601
|
Dhillon HS, Carman HM, Prasad RM. Regional activities of phospholipase C after experimental brain injury in the rat. Neurochem Res 1999; 24:751-5. [PMID: 10447458 DOI: 10.1023/a:1020779413122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Regional activities of phosphoinositide-specific phospholipase C (PLC) were measured after lateral fluid percussion (FP) brain injury in rats. The activity of PLC on phosphatidylinositol 4,5-bisphosphate (PIP2) in the rat cortex required calcium, and at 45 microM concentration it increased PLC activity by about ten-fold. The activity of PLC was significantly increased in the cytosol fraction in the injured (left) cortex (IC) at 5 min, 30 min and 120 min after brain injury. However, in the same site, increases were observed in the membrane fraction only at 5 min after brain injury. In both the contralateral (right) cortex (CC) and ipsilateral hippocampus (IH), the activity of PLC was increased in the cytosol only at 5 min after brain injury. These results suggest that increased activity of PLC may contribute to increases in levels of cellular diacylglycerol and inositol trisphosphate in the IC (the greatest site of injury), and to a smaller extent in the IH and CC, after lateral FP brain injury. It is likely that this increased PLC activity is caused by alteration in either the levels or activities of one or more of its isozymes (PLCbeta, PLCgamma, and PLCdelta) after FP brain injury.
Collapse
Affiliation(s)
- H S Dhillon
- Department of Surgery, University of Kentucky Chandler Medical Center, Lexington 40536-0084, USA
| | | | | |
Collapse
|
602
|
Cocco L, Rubbini S, Manzoli L, Billi AM, Faenza I, Peruzzi D, Matteucci A, Artico M, Gilmour RS, Rhee SG. Inositides in the nucleus: presence and characterisation of the isozymes of phospholipase beta family in NIH 3T3 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1438:295-9. [PMID: 10320812 DOI: 10.1016/s1388-1981(99)00061-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous reports from our laboratories and others have hinted that the nucleus is a site for an autonomous signalling system acting through the activation of the inositol lipid cycle. Among phospholipases (PLC) it has been shown previously that PLCbeta1 is specifically localised in the nucleus as well as at the plasma membrane. Using NIH 3T3 cells, it has been possible to obtain, with two purification strategies, in the presence or in the absence of Nonidet P-40, both intact nuclei still maintaining the outer membrane and nuclei completely stripped of their envelope. In these nuclei, we show that not only PLCbeta1 is present, but also PLCbeta2, PLCbeta3 and PLCbeta4. The more abounding isoform is PLCbeta1 followed by PLCbeta3, PLCbeta2 and PLCbeta4, respectively. All the isoforms are enriched in nuclear preparations free from nuclear envelope and cytoplasmatic debris, indicating that the actual localisation of the PLCbeta isozymes is in the inner nuclear compartment.
Collapse
Affiliation(s)
- L Cocco
- Institute of Human Anatomy, University of Bologna, 40126, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
603
|
Shearer J, De Nadai C, Emily-Fenouil F, Gache C, Whitaker M, Ciapa B. Role of phospholipase Cgamma at fertilization and during mitosis in sea urchin eggs and embryos. Development 1999; 126:2273-84. [PMID: 10207151 DOI: 10.1242/dev.126.10.2273] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is well known that stimulation of egg metabolism after fertilization is due to a rise in intracellular free calcium concentration. In sea urchin eggs, this first calcium signal is followed by other calcium transients that allow progression through mitotic control points of the cell cycle of the early embryo. How sperm induces these calcium transients is still far from being understood. In sea urchin eggs, both InsP3 and ryanodine receptors contribute to generate the fertilization calcium transient, while the InsP3 receptor generates the subsequent mitotic calcium transients. The identity of the mechanisms that generate InsP3 after fertilization remains an enigma. In order to determine whether PLCgamma might be the origin of the peaks of InsP3 production that punctuate the first mitotic cell cycles of the fertilized sea urchin egg, we have amplified by RT-PCR several fragments of sea urchin PLCgamma containing the two SH2 domains. The sequence shares similarities with SH2 domains of PLCgamma from mammals. One fragment was subcloned into a bacterial expression plasmid and a GST-fusion protein was produced and purified. Antibodies raised to the GST fusion protein demonstrate the presence of PLCgamma protein in eggs. Microinjection of the fragment into embryos interferes with mitosis. A related construct made from bovine PLCgamma also delayed or prevented entry into mitosis and blocked or prolonged metaphase. The bovine construct also blocked the calcium transient at fertilization, in contrast to a tandem SH2 control construct which did not inhibit either fertilization or mitosis. Our data indicate that PLCgamma plays a key role during fertilization and early development.
Collapse
Affiliation(s)
- J Shearer
- Department of Physiological Sciences, Medical School, University of Newcastle upon Tyne, Framlington Place, NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
604
|
Sekiya F, Bae YS, Jhon DY, Hwang SC, Rhee SG. AHNAK, a protein that binds and activates phospholipase C-gamma1 in the presence of arachidonic acid. J Biol Chem 1999; 274:13900-7. [PMID: 10318799 DOI: 10.1074/jbc.274.20.13900] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently shown that phospholipase C-gamma (PLC-gamma) is activated by tau, a neuronal cell-specific microtubule-associated protein, in the presence of arachidonic acid. We now report that non-neuronal tissues also contain a protein that can activate PLC-gamma in the presence of arachidonic acid. Purification of this activator from bovine lung cytosol yielded several proteins with apparent molecular sizes of 70-130 kDa. They were identified as fragments derived from an unusually large protein (approximately 700 kDa) named AHNAK, which comprises about 30 repeated motifs each 128 amino acids in length. Two AHNAK fragments containing one and four of the repeated motifs, respectively, were expressed as glutathione S-transferase fusion proteins. Both recombinant proteins activated PLC-gamma1 at nanomolar concentrations in the presence of arachidonic acid, suggesting that an intact AHNAK molecule contains multiple sites for PLC-gamma activation. The role of arachidonic acid was to promote a physical interaction between AHNAK and PLC-gamma1, and the activation by AHNAK and arachidonic acid was mainly attributable to reduction in the enzyme's apparent Km toward the substrate phosphatidylinositol 4,5-bisphosphate. Our results suggest that arachidonic acid liberated by phospholipase A2 can act as an additional trigger for PLC-gamma activation, constituting an alternative mechanism that is independent of tyrosine phosphorylation.
Collapse
Affiliation(s)
- F Sekiya
- Laboratory of Cell Signaling, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
605
|
Tran D, Stelly N, Tordjmann T, Durroux T, Dufour MN, Forchioni A, Seyer R, Claret M, Guillon G. Distribution of signaling molecules involved in vasopressin-induced Ca2+ mobilization in rat hepatocyte multiplets. J Histochem Cytochem 1999; 47:601-16. [PMID: 10219053 DOI: 10.1177/002215549904700503] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In freshly isolated rat hepatocyte multiplets, Ca2+ signals in response to vasopressin are highly organized. In this study we used specific probes to visualize, by fluorescence and confocal microscopy, the main signaling molecules involved in vasopressin-mediated Ca2+ responses. V1a receptors were detected with a novel fluorescent antagonist, Rhm8-PVA. The Galphaq/Galpha11, PLCbeta3, PIP2, and InsP3 receptors were detected with specific antibodies. V1a vasopressin receptors and PIP2 were associated with the basolateral membrane and were not detected in the bile canalicular domain. Galphaq/Galpha11, PLCbeta3, and InsP3 receptors were associated with the basolateral membrane and also with other intracellular structures. We used double labeling, Western blotting, and drugs (cytochalasin D, colchicine) known to disorganize the cytoskeleton to demonstrate the partial co-localization of Galphaq/Galpha11 with F-actin.
Collapse
Affiliation(s)
- D Tran
- INSERM U442, IFR-FR 46, Université Paris Sud, Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
606
|
Topham MK, Prescott SM. Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions. J Biol Chem 1999; 274:11447-50. [PMID: 10206945 DOI: 10.1074/jbc.274.17.11447] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- M K Topham
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
607
|
Levade T, Jaffrézou JP. Signalling sphingomyelinases: which, where, how and why? BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1438:1-17. [PMID: 10216276 DOI: 10.1016/s1388-1981(99)00038-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A major lipid signalling pathway in mammalian cells implicates the activation of sphingomyelinase (SMase), which upon cell stimulation hydrolyses the ubiquitous sphingophospholipid sphingomyelin to ceramide. This review summarizes our current knowledge on the nature and regulation of signalling SMase(s). Because of the controversy on the identity of this(these) phospholipase(s), the roles of various SMases in cell signalling are discussed. Special attention is also given to the subcellular site of action of signalling SMases and to the cellular factors that positively or negatively control their activity. These regulating agents include lipids (arachidonic acid, diacylglycerol and ceramide), kinases, proteases, glutathione and other proteins.
Collapse
Affiliation(s)
- T Levade
- INSERM Unit 466, Laboratoire de Biochimie, Maladies Métaboliques, Institut Louis Bugnard, Bât. L3, C.H.U. Rangueil, 1 Avenue Jean Poulhès, E 9910, Toulouse Cedex 4, France.
| | | |
Collapse
|
608
|
Rukavishnikov AV, Zaikova TO, Birrell GB, Keana JF, Griffith OH. Synthesis of a new fluorogenic substrate for the continuous assay of mammalian phosphoinositide-specific phospholipase C. Bioorg Med Chem Lett 1999; 9:1133-6. [PMID: 10328299 DOI: 10.1016/s0960-894x(99)00166-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthesis of a fluorogenic substrate for mammalian phosphoinositide-specific phospholipase C is described. The substrate, based on the widely used fluorescein molecule, is a water-soluble substrate analog of phosphatidylinositol-4-phosphate. The fluorogenic substrate 2 is shown to be a sensitive substrate for human PI-PLC-delta1 in a continuous assay.
Collapse
|
609
|
Várnai P, Rother KI, Balla T. Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton's tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem 1999; 274:10983-9. [PMID: 10196179 DOI: 10.1074/jbc.274.16.10983] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) has been proposed to act as a second messenger to recruit regulatory proteins to the plasma membrane via their pleckstrin homology (PH) domains. The PH domain of Bruton's tyrosine kinase (Btk), which is mutated in the human disease X-linked agammaglobulinemia, has been shown to interact with PI(3,4,5)P3 in vitro. In this study, a fusion protein containing the PH domain of Btk and the enhanced green fluorescent protein (BtkPH-GFP) was constructed and utilized to study the ability of this PH domain to interact with membrane inositol phospholipids inside living cells. The localization of expressed BtkPH-GFP in quiescent NIH 3T3 cells was indistinguishable from that of GFP alone, both being cytosolic as assessed by confocal microscopy. In NIH 3T3 cells coexpressing BtkPH-GFP and the epidermal growth factor receptor, activation of epidermal growth factor or endogenous platelet-derived growth factor receptors caused a rapid (<3 min) translocation of the cytosolic fluorescence to ruffle-like membrane structures. This response was not observed in cells expressing GFP only and was completely inhibited by treatment with the PI 3-kinase inhibitors wortmannin and LY 292004. Membrane-targeted PI 3-kinase also caused membrane localization of BtkPH-GFP that was slowly reversed by wortmannin. When the R28C mutation of the Btk PH domain, which causes X-linked agammaglobulinemia, was introduced into the fluorescent construct, no translocation was observed after stimulation. In contrast, the E41K mutation, which confers transforming activity to native Btk, caused significant membrane localization of BtkPH-GFP with characteristics indicating its possible binding to PI(4,5)P2. This mutant, but not wild-type BtkPH-GFP, interfered with agonist-induced PI(4,5)P2 hydrolysis in COS-7 cells. These results show in intact cells that the PH domain of Btk binds selectively to 3-phosphorylated lipids after activation of PI 3-kinase enzymes and that losing such binding ability or specificity results in gross abnormalities in the function of the enzyme. Therefore, the interaction with PI(3,4,5)P3 is likely to be an important determinant of the physiological regulation of Btk and can be utilized to visualize the dynamics and spatiotemporal organization of changes in this phospholipid in living cells.
Collapse
Affiliation(s)
- P Várnai
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | |
Collapse
|
610
|
Coito C, Bomsel M. B7 cosignal potentiates apoptosis of uninfected CD4+ T lymphocytic cell lines primed by HIV envelope proteins. AIDS Res Hum Retroviruses 1999; 15:509-21. [PMID: 10221528 DOI: 10.1089/088922299311033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In lymphoid organs, follicular dendritic cells (FDCs), monocytes, and macrophages are targets for HIV infection and reservoirs for infectious virus. Strikingly, the apoptotic cells in these sites are essentially uninfected CD4+ T lymphocytes, but lie in close proximity to infected cells or FDCs carrying trapped HIV virions. To decipher this apoptotic pathway, we have established a two-step experimental system that reproduces in vitro the HIV envelope protein-mediated apoptosis restricted to uninfected CD4+ T lymphocytic cell lines. In this assay, uninfected CD4+ T cell targets undergo apoptosis following an initial priming step on HeLa cells expressing functional HIV envelope proteins at their plasma membrane and a second and necessary stimulation step via the CD3-TCR complex. The CD4+ T lymphocytic cells susceptible to apoptosis are, in contrast, resistant to cell fusion mediated by HIV envelope protein and express SDF-1. FDCs and macrophages are known to be high B7 expressors. Thus in lymph nodes, the cells that have trapped HIV particles in immune complexes at the plasma membrane present both HIV envelope proteins and B7.1 at their surface. We mimicked this situation in vitro by priming CD4+ T lymphocytes on cells expressing the costimulatory molecule B7 in addition to HIV envelope proteins, and show that it resulted in an acceleration and a twofold increase in apoptosis. Finally, we characterized two enzymes, PI3Kinase and PI-PLC, which are both downstream effectors of the CD4 (HIV envelope protein receptor) and CD28 (B7 receptor) activation pathways, and that participated in the early steps of priming for apoptosis.
Collapse
Affiliation(s)
- C Coito
- Unité 332 de l'INSERM, Institut Cochin de Génétique Moléculaire, Paris, France
| | | |
Collapse
|
611
|
Holbrook PG, Geetha V, Beaven MA, Munson PJ. Recognizing the pleckstrin homology domain fold in mammalian phospholipase D using hidden Markov models. FEBS Lett 1999; 448:269-72. [PMID: 10218490 DOI: 10.1016/s0014-5793(99)00366-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phospholipase D was first described in plant tissue but has recently been shown to occur in mammalian cells where it is activated by cell surface receptors. Its mode of activation by receptors in unclear. Biochemical studies suggest that it may occur downstream of other effector proteins and that small GTP-dependent regulatory proteins may be involved. The sequence in a non-designated region of mammalian phospholipase D1 and 2 shows similarity to a structural domain that is present in signalling proteins that are regulated by protein kinases or heterotrimeric G-proteins. Mammalian phospholipase D has structural similarities with other lipid signalling phospholipases and thus may be regulated by receptors in an analogous fashion.
Collapse
Affiliation(s)
- P G Holbrook
- Laboratory of Molecular Immunology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
612
|
Anderson RA, Boronenkov IV, Doughman SD, Kunz J, Loijens JC. Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J Biol Chem 1999; 274:9907-10. [PMID: 10187762 DOI: 10.1074/jbc.274.15.9907] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- R A Anderson
- Department of Pharmacology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
613
|
Sekiya F, Bae YS, Rhee SG. Regulation of phospholipase C isozymes: activation of phospholipase C-gamma in the absence of tyrosine-phosphorylation. Chem Phys Lipids 1999; 98:3-11. [PMID: 10358923 DOI: 10.1016/s0009-3084(99)00013-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Activation of PLC-gamma isozymes in response to various agonists involves tyrosine phosphorylation of the effector enzymes. Recent evidence indicates that PLC-gamma isozymes are additionally activated by phosphatidic acid, phosphatidylinositol 3,4,5-trisphosphate and arachidonic acid in the absence of PLC-gamma tyrosine phosphorylation. These lipid-derived messengers are the immediate products of phospholipase D, phosphatidylinositol 3-kinase, and phospholipase A2, enzymes which are often stimulated along with PLC-gamma in response to an agonist. Furthermore, phosphatidylinositol 4,5-bisphosphate acts as a substrate for both PLC-gamma and phosphatidylinositol 3-kinase and as an activator for phospholipase D and phospholipase A2. These results reveal an elaborate mechanism of cross-talk and mutual regulation between four effector enzymes that participate in receptor signaling by acting on phospholipids.
Collapse
Affiliation(s)
- F Sekiya
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-0320, USA.
| | | | | |
Collapse
|
614
|
Bolton TB, Prestwich SA, Zholos AV, Gordienko DV. Excitation-contraction coupling in gastrointestinal and other smooth muscles. Annu Rev Physiol 1999; 61:85-115. [PMID: 10099683 DOI: 10.1146/annurev.physiol.61.1.85] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The main contributors to increases in [Ca2+]i and tension are the entry of Ca2+ through voltage-dependent channels opened by depolarization or during action potential (AP) or slow-wave discharge, and Ca2+ release from store sites in the cell by the action of IP3 or by Ca(2+)-induced Ca(2+)-release (CICR). The entry of Ca2+ during an AP triggers CICR from up to 20 or more subplasmalemmal store sites (seen as hot spots, using fluorescent indicators); Ca2+ waves then spread from these hot spots, which results in a rise in [Ca2+]i throughout the cell. Spontaneous transient releases of store Ca2+, previously detected as spontaneous transient outward currents (STOCs), are seen as sparks when fluorescent indicators are used. Sparks occur at certain preferred locations--frequent discharge sites (FDSs)--and these and hot spots may represent aggregations of sarcoplasmic reticulum scattered throughout the cytoplasm. Activation of receptors for excitatory signal molecules generally depolarizes the cell while it increases the production of IP3 (causing calcium store release) and diacylglycerols (which activate protein kinases). Activation of receptors for inhibitory signal molecules increases the activity of protein kinases through increases in cAMP or cGMP and often hyperpolarizes the cell. Other receptors link to tyrosine kinases, which trigger signal cascades interacting with trimeric G-protein systems.
Collapse
Affiliation(s)
- T B Bolton
- Department of Pharmacology and Clinical Pharmacology, St George's Hospital Medical School, London, United Kingdom.
| | | | | | | |
Collapse
|
615
|
Cockcroft S. Mammalian phosphatidylinositol transfer proteins: emerging roles in signal transduction and vesicular traffic. Chem Phys Lipids 1999; 98:23-33. [PMID: 10358925 DOI: 10.1016/s0009-3084(99)00015-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphatidylinositol transfer proteins (PITP) are abundant cytosolic proteins found in all mammalian cells. Two cytosolic isoforms of 35 and 36 kDa (PITP alpha and PITP beta) have been identified which share 77% identity. These proteins are characterized by having a single phospholipid binding site which exhibits dual headgroup specificity. The preferred lipid that can occupy the site can be either phosphatidylinositol (PI) or phosphatidylcholine (PC). In addition, PITP beta can also bind sphingomyelin. A second characteristic of these proteins is the ability to transfer PI and PC (or SM) from one membrane compartment to another in vitro. The function of PITP in mammalian cells has been examined mainly using reconstitution studies utilizing semi-intact cells or cell-free systems. From such analyses, a requirement for PITP has been identified in phospholipase C-mediated phosphatidylinositol bisphosphate (PI(4,5)P2) hydrolysis, in phosphoinositide 3-kinase catalyzed PIP3 generation, in regulated exocytosis, in the biogenesis of secretory granules and vesicles and in intra-golgi transport. Studies aimed at elucidating the mechanism of action of PITP in each of these seemingly disparate processes have yielded a singular theme: the activity of PITP stems from its ability to transfer PI from its site of synthesis to sites of cellular activity. This function was predicted from its in vitro characteristics. The second feature of PITP that was not predicted is the ability to stimulate the local synthesis of several phosphorylated forms of PI including PI(4)P, PI(4,5)P2, PI(3)P, PI(3,4,5)P3 by presenting PI to the lipid kinases involved in phosphoinositide synthesis. We conclude that PITP contributes in multiple aspects of cell biology ranging from signal transduction to membrane trafficking events where a central role for phosphoinositides is recognized either as a substrate or as an intact lipid signalling molecule.
Collapse
Affiliation(s)
- S Cockcroft
- Department of Physiology, University College London, UK.
| |
Collapse
|
616
|
Yang L, Yatomi Y, Satoh K, Ozaki Y. Inhibitory effects of beraprost on platelet aggregation: comparative study utilizing two methods of aggregometry. Thromb Res 1999; 94:25-32. [PMID: 10213178 DOI: 10.1016/s0049-3848(98)00187-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We evaluated the inhibitory effects of beraprost, a stable prostacyclin analogue, on platelet aggregation, assessed by two methods of platelet aggregometry. The conventional aggregometry detects changes in light transmission (LT) of a platelet suspension, and a recently developed aggregometry based upon a particle counting principle detects light scattering (LS) generated by platelet aggregates. Since LS is more sensitive than LT in detecting platelet aggregates of small size, the minimal concentrations of agonists (ADP, epinephrine, collagen, and U46619) to induce detectable aggregate formation were consistently lower with LS (1/2 to 1/6) than with LT. The effects of beraprost were evaluated on platelet aggregation induced by the optimal concentrations of agonists thus determined for each sample. The IC50 values of beraprost on platelet aggregation, as assessed by LS, were 1/2 to 1/10 of those assessed by LT. In suppressing platelet aggregation assessed by LS, beraprost was especially potent with IC50 of 0.2-0.5 nM when platelets were activated by U46619, a thromboxane A2 analogue, or low concentrations of collagen which activates platelets through thromboxane A2 production. The IC50 values were 2-5 nM with ADP and epinephrine, which induce the formation of small aggregates independently of thromboxane A2 production. These findings suggest that LS can detect inhibitory effects of lower concentrations of antiplatelet agents, since it detects the formation of small aggregates induced by agonists in the lower concentration range than LT. It is also suggested that beraprost potently inhibits thromboxane A2-elicited initial signal transduction pathway, reflected by the formation of small aggregates.
Collapse
Affiliation(s)
- L Yang
- Department of Clinical and Laboratory Medicine, Yamanashi Medical University, Nakakoma, Japan
| | | | | | | |
Collapse
|
617
|
Lagrue AH, Francischetti IM, Guimarães JA, Jandrot-Perrus M. Phosphatidylinositol 3'-kinase and tyrosine-phosphatase activation positively modulate Convulxin-induced platelet activation. Comparison with collagen. FEBS Lett 1999; 448:95-100. [PMID: 10217417 DOI: 10.1016/s0014-5793(99)00340-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this report we have studied the role of phosphatidylinositol 3'-kinase (PI3-K) and tyrosine phosphatase activation on platelet activation by Convulxin (Cvx). Wortmannin, a specific PI3-K inhibitor, and phenylarsine oxide (PAO), a sulfhydryl reagent that inhibits tyrosine phosphatase (PTPase), block Cvx-induced platelet aggregation, granule secretion, inositol phosphate production, and increase in [Ca2+]i. However, PAO does not inhibit Cvx-induced tyrosine phosphorylation of platelet proteins, including Syk and PLCgamma2, but blocked collagen-induced platelet aggregation as well as tyrosine phosphorylation of PLCgamma2. In contrast, Cvx-induced PLCgamma2 tyrosyl phosphorylation was partially inhibited by wortmannin. We conclude that (i) although Cvx and collagen activate platelets by a similar mechanism, different regulatory processes are specific to each agonist; (ii) mechanisms other than tyrosine phosphorylation regulate PLCgamma2 activity; and (iii) besides protein tyrosine kinases, PI3-K (and PTPase) positively modulate platelet activation by both Cvx and collagen, and this enzyme is required for effective transmission of GPVI-Fc receptor gamma chain signal to result in full activation and tyrosine phosphorylation of PLCgamma2 in Cvx-stimulated platelets.
Collapse
Affiliation(s)
- A H Lagrue
- Laboratoire de Recherche sur l'Hémostase et la Thrombose, Faculté Xavier Bichat, Paris, France
| | | | | | | |
Collapse
|
618
|
Mondorf UF, Piiper A, Herrero M, Olbrich HG, Bender M, Gross W, Scheuermann E, Geiger H. Lipoprotein(a) stimulates growth of human mesangial cells and induces activation of phospholipase C via pertussis toxin-sensitive G proteins. Kidney Int 1999; 55:1359-66. [PMID: 10201000 DOI: 10.1046/j.1523-1755.1999.00367.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Renal disease is commonly associated with hyperlipidemia and correlates with glomerular accumulation of atherogenic lipoproteins, for example, lipoprotein(a) [Lp(a)], and mesangial hypercellularity. Specific binding of Lp(a) to mesangial cells and induction of c-myc and c-fos expression has been demonstrated. Therefore, in this study, we investigated a possible growth stimulatory effect and mode of action of Lp(a) in human mesangial cells. METHODS Lp(a) was purified from the regenerate fluid of a dextran sulfate column-based low-density lipoprotein apheresis system. Human mesangial cells were isolated by a sequential sieving technique from patients undergoing tumor nephrectomy. DNA synthesis was measured by [3H]-thymidine incorporation. The intracellular calcium concentration ([Ca2+]i) was determined by Fura 2-fluorescence, and inositol 1,4,5-trisphosphate (1,4,5-IP3) concentration was measured by a radioreceptor assay. RESULTS The data show that Lp(a) bound to the cells with a Kd of 17.0 micrograms/ml and increased DNA synthesis and cell proliferation. Lp(a) caused a rapid increase in 1,4,5-IP3 and [Ca2+]i via a pertussis toxin-sensitive mechanism. The phospholipase C (PLC) inhibitor U73122 abolished Lp(a)-induced cell proliferation. In contrast, vasopressin-induced increase in 1,4,5-IP3 and [Ca2+]i was pertussis toxin insensitive. CONCLUSION This study revealed that Lp(a) stimulates growth of human mesangial cells. Lp(a)-induced signaling involves binding to a receptor and stimulation of PLC via Gi proteins. Stimulation of PLC appears to be essential for the growth stimulatory effect of Lp(a). Whether these effects of Lp(a) contribute to the pathophysiology of renal disease needs to be determined.
Collapse
Affiliation(s)
- U F Mondorf
- Department of Thoracic Surgery, Johann Wolfgang Goethe-University, Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
619
|
Leevers SJ, Vanhaesebroeck B, Waterfield MD. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 1999; 11:219-25. [PMID: 10209156 DOI: 10.1016/s0955-0674(99)80029-5] [Citation(s) in RCA: 488] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) phosphorylate inositol lipids at the 3' position of the inositol ring to generate the 3-phosphoinositides PI(3)P, PI(3,4) P2 and PI(3,4,5) P3. Recent research has shown that one way in which these lipids function in signal transduction and membrane trafficking is by interacting with 3-phosphoinositide-binding modules in a broad variety of proteins. Specifically, certain FYVE domains bind PI(3)P whereas certain pleckstrin homology domains bind PI(3,4) P2 and/or PI(3,4,5) P3. Also in 1998, PTEN - a major tumour suppressor in human cancer - was also shown to antagonise PI3K signalling by removing the 3-phosphate from 3-phosphoinositides.
Collapse
Affiliation(s)
- S J Leevers
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
620
|
Pickard RT, Strifler BA, Kramer RM, Sharp JD. Molecular cloning of two new human paralogs of 85-kDa cytosolic phospholipase A2. J Biol Chem 1999; 274:8823-31. [PMID: 10085124 DOI: 10.1074/jbc.274.13.8823] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two new cloned human cDNAs encode paralogs of the 85-kDa cytosolic phospholipase A2 (cPLA2). We propose to call these cPLA2beta (114 kDa) and cPLA2gamma (61 kDa), giving the name cPLA2alpha to the well known 85-kDa enzyme. cPLA2beta mRNA is expressed more highly in cerebellum and pancreas and cPLA2gamma more highly in cardiac and skeletal muscle. Sequence-tagged site mapping places cPLA2beta on chromosome 15 in a region near a phosphoinositol bisphosphate phosphatase. The mRNA for cPLA2beta is spliced only at a very low level, and Northern blots in 24 tissues show exclusively the unspliced form. cPLA2beta has much lower activity on 2-arachidonoyl-phosphatidylcholine liposomes than either of the other two enzymes. Its sequence contains a histidine motif characteristic of the catalytic center of caspase proteases of the apoptotic cascade but no region characteristic of the catalytic cysteine. Sequence-tagged site mapping places cPLA2gamma on chromosome 19 near calmodulin. cPLA2gamma lacks the C2 domain, which gives cPLA2alpha its Ca2+ sensitivity, and accordingly cPLA2gamma has no dependence upon calcium, although cPLA2beta does. cPLA2gamma contains a prenyl group-binding site motif and appears to be largely membrane-bound. cPLA2alpha residues activated by phosphorylation do not appear to be well conserved in either new enzyme. In contrast, all three previously known catalytic residues, as well as one additional essential arginine, Arg-566 in cPLA2alpha, are conserved in both new enzyme sequences. Mutagenesis shows strong dependence on these residues for catalytic activity of all three enzymes.
Collapse
Affiliation(s)
- R T Pickard
- Lilly Research Laboratory, Indianapolis, Indiana 46285, USA
| | | | | | | |
Collapse
|
621
|
Martelli AM, Cocco L, Bareggi R, Tabellini G, Rizzoli R, Ghibellini MD, Narducci P. Insulin-like growth factor-I-dependent stimulation of nuclear phospholipase C-beta1 activity in Swiss 3T3 cells requires an intact cytoskeleton and is paralleled by increased phosphorylation of the phospholipase. J Cell Biochem 1999; 72:339-48. [PMID: 10022515 DOI: 10.1002/(sici)1097-4644(19990301)72:3<339::aid-jcb3>3.0.co;2-l] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Swiss 3T3 mouse fibroblasts were exposed to 10 microM colchicine to disrupt microtubules, then stimulated with insulin-like growth factor-I. Immunoprecipitation experiments showed that insulin-like growth factor-I receptor and insulin receptor substrate-1 were tyrosine phosphorylated to the same extent in both cells treated with colchicine and in those not exposed to the drug. Moreover, the activity of phosphatidylinositol 3-kinase was not affected by incubation with colchicine. While in nuclei prepared from cells not exposed to colchicine it was possible to detect an insulin-like growth factor-I-dependent increase in the mass of diacylglycerol, as well as stimulation of phospholipase C activity, no similar changes were observed in nuclei obtained from cells treated with colchicine. Activation of the nuclear phospholipase activity was paralleled by an increase of its phosphorylation. Immunofluorescent studies revealed that mitogen-activated protein kinase did not translocate towards the nucleus when the cytoskeleton was depolymerized. These results show that in Swiss 3T3 cells some as yet unknown events necessary for the insulin-like growth factor-I-dependent activation of nuclear polyphosphoinositide metabolism require the presence of an intact cytoskeleton and are situated down-stream the activation of insulin receptor substrate-1 and phosphatidylinositol 3-kinase. Activation of nuclear phospholipase C-beta1 might be linked to its phosphorylation and translocation of mitogen-activated protein kinase to the nucleus.
Collapse
Affiliation(s)
- A M Martelli
- Dipartimento di Morfologia Umana Normale, Università di Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
622
|
Lennartz MR. Phospholipases and phagocytosis: the role of phospholipid-derived second messengers in phagocytosis. Int J Biochem Cell Biol 1999; 31:415-30. [PMID: 10224668 DOI: 10.1016/s1357-2725(98)00108-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Phagocytosis, the process by which leukocytes recognize and destroy invading pathogens, is essential for host defense. The binding of foreign organisms to phagocytic leukocytes initiates a complex signaling cascade which ultimately results in the entrapment and destruction of the pathogen. The signal transduction pathway mediating phagocytosis is the subject of intense investigation and is known to include protein tyrosine kinases, GTP-binding proteins, protein kinase C (PKC), actin polymerization and membrane movement. A rapidly expanding body of evidence suggests that phospholipases play an integral role in phagocytosis by generating essential second messengers. Here we review the data linking activation of phospholipase A2 (PLA2), phospholipase C (PLC) phospholipase D (PLD), and phosphoinositide 3-OH kinase (PI(3)K) to antibody (IgG)-mediated phagocytosis. Evidence is presented that (1) PLA2-derived arachidonic acid (AA) stimulates NADPH oxidase and membrane redistribution during phagocytosis, (2) the inositol-3,4,5-triphosphate (IP3) and diacylglycerol (DAG) products of PLC activate NADPH oxidase and PKC, and (3) sequential activation of PLD and phosphatidic acid phosphohydrolase may provide an alternative pathway for generation of DAG. Additionally, considerable evidence exists that wortmannin, a PI(3)K inhibitor, depresses phagocytosis. This finding is discussed in the context of the extensive effects PI(3)K products have on endocytosis and exocytosis and the potential role of membrane redistribution in phagocytosis. Finally, a model is presented which integrates data obtained from a variety of phagocytic systems and illustrates potential interactions that may exist between phospholipase-derived second messengers and signaling events required for phagocytosis.
Collapse
Affiliation(s)
- M R Lennartz
- Department of Physiology and Cell Biology, Albany Medical College, NY 12208, USA.
| |
Collapse
|
623
|
Krieger J, Schmitt A, Löbel D, Gudermann T, Schultz G, Breer H, Boekhoff I. Selective activation of G protein subtypes in the vomeronasal organ upon stimulation with urine-derived compounds. J Biol Chem 1999; 274:4655-62. [PMID: 9988702 DOI: 10.1074/jbc.274.8.4655] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chemosensory neurons in the vomeronasal organ (VNO) detect pheromones related to social and reproductive behavior in most terrestrial vertebrates. Current evidence indicate that the chemoelectrical transduction process is mediated by G protein-coupled second messenger cascades. In the present study, attempts were made to identify the G protein subtypes which are activated upon stimulation with urinary pheromonal components. G protein-specific antibodies were employed to interfere specifically with inositol 1,3,4-trisphosphate formation induced by urinary stimuli and to immunoprecipitate Galpha-subunits, activation dependently labeled with [alpha-32P]GTP azidoanilide. The results of both experimental approaches indicate that stimulation of female VNO membrane preparations with male urine samples induces activation of Gi as well as Go subtypes. Experiments using different fractions of urine revealed that upon stimulation with lipophilic volatile odorants, only Gi proteins were activated, whereas Go activation was elicited by alpha2u-globulin, a major urinary protein, which is a member of the lipocalin superfamily. Since each G protein subtype is stereotypically coexpressed with one of the two structurally different candidate pheromone receptors (V1R and V2R), the results provide the first experimental evidence that V1Rs coexpressed with Gi may be activated by lipophilic probably volatile odorants, whereas V2Rs coexpressed with Go seem to be specialized to interact with pheromonal components of proteinaceous nature.
Collapse
Affiliation(s)
- J Krieger
- Universität Stuttgart-Hohenheim, Institut für Physiologie, Garbenstr. 30, 70593 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
624
|
Carroll DJ, Albay DT, Terasaki M, Jaffe LA, Foltz KR. Identification of PLCgamma-dependent and -independent events during fertilization of sea urchin eggs. Dev Biol 1999; 206:232-47. [PMID: 9986735 DOI: 10.1006/dbio.1998.9145] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At fertilization, sea urchin eggs undergo a series of activation events, including a Ca2+ action potential, Ca2+ release from the endoplasmic reticulum, an increase in intracellular pH, sperm pronuclear formation, MAP kinase dephosphorylation, and DNA synthesis. To examine which of these events might be initiated by activation of phospholipase Cgamma (PLCgamma), which produces the second messengers inositol trisphosphate (IP3) and diacylglycerol, we used recombinant SH2 domains of PLCgamma as specific inhibitors. Sea urchin eggs were co-injected with a GST fusion protein composed of the two tandem SH2 domains of bovine PLCgamma and (1) Ca2+ green dextran to monitor intracellular free Ca2+, (2) BCECF dextran to monitor intracellular pH, (3) Oregon Green dUTP to monitor DNA synthesis, or (4) fluorescein 70-kDa dextran to monitor nuclear envelope formation. Microinjection of the tandem SH2 domains of PLCgamma produced a concentration-dependent inhibition of Ca2+ release and also inhibited cortical granule exocytosis, cytoplasmic alkalinization, MAP kinase dephosphorylation, DNA synthesis, and cleavage after fertilization. However, the Ca2+ action potential, sperm entry, and sperm pronuclear formation were not prevented by injection of the PLCgammaSH2 domain protein. Microinjection of a control protein, the tandem SH2 domains of the phosphatase SHP2, had no effect on Ca2+ release, cortical granule exocytosis, DNA synthesis, or cleavage. Specificity of the inhibitory action of the PLCgammaSH2 domains was further indicated by the finding that microinjection of PLCgammaSH2 domains that had been point mutated at a critical arginine did not inhibit Ca release at fertilization. Additionally, Ca2+ release in response to microinjection of IP3, cholera toxin, cADP ribose, or cGMP was not inhibited by the PLCgammaSH2 fusion protein. These results indicate that PLCgamma plays a key role in several fertilization events in sea urchin eggs, including Ca2+ release and DNA synthesis, but that the action potential, sperm entry, and male pronuclear formation can occur in the absence of PLCgamma activation or Ca2+ increase.
Collapse
Affiliation(s)
- D J Carroll
- Department of Molecular, Cellular and Developmental Biology and the Marine Science Institute, University of California at Santa Barbara, 93106-9610, USA
| | | | | | | | | |
Collapse
|
625
|
Yang LJ, Guo YL, Trygankova O, Li QY, Maloney JA, Steinhauer M, Williamson JR. Epidermal growth factor and angiotensin II regulation of extracellular signal-regulated protein kinase in rat liver epithelial WB cells. Biochem Pharmacol 1999; 57:425-32. [PMID: 9933031 DOI: 10.1016/s0006-2952(98)00308-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Activation of extracellular signal-regulated protein kinase (ERK) is considered essential for mitogenesis. In the present study, rat liver epithelial WB cells were used to investigate the relative roles of Ca2+, protein kinase C (PKC), and protein tyrosine phosphorylation in mitogenesis and activation of the ERK pathway stimulated by epidermal growth factor (EGF) and angiotensin II (Ang II). The sensitivity of the ERK pathway to Ca2+ was studied by using 1,2-bis (O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) to chelate intracellular Ca2+ and a low extracellular Ca2+ concentration to prevent Ca2+ influx. Agonist-induced PKC activation was diminished by inhibition of PKC by GF-109203X (bisindolylmaleimide) or by down-regulation of PKC by long-term treatment of the cells with phorbol myristate acetate (PMA). Our results show that although activation of PKC was critical for mitogenesis induced by Ang II or EGF, the initial activation of ERK by both agonists in these cells was essentially independent of PKC activation and was insensitive to Ca2+ mobilization. This is in contrast to the findings in some cell types that exhibit a marked dependency on mobilization of Ca2+ and/or PKC activation. On the other hand, an obligatory tyrosine phosphorylation step for activation of ERK was indicated by the use of protein tyrosine kinase inhibitors, which profoundly inhibited the activation of ERK by EGF, Ang II, and PMA. Additional experiments indicated that tyrosine phosphorylation by a cytosolic tyrosine kinase may represent a general mechanism for G-protein coupled receptor mediated ERK activation.
Collapse
Affiliation(s)
- L J Yang
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | |
Collapse
|
626
|
Schenk PW, Snaar-Jagalska BE. Signal perception and transduction: the role of protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1449:1-24. [PMID: 10076047 DOI: 10.1016/s0167-4889(98)00178-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cells can react to environmental changes by transduction of extracellular signals, to produce intracellular responses. Membrane-impermeable signal molecules are recognized by receptors, which are localized on the plasma membrane of the cell. Binding of a ligand can result in the stimulation of an intrinsic enzymatic activity of its receptor or the modulation of a transducing protein. The modulation of one or more intracellular transducing proteins can finally lead to the activation or inhibition of a so-called 'effector protein'. In many instances, this also results in altered gene expression. Phosphorylation by protein kinases is one of the most common and important regulatory mechanisms in signal transmission. This review discusses the non-channel transmembrane receptors and their downstream signaling, with special focus on the role of protein kinases.
Collapse
Affiliation(s)
- P W Schenk
- Section of Cell Biology, Institute of Molecular Plant Sciences, Leiden University, P.O. Box 9505, 2300 RA, Leiden, Netherlands
| | | |
Collapse
|
627
|
Prasad RK, Ismail-Beigi F. Mechanism of stimulation of glucose transport by H2O2: role of phospholipase C. Arch Biochem Biophys 1999; 362:113-22. [PMID: 9917335 DOI: 10.1006/abbi.1998.1026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure of Clone 9 cells, a rat liver cell line, to hydrogen peroxide (H2O2) resulted in a striking and rapid stimulation of glucose transport (8- to 10-fold in 1 h). A comparable response was found in 3T3-L1 preadipocytes, C2C12 myoblasts, and NIH 3T3 fibroblasts, which, similar to Clone 9 cells, express only the Glut 1 glucose transporter isoform. The enhancement of glucose transport in Clone 9 cells in response to H2O2 was significantly attenuated by genistein and the phospholipase C (PLC) inhibitor, U73122. Exposure to H2O2 resulted in a rise in cell sn-1,2-diacylglycerol content, and the rise was significantly inhibited by U73122. Moreover, the H2O2-induced stimulation of glucose transport was significantly blocked by thapsigargin. Neither staurosporine nor a 24-h preincubation in the presence of phorbol-12-myristate-13-acetate (TPA) affected the stimulatory effect of hydrogen peroxide on glucose transport. The activity of big mitogen-activated kinase (BMK1) and of stress-activated protein kinase (SAPK), both members of mitogen-activated protein kinases, were enhanced in response to exposure to H2O2; however, neither protein kinase appeared to be linked to the enhancement of glucose transport by H2O2. It is concluded that the stimulation of glucose transport in response to H2O2 is independent of changes in PKC, BMK1, and SAPK activity, and is mediated, at least in part, through H2O2-induced stimulation of protein tyrosine kinase and PLC pathways.
Collapse
Affiliation(s)
- R K Prasad
- Departments of Medicine and of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA
| | | |
Collapse
|
628
|
Zhang Y, Neo SY, Han J, Yaw LP, Lin SC. RGS16 attenuates galphaq-dependent p38 mitogen-activated protein kinase activation by platelet-activating factor. J Biol Chem 1999; 274:2851-7. [PMID: 9915820 DOI: 10.1074/jbc.274.5.2851] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The large gene family encoding the regulators of G protein signaling (RGS) proteins has been implicated in the fine tuning of a variety of cellular events in response to G protein-coupled receptor activation. Several studies have shown that the RGS proteins can attenuate G protein-activated extracellular signal-regulated kinase (ERK) group of mitogen-activated protein kinases. We demonstrate herein that the production of inositol trisphosphate and the activation of the p38 group of mitogen-activated protein kinases by the G protein-coupled platelet-activating factor (PAF) receptor was attenuated by RGS16 in both CHO cells transiently and stably expressing RGS16. The inhibition was not observed with RGS2, RGS5, and a functionally defective form of RGS16, RGS16(R169S/F170C). The PAF-induced p38 and ERK pathways appeared to be preferentially regulated by RGS16 and RGS1, respectively. Overexpression of a constitutively active form of Galpha11 (Galpha11Q209L) prevented the RGS16-mediated attenuation of p38 activity, suggesting that Galphaq/11 is involved in PAF activation of p38. The Galphaq/11 involvement is further supported by the observation that p38 activation by PAF was pertussis toxin-insensitive. These results demonstrate for the first time that apart from ERK, p38 activation by a G protein-coupled receptor can be attenuated by an RGS protein and provide further evidence for the specificity of RGS function in G protein signaling pathways.
Collapse
Affiliation(s)
- Y Zhang
- Regulatory Biology Laboratory, Institute of Molecular and Cell Biology, National University of Singapore, 30 Medical Dr., Singapore 117609, Republic of Singapore
| | | | | | | | | |
Collapse
|
629
|
Nagano K, Fukami K, Minagawa T, Watanabe Y, Ozaki C, Takenawa T. A novel phospholipase C delta4 (PLCdelta4) splice variant as a negative regulator of PLC. J Biol Chem 1999; 274:2872-9. [PMID: 9915823 DOI: 10.1074/jbc.274.5.2872] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been reported that there are two alternatively spliced variants of phospholipase C-delta4 (PLCdelta4), termed ALT I and II, that contain an additional 32 and 14 amino acids in their respective sequences in the linker region between the catalytic X and Y domains (Lee, S. B., and Rhee, S. G. (1996) J. Biol. Chem. 271, 25-31). We report here the isolation and characterization of a novel alternative splicing isoform of PLCdelta4, termed ALT III, as a negative regulator of PLC. In ALT III, alternative splicing occurred in the catalytic X domain, i.e. 63 amino acids (residues 424-486) containing the C-terminal of the X domain and linker region were substituted for 32 amino acids corresponding to the insert sequence of ALT I. Although the expression level of ALT III was found to be much lower in most tissues and cells compared with that of PLCdelta4, it was significantly higher in some neural cells, such as NIE-115 cells and p19 cells differentiated to neural cells by retinoic acid. Interestingly, recombinant ALT III protein did not retain enzymatic activity, and the activity of PLCdelta4 overexpressed in COS7 cells was markedly decreased by the co-expression of ALT III but not by ALT I or II. Moreover, N-terminal pleckstrin homology domain (PH domain) of ALT III alone could inhibit the increase of inositol-1,4, 5-trisphosphate levels in PLCdelta4-overexpressing NIH3T3 cells, whereas a PH domain deletion mutant could not, indicating that the PH domain is necessary and sufficient for its inhibitory effect. The ALT III PH domain specifically bound to phosphatidylinositol (PtdIns)-4,5-P2 and PtdIns-3,4,5-P3 but not PtdIns, PtdIns-4-P, or inositol phosphates, and the mutant R36G, which retained only weak affinity for PtdIns-4,5-P2, could not inhibit the activity of PLCdelta4. These results indicate that PtdIns-4,5-P2 binding to PH domain is essential for the inhibitory effect of ALT III. ALT III also inhibited PLCdelta1 activity and partially suppressed PLCgamma1 activity, but not PLCbeta1 in vitro; it did inhibit all types of isozymes tested in vivo. Taken together, our results indicate that ALT III is a negative regulator of PLC that is most effective against the PLC delta-type isozymes, and its PH domain is essential for its function.
Collapse
Affiliation(s)
- K Nagano
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
630
|
Martin TF. Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol 1999; 14:231-64. [PMID: 9891784 DOI: 10.1146/annurev.cellbio.14.1.231] [Citation(s) in RCA: 388] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Signaling roles for phosphoinositides that involve their regulated hydrolysis to generate second messengers have been well characterized. Recent work has revealed additional signaling roles for phosphoinositides that do not involve their hydrolysis. PtdIns 3-P, PtdIns 3,4,5-P3, and PtdIns 4,5-P2 function as site-specific signals on membranes that recruit and/or activate proteins for the assembly of spatially localized functional complexes. A large number of phosphoinositide-binding proteins have been identified as the potential effectors for phosphoinositide signals. Common themes of localized signal generation and the spatially localized recruitment of effector proteins appear to underlie mechanisms employed in signal transduction, cytoskeletal, and membrane trafficking events.
Collapse
Affiliation(s)
- T F Martin
- Department of Biochemistry, University of Wisconsin, Madison 53706, USA.
| |
Collapse
|
631
|
|
632
|
Components and organization of the nadph oxidase of phagocytic cells. PHAGOCYTOSIS: THE HOST 1999. [DOI: 10.1016/s1874-5172(99)80043-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
633
|
Horstman DA, Chattopadhyay A, Carpenter G. The influence of deletion mutations on phospholipase C-gamma 1 activity. Arch Biochem Biophys 1999; 361:149-55. [PMID: 9882440 DOI: 10.1006/abbi.1998.0978] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipase C-gamma1, a substrate for many growth factor receptor and nonreceptor tyrosine kinases, produces second messenger molecules that are elements of signal transduction pathways related to cell proliferation. The influence of deletion mutations, which do not intrude on the domains required for catalytic function, on the basal activity of this enzyme is reported. Removal of the first 74 amino-terminal residues increases phospholipase C activity, while deletion of the carboxy-terminal 81 residues decreases enzyme activity. Deletion of the SH2-SH2-SH3 central region, which separates the two domains (X, Y) responsible for catalytic function, also increases enzymatic activity. Interestingly, addition of a recombinant SH2-SH2-SH3 fragment of phospholipase C-gamma1 to the holoenzyme inhibits its phospholipase activity at pH 7.0, but not at pH 5.0. However, addition of individual SH2 or SH3 domains does not influence activity of the holoenzyme. All three deletion mutants, in contrast to the holoenzyme, are relatively resistant to V8 proteolysis and activation induced by the epidermal growth factor receptor tyrosine kinase, which require, respectively, specific proteolysis and phosphorylation sites within the SH region. This suggests a conformational change is induced in the SH region by deletion at either the amino- or carboxy-terminus.
Collapse
Affiliation(s)
- D A Horstman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA
| | | | | |
Collapse
|
634
|
Zeng W, Xu X, Popov S, Mukhopadhyay S, Chidiac P, Swistok J, Danho W, Yagaloff KA, Fisher SL, Ross EM, Muallem S, Wilkie TM. The N-terminal domain of RGS4 confers receptor-selective inhibition of G protein signaling. J Biol Chem 1998; 273:34687-90. [PMID: 9856989 DOI: 10.1074/jbc.273.52.34687] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulators of heterotrimeric G protein signaling (RGS) proteins are GTPase-activating proteins (GAPs) that accelerate GTP hydrolysis by Gq and Gi alpha subunits, thus attenuating signaling. Mechanisms that provide more precise regulatory specificity have been elusive. We report here that an N-terminal domain of RGS4 discriminated among receptor signaling complexes coupled via Gq. Accordingly, deletion of the N-terminal domain of RGS4 eliminated receptor selectivity and reduced potency by 10(4)-fold. Receptor selectivity and potency of inhibition were partially restored when the RGS4 box was added together with an N-terminal peptide. In vitro reconstitution experiments also indicated that sequences flanking the RGS4 box were essential for high potency GAP activity. Thus, RGS4 regulates Gq class signaling by the combined action of two domains: 1) the RGS box accelerates GTP hydrolysis by Galphaq and 2) the N terminus conveys high affinity and receptor-selective inhibition. These activities are each required for receptor selectivity and high potency inhibition of receptor-coupled Gq signaling.
Collapse
Affiliation(s)
- W Zeng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
635
|
Thackeray JR, Gaines PC, Ebert P, Carlson JR. small wing encodes a phospholipase C-(gamma) that acts as a negative regulator of R7 development in Drosophila. Development 1998; 125:5033-42. [PMID: 9811587 DOI: 10.1242/dev.125.24.5033] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phospholipase C-(gamma) (PLC-(gamma)) is activated in many cell types following growth factor stimulation. Our understanding of the role of PLC-(gamma) in cell growth and differentiation has been severely limited by the dearth of mutations in any organism. In this study, we show that the Drosophila gene small wing (sl), identified by Bridges in 1915, encodes a PLC-(gamma). Mutations of sl result in extra R7 photoreceptors in the compound eye, consistent with overactivation of the receptor tyrosine kinase pathways that control R7 development. The data presented here provide the first genetic evidence that PLC-(gamma) is involved in Ras-mediated signaling and indicate that PLC-(gamma) acts as a negative regulator in such pathways in Drosophila.
Collapse
Affiliation(s)
- J R Thackeray
- Department of Biology, Yale University, PO Box 208103, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
636
|
Katan M. Families of phosphoinositide-specific phospholipase C: structure and function. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:5-17. [PMID: 9838022 DOI: 10.1016/s0005-2760(98)00125-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A large number of extracellular signals stimulate hydrolysis of phosphatidylinositol 4,5-bisphosphate by phosphoinositide-specific phospholipase C (PI-PLC). PI-PLC isozymes have been found in a broad spectrum of organisms and although they have common catalytic properties, their regulation involves different signalling pathways. A number of recent studies provided an insight into domain organisation of PI-PLC isozymes and contributed towards better understanding of the structural basis for catalysis, cellular localisation and molecular changes that could underlie the process of their activation.
Collapse
Affiliation(s)
- M Katan
- CRC Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
637
|
Zawalich WS, Bonnet-Eymard M, Zawalich KC. Glucose-induced desensitization of the pancreatic beta-cell is species dependent. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E917-24. [PMID: 9843732 DOI: 10.1152/ajpendo.1998.275.6.e917] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The capacity of 20 mM glucose to desensitize insulin release was determined. A prior exposure to 20 mM glucose impaired the response of rat islets to subsequent restimulation. Compared with control islets, insulin secretory rates measured 25-30 min after the onset of 20 mM glucose stimulation were reduced by 75%. Restimulation of glucose-desensitized islets with 20 mM glucose plus 500 nM forskolin resulted in a dramatic enhancement of both phases of secretion. In contrast to the desensitization of rat islets induced by prior 20 mM glucose exposure, mouse islets were immune to this adverse effect of the hexose. Prior exposure to 20 mM glucose had no adverse effect on glucose usage rates. The activation of phospholipase C in glucose-desensitized rat islets was compromised when compared with control islets. The impairment could not be accounted for by a decrease in immunoreactive content of several major phospholipase C isozymes (beta1 or delta1) or their partitioning between the membrane and cytosolic compartments. In contrast to rat islets, prior exposure of mouse islets to 20 mM glucose for 180 min had no effect on inositol phosphate accumulation. These observations document an additional difference between rat and mouse islets and suggest that the evolution of desensitization is a consequence of the impaired activation of phospholipase C in rat islets.
Collapse
Affiliation(s)
- W S Zawalich
- Yale University School of Nursing, New Haven, Connecticut 06536-0740, USA
| | | | | |
Collapse
|
638
|
Abstract
Molecular cloning studies have shown that G-protein-coupled receptors form one of the largest protein families found in nature, and it is estimated that approximately 1000 different such receptors exist in mammals. Characteristically, when activated by the appropriate ligand, an individual receptor can recognize and activate only a limited set of the many structurally closely related heterotrimeric G-proteins expressed within a cell. To understand how this selectivity is achieved at a molecular level has become the focus of an ever increasing number of laboratories. This review provides an overview of recent structural, molecular genetic, biochemical, and biophysical studies that have led to novel insights into the molecular mechanisms governing receptor-mediated G-protein activation and receptor/G-protein coupling selectivity.
Collapse
Affiliation(s)
- J Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
639
|
Nomoto K, Tomita N, Miyake M, Xhu DB, LoGerfo PR, Weinstein IB. Growth inhibition, enhancement of intercellular adhesion, and increased expression of carcinoembryonic antigen by overexpression of phosphoinositides-specific phospholipase C beta 1 in LS174T human colon adenocarcinoma cell line. Jpn J Cancer Res 1998; 89:1257-66. [PMID: 10081486 PMCID: PMC5921740 DOI: 10.1111/j.1349-7006.1998.tb00522.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
By using a retrovirus-derived system we generated derivatives of the human colon adenocarcinoma cell line LS174T (ATCC CL 188) that stably overexpress a full-length cDNA encoding the beta 1 isoform of bovine phosphoinositides-specific phospholipase C (PI-PLC). This was confirmed by the elevated levels of catalytic activity to release phosphoinositides from phosphatidylinositol (PI-PLC) or phosphatidylinositol-bis-phosphate (PIP2-PLC), and the enhanced expressions of messenger RNA and protein. PI-PLC beta 1 overexpresser clones grew to form cell clumps floating in liquid medium, whereas the pMV7-introduced control clones displayed morphologic characteristics that were very similar to those of the parent LS174T cell line. Three individual PI-PLC beta 1 overexpresser cell lines displayed increased doubling time (18.0 h, 21.5 h, and 23.8 h) when compared with 4 individual pMV7-introduced control cell lines (13.1 h, 10.7 h, 12.9 h, and 9.3 h). Anchorage-independent growth ability in soft agar medium was dramatically suppressed by overexpression of PLC beta 1, and the ability of PLC-overproducer clones to form aggregates when cultured in liquid medium was dramatically enhanced when compared with that of pMV7-introduced control clones. Tumorigenicity of PLC beta 1-overproducers was much weaker than that of vector-transduced control clones. The spontaneous release of carcinoembryonic antigen from PLC beta 1-overproducer clones was much higher than that from pMV7 control clones. The ability of PLC beta 1-overproducer clones to form aggregates during suspension culture was much stronger than that of the control clones. These results provide the first evidence that elevated levels of endogenous PI-PLC beta 1 suppress tumor cell growth, but enhance the ability to form cell aggregates and to release carcinoembryonic antigen, an intercellular adhesion molecule.
Collapse
Affiliation(s)
- K Nomoto
- Columbia-Presbyterian Cancer Center, Columbia University Health Sciences, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
640
|
Giovannelli A, Limatola C, Ragozzino D, Mileo AM, Ruggieri A, Ciotti MT, Mercanti D, Santoni A, Eusebi F. CXC chemokines interleukin-8 (IL-8) and growth-related gene product alpha (GROalpha) modulate Purkinje neuron activity in mouse cerebellum. J Neuroimmunol 1998; 92:122-32. [PMID: 9916887 DOI: 10.1016/s0165-5728(98)00192-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We give here evidence that Purkinje neurons (PNs) of mouse cerebellar slices studied with patch clamp technique combined with laser confocal microscopy, respond to human IL-8 and GROalpha by (i) a cytosolic Ca2+ transient compatible with inositol (1,4,5) trisphosphate (InsP3) formation; (ii) an enhancement of the neurotransmitter release; and (iii) an impairment of the long-term depression of synaptic strength (LTD). It was also found the expression of IL-8 receptor type 2 in PN and granule cells by immunofluorescence, immunoblotting and RT-PCR analysis. Considered together these findings suggest that IL-8 and GROalpha may play a neuromodulatory role on mouse cerebellum.
Collapse
Affiliation(s)
- A Giovannelli
- Dipartimento di Medicina Sperimentale Università di L'Aquila, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
641
|
Abstract
Phosphorylation on tyrosine and turnover of polyphosphoinositide metabolism are rapidly stimulated after fertilization. However, the interconnection between these pathways remains to be determined. In the present paper it is demonstrated that eggs of two different sea urchin species contain tyrosine phosphorylated proteins with calcium-sensitive phospholipase C activity. We have investigated whether phospholipase Cgamma (PLCgamma), characteristic of tyrosine kinase receptors, could be responsible for this activity. Western blot and immunocytochemistry performed with antibodies directed against PLCgamma revealed the presence of this protein in cortical regions. It was also observed that PLCgamma displayed calcium-sensitive activity. The present results suggest that PLCgamma may be part of the cascade of events leading to the calcium signal responsible for egg activation at fertilization.
Collapse
Affiliation(s)
- C De Nadai
- Groupe de Recherche sur l'Interaction Gamétique, Faculté de Médecine Pasteur, Nice, France
| | | | | | | |
Collapse
|
642
|
Pedersen KM, Finsen B, Celis JE, Jensen NA. Expression of a novel murine phospholipase D homolog coincides with late neuronal development in the forebrain. J Biol Chem 1998; 273:31494-504. [PMID: 9813063 DOI: 10.1074/jbc.273.47.31494] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Members of the phospholipase D (PLD) superfamily are defined by the conserved HXKXXXXD motif, which is essential for the catalytic function of mammalian PLD. PLD enzymes are thought to play roles in signal transduction and membrane vesicular trafficking in mammalian cells. Here we describe a 54-kDa novel murine polypeptide (designated SAM-9) that is predicted to be a membrane-associated member of the PLD superfamily. SAM-9 shares 40, 30, and 29% amino acid identity with potential orthologs, in vaccinia virus, Caenorhabditis elegans, and Dictyostelium discoideum, respectively, and belongs to a subclass of PLD homologs in which the second HXKXXXXD motif is imperfect and harbors a conserved Asp to Glu substitution. The sam-9 gene has more than eight exons, and the two HXKXXXXD motifs are encoded by two highly conserved exons. The expression of the sam-9 gene is greater in the brain than in non-nervous tissue and appears to be predominantly of neuronal origin. sam-9 expression is pronounced in mature neurons of the forebrain and appears to be turned on at late stages of neurogenesis as revealed by in situ hybridization analysis of sam-9 expression during postnatal development of the hippocampal formation and the primary somatosensory cortex.
Collapse
Affiliation(s)
- K M Pedersen
- Department of Medical Biochemistry, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
643
|
Neri LM, Borgatti P, Capitani S, Martelli AM. Nuclear diacylglycerol produced by phosphoinositide-specific phospholipase C is responsible for nuclear translocation of protein kinase C-alpha. J Biol Chem 1998; 273:29738-44. [PMID: 9792687 DOI: 10.1074/jbc.273.45.29738] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is well established that an independent inositide cycle is present within the nucleus, where it is involved in the control of cell proliferation and differentiation. Previous results have shown that when Swiss 3T3 cells are treated with insulin-like growth factor-I (IGF-I) a rapid and sustained increase in mass of diacylglycerol (DAG) occurs within the nuclei, accompanied by a decrease in the levels of both phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. However, it is unclear whether or not other lipids could contribute to this prolonged rise in DAG levels. We now report that the IGF-I-dependent increase in nuclear DAG production can be inhibited by the specific phosphatidylinositol phospholipase C inhibitor 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine or by neomycin sulfate but not by the purported phosphatidylcholine-phospholipase C specific inhibitor D609 or by inhibitors of phospholipase D-mediated DAG generation. Treatment of cells with 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine or neomycin sulfate inhibited translocation of protein kinase C-alpha to the nucleus. Moreover, exposure of cells to 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine, but not to D609, dramatically reduced the number of cells entering S-phase upon stimulation with IGF-I. These results suggest that the only phospholipase responsible for generation of nuclear DAG after IGF-I stimulation of 3T3 cells is PI-PLC. When this activity is inhibited, neither DAG rise is seen nor PKC-alpha translocation to the nucleus occurs. Furthermore, this PI-PLC activity appears to be essential for the G0/G1 to S-phase transition.
Collapse
Affiliation(s)
- L M Neri
- Dipartimento di Morfologia ed Embriologia, Sezione di Anatomia Umana Normale, Università di Ferrara, via Fossato di Mortara 66, 44100 Ferrara, Italy
| | | | | | | |
Collapse
|
644
|
Yousufzai SY, Abdel-Latif AA. Tyrosine kinase inhibitors suppress prostaglandin F2alpha-induced phosphoinositide hydrolysis, Ca2+ elevation and contraction in iris sphincter smooth muscle. Eur J Pharmacol 1998; 360:185-93. [PMID: 9851585 DOI: 10.1016/s0014-2999(98)00697-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the effects of the protein tyrosine kinase inhibitors, genistein, tyrphostin 47, and herbimycin on prostaglandin F2alpha- and carbachol-induced inositol-1,4,5-trisphosphate (IP3) production, [Ca2+]i mobilization and contraction in cat iris sphincter smooth muscle. Prostaglandin F2alpha and carbachol induced contraction in a concentration-dependent manner with EC50 values of 0.92 x 10(-9) and 1.75 x 10(-8) M, respectively. The protein tyrosine kinase inhibitors blocked the stimulatory effects of prostaglandin F2alpha, but not those evoked by carbachol, on IP3 accumulation, [Ca2+]i mobilization and contraction, suggesting involvement of protein tyrosine kinase activity in the physiological actions of the prostaglandin. Daidzein and tyrphostin A, inactive negative control compounds for genistein and tyrphostin 47, respectively, were without effect. Latanoprost, a prostaglandin F2alpha analog used as an antiglaucoma drug, induced contraction and this effect was blocked by genistein. Genistein (10 microM) markedly reduced (by 67%) prostaglandin F2alpha-stimulated increase in [Ca2+]i but had little effect on that of carbachol in cat iris sphincter smooth muscle cells. Vanadate, a potent inhibitor of protein tyrosine phosphatase, induced a slow gradual muscle contraction in a concentration-dependent manner with an EC50 of 82 microM and increased IP3 generation in a concentration-dependent manner with an EC50 of 90 microM. The effects of vanadate were abolished by genistein (10 microM). Wortmannin, a myosin light chain kinase inhibitor, reduced prostaglandin F2alpha- and carbachol-induced contraction, suggesting that the involvement of protein tyrosine kinase activity may lie upstream of the increases in [Ca2+]i evoked by prostaglandin F2alpha. Further studies aimed at elucidating the role of protein tyrosine kinase activity in the coupling mechanism between prostaglandin F2alpha receptor activation and increases in intracellular Ca2+ mobilization and identifying the tyrosine-phosphorylated substrates will provide important information about the role of protein tyrosine kinase in the mechanism of smooth muscle contraction, as well as about the mechanism of the intraocular pressure lowering effect of the prostaglandin in glaucoma patients.
Collapse
Affiliation(s)
- S Y Yousufzai
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta 30912, USA
| | | |
Collapse
|
645
|
Illenberger D, Schwald F, Pimmer D, Binder W, Maier G, Dietrich A, Gierschik P. Stimulation of phospholipase C-beta2 by the Rho GTPases Cdc42Hs and Rac1. EMBO J 1998; 17:6241-9. [PMID: 9799233 PMCID: PMC1170950 DOI: 10.1093/emboj/17.21.6241] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neutrophils contain a soluble guanine-nucleotidebinding protein, made up of two components with molecular masses of 23 and 26 kDa, that mediates stimulation of phospholipase C-beta2 (PLCbeta2). We have identified the two components of the stimulatory heterodimer by amino acid sequencing as a Rho GTPase and the Rho guanine nucleotide dissociation inhibitor LyGDI. Using recombinant Rho GTPases and LyGDI, we demonstrate that PLCbeta2 is stimulated by guanosine 5'-O-(3-thiotriphosphate) (GTP[S])-activated Cdc42HsxLyGDI, but not by RhoAxLyGDI. Stimulation of PLCbeta2, which was also observed for GTP[S]-activated recombinant Rac1, was independent of LyGDI, but required C-terminal processing of Cdc42Hs/Rac1. Cdc42Hs/Rac1 also stimulated PLCbeta2 in a system made up of purified recombinant proteins, suggesting that this function is mediated by direct protein-protein interaction. The Cdc42Hs mutants F37A and Y40C failed to stimulate PLCbeta2, indicating that the Cdc42Hs effector site is involved in this interaction. The results identify PLCbeta2 as a novel effector of the Rho GTPases Cdc42Hs and Rac1, and as the first mammalian effector directly regulated by both heterotrimeric and low-molecular-mass GTP-binding proteins.
Collapse
Affiliation(s)
- D Illenberger
- Department of Pharmacology and Toxicology, University of Ulm, 89069 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
646
|
Cha SH, Cha JH, Cho YJ, Noh DY, Lee KH, Endou H. Distributional patterns of phospholipase C isozymes in rat kidney. Nephron Clin Pract 1998; 80:314-23. [PMID: 9807041 DOI: 10.1159/000045192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
As the first step to investigate the physiological function of phospholipase C (PLC), we determined the distribution patterns of PLC isozymes in normal rat kidneys using Western blotting analysis and immunohistochemistry. Western blotting analysis was performed in four regions (cortex, outer stripe and inner stripe of the outer medulla, and the inner medulla). PLC-beta1 and beta3 were detected in the inner stripe of the outer medulla and the inner medulla. PLC-gamma1 was distributed homogeneously along the corticomedullary axis. PLC-gamma2 was observed in the medulla and PLC-delta1 showed a gradual increase from the cortex to the inner medulla. In contrast, no PLC-beta4 was detected in all regions. On immunohistochemistry, the immunoreactivities to PLC antibodies were observed as follows: PLC-beta1, from the thick ascending limb (TAL) to the inner medullary collecting tubule (IMCT); PLC-beta3, in the glomerulus (Glm), the ascending thin limb (ATL) and the collecting tubule; PLC-beta4, Glm, the proximal convoluted tubule (PCT), ATL, the distal convoluted tubule, the connecting tubule, and the collecting tubules; PLC-gamma1, PCT, TAL and IMCT; PLC-delta1, homogeneously from PCT to IMCT. PLC-beta3 immunoreactivities were detected in the nuclei of the TAL, ATL, outer medullary collecting tubule (OMCT) and IMCT. PLC-beta4 and gamma2 were observed in Glm, MTAL, ATL, OMCT and IMCT. These results suggest the intrarenal site-specific existence of PLC isozymes that may regulate kidney functions through the PLC-mediated signal transductions.
Collapse
Affiliation(s)
- S H Cha
- Department of Pharmacology, University Medical College, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
647
|
Mehlmann LM, Carpenter G, Rhee SG, Jaffe LA. SH2 domain-mediated activation of phospholipase Cgamma is not required to initiate Ca2+ release at fertilization of mouse eggs. Dev Biol 1998; 203:221-32. [PMID: 9806786 DOI: 10.1006/dbio.1998.9051] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The initiation of Ca2+ release at fertilization of mammalian eggs requires inositol trisphosphate (Miyazaki et al., 1992, Science 257, 251-255), indicating that an enzyme of the phospholipase C family is probably activated. Because Ca2+ release at fertilization in echinoderm eggs is initiated by SH2 domain-mediated activation of phospholipase Cgamma (Carroll et al., 1997, J. Cell Biol. 138, 1303-1311), we examined the possible role of PLCgamma in initiating Ca2+ release at fertilization in mouse eggs. Both PLCgamma isoforms, PLCgamma1 and PLCgamma2, are present in mouse eggs and sperm, and stimulation of these enzymes in the egg by way of an exogenously expressed PDGF receptor causes Ca2+ release. Recombinant SH2 domains of PLCgamma1 and PLCgamma2 inhibit PLCgamma1 and PLCgamma2 activation by the PDGF receptor, completely preventing Ca2+ release in response to PDGF when injected at an approximately 20- to 40-fold excess over the concentrations of endogenous proteins. However, even at an approximately 100- to 400-fold excess over endogenous protein levels, PLCgamma1 and PLCgamma2 SH2 domains do not inhibit Ca2+ release at fertilization. These findings indicate that Ca2+ release at fertilization of mouse eggs does not require SH2-domain-mediated activation of PLCgamma. However, activation of PLCgamma in the egg by an alternative pathway, or introduction of activated PLCgamma from the sperm, may be important.
Collapse
Affiliation(s)
- L M Mehlmann
- Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut, 06032, USA
| | | | | | | |
Collapse
|
648
|
Várnai P, Balla T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Biophys Biochem Cytol 1998; 143:501-10. [PMID: 9786958 PMCID: PMC2132833 DOI: 10.1083/jcb.143.2.501] [Citation(s) in RCA: 848] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2) pools that bind pleckstrin homology (PH) domains were visualized by cellular expression of a phospholipase C (PLC)delta PH domain-green fluorescent protein fusion construct and analysis of confocal images in living cells. Plasma membrane localization of the fluorescent probe required the presence of three basic residues within the PLCdelta PH domain known to form critical contacts with PtdIns(4, 5)P2. Activation of endogenous PLCs by ionophores or by receptor stimulation produced rapid redistribution of the fluorescent signal from the membrane to cytosol, which was reversed after Ca2+ chelation. In both ionomycin- and agonist-stimulated cells, fluorescent probe distribution closely correlated with changes in absolute mass of PtdIns(4,5)P2. Inhibition of PtdIns(4,5)P2 synthesis by quercetin or phenylarsine oxide prevented the relocalization of the fluorescent probe to the membranes after Ca2+ chelation in ionomycin-treated cells or during agonist stimulation. In contrast, the synthesis of the PtdIns(4,5)P2 imaged by the PH domain was not sensitive to concentrations of wortmannin that had been found inhibitory of the synthesis of myo-[3H]inositol- labeled PtdIns(4,5)P2. Identification and dynamic imaging of phosphoinositides that interact with PH domains will further our understanding of the regulation of such proteins by inositol phospholipids.
Collapse
Affiliation(s)
- P Várnai
- Endocrinology and Reproduction Research Branch, National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | |
Collapse
|
649
|
Jin T, Amzel M, Devreotes PN, Wu L. Selection of gbeta subunits with point mutations that fail to activate specific signaling pathways in vivo: dissecting cellular responses mediated by a heterotrimeric G protein in Dictyostelium discoideum. Mol Biol Cell 1998; 9:2949-61. [PMID: 9763454 PMCID: PMC25572 DOI: 10.1091/mbc.9.10.2949] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/1998] [Accepted: 08/10/1998] [Indexed: 11/11/2022] Open
Abstract
In Dictyostelium discoideum, a unique Gbeta subunit is required for a G protein-coupled receptor system that mediates a variety of cellular responses. Binding of cAMP to cAR1, the receptor linked to the G protein G2, triggers a cascade of responses, including activation of adenylyl cyclase, gene induction, actin polymerization, and chemotaxis. Null mutations of the cAR1, Galpha2, and Gbeta genes completely impair all these responses. To dissect specificity in Gbetagamma signaling to downstream effectors in living cells, we screened a randomly mutagenized library of Gbeta genes and isolated Gbeta alleles that lacked the capacity to activate some effectors but retained the ability to regulate others. These mutant Gbeta subunits were able to link cAR1 to G2, to support gene expression, and to mediate cAMP-induced actin polymerization, and some were able to mediate to chemotaxis toward cAMP. None was able to activate adenylyl cyclase, and some did not support chemotaxis. Thus, we separated in vivo functions of Gbetagamma by making point mutations on Gbeta. Using the structure of the heterotrimeric G protein displayed in the computer program CHAIN, we examined the positions and the molecular interactions of the amino acids substituted in each of the mutant Gbetas and analyzed the possible effects of each replacement. We identified several residues that are crucial for activation of the adenylyl cyclase. These residues formed an area that overlaps but is not identical to regions where bovine Gtbetagamma interacts with its regulators, Galpha and phosducin.
Collapse
Affiliation(s)
- T Jin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
650
|
Puri RN. Phospholipase A2: its role in ADP- and thrombin-induced platelet activation mechanisms. Int J Biochem Cell Biol 1998; 30:1107-22. [PMID: 9785476 DOI: 10.1016/s1357-2725(98)00080-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ADP and thrombin are two of the most important agonists of platelet aggregation--a cellular response that is critical for maintaining normal hemostasis. However, aberrant platelet aggregation induced by these agonists plays a central role in the pathogenesis of cardiovascular and cerebrovascular diseases. Agonist-induced primary or secondary activation of phospholipases leads to generation of the second messengers that participate in biochemical reactions essential to a number of platelet responses elicited by ADP and thrombin. Phospholipase A2 (PLA2) has been linked to cardiovascular diseases. However, the mechanism(s) of activation of PLA2 in platelets stimulated by ADP and thrombin has remained less well defined and much less appreciated. The purpose of this review is to examine and compare the molecular mechanisms of activation of PLA2 in platelets stimulated by ADP and thrombin.
Collapse
Affiliation(s)
- R N Puri
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|