMCID: PMC7569447 DOI: 10.1155/2020/8524132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
Our previous studies have demonstrated that Jian-Pi-Yi-Shen formula (JPYSF), a traditional Chinese herbal decoction, has a renoprotective effect in 5/6 nephrectomy-induced chronic kidney injury. However, the role and potential mechanisms of JPYSF in the treatment of acute kidney injury (AKI) remain unknown. This study was designed to test the beneficial effect of JPYSF in an AKI mouse model and to investigate the underlying mechanism by using metabolomics analysis. The AKI mouse model was induced by a single intraperitoneal injection of cisplatin at a dose of 20 mg/kg. The mice in the treatment group were pretreated orally with JPYSF (18.35 g/kg/d) for 5 days before cisplatin injection. Seventy-two hours after cisplatin injection, serum and kidney samples were collected for biochemical and histological examination. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) was applied to analyze metabolic profiling variations in the kidney. The results showed that pretreatment with JPYSF obviously reduced the levels of serum creatinine and blood urea nitrogen and alleviated renal pathological injury in AKI mice. Orthogonal partial least-squares discriminant analysis (OPLS-DA) score plot revealed a clear separation between the AKI and AKI + JPYSF group. A total of 68 and 87 significantly differentially expressed metabolites were identified in the kidney of AKI mice responding to JPYSF treatment in negative and positive ion mode, respectively. The pivotal pathways affected by JPYSF included vitamin B6 metabolism, alanine, aspartate and glutamate metabolism, lysine biosynthesis, and butanoate metabolism. In conclusion, JPYSF can protect the kidney from cisplatin-induced AKI, which may be associated with regulating renal metabolic disorders.
Collapse
|
613
|
Liu Z, Yang D, Gao J, Xiang X, Hu X, Li S, Wu W, Cai J, Tang C, Zhang D, Dong Z. Discovery and validation of miR-452 as an effective biomarker for acute kidney injury in sepsis. Theranostics 2020; 10:11963-11975. [PMID: 33204323 PMCID: PMC7667674 DOI: 10.7150/thno.50093] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022] Open
Abstract
Rationale: Sepsis is the cause of nearly half of acute kidney injury (AKI) and, unfortunately, AKI in sepsis is associated with unacceptably high rates of mortality. Early detection of AKI would guide the timely intervention and care of sepsis patients. Currently, NephroCheck, based on urinary [TIMP2]*[IGFBP7], is the only FDA approved test for early detection of AKI, which has a relatively low sensitivity for sepsis patients. Methods:In vitro, BUMPT (Boston University mouse proximal tubular cell line) cells were treated with lipopolysaccharides (LPS). In vivo, sepsis was induced in mice by LPS injection or cecal ligation and puncture (CLP). To validate the biomarker potential of miR-452, serum and urinary samples were collected from 47 sepsis patients with AKI, 50 patients without AKI, and 10 healthy subjects. Results: miR-452 was induced in renal tubular cells in septic AKI, and the induction was shown to be mediated by NF-κB. Notably, serum and urinary miR-452 increased early in septic mice following LPS or CLP treatment, prior to detectable renal dysfunction or tissue damage. Sepsis patients with AKI had significantly higher levels of serum and urinary miR-452 than the patients without AKI. Spearman's test demonstrated a remarkable positive correlation between urinary miR-452 and serum creatinine in sepsis patients (r=0.8269). The area under the receiver operating characteristic curve (AUC) was 0.8985 for urinary miR-452. Logistic regression analysis showed a striking 72.48-fold increase of AKI risk for every 1-fold increase of urinary miR-452 in sepsis patients. The sensitivity of urinary miR-452 for AKI detection in sepsis patients reached 87.23%, which was notably higher than the 61.54% achieved by urinary [TIMP2]*[IGFBP7], while the specificity of urinary miR-452 (78.00%) was slightly lower than that of [TIMP2]*[IGFBP7] (87.18%). Conclusions: miR-452 is induced via NF-κB in renal tubular cells in septic AKI. The increase of miR-452, especially that in urine, may be an effective biomarker for early detection of AKI in sepsis patients.
Collapse
|
614
|
HO-1/PINK1 Regulated Mitochondrial Fusion/Fission to Inhibit Pyroptosis and Attenuate Septic Acute Kidney Injury. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2148706. [PMID: 33145342 PMCID: PMC7599399 DOI: 10.1155/2020/2148706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/01/2020] [Accepted: 09/20/2020] [Indexed: 12/27/2022]
Abstract
Background Endotoxin-associated acute kidney injury (AKI), a disease characterized by marked oxidative stress and inflammation disease, is a major cause of mortality in critically ill patients. Mitochondrial fission and pyroptosis often occur in AKI. However, the underlying biological pathways involved in endotoxin AKI remain poorly understood, especially those related to mitochondrial dynamics equilibrium disregulation and pyroptosis. Previous studies suggest that heme oxygenase- (HO-) 1 confers cytoprotection against AKI during endotoxic shock, and PTEN-induced putative kinase 1 (PINK1) takes part in mitochondrial dysfunction. Thus, in this study, we examine the roles of HO-1/PINK1 in maintaining the dynamic process of mitochondrial fusion/fission to inhibit pyroptosis and mitigate acute kidney injury in rats exposed to endotoxin. Methods An endotoxin-associated AKI model induced by lipopolysaccharide (LPS) was used in our study. Wild-type (WT) rats and PINK1 knockout (PINK1KO) rats, respectively, were divided into four groups: the control, LPS, Znpp+LPS, and Hemin+LPS groups. Rats were sacrificed 6 h after intraperitoneal injecting LPS to assess renal function, oxidative stress, and inflammation by plasma. Mitochondrial dynamics, morphology, and pyroptosis were evaluated by histological examinations. Results In the rats with LPS-induced endotoxemia, the expression of HO-1 and PINK1 were upregulated at both mRNA and protein levels. These rats also exhibited inflammatory response, oxidative stress, mitochondrial fission, pyroptosis, and decreased renal function. After upregulating HO-1 in normal rats, pyroptosis was inhibited; mitochondrial fission and inflammatory response to oxidative stress were decreased; and the renal function was improved. The effects were reversed by adding Znpp (a type of HO-1 inhibitor). Finally, after PINK1 knockout, there is no statistical difference in the LPS-treated group and Hemin or Znpp pretreated group. Conclusions HO-1 inhibits inflammation response and oxidative stress and regulates mitochondria fusion/fission to inhibit pyroptosis, which can alleviate endotoxin-induced AKI by PINK1.
Collapse
|
615
|
Ethnicity-Stratified Analysis of the Association between TNF- α Genetic Polymorphisms and Acute Kidney Injury: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5262351. [PMID: 33083469 PMCID: PMC7556080 DOI: 10.1155/2020/5262351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
Abstract
Background Several studies have reported conflicting findings regarding the association between tumor necrosis factor-alpha (TNF-α) genetic polymorphisms and acute kidney injury (AKI). Therefore, we performed this meta-analysis to further investigate whether TNF-α variants are related to AKI susceptibility. Methods A comprehensive search of observational studies on the association of TNF-α polymorphism with AKI susceptibility was conducted in the PubMed, Cochrane, and Embase databases through February 10, 2020. Pooled odds ratios (ORs) and 95% corresponding confidence intervals (95% CIs) were analyzed to evaluate the strength of the relationship. Results A total of 8 studies involving 6694 patients (2559 cases and 4135 controls) were included. Pooled analysis showed a trend of increased risk between the TNF-α rs1800629 variant and AKI (A vs. G: OR [95%CI] = 1.33 [0.98‐1.81]) among the overall population. Ethnicity-stratified analysis indicated that the TNF-α rs1800629 variant was a risk factor for Asians (OR [95%CI] = 1.93 [1.59‐2.35]) while it is not for Caucasians (OR [95%CI] = 1.04 [0.91‐1.20]). Additionally, we also found that TNF-α rs1799964 polymorphism was observed to have a significant relationship with AKI risk in Asian patients (C vs. T, OR [95%CI] = 1.26 [1.11‐1.43]). Conclusions The TNF rs1800629 polymorphism exhibited a trend toward AKI susceptibility with ethnic differences. The relationship was found to be significant among the Asian population, but not among those of Caucasian origin. Additionally, the TNF-α rs1799964 polymorphism was also related to a significantly increased risk of AKI in Asians.
Collapse
|
616
|
Ricciardi CA, Gnudi L. The endoplasmic reticulum stress and the unfolded protein response in kidney disease: Implications for vascular growth factors. J Cell Mol Med 2020; 24:12910-12919. [PMID: 33067928 PMCID: PMC7701511 DOI: 10.1111/jcmm.15999] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/14/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) represent an important challenge for healthcare providers. The identification of new biomarkers/pharmacological targets for kidney disease is required for the development of more effective therapies. Several studies have shown the importance of the endoplasmic reticulum (ER) stress in the pathophysiology of AKI and CKD. ER is a cellular organelle devolved to protein biosynthesis and maturation, and cellular detoxification processes which are activated in response to an insult. This review aimed to dissect the cellular response to ER stress which manifests with activation of the unfolded protein response (UPR) with its major branches, namely PERK, IRE1α, ATF6 and the interplay between ER and mitochondria in the pathophysiology of kidney disease. Further, we will discuss the relationship between mediators of renal injury (with specific focus on vascular growth factors) and ER stress and UPR in the pathophysiology of both AKI and CKD with the aim to propose potential new targets for treatment for kidney disease.
Collapse
Affiliation(s)
- Carlo Alberto Ricciardi
- King's College of London, Faculty of Life Sciences & Medicine, School of Cardiovascular Medicine & Sciences, Section Vascular Biology and Inflammation, British Heart Foundation Centre for Research Excellence, London, UK
| | - Luigi Gnudi
- King's College of London, Faculty of Life Sciences & Medicine, School of Cardiovascular Medicine & Sciences, Section Vascular Biology and Inflammation, British Heart Foundation Centre for Research Excellence, London, UK
| |
Collapse
|
617
|
Chromolaena odorata flavonoids attenuate experimental nephropathy: Involvement of pro-inflammatory genes downregulation. Toxicol Rep 2020; 7:1421-1427. [PMID: 33102146 PMCID: PMC7578532 DOI: 10.1016/j.toxrep.2020.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/28/2022] Open
Abstract
Nephropathy is a serious complication comorbid with a number of life-threatening diseases such as diabetes. Flavonoids are well known cytoprotective phytochemicals. Here, nephropathy associated with streptozotocin (STZ) treatment in experimental animals was challenged by flavonoids (CoF) isolated from Chromolaena odorata. Experimental animals were divided into control (n = 5), STZ (40 mg/kg b.w. i.p. n = 5) and STZ-CoF (CoF = 30 mg/kg b.w. oral, 60 days, n = 7) groups. Blood urea nitrogen (BUN) and serum creatinine (SC) levels were quantified using ELISA. Kidney function, inflammatory marker, and antioxidant gene expression levels were also evaluated using reverse-transcription and polymerase chain reaction protocols. Histological assessment was also performed using Haematoxylin and Eosin (H&E) staining protocols. CoF improved kidney function by restoring BUN/SC levels to pre-STZ treatment states. KIM-1, TNF-α, and MCP-1 but not TNF-R and IL-10 genes were significantly downregulated in STZ-CoF treated group in comparison with STZ-treated group (p < 0.05). Anti-oxidant genes (GPx-1, CAT) significantly (p < 0.05 vs. control) upregulated in STZ-treatment did not respond to CoF treatment. STZ treatment associated Bowman's space enlargement, thickened basement membrane, and glomerulosclerosis were completely reversed in STZ-CoF group. Finally, CoF has demonstrable anti-nephropathic via downregulation of proinflammatory genes and may represent new management option in clinical nephropathy.
Collapse
Key Words
- AKI, Acute kidney injury
- ARE, Antioxidant response element
- Anti-oxidant
- CAT, Catalase
- CRD, Committee of Centre for Research and Development
- Chromolaena odorata flavonoids (CoF)
- CoF, Chromolaena odorata is rich in flavonoids
- FLVs, Flavonoids
- GPx-1, Glutathioneperoxidase
- KIM-1, KidneyInjury Molecule-1
- MCP-1, Monocyte chemoattractant protein 1
- MKK-3, mitogen-activated protein kinase kinase 3
- Nephropathy
- Nrf2, Nuclear factor-erythroid 2-related factor 2
- OCC, Occludin
- Pro-inflammation
- QoL, Quality of life
- ROS, Reactive oxygen species
- SOD, Superoxide dismutase
- STZ, Streptozotocin
- TNF-α-R, Tumour necrosis alpha receptor
- Tight junction
Collapse
|
618
|
Xu Q, Yan P, Duan XJ, Wu X, Chen XJ, Luo M, Peng JC, Feng LX, Liu J, Zhong HL, Cheng W, Zou QY, Duan SB. Human umbilical cord-derived mesenchymal stem cells and human cord blood mononuclear cells protect against cisplatin-induced acute kidney injury in rat models. Exp Ther Med 2020; 20:145. [PMID: 33093883 PMCID: PMC7571324 DOI: 10.3892/etm.2020.9274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are a promising tool to attenuate cisplatin (CP)-induced acute kidney injury (AKI). However, whether the transplantation of human cord blood mononuclear cells (hCBMNCs) exhibits similar protective effects and their potential underlying mechanisms of action remain unclear. The present study aimed to determine the protective effects of hUCMSCs and hCBMNCs transplantation therapies on an established CP-induced rat model and explore their underlying mechanisms of action. A total of 24 Sprague-Dawley rats, selected based on body weight, were randomly assigned into 4 groups: i) normal control; ii) model (CP); iii) hCBMNCs (CP + hCBMNCs); and iv) hUCMSCs (CP + hUCMSCs). hUCMSCs (2.0x106 cells) and hCBMNCs (2.0x106 cells) were injected into the femoral vein of rats 24 h after CP (8 mg/kg) treatment. To determine the effects of hCBMNCs and hUCMSCs on CP-induced rats, renal function assessment and histological evaluations were performed. Expression levels of high mobility group box 1 (HMGB1) and the ratio of Bax/Bcl2 in renal tissues were detected to elucidate their underlying molecular mechanisms of action. The results demonstrated that transplantation of hUCMSCs and hCBMNCs significantly improved renal function in CP-induced AKI rats, as evidenced by the enhancement of renal morphology; decreased concentrations of blood urea nitrogen and serum creatinine; and a lower percentage of apoptotic renal tubular cells. The expression of HMGB1 and the ratio of Bax/Bcl-2 were significantly reduced in the hUCMSCs and hCBMNCs groups compared with CP group. In conclusion, the present study indicated that hCBMNCs exert similar protective effects to hUCMSCs on CP-induced AKI. hUCMSCs and hCBMNCs protect against CP-induced AKI by suppressing HMGB1 expression and preventing cell apoptosis.
Collapse
Affiliation(s)
- Qian Xu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China
| | - Ping Yan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China
| | - Xiang-Jie Duan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China
| | - Xi Wu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China
| | - Xiao-Jun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China
| | - Min Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China
| | - Jing-Cheng Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China
| | - Li-Xin Feng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China
| | - Jie Liu
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P.R. China
| | - Hui-Lin Zhong
- Neuromedical Research Center, Guangdong 999 Brain Hospital, Guangzhou, Guangdong 510510, P.R. China
| | - Wei Cheng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China
| | - Qing-Yan Zou
- Neuromedical Research Center, Guangdong 999 Brain Hospital, Guangzhou, Guangdong 510510, P.R. China
| | - Shao-Bin Duan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
619
|
Zhou J, Zhang F, Lin H, Quan M, Yang Y, Lv Y, He Z, Qian Y. The Protein Kinase R Inhibitor C16 Alleviates Sepsis-Induced Acute Kidney Injury Through Modulation of the NF-κB and NLR Family Pyrin Domain-Containing 3 (NLPR3) Pyroptosis Signal Pathways. Med Sci Monit 2020; 26:e926254. [PMID: 33017381 PMCID: PMC7545781 DOI: 10.12659/msm.926254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Protein kinase R (PKR) is implicated in the inflammatory response to bacterial infection while the role of PKR in sepsis-induced acute kidney injury (AKI) is largely unknown. This study aimed to investigate the effects of the specific PKR inhibitor C16 (C13H8N4OS) on lipopolysaccharide (LPS)-induced AKI, and its mechanisms of action. Material/Methods C57BL/6J mice were injected intraperitoneally with C16 or vehicle 1 h before the LPS challenge and then injected intraperitoneally with LPS or 0.9% saline. After the LPS challenge, histopathological damage, renal function, and levels of proinflammatory cytokines were assessed. All the related signaling pathways were analyzed. Results C16 effectively inhibited LPS-induced renal elevation of proinflammatory cytokines and chemokines. C16 prevented NF-κB activation and suppressed the PKR/eIF2α signaling pathway in AKI after the LPS challenge. Furthermore, C16 significantly inhibited pyroptosis during AKI, as evidenced by decreased renal levels of apoptosis-associated speck-like protein; NACHT, LRR, NLR Family Pyrin Domain-Containing 3; caspase-1; interleukin (IL)-1β; and IL-18. Conclusions Our findings suggest that inhibition by C16 ameliorated LPS-induced renal inflammation and injury, at least partly through modulation of the pyroptosis signal pathway in the kidney.
Collapse
Affiliation(s)
- Jialu Zhou
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Fan Zhang
- Department of Respiratory Medicine, The Children's Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Hongru Lin
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Minxue Quan
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yaqin Yang
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Zongnan He
- Department of Pediatrics, Pingxiang Maternity and Child Care Hospital, Pingxiang, Jiangxi, China (mainland)
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
620
|
Zhang W, Guan Y, Bayliss G, Zhuang S. Class IIa HDAC inhibitor TMP195 alleviates lipopolysaccharide-induced acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F1015-F1026. [PMID: 33017186 DOI: 10.1152/ajprenal.00405.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is associated with high mortality rates, but clinicians lack effective treatments except supportive care or renal replacement therapies. Recently, histone deacetylase (HDAC) inhibitors have been recognized as potential treatments for acute kidney injury and sepsis in animal models; however, the adverse effect generated by the use of pan inhibitors of HDACs may limit their application in people. In the present study, we explored the possible renoprotective effect of a selective class IIa HDAC inhibitor, TMP195, in a murine model of SA-AKI induced by lipopolysaccharide (LPS). Administration of TMP195 significantly reduced increased serum creatinine and blood urea nitrogen levels and renal damage induced by LPS; this was coincident with reduced expression of HDAC4, a major isoform of class IIa HDACs, and elevated histone H3 acetylation. TMP195 treatment following LPS exposure also reduced renal tubular cell apoptosis and attenuated renal expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1, two biomarkers of tubular injury. Moreover, LPS exposure resulted in increased expression of BAX and cleaved caspase-3 and decreased expression of Bcl-2 and bone morphogenetic protein-7 in vivo and in vitro; TMP195 treatment reversed these responses. Finally, TMP195 inhibited LPS-induced upregulation of multiple proinflammatory cytokines/chemokines, including intercellular adhesion molecule-1, monocyte chemoattractant protein-1, tumor necrosis factor-α, and interleukin-1β, and accumulation of inflammatory cells in the injured kidney. Collectively, these data indicate that TMP195 has a powerful renoprotective effect in SA-AKI by mitigating renal tubular cell apoptosis and inflammation and suggest that targeting class IIa HDACs might be a novel therapeutic strategy for the treatment of SA-AKI that avoids the unintended adverse effects of a pan-HDAC inhibitor.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yinjie Guan
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
621
|
Assessment of acute kidney injury related to small-molecule protein kinase inhibitors using the FDA adverse event reporting system. Cancer Chemother Pharmacol 2020; 86:655-662. [DOI: 10.1007/s00280-020-04151-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022]
|
622
|
Liu D, Shu G, Jin F, Qi J, Xu X, Du Y, Yu H, Wang J, Sun M, You Y, Zhu M, Chen M, Zhu L, Shen Q, Ying X, Lou X, Jiang S, Du Y. ROS-responsive chitosan-SS31 prodrug for AKI therapy via rapid distribution in the kidney and long-term retention in the renal tubule. SCIENCE ADVANCES 2020; 6:6/41/eabb7422. [PMID: 33036968 PMCID: PMC7546709 DOI: 10.1126/sciadv.abb7422] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/21/2020] [Indexed: 05/06/2023]
Abstract
The development of drugs with rapid distribution in the kidney and long-term retention in the renal tubule is a breakthrough for enhanced treatment of acute kidney injury (AKI). Here, l-serine-modified chitosan (SC) was synthesized as a potential AKI kidney-targeting agent due to the native cationic property of chitosan and specific interaction between kidney injury molecule-1 (Kim-1) and serine. Results indicated that SC was rapidly accumulated and long-term retained in ischemia-reperfusion-induced AKI kidneys, especially in renal tubules, which was possibly due to the specific interactions between SC and Kim-1. SC-TK-SS31 was then prepared by conjugating SS31, a mitochondria-targeted antioxidant, to SC via reactive oxygen species (ROS)-sensitive thioketal linker. Because of the effective renal distribution combined with ROS-responsive drug release behavior, the administration of SC-TK-SS31 led to an enhanced therapeutic effect of SS31 by protecting mitochondria from damage and reducing the oxidative stress, inflammation, and cell apoptosis.
Collapse
Affiliation(s)
- Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Gaofeng Shu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Feiyang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Yan Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Hui Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Jun Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Mingchen Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Yuchan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Minxia Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Meixuan Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Luwen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Qiying Shen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Xiaoying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Xuefang Lou
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China.
| | - Saiping Jiang
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China.
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| |
Collapse
|
623
|
Decuypere JP, Hutchinson S, Monbaliu D, Martinet W, Pirenne J, Jochmans I. Autophagy Dynamics and Modulation in a Rat Model of Renal Ischemia-Reperfusion Injury. Int J Mol Sci 2020; 21:ijms21197185. [PMID: 33003356 PMCID: PMC7583807 DOI: 10.3390/ijms21197185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Renal ischemia-reperfusion (IR) injury leading to cell death is a major cause of acute kidney injury, contributing to morbidity and mortality. Autophagy counteracts cell death by removing damaged macromolecules and organelles, making it an interesting anchor point for treatment strategies. However, autophagy is also suggested to enhance cell death when the ischemic burden is too strong. To investigate whether the role of autophagy depends on the severity of ischemic stress, we analyzed the dynamics of autophagy and apoptosis in an IR rat model with mild (45 min) or severe (60 min) renal ischemia. Following mild IR, renal injury was associated with reduced autophagy, enhanced mammalian target of rapamycin (mTOR) activity, and apoptosis. Severe IR, on the other hand, was associated with a higher autophagic activity, independent of mTOR, and without affecting apoptosis. Autophagy stimulation by trehalose injected 24 and 48 h prior to onset of severe ischemia did not reduce renal injury markers nor function, but reduced apoptosis and restored tubular dilation 7 days post reperfusion. This suggests that trehalose-dependent autophagy stimulation enhances tissue repair following an IR injury. Our data show that autophagy dynamics are strongly dependent on the severity of IR and that trehalose shows the potential to trigger autophagy-dependent repair processes following renal IR injury.
Collapse
Affiliation(s)
- Jean-Paul Decuypere
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium; (J.-P.D.); (S.H.); (D.M.); (J.P.)
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Shawn Hutchinson
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium; (J.-P.D.); (S.H.); (D.M.); (J.P.)
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Diethard Monbaliu
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium; (J.-P.D.); (S.H.); (D.M.); (J.P.)
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Wim Martinet
- Department of Pharmaceutical Sciences, University of Antwerp, B-2610 Antwerp, Belgium;
| | - Jacques Pirenne
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium; (J.-P.D.); (S.H.); (D.M.); (J.P.)
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium; (J.-P.D.); (S.H.); (D.M.); (J.P.)
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, B-3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-348727
| |
Collapse
|
624
|
Protein-Energy Wasting Assessment and Clinical Outcomes in Patients with Acute Kidney Injury: A Systematic Review with Meta-Analysis. Nutrients 2020; 12:nu12092809. [PMID: 32933198 PMCID: PMC7551057 DOI: 10.3390/nu12092809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/23/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Nutritional assessment is essential to identify patients with acute kidney injury (AKI) who are protein-energy wasting (PEW) and at risk of poor clinical outcomes. This systematic review aimed to investigate the relationship of nutritional assessments for PEW with clinical outcomes in patients with AKI. A systematic search was performed in PubMed, Scopus, and Cochrane Library databases using search terms related to PEW, nutrition assessment, and AKI to identify prospective cohort studies that involved AKI adult patients with at least one nutritional assessment performed and reported relevant clinical outcomes, such as mortality, length of stay, and renal outcomes associated with the nutritional parameters. Seventeen studies reporting eight nutritional parameters for PEW assessment were identified and mortality was the main clinical outcome reported. A meta-analysis showed that PEW assessed using subjective global assessment (SGA) was associated with greater mortality risk (RR: 1.99, 95% CI: 1.36–2.91). Individual nutrition parameters, such as serum chemistry, body mass, muscle mass, and dietary intakes, were not consistently associated with mortality. In conclusion, SGA is a valid tool for PEW assessment in patients with AKI, while other nutrition parameters in isolation had limited validity for PEW assessment.
Collapse
|
625
|
Association between regional economic status and renal recovery of dialysis-requiring acute kidney injury among critically ill patients. Sci Rep 2020; 10:14573. [PMID: 32884077 PMCID: PMC7471258 DOI: 10.1038/s41598-020-71540-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/07/2020] [Indexed: 01/20/2023] Open
Abstract
The association between regional economic status and the probability of renal recovery among patients with dialysis-requiring AKI (AKI-D) is unknown. The nationwide prospective multicenter study enrolled critically ill adult patients with AKI-D in four sampled months (October 2014, along with January, April, and July 2015) in Taiwan. The regional economic status was defined by annual disposable income per capita (ADIPC) of the cities the hospitals located. Among the 1,322 enrolled patients (67.1 ± 15.5 years, 36.2% female), 833 patients (63.1%) died, and 306 (23.1%) experienced renal recovery within 90 days following discharge. We categorized all patients into high (n = 992) and low economic status groups (n = 330) by the best cut-point of ADIPC determined by the generalized additive model plot. By using the Fine and Gray competing risk regression model with mortality as a competing risk factor, we found that the independent association between regional economic status and renal recovery persisted from model 1 (no adjustment), model 2 (adjustment to basic variables), to model 3 (adjustment to basic and clinical variables; subdistribution hazard ratio, 1.422; 95% confidence interval, 1.022–1.977; p = 0.037). In conclusion, high regional economic status was an independent factor for renal recovery among critically ill patients with AKI-D.
Collapse
|
626
|
Kanduri SR, Cheungpasitporn W, Thongprayoon C, Bathini T, Kovvuru K, Garla V, Medaura J, Vaitla P, Kashani KB. Incidence and mortality of acute kidney injury in patients undergoing hematopoietic stem cell transplantation: a systematic review and meta-analysis. QJM 2020; 113:621-632. [PMID: 32101318 PMCID: PMC7828586 DOI: 10.1093/qjmed/hcaa072] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND While acute kidney injury (AKI) is commonly reported following hematopoietic stem cell transplant (HCT), the incidence and impact of AKI on mortality among patients undergoing HCT are not well described. We conducted this systematic review to assess the incidence and impact of AKI on mortality risk among patients undergoing HCT. METHODS Ovid MEDLINE, EMBASE and the Cochrane Databases were searched from database inceptions through August 2019 to identify studies assessing the incidence of AKI and mortality risk among adult patients who developed AKI following HCT. Random-effects and generic inverse variance method of DerSimonian-Laird were used to combine the effect estimates obtained from individual studies. RESULTS We included 36 cohort studies with a total of 5144 patients undergoing HCT. Overall, the pooled estimated incidence of AKI and severe AKI (AKI Stage III) were 55.1% (95% confidence interval (CI) 46.6-63.3%) and 8.3% (95% CI 6.0-11.4%), respectively. The pooled estimated incidence of AKI using contemporary AKI definitions (RIFLE, AKIN and KDIGO criteria) was 49.8% (95% CI 41.6-58.1%). There was no significant correlation between study year and the incidence of AKI (P = 0.12) or severe AKI (P = 0.97). The pooled odds ratios of 3-month mortality and 3-year mortality among patients undergoing HCT with AKI were 3.05 (95% CI 2.07-4.49) and 2.23 (95% CI 1.06-4.73), respectively. CONCLUSION The incidence of AKI among patients who undergo HCT remains high, and it has not changed over the years despite advances in medicine. AKI after HCT is associated with increased short- and long-term mortality.
Collapse
Affiliation(s)
- S R Kanduri
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216
- Address correspondence to Dr S.R. Kanduri, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - W Cheungpasitporn
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| | - C Thongprayoon
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905
| | - T Bathini
- Department of Internal Medicine, University of Arizona, Tucson, AZ 85701
| | - K Kovvuru
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| | - V Garla
- Division of Endocrinology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| | - J Medaura
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| | - P Vaitla
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| | - K B Kashani
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
627
|
Herrera-Añazco P, Ccorahua-Ríos MS, Condori-Huaraka M, Huamanvilca-Yepez Y, Amaya E, Atamari-Anahui N. National trends in age-standardized incidence and mortality rates of acute kidney injury in Peru. J Bras Nefrol 2020; 42:330-337. [PMID: 32227068 PMCID: PMC7657050 DOI: 10.1590/2175-8239-jbn-2019-0132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/14/2019] [Indexed: 11/24/2022] Open
Abstract
Introduction: Acute kidney injury (AKI) is a common disorder that causes high healthcare
costs. There are limited epidemiological studies of this disorder in low-
and middle-income countries. The aim of this study was to describe trends in
the age-standardized incidence and mortality rates of AKI in Peru. Methods: We conducted an ecological study based on a secondary data sources of the
basic cause of death from healthcare and death records obtained from
establishments of the Ministry of Health of Peru for the period 2005-2016.
The age-standardized incidence and mortality rates of AKI were described by
region and trend effects were estimated by linear regression models. Results: During the period 2005-2016, 26,633 cases of AKI were reported nationwide.
The age-standardized incidence rate of AKI per 100,000 people increased by
15.2%, from 10.5 (period 2005-2010) to 12.1 (period 2011-2016). During the
period 2005-2016, 6,812 deaths due to AKI were reported, which represented
0.49% of all deaths reported for that period in Peru. The age-standardized
mortality rate of AKI per 100,000 people decreased by 11.1%, from 2.7
(period 2005-2010) to 2.4 (period 2011-2016). The greatest incidence and
mortality rates were observed in the age group older than 60 years. Conclusions: During the study period, incidence of AKI increased and mortality decreased,
with heterogeneous variations among regions.
Collapse
Affiliation(s)
| | | | | | | | | | - Noé Atamari-Anahui
- Universidad San Ignacio de Loyola, Perú; Instituto Nacional de Salud del Niño-Breña, Perú
| |
Collapse
|
628
|
Restrepo JM, Mondragon MV, Forero-Delgadillo JM, Lasso RE, Zemanate E, Bravo Y, Castillo GE, Tetay S, Cabal N, Calvache JA. Acute renal failure in children. Multicenter prospective cohort study in medium-complexity intensive care units from the Colombian southeast. PLoS One 2020; 15:e0235976. [PMID: 32833971 PMCID: PMC7446789 DOI: 10.1371/journal.pone.0235976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/25/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Acute kidney injury is frequent in critically ill children; however, it varies in causality and epidemiology according to the level of patient care complexity. A multicenter prospective cohort study was conducted in four medium-complexity pediatric intensive care units from the Colombian southeast aimed to estimate the clinical prognosis of patients with diagnosis of acute kidney injury. METHODS We included children >28 days and <18 years of age, who were admitted with diagnosis of acute kidney injury classified by Kidney Disease Improving Global Outcomes (KDIGO), during the period from January to December 2017. Severe acute kidney injury was defined as stage 2 and stage 3 classifications. Maximum KDIGO was evaluated during the hospital stay and follow up. Length of hospital stay, use of mechanical ventilation and vasoactive drugs, use of renal replacement therapy, and mortality were assessed until discharge. RESULTS Prevalence at admission of acute kidney injury was 5.2% (95%CI 4.3% to 6.2%). It was found that 71% of the patients had their maximum KDIGO on day one; an increment in the maximum stage of acute kidney injury increased the pediatric intensive care unit stay. Patients with maximum KDIGO 3 were associated with greater use of mechanical ventilation (47%), compared with maximum KDIGO 2 (37%) and maximum KDIGO 1 (16%). Eight patients with maximum KDIGO 2 and 14 with maximum KDIGO 3 required renal replacement therapy. Mortality was at 11.8% (95%CI 6.4% to 19.4%). CONCLUSION Acute kidney injury, established and classified according to KDIGO as severe and its maximum stage, was associated with worse clinical outcomes; early therapeutic efforts should focus on preventing the progression to severe stages.
Collapse
Affiliation(s)
- Jaime M. Restrepo
- Department of Pediatric Nephrology, Fundación Valle del Lili, Cali, Colombia
| | | | | | | | - Eliana Zemanate
- Department of Pediatrics, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Yessica Bravo
- Department of Pediatrics, Universidad del Cauca, Popayán, Cauca, Colombia
| | | | - Stefany Tetay
- Hospital Infantil Club Noel de Cali, Cali, Valle del Cauca, Colombia
| | - Natalia Cabal
- Department of Pediatrics, Universidad del Cauca, Popayán, Cauca, Colombia
| | - José A. Calvache
- Department of Anesthesiology, Universidad del Cauca, Popayan, Cauca, Colombia
- Department of Anesthesiology, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
629
|
Zhang K, Chen S, Sun H, Wang L, Li H, Zhao J, Zhang C, Li N, Guo Z, Han Z, Han ZC, Zheng G, Chen X, Li Z. In vivo two-photon microscopy reveals the contribution of Sox9 + cell to kidney regeneration in a mouse model with extracellular vesicle treatment. J Biol Chem 2020; 295:12203-12213. [PMID: 32641493 PMCID: PMC7443503 DOI: 10.1074/jbc.ra120.012732] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/02/2020] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been shown to stimulate regeneration in the treatment of kidney injury. Renal regeneration is also thought to be stimulated by the activation of Sox9+ cells. However, whether and how the activation mechanisms underlying EV treatment and Sox9+ cell-dependent regeneration intersect is unclear. We reasoned that a high-resolution imaging platform in living animals could help to untangle this system. To test this idea, we first applied EVs derived from human placenta-derived MSCs (hP-MSCs) to a Sox9-CreERT2; R26mTmG transgenic mouse model of acute kidney injury (AKI). Then, we developed an abdominal imaging window in the mouse and tracked the Sox9+ cells in the inducible Sox9-Cre transgenic mice via in vivo lineage tracing with two-photon intravital microscopy. Our results demonstrated that EVs can travel to the injured kidneys post intravenous injection as visualized by Gaussia luciferase imaging and markedly increase the activation of Sox9+ cells. Moreover, the two-photon living imaging of lineage-labeled Sox9+ cells showed that the EVs promoted the expansion of Sox9+ cells in kidneys post AKI. Histological staining results confirmed that the descendants of Sox9+ cells contributed to nephric tubule regeneration which significantly ameliorated the renal function after AKI. In summary, intravital lineage tracing with two-photon microscopy through an embedded abdominal imaging window provides a practical strategy to investigate the beneficial functions and to clarify the mechanisms of regenerative therapies in AKI.
Collapse
Affiliation(s)
- Kaiyue Zhang
- Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, the College of Life Sciences, Nankai University, Tianjin, China
| | - Shang Chen
- Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, the College of Life Sciences, Nankai University, Tianjin, China
| | - Huimin Sun
- Nankai University School of Medicine, Tianjin, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huifang Li
- Nankai University School of Medicine, Tianjin, China
| | - Jinglei Zhao
- Nankai University School of Medicine, Tianjin, China
| | - Chuyue Zhang
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Nana Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, Jiangxi, China; Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, Jiangxi, China; Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China; Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiangmei Chen
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, the College of Life Sciences, Nankai University, Tianjin, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
630
|
Gameiro J, Fonseca JA, Marques F, Lopes JA. Management of Acute Kidney Injury Following Major Abdominal Surgery: A Contemporary Review. J Clin Med 2020; 9:E2679. [PMID: 32824854 PMCID: PMC7463962 DOI: 10.3390/jcm9082679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) is a frequent occurrence following major abdominal surgery and is independently associated with both in-hospital and long-term mortality, as well as with a higher risk of progressing to chronic kidney disease (CKD) and cardiovascular events. Postoperative AKI can account for up to 40% of in-hospital AKI cases. Given the differences in patient characteristics and the pathophysiology of postoperative AKI, it is inappropriate to assume that the management after noncardiac and nonvascular surgery are the same as those after cardiac and vascular surgery. This article provides a comprehensive review on the available evidence on the management of postoperative AKI in the setting of major abdominal surgery.
Collapse
Affiliation(s)
- Joana Gameiro
- Division of Nephrology and Renal Transplantation, Department of Medicine, Centro Hospitalar Lisboa Norte, EPE. Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal; (J.A.F.); (F.M.); (J.A.L.)
| | | | | | | |
Collapse
|
631
|
Infante B, Franzin R, Madio D, Calvaruso M, Maiorano A, Sangregorio F, Netti GS, Ranieri E, Gesualdo L, Castellano G, Stallone G. Molecular Mechanisms of AKI in the Elderly: From Animal Models to Therapeutic Intervention. J Clin Med 2020; 9:jcm9082574. [PMID: 32784471 PMCID: PMC7464895 DOI: 10.3390/jcm9082574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Acute kidney injury (AKI), a critical syndrome characterized by a sudden reduction of renal function, is a common disorder among elderly patients particularly in Intensive Care Unit (ICU). AKI is closely associated with both short- and long-term mortality and length of hospital stay and is considered a predictor of chronic kidney disease (CKD). Specific hemodynamic, metabolic, and molecular changes lead to increased susceptibility to injury in the aged kidney; therefore, certain causes of AKI such as the prerenal reduction in renal perfusion or vascular obstructive conditions are more common in the elderly; moreover, AKI is often multifactorial and iatrogenic. Older patients present several comorbidities (diabetes, hypertension, heart failure) and are exposed to multiple medical interventions such as the use of nephrotoxic contrasts media and medications, which can also trigger AKI. Considering the emerging relevance of this condition, prevention and treatment of AKI in the elderly should be crucial in the internist and emergency setting. This review article summarizes the incidence, the risk factors, the pathophysiology, the molecular mechanisms and the strategies of prevention and treatment of AKI in elderly patients.
Collapse
Affiliation(s)
- Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (D.M.); (A.M.); (F.S.); (G.S.)
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (L.G.)
| | - Desirèe Madio
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (D.M.); (A.M.); (F.S.); (G.S.)
| | - Martina Calvaruso
- Nephrology, Dialysis and Transplantation Unit, Department of Biomedical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Annamaria Maiorano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (D.M.); (A.M.); (F.S.); (G.S.)
| | - Fabio Sangregorio
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (D.M.); (A.M.); (F.S.); (G.S.)
| | - Giuseppe Stefano Netti
- Clinical Pathology, Department of Surgical and Medical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (G.S.N.); (E.R.)
| | - Elena Ranieri
- Clinical Pathology, Department of Surgical and Medical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (G.S.N.); (E.R.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (L.G.)
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (D.M.); (A.M.); (F.S.); (G.S.)
- Correspondence: ; Tel.: +39-088-173-2610; Fax: +39-088-173-6001
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (D.M.); (A.M.); (F.S.); (G.S.)
| |
Collapse
|
632
|
Extracellular vesicles carrying miRNAs in kidney diseases: a systemic review. Clin Exp Nephrol 2020; 24:1103-1121. [DOI: 10.1007/s10157-020-01947-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/27/2020] [Indexed: 01/26/2023]
|
633
|
Jiang W, Hu Y, Sun Y, Shen Y, Xun Y. Prevalence and short-term outcome of acute kidney injury in patients with acute-on-chronic liver failure: A meta-analysis. J Viral Hepat 2020; 27:810-817. [PMID: 32141141 DOI: 10.1111/jvh.13287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) in patients with acute-on-chronic liver failure (ACLF) is a distinct syndrome to that in patients with cirrhosis, yet is less characterized. The aim of this meta-analysis was to investigate the impact of AKI on outcome of ACLF. We searched PubMed, Web of Science and Cochrane Library for original articles that evaluated the impact of AKI on outcome of ACLF from 2011 to 2019. Odds ratio (OR) with 95% confidence interval (CI) for 1-month and 3-month mortality was calculated. The response rate of vasoconstrictor for hepatorenal syndrome (HRS)-AKI was assessed. Eight relevant articles with 3610 patients were included. The prevalence of AKI in ACLF patients was 41% (95% CI 32%-50%). The presence of AKI was significantly associated with 1-month mortality of ACLF (OR 3.98, 95% CI 3.09-5.12; P < .001) and 3-month mortality (OR 4.98, 95% CI 3.59-6.92; P < .001). Additionally, patients with AKI stage ≥2 showed a higher 3-month mortality than stage 1 (OR 3.89, 95% CI 2.60-5.82; P < .001), and those of stage 3 had a higher mortality than stage ≤2 (OR 3.77, 95% CI 2.10-6.77; P < .001). The pooled response rate of vasoconstrictors was 32% (95% CI 26%-37%). This meta-analysis indicated that about 40% of ACLF patients complicated with AKI and the presence of AKI substantially increased the short-term mortality, together with a poor response rate of vasoconstrictors for HRS-AKI.
Collapse
Affiliation(s)
- Weiyun Jiang
- Hangzhou Sixth People's Hospital/Xixi Hospital of Hangzhou, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yechao Hu
- The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Yan Sun
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueli Shen
- Hangzhou Sixth People's Hospital/Xixi Hospital of Hangzhou, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunhao Xun
- Hangzhou Sixth People's Hospital/Xixi Hospital of Hangzhou, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
634
|
Incidence, Risk Factors, and Outcome of Acute Kidney Injury in the Intensive Care Unit: A Single-Center Study from Jordan. Crit Care Res Pract 2020; 2020:8753764. [PMID: 34703627 PMCID: PMC8542064 DOI: 10.1155/2020/8753764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
Background Acute kidney injury (AKI) is a common serious problem affecting critically ill patients in intensive care unit (ICU). It increases their morbidity, mortality, length of ICU stay, and long-term risk of chronic kidney disease (CKD). Methods A retrospective study was carried out in a tertiary hospital in Jordan. Medical records of patients admitted to the medical ICU between 2013 and 2015 were reviewed. We aimed to identify the incidence, risk factors, and outcomes of AKI. Acute kidney injury network (AKIN) classification was used to define and stage AKI. Results 2530 patients were admitted to medical ICU, and the incidence of AKI was 31.6%, mainly in stage 1 (59.4%). In multivariate analysis, increasing age (odds ratio (OR) = 1.2 (95% CI 1.1–1.3), P = 0.0001) and higher APACHE II score (OR = 1.5 (95% CI 1.2–1.7), P = 0.001) were predictors of AKI, with 20.4% of patients started on hemodialysis. At the time of discharge, 58% of patients with AKI died compared to 51.3% of patients without AKI (P = 0.05). 88% of patients with AKIN 3 died by the time of discharge compared to patients with AKIN 2 and 1 (75.3% and 61.2% respectively, P = 0.001). Conclusion AKI is common in ICU patients, and it increases mortality and morbidity. Close attention for earlier detection and addressing risk factors for AKI is needed to decrease incidence, complications, and mortality.
Collapse
|
635
|
Crislip GR, Patel B, Mohamed R, Ray SC, Wei Q, Sun J, Polichnowski AJ, Sullivan JC, O'Connor PM. Ultrasound measurement of change in kidney volume is a sensitive indicator of severity of renal parenchymal injury. Am J Physiol Renal Physiol 2020; 319:F447-F457. [PMID: 32686518 DOI: 10.1152/ajprenal.00221.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Noninvasive determination of the severity of parenchymal injury in acute kidney injury remains challenging. Edema is an early pathological process following injury, which may correlate with changes in kidney volume. The goal of the present study was to test the hypothesis that "increases in kidney volume measured in vivo using ultrasound correlate with the degree of renal parenchymal injury." Ischemia-reperfusion (IR) of varying length was used to produce graded tissue injury. We first determined 1) whether regional kidney volume in rats varied with the severity (0, 15, 30, and 45 min) of warm bilateral IR and 2) whether this correlated with tubular injury score. We then determined whether these changes could be measured in vivo using three-dimensional ultrasound. Finally, we evaluated cumulative changes in kidney volume up to 14 days post-IR in rats to determine whether changes in renal volume were predictive of latent tubular injury following recovery of filtration. Experiments concluded that noninvasive ultrasound measurements of change in kidney volume over 2 wk are predictive of tubular injury following IR even in animals in which plasma creatinine was not elevated. We conclude that ultrasound measurements of volume are a sensitive, noninvasive marker of tissue injury in rats and that the use of three-dimensional ultrasound measurements may provide useful information regarding the timing, severity, and recovery from renal tissue injury in experimental studies.
Collapse
Affiliation(s)
- G Ryan Crislip
- Department of Physiology, Augusta University, Augusta, Georgia
| | - Bansari Patel
- Department of Physiology, Augusta University, Augusta, Georgia
| | - Riyaz Mohamed
- Department of Physiology, Augusta University, Augusta, Georgia
| | - Sarah C Ray
- Department of Physiology, Augusta University, Augusta, Georgia
| | - Qingqing Wei
- Department of Cell Biology and Anatomy, Augusta University, Augusta, Georgia
| | - Jingping Sun
- Department of Physiology, Augusta University, Augusta, Georgia
| | - Aaron J Polichnowski
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | | | - Paul M O'Connor
- Department of Physiology, Augusta University, Augusta, Georgia
| |
Collapse
|
636
|
Albuquerque PLMM, Paiva JHHGL, Martins AMC, Meneses GC, da Silva GB, Buckley N, Daher EDF. Clinical assessment and pathophysiology of Bothrops venom-related acute kidney injury: a scoping review. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190076. [PMID: 32704246 PMCID: PMC7359628 DOI: 10.1590/1678-9199-jvatitd-2019-0076] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Bothrops are one of the most common medically important snakes found in Latin America. Its venom is predominantly hemotoxic and proteolytic, which means that local lesion (edema and redness) and hemorrhagic symptoms are recurrent in envenoming by this snake. Although hemorrhage is usually the major cause of death, snakebite-related acute kidney injury is another potentially fatal clinical complication that may lead to chronic kidney disease. The present review highlights the main studies on Bothrops venom-related acute kidney injury, including observational, cross-sectional, case-control and cohort human studies available up to December 2019. The following descriptors were used according to Medical Subject Headings (MeSH): on Medline/Pubmed and Google Scholar "acute kidney injury" or "kidney disease" and "Bothrops"; on Lilacs and SciELO "kidney disease" or "acute kidney injury" and "Bothrops". Newcastle-Ottawa quality assessment scale was used to appraise the quality of the cross-sectional and cohort studies included. The selection of more severe patients who looked for health care units and tertiary centers is a risk of bias. Due to the methodological heterogeneity of the studies, a critical analysis of the results was performed based on the hypothesis that the design of the included studies influences the incidence of acute kidney injury. Fifteen human studies (total participants 4624) were included according to stablished criteria. The coagulation abnormalities (hemorrhagic symptoms, abnormal fibrinogen and activated partial thromboplastin time) were associated with acute kidney injury in the most recent studies reported. The findings observed in this review provide up-to-date evidence about the acute kidney injury pathogenesis following Bothrops syndrome. Studies pointed out that coagulation abnormalities comprise the major pathway for acute kidney injury development. This review may improve patient management by primary healthcare providers, allowing earlier diagnosis and treatment of Bothrops venom-related acute kidney injury.
Collapse
Affiliation(s)
- Polianna Lemos Moura Moreira Albuquerque
- University of Fortaleza (Unifor), Fortaleza, Ceará, Brazil
- Toxicological Information and Assistance Center, Instituto Doutor Jose Frota Hospital, Fortaleza, Ceará, Brazil
| | | | - Alice Maria Costa Martins
- Graduate Program in Pharmaceutical Sciences, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | | | - Geraldo Bezerra da Silva
- Public Health and Medical Sciences Graduate Programs, School of Medicine, University of Fortaleza, Fortaleza, Ceará, Brazil
| | | | | |
Collapse
|
637
|
Lee JH, Ha DH, Go HK, Youn J, Kim HK, Jin RC, Miller RB, Kim DH, Cho BS, Yi YW. Reproducible Large-Scale Isolation of Exosomes from Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells and Their Application in Acute Kidney Injury. Int J Mol Sci 2020; 21:E4774. [PMID: 32635660 PMCID: PMC7370182 DOI: 10.3390/ijms21134774] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury (AKI) is a fatal medical episode caused by sudden kidney damage or failure, leading to the death of patients within a few hours or days. Previous studies demonstrated that exosomes derived from various mesenchymal stem/stromal cells (MSC-exosomes) have positive effects on renal injuries in multiple experimental animal models of kidney diseases including AKI. However, the mass production of exosomes is a challenge not only in preclinical studies with large animals but also for successful clinical applications. In this respect, tangential flow filtration (TFF) is suitable for good manufacturing practice (GMP)-compliant large-scale production of high-quality exosomes. Until now, no studies have been reported on the use of TFF, but rather ultracentrifugation has been almost exclusively used, to isolate exosomes for AKI therapeutic application in preclinical studies. Here, we demonstrated the reproducible large-scale production of exosomes derived from adipose tissue-derived MSC (ASC-exosomes) using TFF and the lifesaving effect of the ASC-exosomes in a lethal model of cisplatin-induced rat AKI. Our results suggest the possibility of large-scale stable production of ASC-exosomes without loss of function and their successful application in life-threatening diseases.
Collapse
Affiliation(s)
- Jun Ho Lee
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| | - Dae Hyun Ha
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| | | | - Jinkwon Youn
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| | - Hyun-keun Kim
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| | | | | | | | - Byong Seung Cho
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| | - Yong Weon Yi
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| |
Collapse
|
638
|
Schaubroeck HA, Gevaert S, Bagshaw SM, Kellum JA, Hoste EA. Acute cardiorenal syndrome in acute heart failure: focus on renal replacement therapy. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2020; 9:802-811. [PMID: 32597679 DOI: 10.1177/2048872620936371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Almost half of hospitalised patients with acute heart failure develop acute cardiorenal syndrome. Treatment consists of optimisation of fluid status and haemodynamics, targeted therapy for the underlying cardiac disease, optimisation of heart failure treatment and preventive measures such as avoidance of nephrotoxic agents. Renal replacement therapy may be temporarily needed to support kidney function, mostly in case of diuretic resistant fluid overload or severe metabolic derangement. The best timing to initiate renal replacement therapy and the best modality in acute heart failure are still under debate. Several modalities are available such as intermittent and continuous renal replacement therapy as well as hybrid techniques, based on two main principles: haemofiltration and haemodialysis. Although continuous techniques have been associated with less haemodynamic instability and a greater chance of renal recovery, cohort data are conflicting and randomised controlled trials have not shown a difference in recovery or mortality. In the presence of diuretic resistance, isolated ultrafiltration with individualisation of ultrafiltration rates is a valid option for decongestion in acute heart failure patients. Practical tools to optimise the use of renal replacement therapy in acute heart failure-related acute cardiorenal syndrome were discussed.
Collapse
Affiliation(s)
| | - Sofie Gevaert
- Department of Cardiology, Ghent University Hospital, Belgium
| | - Sean M Bagshaw
- Department of Critical Care Medicine, University of Alberta, Canada
| | - John A Kellum
- Center for Critical Care Nephrology, University of Pittsburgh, USA
| | - Eric Aj Hoste
- Intensive Care Unit, Ghent University Hospital, Belgium.,Research Foundation-Flanders (FWO), Brussels, Belgium
| |
Collapse
|
639
|
The Mechanism of Contrast-Induced Acute Kidney Injury and Its Association with Diabetes Mellitus. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:3295176. [PMID: 32788887 PMCID: PMC7330652 DOI: 10.1155/2020/3295176] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Contrast-induced acute kidney injury (CI-AKI) is the third most common hospital-acquired AKI after AKI induced by renal perfusion insufficiency and nephrotoxic drugs, taking great adverse effects on the prognosis and increasing hospital stay and medical cost. Diabetes nephropathy (DN) is a common chronic complication of DM (diabetes mellitus), and DN is an independent risk factor for chronic kidney disease (CKD) and CI-AKI. The incidence of CI-AKI significantly increases in patients with renal injury, especially in DM-related nephropathy. The etiology of CI-AKI is not fully clear, and research studies on how DM becomes a facilitated factor of CI-AKI are limited. This review describes the mechanism from three aspects. ① Pathophysiological changes of CI-AKI in kidney under high-glucose status (HGS). HGS can enhance the oxidative stress and increase ROS which next causes stronger vessel constriction and insufficient oxygen supply in kidney via vasoactive substances. HGS also aggravates some ion pump load and the latter increases oxygen consumption. CI-AKI and HGS are mutually causal, making the kidney function continue to decline. ② Immunological changes of DM promoting CI-AKI. Some innate immune cells and pattern recognition receptors (PRRs) in DM and/or DN may respond to some damage-associated molecular patterns (DAMPs) formed by CI-AKI. These effects overlap with some pathophysiological changes in hyperglycemia. ③ Signaling pathways related to both CI-AKI and DM. These pathways involved in CI-AKI are closely associated with apoptosis, inflammation, and ROS production, and some studies suggest that these pathways may be potential targets for alleviating CI-AKI. In conclusion, the pathogenesis of CI-AKI and the mechanism of DM as a predisposing factor for CI-AKI, especially signaling pathways, need further investigation to provide new clinical approaches to prevent and treat CI-AKI.
Collapse
|
640
|
Bisdas T, Koutsias S. Carbon Dioxide As a Standard of Care for Zero Contrast Interventions: When, Why and How? Curr Pharm Des 2020; 25:4662-4666. [PMID: 31782359 DOI: 10.2174/1381612825666191129093823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/25/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Traditional contrast media containing iodine remain the gold standard for vessel visualization during endovascular procedures. On the other hand, their use has several side effects and implications and may cause contrast medium-induced nephropathy. Carbon dioxide (CO2) angiography is an old alternative technique used only for critical patients in order to prevent kidney damages or allergic reactions. Zero contrast procedure: The availability of automated CO2 injectors has led to an increase in the use of CO2 angiography, providing an option for zero contrast interventions, preserving patient renal function and saving costs for the hospital facility. Taking advantage of the properties of CO2 gas, it is possible to improve the performance of some complex procedures such as atherectomy and the detection of type II endoleaks after EVARs. However, a learning curve is needed to get good imaging, and learn about the qualities and limitations of the technique. CONCLUSIONS The use of automatic delivery systems for CO2 angiography appears to be a good choice for the use of CO2 as the first imaging option. The standardization of injection protocols and the extensive use of this technique could lead to significant benefits both for the patient's prospects and health facilities.
Collapse
Affiliation(s)
- Theodosios Bisdas
- Clinic of Advanced Endovascular Services, Athens Medical Centre, Athens, Greece
| | | |
Collapse
|
641
|
Chen YT, Shao SC, Hsu CK, Wu IW, Hung MJ, Chen YC. Incidence of acute kidney injury in COVID-19 infection: a systematic review and meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:346. [PMID: 32546191 PMCID: PMC7296284 DOI: 10.1186/s13054-020-03009-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Yih-Ting Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shih-Chieh Shao
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacy, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Cheng-Kai Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - I-Wen Wu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Jui Hung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Section of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yung-Chang Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan. .,Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan. .,Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan. .,Division of Nephrology, Department of Medicine, Chang Gung Memorial Hospital, No. 222, Maijin Rd., Anle Dist., Keelung, Taiwan.
| |
Collapse
|
642
|
Shiva N, Sharma N, Kulkarni YA, Mulay SR, Gaikwad AB. Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sci 2020; 256:117860. [PMID: 32534037 DOI: 10.1016/j.lfs.2020.117860] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Optimal tissue oxygenation is essential for its normal function. Suboptimal oxygenation or ischemia contributes to increased mortalities during various pathological conditions such as stroke, acute kidney injury (AKI), cardiac failure. Despite the rapid progression of renal tissue injury, the mechanism underlying renal ischemia/reperfusion injury (IRI) remains highly unclear. Experimental in vitro and in vivo models epitomizing the fundamental process is critical to the research of the pathogenesis of IRI and the development of plausible therapeutics. In this review, we describe the in vitro and in vivo models of IRI, ranges from proximal tubular cell lines to surgery-based animal models like clamping of both renal pedicles (bilateral IRI), clamping of one renal pedicle (unilateral IRI), clamping of one/or both renal arteries/or vein, or unilateral IRI with contralateral nephrectomy (uIRIx). Also, advanced technologies like three-dimensional kidney organoids, kidney-on-a-chip are explained. This review provides thoughtful information for establishing reliable and pertinent models for studying IRI-associated acute renal pathologies.
Collapse
Affiliation(s)
- Niharika Shiva
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
643
|
Uhel F, Peters-Sengers H, Falahi F, Scicluna BP, van Vught LA, Bonten MJ, Cremer OL, Schultz MJ, van der Poll T. Mortality and host response aberrations associated with transient and persistent acute kidney injury in critically ill patients with sepsis: a prospective cohort study. Intensive Care Med 2020; 46:1576-1589. [PMID: 32514599 PMCID: PMC7381452 DOI: 10.1007/s00134-020-06119-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/14/2020] [Indexed: 12/26/2022]
Abstract
Purpose Sepsis is the most frequent cause of acute kidney injury (AKI). The “Acute Disease Quality Initiative Workgroup” recently proposed new definitions for AKI, classifying it as transient or persistent. We investigated the incidence, mortality, and host response aberrations associated with transient and persistent AKI in sepsis patients. Methods A total of 1545 patients admitted with sepsis to 2 intensive care units in the Netherlands were stratified according to the presence (defined by any urine or creatinine RIFLE criterion within the first 48 h) and evolution of AKI (with persistent defined as remaining > 48 h). We determined 30-day mortality by logistic regression adjusting for confounding variables and analyzed 16 plasma biomarkers reflecting pathways involved in sepsis pathogenesis (n = 866) and blood leukocyte transcriptomes (n = 392). Results AKI occurred in 37.7% of patients, of which 18.4% was transient and 81.6% persistent. On admission, patients with persistent AKI had higher disease severity scores and more frequently had severe (injury or failure) RIFLE AKI stages than transient AKI patients. Persistent AKI, but not transient AKI, was associated with increased mortality by day 30 and up to 1 year. Persistent AKI was associated with enhanced and sustained inflammatory and procoagulant responses during the first 4 days, and a more severe loss of vascular integrity compared with transient AKI. Baseline blood gene expression showed minimal differences with respect to the presence or evolution of AKI. Conclusion Persistent AKI is independently associated with sepsis mortality, as well as with sustained inflammatory and procoagulant responses, and loss of vascular integrity as compared with transient AKI. Electronic supplementary material The online version of this article (10.1007/s00134-020-06119-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabrice Uhel
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Room G2-130; Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Room G2-130; Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Fahimeh Falahi
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Room G2-130; Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Room G2-130; Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lonneke A van Vught
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Room G2-130; Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marc J Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Olaf L Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care Medicine, and Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of medicine, University of Oxford, Oxford, UK
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Room G2-130; Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
644
|
Gameiro J, Fonseca JA, Outerelo C, Lopes JA. Acute Kidney Injury: From Diagnosis to Prevention and Treatment Strategies. J Clin Med 2020; 9:E1704. [PMID: 32498340 PMCID: PMC7357116 DOI: 10.3390/jcm9061704] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) is characterized by an acute decrease in renal function that can be multifactorial in its origin and is associated with complex pathophysiological mechanisms. In the short term, AKI is associated with an increased length of hospital stay, health care costs, and in-hospital mortality, and its impact extends into the long term, with AKI being associated with increased risks of cardiovascular events, progression to chronic kidney disease (CKD), and long-term mortality. Given the impact of the prognosis of AKI, it is important to recognize at-risk patients and improve preventive, diagnostic, and therapy strategies. The authors provide a comprehensive review on available diagnostic, preventive, and treatment strategies for AKI.
Collapse
Affiliation(s)
- Joana Gameiro
- Department of Medicine, Division of Nephrology and Renal Transplantation, Centro Hospitalar Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal
| | - José Agapito Fonseca
- Department of Medicine, Division of Nephrology and Renal Transplantation, Centro Hospitalar Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal
| | - Cristina Outerelo
- Department of Medicine, Division of Nephrology and Renal Transplantation, Centro Hospitalar Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal
| | - José António Lopes
- Department of Medicine, Division of Nephrology and Renal Transplantation, Centro Hospitalar Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal
| |
Collapse
|
645
|
Post-Ischemic Renal Fibrosis Progression Is Halted by Delayed Contralateral Nephrectomy: The Involvement of Macrophage Activation. Int J Mol Sci 2020; 21:ijms21113825. [PMID: 32481551 PMCID: PMC7312122 DOI: 10.3390/ijms21113825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Successful treatment of acute kidney injury (AKI)-induced chronic kidney disease (CKD) is unresolved. We aimed to characterize the time-course of changes after contralateral nephrectomy (Nx) in a model of unilateral ischemic AKI-induced CKD with good translational utility. (2) Methods: Severe (30 min) left renal ischemia-reperfusion injury (IRI) or sham operation (S) was performed in male Naval Medical Research Institute (NMRI) mice followed by Nx or S one week later. Expression of proinflammatory, oxidative stress, injury and fibrotic markers was evaluated by RT-qPCR. (3) Results: Upon Nx, the injured kidney hardly functioned for three days, but it gradually regained function until day 14 to 21, as demonstrated by the plasma urea. Functional recovery led to a drastic reduction in inflammatory infiltration by macrophages and by decreases in macrophage chemoattractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) mRNA and most injury markers. However, without Nx, a marked upregulation of proinflammatory (TNF-α, IL-6, MCP-1 and complement-3 (C3)); oxidative stress (nuclear factor erythroid 2-related factor 2, NRF2) and fibrosis (collagen-1a1 (Col1a1) and fibronectin-1 (FN1)) genes perpetuated, and the injured kidney became completely fibrotic. Contralateral Nx delayed the development of renal failure up to 20 weeks. (4) Conclusion: Our results suggest that macrophage activation is involved in postischemic renal fibrosis, and it is drastically suppressed by contralateral nephrectomy ameliorating progression.
Collapse
|
646
|
Jun W, Benjanuwattra J, Chattipakorn SC, Chattipakorn N. Necroptosis in renal ischemia/reperfusion injury: A major mode of cell death? Arch Biochem Biophys 2020; 689:108433. [PMID: 32470461 DOI: 10.1016/j.abb.2020.108433] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
Ischemic acute kidney injury (AKI) is a frequent complication resulting from a myriad of conditions that decrease effective arterial blood volume to the kidneys including myocardial ischemia, sepsis, and hypovolemia. Following acute ischemic insult, restoration of renal blood flow inevitably leads to the aggravation of renal injury due to a widely researched condition known as ischemia/reperfusion (I/R) injury. For decades, apoptosis and necrosis have been proposed as being the two cell death pathways responsible for the pathogenesis of renal ischemic AKI. There is recent evidence to show that necrosis could be regulated in a caspase-independent manner. This regulated or programmed necrosis is termed necroptosis. Necroptotic markers such as receptor-interacting serine/threonine-protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain like pseudokinase (MLKL) have been identified in both in vitro and in vivo models of renal I/R injury, suggesting that necroptosis might be a potential therapeutic target to limit renal I/R injury. In this review, available reports from in vitro, in vivo and clinical reports regarding the association of necroptosis in renal I/R injury, along with its therapeutic potential, has been comprehensively summarized and discussed. Understanding this contributory mechanism could pave ways to improve therapeutic strategies in combating renal I/R injury.
Collapse
Affiliation(s)
- Wu Jun
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Juthipong Benjanuwattra
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
647
|
Role of SET7/9 in the progression of ischemic renal injury in diabetic and non-diabetic rats. Biochem Biophys Res Commun 2020; 528:14-20. [PMID: 32448511 DOI: 10.1016/j.bbrc.2020.05.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
SET domain with lysine methyltransferase 7/9 (Set7/9), a histone lysine methyltransferase (HMT), recently suggested to exert a critical role among kidney disorders, whereas its role in diabetes associated IRI co-morbidity remains complete elusive. The present study aimed to understand the role of SET7/9 and histone methylation in regulation of inflammatory signaling under IRI in diabetes mellitus and non-diabetic rats. Our results demonstrated that IRI caused renal dysfunction via increased blood urea nitrogen (BUN) levels in ND and DM rats. The NF-κB mediated inflammatory cascade like increased p-NF-κB, reduced IκBα levels followed by enhanced leukocyte infiltration as shown by increased MCP-1 expressions. IRI results in increased histone H3 methylation at lysine 4 and 36 (H3K4Me2, H3K36Me2), and decreased histone H3 methylation at lysine 9. Additionally, IRI increased the protein and mRNA expression of H3K4Me2 specific histone methyltransferase-SET7/9 in DM and ND rats. The abovementioned results remain prominent in DM rats compared to ND rats followed by IRI. Further, treatment with a novel SET7/9 inhibitor; cyproheptadine, significantly improved renal functioning via reducing the BUN levels in ND and DM rats. Hence, this study demonstrated the role of SET7/9 in mediating active transcription via H3K4Me2, ultimately regulated the NFκB-mediated inflammatory cascade. Therefore, SET7/9 can be explored as novel target for drug development against IRI under DM and ND conditions.
Collapse
|
648
|
Abstract
A strong Th17 inflammatory response aggravates ischemia reperfusion-induced (IR-induced) acute kidney injury (AKI), tissue fibrosis, and AKI-to-chronic kidney disease (CKD) progression. However, the underlying mechanisms of sustained Th17 activation following AKI and during AKI-to-CKD progression are unclear. In this issue of the JCI, Mehrotra et al. present compelling evidence that the store-operated calcium (Ca2+) channel Orai1 sustains Th17-driven inflammatory response after AKI and drives the AKI-to-CKD transition. Orai1 blockade significantly protected renal function from IR, attenuated high-salt-induced AKI-to-CKD progression in rats, and decreased Th17 response in rat and human T cells. Therapeutic targeting of Orai1 can potentially reduce AKI, AKI-to-CKD progression, and other Th17-driven diseases.
Collapse
|
649
|
Wilson MR, Holladay J, Sheridan R, Hostetter G, Berghuis B, Graveel C, Essenburg C, Peck A, Ho TH, Stanton M, Chandler RL. Lgr5-positive endothelial progenitor cells occupy a tumor and injury prone niche in the kidney vasa recta. Stem Cell Res 2020; 46:101849. [PMID: 32464345 DOI: 10.1016/j.scr.2020.101849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/13/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023] Open
Abstract
The Wnt pathway co-receptor, Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5), labels tumor-prone stem cell populations in certain types of tissue. In this study, we show that ARID1A and PIK3CA mutations in LGR5+ cells result in renal angiosarcomas in adult mice. The tumors originate in the renal medulla. We further show that LGR5 labels SOX17+/CD31+/CD34+/CD133+/AQP1+/CD146+ endothelial progenitor cells within the descending vasa recta or straight arterioles of the kidney, which are specialized capillaries that maintain medullary osmotic gradients necessary for water reabsorption and the production of concentrated urine. LGR5+ endothelial progenitor cells are tightly associated with contractile pericytes within the descending vasa recta. Long-term in vivo lineage tracing revealed that LGR5+ cells give rise to renal medullary vasculature. We further show that LGR5+ cells are activated in response to ischemic kidney injury. Our findings uncover a physiologically relevant endothelial progenitor cell population within the kidney vasa recta.
Collapse
Affiliation(s)
- Mike R Wilson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jeanne Holladay
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Rachael Sheridan
- Flow Cytometry Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Bree Berghuis
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Carrie Graveel
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Curt Essenburg
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Anderson Peck
- Small Animal Imaging Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Thai H Ho
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Melissa Stanton
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Ronald L Chandler
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA.
| |
Collapse
|
650
|
Lu Q, Wang M, Gui Y, Hou Q, Gu M, Liang Y, Xiao B, Zhao AZ, Dai C. Rheb1 protects against cisplatin-induced tubular cell death and acute kidney injury via maintaining mitochondrial homeostasis. Cell Death Dis 2020; 11:364. [PMID: 32404875 PMCID: PMC7221100 DOI: 10.1038/s41419-020-2539-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 01/14/2023]
Abstract
Ras homolog enriched in brain (Rheb1), a small GTPase, plays a crucial role in regulating cell growth, differentiation, and survival. However, the role and mechanisms for Rheb1 in tubular cell survival and acute kidney injury (AKI) remain unexplored. Here we found that Rheb1 signaling was activated in kidney tubule of AKI patients and cisplatin-treated mice. A mouse model of tubule-specific deletion of Rheb1 (Tubule-Rheb1−/−) was generated. Compared to control littermates, Tubule-Rheb1−/− mice were phenotypically normal within 2 months after birth but developed more severe kidney dysfunction, tubular cell death including apoptosis, necroptosis and ferroptosis, mitochondrial defect and less PGC-1α expression after cisplatin injection. In primary cultured tubular cells, Rheb1 ablation exacerbated cisplatin-induced cell death and mitochondrial defect. Furthermore, haploinsufficiency for Tsc1 in tubular cells led to Rheb1 activation and mitigated cisplatin-induced cell death, mitochondrial defect and AKI. Together, this study uncovers that Rheb1 may protect against cisplatin-induced tubular cell death and AKI through maintaining mitochondrial homeostasis.
Collapse
Affiliation(s)
- Qingmiao Lu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Mingjie Wang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Yuan Gui
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Qing Hou
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Mengru Gu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Yan Liang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Bo Xiao
- Department of Biology, Southern University of Science and Technology, 518000, Shenzhen, P.R. China
| | - Allan Zijian Zhao
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510515, Guangzhou, P.R. China
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China.
| |
Collapse
|