601
|
Solov'eva EY, Dzhutova ED, Knyazeva VS. [Pathogenetic approaches to treatment of cognitive disorders in patients with diabetes mellitus]. Zh Nevrol Psikhiatr Im S S Korsakova 2016. [PMID: 28635936 DOI: 10.17116/jnevro20161167185-93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The article presents the currents concepts on the mechanisms of brain lesions and development of cognitive impairment in diabetes mellitus (DM) including DM type 2. Metabolic and vascular mechanisms, oxidative stress, hyperglycemia, glutamate excitotoxicity, insulin insufficiency and brain insulin resistance, general vascular and microcirculatory disturbances, death of cortical neurons, decrease in the newly synthesized acetylcholine, activation of lipid peroxidation are considered. A review of the main domestic and international drugs used in clinical practice for treatment of cognitive impairment in patients with DM is presented.
Collapse
Affiliation(s)
- E Yu Solov'eva
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E D Dzhutova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - V S Knyazeva
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
602
|
Schilling MA. Unraveling Alzheimer's: Making Sense of the Relationship between Diabetes and Alzheimer's Disease1. J Alzheimers Dis 2016; 51:961-77. [PMID: 26967215 PMCID: PMC4927856 DOI: 10.3233/jad-150980] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 12/11/2022]
Abstract
Numerous studies have documented a strong association between diabetes and Alzheimer's disease (AD). The nature of the relationship, however, has remained a puzzle, in part because of seemingly incongruent findings. For example, some studies have concluded that insulin deficiency is primarily at fault, suggesting that intranasal insulin or inhibiting the insulin-degrading enzyme (IDE) could be beneficial. Other research has concluded that hyperinsulinemia is to blame, which implies that intranasal insulin or the inhibition of IDE would exacerbate the disease. Such antithetical conclusions pose a serious obstacle to making progress on treatments. However, careful integration of multiple strands of research, with attention to the methods used in different studies, makes it possible to disentangle the research on AD. This integration suggests that there is an important relationship between insulin, IDE, and AD that yields multiple pathways to AD depending on the where deficiency or excess in the cycle occurs. I review evidence for each of these pathways here. The results suggest that avoiding excess insulin, and supporting robust IDE levels, could be important ways of preventing and lessening the impact of AD. I also describe what further tests need to be conducted to verify the arguments made in the paper, and their implications for treating AD.
Collapse
|
603
|
Sun X, Zhai W, Fossey JS, James TD. Boronic acids for fluorescence imaging of carbohydrates. Chem Commun (Camb) 2016; 52:3456-69. [DOI: 10.1039/c5cc08633g] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbohydrate biomarkers are particularly important targets for fluorescence imaging given their pivotal role in numerous important biological events. This review highlights the development of fluorescence imaging agents based on boronic acids.
Collapse
Affiliation(s)
| | - Wenlei Zhai
- School of Chemistry
- University of Birmingham
- Birmingham
- UK
| | | | | |
Collapse
|
604
|
Lazard D, Vardi P, Bloch K. Anti-diabetic and neuroprotective effects of pancreatic islet transplantation into the central nervous system. Diabetes Metab Res Rev 2016; 32:11-20. [PMID: 25708430 DOI: 10.1002/dmrr.2644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/19/2015] [Indexed: 12/19/2022]
Abstract
During the last decades, the central nervous system (CNS) was intensively tested as a site for islet transplantation in different animal models of diabetes. Immunoprivilege properties of intracranial and intrathecal sites were found to delay and reduce rejection of transplanted allo-islets and xeno-islets, especially in the form of dispersed single cells. Insulin released from islets grafted in CNS was shown to cross the blood-brain barrier and to act as a regulator of peripheral glucose metabolism. In diabetic animals, sufficient nutrition and oxygen supply to islets grafted in the CNS provide adequate insulin response to increase glucose level resulting in rapid normoglycemia. In addition to insulin, pancreatic islets produce and secrete several other hormones, as well as neurotrophic and angiogenic factors with potential neuroprotective properties. Recent experimental studies and clinical trials provide a strong support for delivery of islet-derived macromolecules to CNS as a promising strategy to treat various brain disorders. This review article focuses mainly on analysis of current status of intracranial and intrathecal islet transplantations for treatment of experimental diabetes and discusses the possible neuroprotective properties of grafted islets into CNS as a novel therapeutic approach to brain disorders with cognitive dysfunctions characterized by impaired brain insulin signalling. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier
- Brain
- Central Nervous System
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/surgery
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/surgery
- Diabetic Neuropathies/prevention & control
- Disease Models, Animal
- Humans
- Hyperglycemia/prevention & control
- Hypoglycemia/prevention & control
- Insulin/metabolism
- Insulin Resistance
- Insulin Secretion
- Islets of Langerhans Transplantation/adverse effects
- Spinal Cord
- Subarachnoid Space
- Transplantation, Heterologous/adverse effects
- Transplantation, Heterotopic/adverse effects
Collapse
Affiliation(s)
- Daniel Lazard
- Laboratory of Diabetes and Obesity Research, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Pnina Vardi
- Laboratory of Diabetes and Obesity Research, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Konstantin Bloch
- Laboratory of Diabetes and Obesity Research, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel
| |
Collapse
|
605
|
Sinclair AJ, Rodriguez-Mañas L. Diabetes and Frailty: Two Converging Conditions? Can J Diabetes 2015; 40:77-83. [PMID: 26683240 DOI: 10.1016/j.jcjd.2015.09.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus is a disabling, chronic cardiovascular and medical disease with a tremendous health, social and economic burden in our ageing communities. It has a prevalence of 10% to 30% in people older than 65 years of age, and more than half of all subjects with diabetes in the United States are older than 60 years of age. The main impact of diabetes in older adults stems from its effect on function, both physical and cognitive, that finally impairs their quality of life, although the impact on survival is modest. Frailty has emerged during the past 2 decades as the most powerful predictor of disability and other adverse outcomes, including mortality, disability and institutionalization in older adults. In this article we explore the relationship between diabetes and frailty, and we recognize that they are intimately related chronic medical conditions that result in huge societal and personal health burdens.
Collapse
Affiliation(s)
- Alan J Sinclair
- Foundation for Diabetes Research in Older People, Diabetes Frail, Hampton Lovett, Droitwich, Worcestershire, UK; University of Aston, Birmingham, UK.
| | | |
Collapse
|
606
|
Wahlqvist ML, Lee MS, Lee JT, Hsu CC, Chou YC, Fang WH, Liu HY, Xiu L, Andrews ZB. Cinnamon users with prediabetes have a better fasting working memory: a cross-sectional function study. Nutr Res 2015; 36:305-310. [PMID: 27001275 DOI: 10.1016/j.nutres.2015.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 11/24/2022]
Abstract
Working memory (WM) is impaired in prediabetes. We hypothesized that culinary herbs and spices may decrease insulin resistance (IR) and improve WM in prediabetes. Healthy people aged ≥60 years with prediabetes (fasting blood glucose 100-125 mg/dL) (47 men and 46 women) whose food and culinary herb intakes were established with a food frequency questionnaire had body composition assessed and fasting glucose and insulin measured. Working memory and Mini-Mental State Examination (MMSE) were assessed on the same occasion. The contributions to associations between WM and diet, body fat, and IR were estimated by linear regression. Compared with nonusers, cinnamon users had significantly less frequent physical activity (2.9 vs. 4.4 times per week) and more often used fresh ginger (93.3% vs. 64.1%) and ginger in cooking (60.0% vs. 32.1%). Cinnamon users also had a better WM (2.9 vs. 2.5, P < .001). Cinnamon had a significant effect (users were 0.446 higher), but not ginger or curry usage, in predicting WM. For sociodemographic variables, only education (years) was significant in predicting WM (β = 0.065). Other significant determinants of WM were total fat mass (kilograms) (β = -0.024) and MMSE (β = 0.075). After adjustment for age and sex, cinnamon use, education, and MMSE remained significant individual predictors. In the final model, in which all variables listed were adjusted simultaneously, cinnamon users still had a significantly higher WM than nonusers. Cinnamon usage is associated with a better WM, not accounted for by dietary quality or IR, in untreated prediabetes.
Collapse
Affiliation(s)
- Mark L Wahlqvist
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC; Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan, ROC; Monash Asia Institute, Monash University, Melbourne, VIC, Australia; Fuli institute of Food Science and Nutrition, Zhejiang University, Zhejiang, China.
| | - Meei-Shyuan Lee
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Jiunn-Tay Lee
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wen-Hui Fang
- Department of Family Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, ROC
| | - Hsiao-Yu Liu
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC; Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Lili Xiu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Zane B Andrews
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
607
|
Picone P, Ditta LA, Sabatino MA, Militello V, San Biagio PL, Di Giacinto ML, Cristaldi L, Nuzzo D, Dispenza C, Giacomazza D, Di Carlo M. Ionizing radiation-engineered nanogels as insulin nanocarriers for the development of a new strategy for the treatment of Alzheimer's disease. Biomaterials 2015; 80:179-194. [PMID: 26708643 DOI: 10.1016/j.biomaterials.2015.11.057] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/16/2015] [Accepted: 11/29/2015] [Indexed: 01/07/2023]
Abstract
A growing body of evidence shows the protective role of insulin in Alzheimer's disease (AD). A nanogel system (NG) to deliver insulin to the brain, as a tool for the development of a new therapy for Alzheimer's Disease (AD), is designed and synthetized. A carboxyl-functionalized poly(N-vinyl pyrrolidone) nanogel system produced by ionizing radiation is chosen as substrate for the covalent attachment of insulin or fluorescent molecules relevant for its characterization. Biocompatibility and hemocompatibility of the naked carrier is demonstrated. The insulin conjugated to the NG (NG-In) is protected by protease degradation and able to bind to insulin receptor (IR), as demonstrated by immunofluorescence measurements showing colocalization of NG-In(FITC) with IR. Moreover, after binding to the receptor, NG-In is able to trigger insulin signaling via AKT activation. Neuroprotection of NG-In against dysfunction induced by amyloid β (Aβ), a peptide mainly involved in AD, is verified. Finally, the potential of NG-In to be efficiently transported across the Blood Brain Barrier (BBB) is demonstrated. All together these results indicate that the synthesized NG-In is a suitable vehicle system for insulin deliver in biomedicine and a very promising tool to develop new therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto di Biomedicina e Immunologia Molecolare "A. Monroy" (IBIM), Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo (PA), Italy
| | - Lorena Anna Ditta
- Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, Viale delle Scienze, Building 6, 90128 Palermo (PA), Italy
| | - Maria Antonietta Sabatino
- Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, Viale delle Scienze, Building 6, 90128 Palermo (PA), Italy
| | - Valeria Militello
- Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Building 18, 90128 Palermo (PA), Italy
| | - Pier Luigi San Biagio
- Istituto di BioFisica (IBF), Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo (PA), Italy
| | - Maria Laura Di Giacinto
- Istituto di Biomedicina e Immunologia Molecolare "A. Monroy" (IBIM), Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo (PA), Italy
| | - Laura Cristaldi
- Istituto di Biomedicina e Immunologia Molecolare "A. Monroy" (IBIM), Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo (PA), Italy
| | - Domenico Nuzzo
- Istituto di Biomedicina e Immunologia Molecolare "A. Monroy" (IBIM), Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo (PA), Italy
| | - Clelia Dispenza
- Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, Viale delle Scienze, Building 6, 90128 Palermo (PA), Italy; School of Chemical Science and Engineering, Department of Fiber and Polymer Technology, Royal Institute of Technology (KTH), SE-100 44, Stockholm, Sweden.
| | - Daniela Giacomazza
- Istituto di BioFisica (IBF), Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo (PA), Italy.
| | - Marta Di Carlo
- Istituto di Biomedicina e Immunologia Molecolare "A. Monroy" (IBIM), Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo (PA), Italy.
| |
Collapse
|
608
|
Liu K, Liu Y, Li L, Qin P, Iqbal J, Deng Y, Qing H. Glycation alter the process of Tau phosphorylation to change Tau isoforms aggregation property. Biochim Biophys Acta Mol Basis Dis 2015; 1862:192-201. [PMID: 26655600 DOI: 10.1016/j.bbadis.2015.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/02/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022]
Abstract
The risk of tauopathies depends in part on the levels and modified composition of six Tau isoforms in the human brain. Abnormal phosphorylation of the Tau protein and the shift of the ratio of 3R Tau to 4R Tau are presumed to result in neurofibrillary pathology and neurodegeneration. Glycation has recently been linked to dementia and metabolic syndrome. To determine the contribution of Tau protein glycation and phosphorylation on Tau aggregation propensity, the assembled kinetics were examined in vitro using Thioflavin T fluorescence assays. We found that glycation and phosphorylation have different effects on aggregation propensity in different Tau isoforms. Different Tau proteins play important parts in each tauopathies, but 3R0N, fetal Tau protein, has no effect on tauopathies. Conversely, 4R2N has more modified sites and a higher tendency to aggregate, playing the most important role in 4R tauopathies. Finally, Glycation, which could modulate Tau phosphorylation, may occur before any other modification. It also regulates the 3R to 4R ratio and promotes 4R2N Tau protein aggregation. Decreasing the sites of glycation, as well as shifting other Tau proteins to 3R0N Tau proteins has potential therapeutic implications for tauopathies.
Collapse
Affiliation(s)
- Kefu Liu
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, PR China
| | - Yutong Liu
- Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| | - Lingyun Li
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, PR China; School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Peibin Qin
- Beijing Proteome Research Center, No.33, Life Science Park Road, Changping District, Beijing 102206, PR China
| | - Javed Iqbal
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, PR China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, PR China.
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, PR China.
| |
Collapse
|
609
|
Novel GLP-1 (Glucagon-Like Peptide-1) Analogues and Insulin in the Treatment for Alzheimer's Disease and Other Neurodegenerative Diseases. CNS Drugs 2015; 29:1023-39. [PMID: 26666230 DOI: 10.1007/s40263-015-0301-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The link between diabetes mellitus and Alzheimer's disease (AD) has been known for the last few decades. Since insulin and insulin receptors are known to be present in the brain, the downstream signalling as well as the effect of hyperinsulinemia have been extensively studied in both AD and Parkinson's disease. Glucagon-like peptide-1 (GLP-1) is a hormone belonging to the incretin family, and its receptors (GLP-1Rs) can be found in pancreatic cells and in vascular endothelium. Interestingly, GLP-1Rs are found in the neuronal cell body and dendrites in the central nervous system (CNS), in particular in the hypothalamus, hippocampus, cerebral cortex and olfactory bulb. Several studies have shown the importance of both insulin and GLP-1 signalling on cognitive function, and many preclinical studies have been performed to evaluate the potential protective role of GLP-1 on the brain. Here we review the underlying mechanism of insulin and GLP-1 signalling in the CNS, as well as the preclinical data for the use of GLP-1 analogues such as liraglutide, exenatide and lixisenatide in neurodegenerative diseases.
Collapse
|
610
|
Jha NK, Jha SK, Kumar D, Kejriwal N, Sharma R, Ambasta RK, Kumar P. Impact of Insulin Degrading Enzyme and Neprilysin in Alzheimer’s Disease Biology: Characterization of Putative Cognates for Therapeutic Applications. J Alzheimers Dis 2015; 48:891-917. [DOI: 10.3233/jad-150379] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Noopur Kejriwal
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Renu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
- Department of Neurology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
611
|
Colca JR. The TZD insulin sensitizer clue provides a new route into diabetes drug discovery. Expert Opin Drug Discov 2015; 10:1259-70. [DOI: 10.1517/17460441.2015.1100164] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
612
|
Rosiglitazone improves learning and memory ability in rats with type 2 diabetes through the insulin signaling pathway. Am J Med Sci 2015; 350:121-8. [PMID: 25973687 DOI: 10.1097/maj.0000000000000499] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes mellitus (DM) is associated with moderate cognitive deficits and neurophysiologic and structural changes in the brain, a condition that is referred to as diabetic encephalopathy. This study was performed to investigate the effect of rosiglitazone (RSG) on learning and memory in rats with DM and elucidate possible mechanisms underlying this condition. Thirty-two male Sprague-Dawley rats were randomly divided into 4 groups: control (C, n = 8), DM (n = 8), RSG-administered control (C + RSG, n = 8) and RSG-administered DM groups (DM + RSG, n = 8). At 8 weeks after drug administration, Morris water maze was used to perform a training and probe trial to detect spatial learning and memory abilities. Western blot and immunohistochemistry were also used to detect changes in proteins involved in the insulin signal transduction pathway, such as the insulin receptor, insulin receptor substrate-1, protein kinase B, phosphorylated cAMP response element-binding protein and B-cell lymphoma 2, in the hippocampus of the rats. This study found that RSG could normalize the impaired insulin signal transduction in type 2 DM. The authors showed that RSG modulated the central insulin signaling axis.
Collapse
|
613
|
Siervo M, Lara J, Munro A, Tang EYH, Rutjes AWS, Stephan B. Dietary interventions for maintaining cognitive function in cognitively healthy people in late life. Cochrane Database Syst Rev 2015. [DOI: 10.1002/14651858.cd011910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mario Siervo
- Newcastle University; Human Nutrition Research Centre, Institute for Ageing and Health; Campus of Ageing and Vitality Newcastle University Newcastle upon Tyne UK NE4 5PL
| | - Jose Lara
- Newcastle University; Human Nutrition Research Centre, Institute for Ageing and Health; Campus of Ageing and Vitality Newcastle University Newcastle upon Tyne UK NE4 5PL
| | - Alex Munro
- Newcastle University; Human Nutrition Research Centre, Institute for Ageing and Health; Campus of Ageing and Vitality Newcastle University Newcastle upon Tyne UK NE4 5PL
| | - Eugene Yee Hing Tang
- Newcastle University; Institute for Ageing and Institute of Health and Society; Baddiley-Clark Building Newcastle upon Tyne UK NE2 4AX
| | - Anne WS Rutjes
- Fondazione "Università G. D'Annunzio"; Centre for Systematic Reviews; Via dei Vestini 31 Chieti Chieti Italy 66100
- University of Bern; Institute of Social and Preventive Medicine (ISPM); Finkenhubelweg 11 Bern Bern Switzerland 3012
| | - Blossom Stephan
- Newcastle University; Institute for Ageing and Institute of Health and Society; Baddiley-Clark Building Newcastle upon Tyne UK NE2 4AX
| |
Collapse
|
614
|
Tang EYH, Harrison SL, Albanese E, Gorman TJ, Rutjes AWS, Siervo M, Stephan B. Dietary interventions for prevention of dementia in people with mild cognitive impairment. Cochrane Database Syst Rev 2015. [DOI: 10.1002/14651858.cd011909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eugene Yee Hing Tang
- Newcastle University; Institute for Ageing and Institute of Health and Society; Baddiley-Clark Building Newcastle upon Tyne UK NE2 4AX
| | - Stephanie L Harrison
- Newcastle University; Institute of Health and Society; Baddiley-Clark Building Richardson Road Newcastle upon Tyne UK NE2 4AX
| | - Emiliano Albanese
- King's College London; Health Service and Population Research; De Crespigny Park London UK SE22 0HP
| | - Thomas J Gorman
- Newcastle University; Institute of Health and Society; Baddiley-Clark Building Richardson Road Newcastle upon Tyne UK NE2 4AX
| | - Anne WS Rutjes
- Fondazione "Università G. D'Annunzio"; Centre for Systematic Reviews; Via dei Vestini 31 Chieti Chieti Italy 66100
- University of Bern; Institute of Social and Preventive Medicine (ISPM); Finkenhubelweg 11 Bern Bern Switzerland 3012
| | - Mario Siervo
- Newcastle University; Human Nutrition Research Centre, Institute for Ageing and Health; Campus of Ageing and Vitality Newcastle University Newcastle upon Tyne UK NE4 5PL
| | - Blossom Stephan
- Newcastle University; Institute for Ageing and Institute of Health and Society; Baddiley-Clark Building Newcastle upon Tyne UK NE2 4AX
| |
Collapse
|
615
|
Cisternas P, Lindsay CB, Salazar P, Silva-Alvarez C, Retamales RM, Serrano FG, Vio CP, Inestrosa NC. The increased potassium intake improves cognitive performance and attenuates histopathological markers in a model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2630-44. [PMID: 26391254 DOI: 10.1016/j.bbadis.2015.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/03/2015] [Accepted: 09/16/2015] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by hallmarks that include an accumulation of amyloid-β peptide (Aβ), inflammation, oxidative stress and synaptic dysfunction, which lead to a decrease in cognitive function. To date, the onset and progression of AD have been associated with pathologies such as hypertension and diabetes. Hypertension, a disease with a high incidence worldwide, is characterized by a chronic increase in blood pressure. Interestingly, this disease has a close relationship to the eating behavior of patients because high Na(+) intake is a significant risk factor for hypertension. In fact, a decrease in Na(+) consumption, along with an increase in K(+) intake, is a primary non-pharmacological approach to preventing hypertension. In the present work, we examined whether an increase in K(+) intake affects the expression of certain neuropathological markers or the cognitive performance of a murine model of AD. We observed that an increase in K(+) intake leads to a change in the aggregation pattern of the Aβ peptide, a partial decrease in some epitopes of tau phosphorylation and improvement in the cognitive performance. The recovery in cognitive performance was correlated with a significant improvement in the generation of long-term potentiation. We also observed a decrease in markers related to inflammation and oxidative stress such as glial fibrillary acidic protein (GFAP), interleukin 6 (IL-6) and 4-hydroxynonenal (4-HNE). Together, our data support the idea that changes in diet, such as an increase in K(+) intake, may be important in the prevention of AD onset as a non-pharmacological therapy.
Collapse
Affiliation(s)
- Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Bioloía Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina B Lindsay
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Bioloía Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Bioloía Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carmen Silva-Alvarez
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Bioloía Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rocio M Retamales
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Bioloía Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe G Serrano
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Bioloía Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos P Vio
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Bioloía Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Centro UC Síndrome de Down, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
616
|
Sabokdast M, Habibi-Rezaei M, Moosavi-Movahedi AA, Ferdousi M, Azimzadeh-Irani E, Poursasan N. Protection by beta-Hydroxybutyric acid against insulin glycation, lipid peroxidation and microglial cell apoptosis. Daru 2015; 23:42. [PMID: 26311627 PMCID: PMC4551523 DOI: 10.1186/s40199-015-0126-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 08/18/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Diabetes mellitus is characterized jointly by hyperglycemia and hyperinsulinemia that make insulin more prone to be glycated and evolve insulin advanced glycation end products (Insulin- AGE). Here, we report the effect of beta-hydroxy butyrate (BHB) (the predominant ketone body) on the formation of insulin-AGE, insulin glycation derived liposomal lipid peroxidation and insulin-AGE toxicity in microglial cells. METHODS The inhibitory effect of BHB was monitored as a result of insulin incubation in the presence of glucose or fructose using AGE-dependent fluorescence, Tyr fluorescence as well as anilinonaphthalenesulfonate (ANS) andthioflavin T (ThT) binding, and circular dichroism (CD) investigations. To study lipid peroxidation induced by insulin glycation, thiobarbituric acid (TBA) assay and thiobarbituric acid reactive substance (TBARS) monitoring were used. The effect of insulin-AGE on microglial viability was investigated by 3-(4, 5 dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT) cell assay and Annexin V/propidium iodide (PI) staining. RESULTS Here we are reporting the inhibitory effect of BHB on insulin glycation and generation of insulin-AGE as a possible explanation for insulin resistance. Moreover, the protective effect of BHB on consequential glycation derived liposomal lipid peroxidation as a causative event in microglial apoptosis is reported. CONCLUSION The reduced insulin fibril formation, structural inertia to glycation involved conformational changes, anti-lipid peroxidation effect, and increasing microglia viability indicated the protective effect of BHB that disclose insight on the possible preventive effect of BHB on Alzheimer's disease.
Collapse
Affiliation(s)
- Manijheh Sabokdast
- School of Biology, College of Science, University of Tehran, Tehran, Iran.
- Present address: Department of agronomy, and plant breeding, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran, Iran.
- Nano-Biomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran.
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
- Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran.
| | - Maryam Ferdousi
- School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | | - Najmeh Poursasan
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
617
|
Ahmed S, Mahmood Z, Zahid S. Linking insulin with Alzheimer's disease: emergence as type III diabetes. Neurol Sci 2015; 36:1763-9. [PMID: 26248483 DOI: 10.1007/s10072-015-2352-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/25/2015] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) has characteristic neuropathological abnormalities including regionalized neurodegeneration, neurofibrillary tangles, amyloid beta (Aβ) deposition, activation of pro-apoptotic genes, and oxidative stress. As the brain functions continue to disintegrate, there is a decline in person's cognitive abilities, memory, mood, spontaneity, and socializing behavior. A framework that sequentially interlinks all these phenomenons under one event is lacking. Accumulating evidence has indicated the role of insulin deficiency and insulin resistance as mediators of AD neurodegeneration. Herein, we reviewed the evidence stemming from the development of diabetes agent-induced AD animal model. Striking evidence has attributed loss of insulin receptor-bearing neurons to precede or accompany initial stage of AD. This state seems to progress with AD such that, in the terminal stages, it worsens and becomes global. Oxidative stress, tau hyperphosphorylation, APP-Aβ deposition, and impaired glucose and energy metabolism have all been linked to perturbation in insulin/IGF signaling. We conclude that AD could be referred to as "type 3 diabetes". Moreover, owing to common pathophysiology with diabetes common therapeutic regime could be effective for AD patients.
Collapse
Affiliation(s)
- Sara Ahmed
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zahra Mahmood
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
618
|
Cai Z, Xiao M, Chang L, Yan LJ. Role of insulin resistance in Alzheimer's disease. Metab Brain Dis 2015; 30:839-51. [PMID: 25399337 DOI: 10.1007/s11011-014-9631-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/07/2014] [Indexed: 01/01/2023]
Abstract
A critical role of insulin resistance (IR) in Alzheimer's disease (AD) includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles (NFTs), failure of synaptic transmission and neuronal degeneration. Aβ is sequentially cleavaged from APP by two proteolytic enzymes: β-secretase and γ-secretase. IR could regulate Aβ production via enhancing β- and γ-secretase activity. Meanwhile, IR induces oxidative stress and inflammation in the brain which contributes to Aβ and tau pathology. Aβ accumulation can enhance IR through Aβ-mediated inflammation and oxidative stress. IR is a possible linking between amyloid plaques and NFTs pathology via oxidative stress and neuroinflammation. Additionally, IR could disrupt acetylcholine activity, and accelerate axon degeneration and failures in axonal transport, and lead to cognitive impairment in AD. Preclinical and clinical studies have supported that insulin could be useful in the treatment of AD. Thus, an effective measure to inhibit IR may be a novel drug target in AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China,
| | | | | | | |
Collapse
|
619
|
Weiss C, Disterhoft JF. The impact of hippocampal lesions on trace-eyeblink conditioning and forebrain-cerebellar interactions. Behav Neurosci 2015; 129:512-22. [PMID: 26214216 PMCID: PMC4518454 DOI: 10.1037/bne0000061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Behavioral Neuroscience published a pivotal paper by Moyer, Deyo, and Disterhoft (1990) 25 years ago that described the impaired acquisition of trace-eyeblink conditioning in rabbits with complete removal of the hippocampus. As part of the Behavioral Neuroscience celebration commemorating the 30th anniversary of the journal, we reflect upon the impact of that study on understanding the role of the hippocampus, forebrain, and forebrain-cerebellar interactions that mediate acquisition and retention of trace-conditioned responses, and of declarative memory more globally. We discuss the expansion of the conditioning paradigm to species other than the rabbit, the heterogeneity of responses among hippocampal neurons during trace conditioning, the responsivity of hippocampal neurons following consolidation of conditioning, the role of awareness in conditioning, how blink conditioning can be used as a translational tool by assaying potential therapeutics for cognitive enhancement, how trace and delay classical conditioning may be used to investigate neurological disorders including Alzheimer's disease and schizophrenia, and how the 2 paradigms may be used to understand the relationship between declarative (explicit) and nondeclarative (implicit) memory systems.
Collapse
Affiliation(s)
- Craig Weiss
- Northwestern University Feinberg School of Medicine
| | | |
Collapse
|
620
|
Akintola AA, van den Berg A, Altmann-Schneider I, Jansen SW, van Buchem MA, Slagboom PE, Westendorp RG, van Heemst D, van der Grond J. Parameters of glucose metabolism and the aging brain: a magnetization transfer imaging study of brain macro- and micro-structure in older adults without diabetes. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9802. [PMID: 26178969 PMCID: PMC4503707 DOI: 10.1007/s11357-015-9802-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic model assessment of insulin sensitivity (HOMA-IS)) and insulin secretion (insulinogenic index). 3-T brain MRI was used to detect macro-structural damage (atrophy, white matter hyper-intensities, infarcts and/or micro-bleeds) and magnetization transfer imaging (MTI) to detect loss of micro-structural homogeneity that remains otherwise invisible on conventional MRI. Macro-structurally, higher fasted glucose was significantly associated with white matter atrophy (P = 0.028). Micro-structurally, decreased magnetization transfer ratio (MTR) peak height in gray matter was associated with higher fasted insulin (P = 0.010), AUCinsulin (P = 0.001), insulinogenic index (P = 0.008) and lower HOMA-IS index (P < 0.001). Similar significant associations were found for white matter. Thus, while higher glucose was associated with macro-structural damage, impaired insulin action was associated more strongly with reduced micro-structural brain parenchymal homogeneity. These findings offer some insight into the association between different parameters of glucose metabolism (impairment of which is characteristic of diabetes mellitus) and brain aging.
Collapse
Affiliation(s)
- Abimbola A Akintola
- Department of Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, the Netherlands,
| | | | | | | | | | | | | | | | | |
Collapse
|
621
|
Mechlovich D, Amit T, Bar-Am O, Weinreb O, Youdim MBH. Molecular targets of the multifunctional iron-chelating drug, M30, in the brains of mouse models of type 2 diabetes mellitus. Br J Pharmacol 2015; 171:5636-49. [PMID: 25073425 DOI: 10.1111/bph.12862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/25/2014] [Accepted: 07/23/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Neurodegenerative diseases are now recognized to be multifunctional, whereby a heterogeneous set of reactions acts independently or cooperatively, leading eventually to the demise of neurons. This has led our group to design and synthesize the multifunctional, nontoxic, brain-permeable, iron chelator compound M30 with a range of pharmacological properties. Here, we have characterized the molecular targets of M30 in the brains of animal models of type 2 diabetes mellitus (T2DM). EXPERIMENTAL APPROACH Effects of M30 on molecular mechanisms associated with neuroprotection in the CNS were investigated-in the high-fat diet (HFD) and ob/ob transgenic mouse models of T2DM, using real-time PCR and Western blotting analyses. Brain monoamine oxidase (MAO) activity and catecholamine levels, and peripheral glucose tolerance were assayed after treatment in vivo. KEY RESULTS M30 increased cerebral levels of insulin and insulin receptor and phosphorylated-GSK-3β in HFD mice, compared with vehicle-treated HFD mice. In both T2DM mice models, M30 treatment significantly up-regulated cerebral hypoxia-inducible factor (HIF)-1α protein levels and induced the expression of several HIF-1 target genes involved in neuroprotection, glycolysis, neurogenesis, oxidative stress and anti-inflammation. Additionally, M30 inhibited MAO-A and -B activities in the cerebellum. Accordingly, M30 administration significantly reduced brain levels of dopamine metabolites and increased levels of 5-HT and noradrenaline. Glucose tolerance was also improved after M30 treatment in both models of T2DM. CONCLUSIONS AND IMPLICATIONS In the brain of HFD and ob/ob transgenic mice, M30 exerted a variety of beneficial neuroprotective regulatory effects that may act synergistically to delay or prevent neurodegenerative processes associated with T2DM.
Collapse
Affiliation(s)
- Danit Mechlovich
- Eve Topf Center for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
622
|
Evaluating the Association between Diabetes, Cognitive Decline and Dementia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:8281-94. [PMID: 26193295 PMCID: PMC4515722 DOI: 10.3390/ijerph120708281] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/12/2015] [Accepted: 07/14/2015] [Indexed: 01/18/2023]
Abstract
The aim of this article is to review the association between diabetes mellitus, cognitive decline and dementia, including the effects of cognitive decline and dementia on self management of diabetes. This is a literature review of primary research articles. A number of contemporary research articles that met the inclusion criteria were selected for this review paper. These articles were selected using a number of search strategies and electronic databases, such as EBSCOhost Research and SwetsWise databases. The duration of diabetes, glycated haemoglobin levels and glycaemic fluctuations were associated with cognitive decline and dementia. Similarly, hypoglycaemia was significantly related to increased risk of developing cognitive decline and dementia. Furthermore, cognitive decline and dementia were associated with poorer diabetes management. There is evidence of the association between diabetes, cognitive decline and dementia including the shared pathogenesis between diabetes and Alzheimer’s disease. In addition, the self management of diabetes is affected by dementia and cognitive decline. It could be suggested that the association between diabetes and dementia is bidirectional with the potential to proceed to a vicious cycle. Further studies are needed in order to fully establish the relationship between diabetes, cognitive decline and dementia. Patients who have diabetes and dementia could benefit from structured education strategies, which should involve empowerment programmes and lifestyle changes. The detection of cognitive decline should highlight the need for education strategies.
Collapse
|
623
|
Increased Spontaneous Central Bleeding and Cognition Impairment in APP/PS1 Mice with Poorly Controlled Diabetes Mellitus. Mol Neurobiol 2015; 53:2685-97. [PMID: 26156287 PMCID: PMC4823354 DOI: 10.1007/s12035-015-9311-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/22/2015] [Indexed: 01/06/2023]
Abstract
Alzheimer’s disease (AD) and vascular dementia (VaD) are the most common causes of dementia, and borderlines are blurred in many cases. Aging remains the main risk factor to suffer dementia; however, epidemiological studies reveal that diabetes may also predispose to suffer AD. In order to further study this relationship, we have induced hypoinsulinemic diabetes to APPswe/PS1dE9 (APP/PS1) mice, a classical model of AD. APP/PS1 mice received streptozotocin (STZ) ip at 18 weeks of age, when AD pathology is not yet established in this animal model. Cognition was evaluated at 26 weeks of age in the Morris water maze and the new object discrimination tests. We observed that STZ-induced episodic and working memory impairment was significantly worsened in APP/PS1 mice. Postmortem assessment included brain atrophy, amyloid-beta and tau pathology, spontaneous bleeding, and increased central inflammation. Interestingly, in APP/PS1-STZ diabetic mice, we detected a shift in Aβ soluble/insoluble levels, towards more toxic soluble species. Phospho-tau levels were also increased in APP/PS1-STZ mice, accompanied by an exacerbated inflammatory process, both in the close proximity to senile plaque (SP) and in SP-free areas. The presence of hemorrhages was significantly higher in APP/PS1-STZ mice, and although pericytes and endothelium were only partially affected, it remains possible that blood-brain barrier alterations underlie observed pathological features. Our data support the implication of the diabetic process in AD and VaD, and it is feasible that improving metabolic control could delay observed central pathology.
Collapse
|
624
|
Lutz TA, Meyer U. Amylin at the interface between metabolic and neurodegenerative disorders. Front Neurosci 2015; 9:216. [PMID: 26136651 PMCID: PMC4468610 DOI: 10.3389/fnins.2015.00216] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/29/2015] [Indexed: 12/14/2022] Open
Abstract
The pancreatic peptide amylin is best known for its role as a satiation hormone in the control of food intake and as the major component of islet amyloid deposits in the pancreatic islets of patients with type 2 diabetes mellitus (T2DM). Epidemiological studies have established a clear association between metabolic and neurodegenerative disorders in general, and between T2DM and Alzheimer's disease (AD) in particular. Here, we discuss that amylin may be an important player acting at the interface between these metabolic and neurodegenerative disorders. Abnormal amylin production is a hallmark peripheral pathology both in the early (pre-diabetic) and late phases of T2DM, where hyperamylinemic (early phase) and hypoamylinemic (late phase) conditions coincide with hyper- and hypo-insulinemia, respectively. Moreover, there are notable biochemical similarities between amylin and β-amyloids (Aβ), which are both prone to amyloid plaque formation and to cytotoxic effects. Amylin's propensity to form amyloid plaques is not restricted to pancreatic islet cells, but readily extends to the CNS, where it has been found to co-localize with Aβ plaques in at least a subset of AD patients. Hence, amylin may constitute a “second amyloid” in neurodegenerative disorders such as AD. We further argue that hyperamylinemic conditions may be more relevant for the early processes of amyloid formation in the CNS, whereas hypoamylinemic conditions may be more strongly associated with late stages of central amyloid pathologies. Advancing our understanding of these temporal relationships may help to establish amylin-based interventions in the treatment of AD and other neurodegenerative disorders with metabolic comorbidities.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich Zurich, Switzerland ; Zurich Center of Integrative Human Physiology, University of Zurich Zurich, Switzerland
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| |
Collapse
|
625
|
Abstract
Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes during the early stage of AD and likely triggers or exacerbates AD pathology. However, the mechanisms linking disturbed insulin signaling/glucose metabolism and AD pathogenesis remain unclear. The low-density lipoprotein receptor-related protein 1 (LRP1), a major apolipoprotein E receptor, plays critical roles in lipoprotein metabolism, synaptic maintenance, and clearance of Aβ in the brain. Here, we demonstrate that LRP1 interacts with the insulin receptor β in the brain and regulates insulin signaling and glucose uptake. LRP1 deficiency in neurons leads to impaired insulin signaling as well as reduced levels of glucose transporters GLUT3 and GLUT4. Consequently, glucose uptake is reduced. By using an in vivo microdialysis technique sampling brain glucose concentration in freely moving mice, we further show that LRP1 deficiency in conditional knock-out mice resulted in glucose intolerance in the brain. We also found that hyperglycemia suppresses LRP1 expression, which further exacerbates insulin resistance, glucose intolerance, and AD pathology. As loss of LRP1 expression is seen in AD brains, our study provides novel insights into insulin resistance in AD. Our work also establishes new targets that can be explored for AD prevention or therapy.
Collapse
|
626
|
Petrov D, Pedrós I, Artiach G, Sureda FX, Barroso E, Pallàs M, Casadesús G, Beas-Zarate C, Carro E, Ferrer I, Vazquez-Carrera M, Folch J, Camins A. High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1687-99. [PMID: 26003667 DOI: 10.1016/j.bbadis.2015.05.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/09/2015] [Accepted: 05/06/2015] [Indexed: 01/04/2023]
Abstract
Global obesity is a pandemic status, estimated to affect over 2 billion people, that has resulted in an enormous strain on healthcare systems worldwide. The situation is compounded by the fact that apart from the direct costs associated with overweight pathology, obesity presents itself with a number of comorbidities, including an increased risk for the development of neurodegenerative disorders. Alzheimer disease (AD), the main cause of senile dementia, is no exception. Spectacular failure of the pharmaceutical industry to come up with effective AD treatment strategies is forcing the broader scientific community to rethink the underlying molecular mechanisms leading to cognitive decline. To this end, the emphasis is once again placed on the experimental animal models of the disease. In the current study, we have focused on the effects of a high-fat diet (HFD) on hippocampal-dependent memory in C57/Bl6 Wild-type (WT) and APPswe/PS1dE9 (APP/PS1) mice, a well-established mouse model of familial AD. Our results indicate that the continuous HFD administration starting at the time of weaning is sufficient to produce β-amyloid-independent, hippocampal-dependent memory deficits measured by a 2-object novel-object recognition test (NOR) in mice as early as 6months of age. Furthermore, the resulting metabolic syndrome appears to have direct effects on brain insulin regulation and mitochondrial function. We have observed pathological changes related to both the proximal and distal insulin signaling pathway in the brains of HFD-fed WT and APP/PS1 mice. These changes are accompanied by a significantly reduced OXPHOS metabolism, suggesting that mitochondria play an important role in hippocampus-dependent memory formation and retention in both the HFD-treated and AD-like rodents at a relatively young age.
Collapse
Affiliation(s)
- Dmitry Petrov
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina de la UB (IBUB), Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ignacio Pedrós
- Unitats de Bioquímica i Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus (Tarragona), Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Gonzalo Artiach
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina de la UB (IBUB), Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Francesc X Sureda
- Unitats de Bioquímica i Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus (Tarragona), Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Emma Barroso
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina de la UB (IBUB), Universitat de Barcelona, Barcelona, Spain; Centros de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Mercè Pallàs
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina de la UB (IBUB), Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Gemma Casadesús
- Department of Biological Sciences Kent State University, Kent, OH, USA
| | - Carlos Beas-Zarate
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, CIBO, IMSS, México; Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, México
| | - Eva Carro
- Neuroscience Group, Instituto de Investigacion Hospital 12 de Octubre, Madrid, Spain
| | - Isidro Ferrer
- Institute of Neuropathology, Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Manuel Vazquez-Carrera
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina de la UB (IBUB), Universitat de Barcelona, Barcelona, Spain; Centros de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Jaume Folch
- Unitats de Bioquímica i Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus (Tarragona), Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antoni Camins
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina de la UB (IBUB), Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Universidad Nacional de Loja, Department of Biotechnology, Ecuador.
| |
Collapse
|
627
|
Affiliation(s)
- Xiaolong Sun
- Department
of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
628
|
Lourenco MV, Ferreira ST, De Felice FG. Neuronal stress signaling and eIF2α phosphorylation as molecular links between Alzheimer's disease and diabetes. Prog Neurobiol 2015; 129:37-57. [PMID: 25857551 DOI: 10.1016/j.pneurobio.2015.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/10/2015] [Accepted: 03/29/2015] [Indexed: 12/22/2022]
Abstract
Mounting evidence from clinical, epidemiological, neuropathology and preclinical studies indicates that mechanisms similar to those leading to peripheral metabolic deregulation in metabolic disorders, such as diabetes and obesity, take place in the brains of Alzheimer's disease (AD) patients. These include pro-inflammatory mechanisms, brain metabolic stress and neuronal insulin resistance. From a molecular and cellular perspective, recent progress has been made in unveiling novel pathways that act in an orchestrated way to cause neuronal damage and cognitive decline in AD. These pathways converge to the activation of neuronal stress-related protein kinases and excessive phosphorylation of eukaryotic translation initiation factor 2α (eIF2α-P), which plays a key role in control of protein translation, culminating in synapse dysfunction and memory loss. eIF2α-P signaling thus links multiple neuronal stress pathways to impaired neuronal function and neurodegeneration. Here, we present a critical analysis of recently discovered molecular mechanisms underlying impaired brain insulin signaling and metabolic stress, with emphasis on the role of stress kinase/eIF2α-P signaling as a hub that promotes brain and behavioral impairments in AD. Because very similar mechanisms appear to operate in peripheral metabolic deregulation in T2D and in brain defects in AD, we discuss the concept that targeting defective brain insulin signaling and neuronal stress mechanisms with anti-diabetes agents may be an attractive approach to fight memory decline in AD. We conclude by raising core questions that remain to be addressed toward the development of much needed therapeutic approaches for AD.
Collapse
Affiliation(s)
- Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
629
|
Halil M, Cemal Kizilarslanoglu M, Emin Kuyumcu M, Yesil Y, Cruz Jentoft AJ. Cognitive aspects of frailty: mechanisms behind the link between frailty and cognitive impairment. J Nutr Health Aging 2015; 19:276-83. [PMID: 25732212 DOI: 10.1007/s12603-014-0535-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Whereas physical impairment is the main hallmark of frailty, evidence suggests that other dimensions, such as psychological, cognitive and social factors also contribute to this multidimensional condition. Cognition is now considered a relevant domain of frailty. Cognitive and physical frailty interact: cognitive problems and dementia are more prevalent in physically frail individuals, and those with cognitive impairment are more prone to become frail. Disentangling the relationship between cognition and frailty may lead to new intervention strategies for the prevention and treatment of both conditions. Both frailty and cognitive decline share common potential mechanisms. This review examines the relationship between frailty and cognitive decline and explores the role of vascular changes, hormones, vitamin D, inflammation, insulin resistance, and nutrition in the development of physical frailty and cognitive problems, as potential underlying mechanisms behind this link. Dual tasking studies may be a useful way to explore and understand the relation between cognitive and physical frailty. Further studies are needed to elucidate this complex relation to improve the outcomes of frailty.
Collapse
Affiliation(s)
- M Halil
- Muhammet Cemal Kizilarslanoglu, MD, Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, 06100 Ankara, Turkey, Tel: +903123053071, Fax: +903123097620, e-mail:
| | | | | | | | | |
Collapse
|
630
|
Hildreth KL, Van Pelt RE, Moreau KL, Grigsby J, Hoth KF, Pelak V, Anderson CA, Parnes B, Kittelson J, Wolfe P, Nakamura T, Linnebur SA, Trujillo JM, Aquilante CL, Schwartz RS. Effects of pioglitazone or exercise in older adults with mild cognitive impairment and insulin resistance: a pilot study. Dement Geriatr Cogn Dis Extra 2015; 5:51-63. [PMID: 25852732 PMCID: PMC4361908 DOI: 10.1159/000371509] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIMS To examine the effects of pioglitazone or endurance exercise training on cognitive function in older adults with mild cognitive impairment (MCI) and insulin resistance. METHODS Seventy-eight adults (mean age ± SD: 65 ± 7 years) with central obesity and MCI were randomized to 6 months of endurance exercise, pioglitazone or control. RESULTS Sixty-six participants completed the study. Exercise training did not significantly increase peak oxygen uptake compared to control (p = 0.12). Compared to control, insulin resistance improved in the pioglitazone group (p = 0.002) but not in the exercise group (p = 0.25). There was no measureable effect of pioglitazone or exercise on cognitive performance compared to control. CONCLUSION In this pilot study, pioglitazone improved insulin resistance but not cognitive performance in older adults with MCI and insulin resistance.
Collapse
Affiliation(s)
- Kerry L Hildreth
- Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo., USA
| | - Rachael E Van Pelt
- Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo., USA
| | - Kerrie L Moreau
- Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo., USA
| | - Jim Grigsby
- Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo., USA
| | - Karin F Hoth
- Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo., USA
| | - Victoria Pelak
- Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo., USA
| | - C Alan Anderson
- Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo., USA
| | - Bennett Parnes
- Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo., USA
| | - John Kittelson
- Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo., USA
| | - Pamela Wolfe
- Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo., USA
| | - Tammie Nakamura
- Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo., USA
| | - Sunny A Linnebur
- Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo., USA
| | - Jennifer M Trujillo
- Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo., USA
| | - Christina L Aquilante
- Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo., USA
| | - Robert S Schwartz
- Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo., USA
| |
Collapse
|
631
|
Viola KL, Klein WL. Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 2015; 129:183-206. [PMID: 25604547 DOI: 10.1007/s00401-015-1386-3] [Citation(s) in RCA: 477] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/11/2015] [Accepted: 01/11/2015] [Indexed: 12/22/2022]
Abstract
Protein aggregation is common to dozens of diseases including prionoses, diabetes, Parkinson's and Alzheimer's. Over the past 15 years, there has been a paradigm shift in understanding the structural basis for these proteinopathies. Precedent for this shift has come from investigation of soluble Aβ oligomers (AβOs), toxins now widely regarded as instigating neuron damage leading to Alzheimer's dementia. Toxic AβOs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Aβ fibrils deposited in amyloid plaques. Key experiments using fibril-free AβO solutions demonstrated that while Aβ is essential for memory loss, the fibrillar Aβ in amyloid deposits is not the agent. The AD-like cellular pathologies induced by AβOs suggest their impact provides a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Alternative ideas for triggering mechanisms are being actively investigated. Some research favors insertion of AβOs into membrane, while other evidence supports ligand-like accumulation at particular synapses. Over a dozen candidate toxin receptors have been proposed. AβO binding triggers a redistribution of critical synaptic proteins and induces hyperactivity in metabotropic and ionotropic glutamate receptors. This leads to Ca(2+) overload and instigates major facets of AD neuropathology, including tau hyperphosphorylation, insulin resistance, oxidative stress, and synapse loss. Because different species of AβOs have been identified, a remaining question is which oligomer is the major pathogenic culprit. The possibility has been raised that more than one species plays a role. Despite some key unknowns, the clinical relevance of AβOs has been established, and new studies are beginning to point to co-morbidities such as diabetes and hypercholesterolemia as etiological factors. Because pathogenic AβOs appear early in the disease, they offer appealing targets for therapeutics and diagnostics. Promising therapeutic strategies include use of CNS insulin signaling enhancers to protect against the presence of toxins and elimination of the toxins through use of highly specific AβO antibodies. An AD-dependent accumulation of AβOs in CSF suggests their potential use as biomarkers and new AβO probes are opening the door to brain imaging. Overall, current evidence indicates that Aβ oligomers provide a substantive molecular basis for the cause, treatment and diagnosis of Alzheimer's disease.
Collapse
|
632
|
Noh Y, Seo SW, Jeon S, Lee JM, Kim JH, Kim GH, Cho H, Yoon CW, Kim HJ, Ye BS, Kim ST, Choe YS, Lee KH, Kim JS, Ewers M, Weiner MW, Lee JH, Werring DJ, Kang DR, Kim CS, Na DL. White matter hyperintensities are associated with amyloid burden in APOE4 non-carriers. J Alzheimers Dis 2015; 40:877-86. [PMID: 24577457 DOI: 10.3233/jad-130461] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous preclinical studies have suggested a close relationship between cerebrovascular disease (CVD) and Alzheimer's disease. However, a direct correlation between CVD and amyloid burden has not yet been shown in humans. If there is a relationship between CVD and amyloid burden, it is possible that the apolipoprotein E4 (APOE4) genotype may have an effect on this relationship because APOE4 is a risk factor for the development of AD. We therefore evaluated the effects of APOE4 on the relationship between white matter hyperintensities (WMH), a marker of CVD, and amyloid burden, measured by 11C-Pittsburgh compound B (PiB) PET. We recruited 53 patients with subcortical vascular cognitive impairments, who had both WMH on MRI and amyloid deposition assessed by PiB PET. Twenty-two of these patients were APOE4 carriers (41.5%). In the APOE4 non-carriers, a significant positive correlation was shown between the volume of WMH and PiB retention (β = 7.0 × 10-3, p = 0.034) while no significant correlation was found in APOE4 carriers (β = -9.0 × 10-3, p = 0.085). Statistical parametric mapping analyses in APOE4 non-carriers showed that WMH were associated with PiB retention in the bilateral medial occipitotemporal gyrus, cuneus, and superior cerebellum. Our results suggested that WMH are correlated with amyloid burden especially in the posterior brain regions in APOE4 non-carriers. However, this correlation was not observed in APOE4 carriers, perhaps because in these subjects the influence of APOE4 overrides the effect of CVD.
Collapse
Affiliation(s)
- Young Noh
- Department of Neurology, Gachon University Gil Medical Center, Incheon, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seun Jeon
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jong Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jung-Hyun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Geon Ha Kim
- Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hanna Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Cindy W Yoon
- Department of Neurology, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byoung Seok Ye
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Tae Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yearn Seong Choe
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany
| | - Michael W Weiner
- University of California, San Francisco, San Francisco, CA, USA Center for Imaging of Neurodegenerative Diseases, Department of Veterans Affairs Medical Center, SanFrancisco, CA, USA
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - David J Werring
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK
| | - Dae Ryong Kang
- Clinical Trials Center, Yonsei University Health System, Seoul, Korea
| | - Chang Soo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
633
|
Burokas A, Moloney RD, Dinan TG, Cryan JF. Microbiota regulation of the Mammalian gut-brain axis. ADVANCES IN APPLIED MICROBIOLOGY 2015; 91:1-62. [PMID: 25911232 DOI: 10.1016/bs.aambs.2015.02.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The realization that the microbiota-gut-brain axis plays a critical role in health and disease has emerged over the past decade. The brain-gut axis is a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract. Regulation of the microbiota-brain-gut axis is essential for maintaining homeostasis, including that of the CNS. The routes of this communication are not fully elucidated but include neural, humoral, immune, and metabolic pathways. A number of approaches have been used to interrogate this axis including the use of germ-free animals, probiotic agents, antibiotics, or animals exposed to pathogenic bacterial infections. Together, it is clear that the gut microbiota can be a key regulator of mood, cognition, pain, and obesity. Understanding microbiota-brain interactions is an exciting area of research which may contribute new insights into individual variations in cognition, personality, mood, sleep, and eating behavior, and how they contribute to a range of neuropsychiatric diseases ranging from affective disorders to autism and schizophrenia. Finally, the concept of psychobiotics, bacterial-based interventions with mental health benefit, is also emerging.
Collapse
Affiliation(s)
- Aurelijus Burokas
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
634
|
Khowal S, Mustufa MMA, Chaudhary NK, Naqvi SH, Parvez S, Jain SK, Wajid S. Assessment of the therapeutic potential of hesperidin and proteomic resolution of diabetes-mediated neuronal fluctuations expediting Alzheimer’s disease. RSC Adv 2015. [DOI: 10.1039/c5ra01977j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) has been proposed as type III diabetes mellitus. Prognosis and early stage diagnosis of AD is essentially required in diabetes to avoid extensive irreversible neuronal damage.
Collapse
Affiliation(s)
- Sapna Khowal
- Department of Biotechnology
- Faculty of Science
- Hamdard University (Jamia Hamdard)
- India
| | - Malik M. A. Mustufa
- Department of Biotechnology
- Faculty of Science
- Hamdard University (Jamia Hamdard)
- India
| | - Naveen K. Chaudhary
- Department of Biotechnology
- Faculty of Science
- Hamdard University (Jamia Hamdard)
- India
| | | | - Suhel Parvez
- Department of Medical Elementology and Toxicology
- Faculty of Science
- Hamdard University (Jamia Hamdard)
- India
| | - Swatantra K. Jain
- Department of Biochemistry
- Hamdard Institute of Medical Sciences and Research
- Hamdard University (Jamia Hamdard)
- India
| | - Saima Wajid
- Department of Biotechnology
- Faculty of Science
- Hamdard University (Jamia Hamdard)
- India
| |
Collapse
|
635
|
Alternate Phosphorylation/O-GlcNAc Modification on Human Insulin IRSs: A Road towards Impaired Insulin Signaling in Alzheimer and Diabetes. Adv Bioinformatics 2014; 2014:324753. [PMID: 25580119 PMCID: PMC4281456 DOI: 10.1155/2014/324753] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/10/2014] [Indexed: 12/26/2022] Open
Abstract
Impaired insulin signaling has been thought of as important step in both Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Posttranslational modifications (PTMs) regulate functions and interaction of insulin with insulin receptors substrates (IRSs) and activate insulin signaling downstream pathways via autophosphorylation on several tyrosine (TYR) residues on IRSs. Two important insulin receptor substrates 1 and 2 are widely expressed in human, and alternative phosphorylation on their serine (Ser) and threonine (Thr) residues has been known to block the Tyr phosphorylation of IRSs, thus inhibiting insulin signaling and promoting insulin resistance. Like phosphorylation, O-glycosylation modification is important PTM and inhibits phosphorylation on same or neighboring Ser/Thr residues, often called Yin Yang sites. Both IRS-1 and IRS-2 have been shown to be O-glycosylated; however exact sites are not determined yet. In this study, by using neuronal network based prediction methods, we found more than 50 Ser/Thr residues that have potential to be O-glycosylated and may act as possible sites as well. Moreover, alternative phosphorylation and O-glycosylation on IRS-1 Ser-312, 984, 1037, and 1101 may act as possible therapeutic targets to minimize the risk of AD and T2DM.
Collapse
|
636
|
Kota LN, Bharath S, Purushottam M, Paul P, Sivakumar PT, Varghese M, Jain S. Reduced telomere length in subjects with dementia and diabetes mellitus type 2 is independent of apolipoprotein E4 genotype. Asian J Psychiatr 2014; 12:58-62. [PMID: 25440562 DOI: 10.1016/j.ajp.2014.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 06/10/2014] [Accepted: 06/14/2014] [Indexed: 11/30/2022]
Abstract
Apolipoprotein E4 gene is associated with increased risk of dementia with comorbid diabetes mellitus. Both dementia and diabetes mellitus type 2 are independently associated with telomere shortening. We assessed relative telomere length and apolipoprotein E genotype in subjects with dementia (n=70) and cognitively normal control groups (n=55) with and without comorbid diabetes mellitus type 2. Relative telomere length was highest in the control group (Q2=0.91) followed by dementia (Q2=0.48) and dementia with comorbid diabetes mellitus type 2 (Q2=0.39). Apolipoprotein E4 allele frequency was highest in dementia with comorbid diabetes mellitus type 2 (0.26). Apolipoprotein E4 allele was not significantly associated with telomere attrition in both dementia and cognitively normal group irrespective of comorbid diabetes mellitus type 2 (P>0.05). The findings suggest that relative telomere length is unrelated to apolipoprotein E4 genotype in dementia and cognitive normal subjects with or without comorbid diabetes mellitus type 2.
Collapse
Affiliation(s)
- Lakshmi Narayanan Kota
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Srikala Bharath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Pradip Paul
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| | | | - Mathew Varghese
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
637
|
Guerrero-Berroa E, Schmeidler J, Beeri MS. Neuropathology of type 2 diabetes: a short review on insulin-related mechanisms. Eur Neuropsychopharmacol 2014; 24:1961-6. [PMID: 24529419 PMCID: PMC4116474 DOI: 10.1016/j.euroneuro.2014.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/23/2014] [Indexed: 12/20/2022]
Abstract
Postmortem studies have shown that cerebrovascular disease (CVD) neuropathology occurs frequently in type 2 diabetes (T2D) through mechanisms associated with chronic hyperglycemia such as advanced glycation end-products (AGEs). The involvement of T2D in Alzheimer׳s disease (AD)-type neuropathology has been more controversial. While postmortem data from animal studies have supported the involvement of T2D in AD-type neuropathology through insulin mechanism that may affect the development of neuritic plaques and neurofibrillary tangles (NFTs), findings from postmortem studies in humans, of the association of T2D with AD, have been mainly negative. To complicate matters, medications to treat T2D have been implicated in reduced AD-type neuropathology. In this review we summarize the literature on animal and human postmortem studies of T2D neuropathology, mainly the mechanisms involved in hyperglycemia-related CVD neuropathology and hyperinsulinemia-related AD-type neuropathology.
Collapse
Affiliation(s)
| | - James Schmeidler
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michal Schnaider Beeri
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
638
|
Fayaz SM, Suvanish Kumar VS, Rajanikant KG. Finding needles in a haystack: application of network analysis and target enrichment studies for the identification of potential anti-diabetic phytochemicals. PLoS One 2014; 9:e112911. [PMID: 25396726 PMCID: PMC4232558 DOI: 10.1371/journal.pone.0112911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 10/16/2014] [Indexed: 01/19/2023] Open
Abstract
Diabetes mellitus is a debilitating metabolic disorder and remains a significant threat to public health. Herbal medicines have been proven to be effective anti-diabetic agents compared to synthetic drugs in terms of side effects. However, the complexity in their chemical constituents and mechanism of action, hinder the effort to discover novel anti-diabetic drugs. Hence, understanding the biological and chemical basis of pharmacological action of phytochemicals is essential for the discovery of potential anti-diabetic drugs. Identifying important active compounds, their protein targets and the pathways involved in diabetes would serve this purpose. In this context, the present study was aimed at exploring the mechanism of action of anti-diabetic plants phytochemicals through network and chemical-based approaches. This study also involves a focused and constructive strategy for preparing new effective anti-diabetic formulations. Further, a protocol for target enrichment was proposed, to identify novel protein targets for important active compounds. Therefore, the successive use of network analysis combined with target enrichment studies would accelerate the discovery of potential anti-diabetic phytochemicals.
Collapse
Affiliation(s)
- Shaik M. Fayaz
- School of Biotechnology, National Institute of Technology Calicut, Calicut 673601, India
| | | | | |
Collapse
|
639
|
Short-lived diabetes in the young-adult ZDF rat does not exacerbate neuronal Ca(2+) biomarkers of aging. Brain Res 2014; 1621:214-21. [PMID: 25451110 DOI: 10.1016/j.brainres.2014.10.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 12/31/2022]
Abstract
Results from clinical studies provide evidence that cognitive changes relatively late in life may be traced to antecedent conditions including diabetes, obesity, a sedentary lifestyle, and an atherogenic diet. As such, several traits of Type 2 diabetes (T2DM) could be considered pathogenic factors of aging, contributing to age-dependent cognitive decline and our susceptibility to Alzheimer's disease. It appears that both the duration of metabolic condition and the age of the individual, together can contribute to the potential impact on peripheral as well as brain health. Because of robust evidence that in animal models of aging, Ca(2+) dysregulation alters neuronal health, synaptic plasticity, and learning and memory processes, we tested the hypothesis that peripheral metabolic dysregulation could exacerbate Ca(2+) dysfunction in hippocampal CA1 neurons. Using intracellular/ extracellular electrophysiological and Ca(2+) imaging techniques, we show that Ca(2+)levels at rest or during synaptic stimulation, the Ca(2+)-dependent afterhyperpolarization, baseline field potentials, and short-term synaptic plasticity were not significantly altered in young-adult male Zucker diabetic fatty rats compare to their lean counterparts. Our observations suggest that early phases of T2DM characterized by high levels of glucose and insulin may be too transient to alter hippocampal CA1 physiology in this animal model of diabetes. These results are supported by clinical data showing that longer T2DM duration can have greater negative impact on cognitive functions. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
|
640
|
Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies. Acta Neuropathol 2014; 128:679-89. [PMID: 25107476 DOI: 10.1007/s00401-014-1328-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 01/10/2023]
Abstract
Neuronal insulin signaling abnormalities have been associated with Alzheimer's disease (AD). However, the specificity of this association and its underlying mechanisms have been unclear. This study investigated the expression of abnormal serine phosphorylation of insulin receptor substrate 1 (IRS1) in 157 human brain autopsy cases that included AD, tauopathies, α-synucleinopathies, TDP-43 proteinopathies, and normal aging. IRS1-pS(616), IRS1-pS(312) and downstream target Akt-pS(473) measures were most elevated in AD but were also significantly increased in the tauopathies: Pick's disease, corticobasal degeneration and progressive supranuclear palsy. Double immunofluorescence labeling showed frequent co-expression of IRS1-pS(616) with pathologic tau in neurons and dystrophic neurites. To further investigate an association between tau and abnormal serine phosphorylation of IRS1, we examined the presence of abnormal IRS1-pS(616) expression in pathological tau-expressing transgenic mice and demonstrated that abnormal IRS1-pS(616) frequently co-localizes in tangle-bearing neurons. Conversely, we observed increased levels of hyperphosphorylated tau in the high-fat diet-fed mouse, a model of insulin resistance. These results provide confirmation and specificity that abnormal phosphorylation of IRS1 is a pathological feature of AD and other tauopathies, and provide support for an association between insulin resistance and abnormal tau as well as amyloid-β.
Collapse
|
641
|
Deguchi K, Kurata T, Fukui Y, Liu W, Yun Z, Omote Y, Sato K, Kono S, Hishikawa N, Yamashita T, Abe K. Long-term Amelioration of Telmisartan on Metabolic Syndrome-related Molecules in Stroke-resistant Spontaneously Hypertensive Rat after Transient Middle Cerebral Artery Occlusion. J Stroke Cerebrovasc Dis 2014; 23:2646-2653. [DOI: 10.1016/j.jstrokecerebrovasdis.2014.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/03/2014] [Accepted: 06/10/2014] [Indexed: 01/22/2023] Open
|
642
|
Brocca M, Pietranera L, Roig P, Lima A, De Nicola A. Effects of 17β-estradiol on the cytoarchitecture of pyramidal CA1 neurons in normoglycemic and diabetic male spontaneously hypertensive rats. Neuroscience 2014; 280:243-53. [DOI: 10.1016/j.neuroscience.2014.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/25/2014] [Accepted: 09/11/2014] [Indexed: 12/20/2022]
|
643
|
Saito S, Ihara M. New therapeutic approaches for Alzheimer's disease and cerebral amyloid angiopathy. Front Aging Neurosci 2014; 6:290. [PMID: 25368578 PMCID: PMC4202741 DOI: 10.3389/fnagi.2014.00290] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/01/2014] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence has shown a strong relationship between Alzheimer’s disease (AD), cerebral amyloid angiopathy (CAA), and cerebrovascular disease. Cognitive impairment in AD patients can result from cortical microinfarcts associated with CAA, as well as the synaptic and neuronal disturbances caused by cerebral accumulations of β-amyloid (Aβ) and tau proteins. The pathophysiology of AD may lead to a toxic chain of events consisting of Aβ overproduction, impaired Aβ clearance, and brain ischemia. Insufficient removal of Aβ leads to development of CAA and plays a crucial role in sporadic AD cases, implicating promotion of Aβ clearance as an important therapeutic strategy. Aβ is mainly eliminated by three mechanisms: (1) enzymatic/glial degradation, (2) transcytotic delivery, and (3) perivascular drainage (3-“d” mechanisms). Enzymatic degradation may be facilitated by activation of Aβ-degrading enzymes such as neprilysin, angiotensin-converting enzyme, and insulin-degrading enzyme. Transcytotic delivery can be promoted by inhibition of the receptor for advanced glycation end products (RAGE), which mediates transcytotic influx of circulating Aβ into brain. Successful use of the RAGE inhibitor TTP488 in Phase II testing has led to a Phase III clinical trial for AD patients. The perivascular drainage system seems to be driven by motive force generated by cerebral arterial pulsations, suggesting that vasoactive drugs can facilitate Aβ clearance. One of the drugs promoting this system is cilostazol, a selective inhibitor of type 3 phosphodiesterase. The clearance of fluorescent soluble Aβ tracers was significantly enhanced in cilostazol-treated CAA model mice. Given that the balance between Aβ synthesis and clearance determines brain Aβ accumulation, and that Aβ is cleared by several pathways stated above, multi-drugs combination therapy could provide a mainstream cure for sporadic AD.
Collapse
Affiliation(s)
- Satoshi Saito
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center , Suita , Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center , Suita , Japan
| |
Collapse
|
644
|
De Felice FG, Lourenco MV, Ferreira ST. How does brain insulin resistance develop in Alzheimer's disease? Alzheimers Dement 2014; 10:S26-32. [PMID: 24529521 DOI: 10.1016/j.jalz.2013.12.004] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 02/08/2023]
Abstract
Compelling preclinical and clinical evidence supports a pathophysiological connection between Alzheimer's disease (AD) and diabetes. Altered metabolism, inflammation, and insulin resistance are key pathological features of both diseases. For many years, it was generally considered that the brain was insensitive to insulin, but it is now accepted that this hormone has central neuromodulatory functions, including roles in learning and memory, that are impaired in AD. However, until recently, the molecular mechanisms accounting for brain insulin resistance in AD have remained elusive. Here, we review recent evidence that sheds light on how brain insulin dysfunction is initiated at a molecular level and why abnormal insulin signaling culminates in synaptic failure and memory decline. We also discuss the cellular basis underlying the beneficial effects of stimulation of brain insulin signaling on cognition. Discoveries summarized here provide pathophysiological background for identification of novel molecular targets and for development of alternative therapeutic approaches in AD.
Collapse
Affiliation(s)
- Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
645
|
In vitro streptozotocin model for modeling Alzheimer-like changes: effect on amyloid precursor protein secretases and glycogen synthase kinase-3. J Neural Transm (Vienna) 2014; 122:551-7. [PMID: 25283498 DOI: 10.1007/s00702-014-1319-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
There is accumulating evidence for a pathogenetic link between sporadic Alzheimer's disease (AD) and diabetes mellitus (DM). At subdiabetogenic doses, the cerebral administration of the diabetogenic substance streptozotocin (STZ) induces an insulin-resistant brain state (IRBS). The aim of the present pilot study was to investigate the effect of STZ on Alzheimer-like characteristics such as amyloid precursor protein (APP) cleavage secretases, betaA4 fragment, and glycogen synthase kinase (GSK) in vitro. Different STZ concentrations (0-5 mM) and incubation intervals (0-48 h) were tested to find appropriate cell culture conditions for further biochemical analyses in human neuroblastoma cells (SK-N-MC). Lactate dehydrogenase (LDH) was measured spectrophotometrically. Intracellular ATP was determined using bioluminescent luciferase assay. Secretase activity (alpha, beta, and gamma) was measured by employing commercial fluorometric secretase activity assay kits, betaA4 fragment by immunoprecipitation. Glycogen synthase kinase-3alpha/beta (total and phospho-GSK) content was assayed by ELISA technique. In vitro STZ administration (1 mM) induced a significant reduction in intracellular ATP concentration without pronounced cell death after 24 and 48 h as measured by LDH. Under these experimental conditions, a significant increase in beta-secretase and a significant drop in alpha-secretase were obtained, whereas gamma-secretase was not changed significantly. Simultaneously, the betaA4 concentration was increased by about threefold. Furthermore, STZ significantly increased total GSK and markedly decreased phospho-GSK. A direct link between STZ, intracellular ATP deficit, and Alzheimer-related enzymes was shown in this in vitro pilot study. Thus, these results support the hypothesis that sporadic AD is being recognized as an IRBS, which can be modulated by in vitro STZ model. Continuing investigations relating pathogenetic mechanisms and AD-like hallmarks are necessary to modulate different cascades of the IRBS using in vitro models.
Collapse
|
646
|
Xu ZP, Li L, Bao J, Wang ZH, Zeng J, Liu EJ, Li XG, Huang RX, Gao D, Li MZ, Zhang Y, Liu GP, Wang JZ. Magnesium protects cognitive functions and synaptic plasticity in streptozotocin-induced sporadic Alzheimer's model. PLoS One 2014; 9:e108645. [PMID: 25268773 PMCID: PMC4182554 DOI: 10.1371/journal.pone.0108645] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/25/2014] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by profound synapse loss and impairments of learning and memory. Magnesium affects many biochemical mechanisms that are vital for neuronal properties and synaptic plasticity. Recent studies have demonstrated that the serum and brain magnesium levels are decreased in AD patients; however, the exact role of magnesium in AD pathogenesis remains unclear. Here, we found that the intraperitoneal administration of magnesium sulfate increased the brain magnesium levels and protected learning and memory capacities in streptozotocin-induced sporadic AD model rats. We also found that magnesium sulfate reversed impairments in long-term potentiation (LTP), dendritic abnormalities, and the impaired recruitment of synaptic proteins. Magnesium sulfate treatment also decreased tau hyperphosphorylation by increasing the inhibitory phosphorylation of GSK-3β at serine 9, thereby increasing the activity of Akt at Ser473 and PI3K at Tyr458/199, and improving insulin sensitivity. We conclude that magnesium treatment protects cognitive function and synaptic plasticity by inhibiting GSK-3β in sporadic AD model rats, which suggests a potential role for magnesium in AD therapy.
Collapse
Affiliation(s)
- Zhi-Peng Xu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Bao
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Hao Wang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Zeng
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - En-Jie Liu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Guang Li
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong-Xi Huang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Gao
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Zhu Li
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Zhang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Li Yuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gong-Ping Liu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
647
|
Yu CJ, Liu W, Chen HY, Wang L, Zhang ZR. BACE1 RNA interference improves spatial memory and attenuates Aβburden in a streptozotocin-induced tau hyperphosphorylated rat model. Cell Biochem Funct 2014; 32:590-6. [PMID: 25230339 DOI: 10.1002/cbf.3055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Chun-Jiang Yu
- Department of Neurology; Second Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| | - Wei Liu
- Department of Neurology; Haidian Hospital; Beijing 100080 China
| | - Hong-Yuan Chen
- Department of Neurology; Second Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| | - Li Wang
- Department of Geriatrics; Second Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| | - Zhi-Ren Zhang
- Department of Pharmacy; Second Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| |
Collapse
|
648
|
Kent BA. Synchronizing an aging brain: can entraining circadian clocks by food slow Alzheimer's disease? Front Aging Neurosci 2014; 6:234. [PMID: 25225484 PMCID: PMC4150207 DOI: 10.3389/fnagi.2014.00234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/15/2014] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) is a global epidemic. Unfortunately, we are still without effective treatments or a cure for this disease, which is having devastating consequences for patients, their families, and societies around the world. Until effective treatments are developed, promoting overall health may hold potential for delaying the onset or preventing neurodegenerative diseases such as AD. In particular, chronobiological concepts may provide a useful framework for identifying the earliest signs of age-related disease as well as inexpensive and noninvasive methods for promoting health. It is well reported that AD is associated with disrupted circadian functioning to a greater extent than normal aging. However, it is unclear if the central circadian clock (i.e., the suprachiasmatic nucleus) is dysfunctioning, or whether the synchrony between the central and peripheral clocks that control behavior and metabolic processes are becoming uncoupled. Desynchrony of rhythms can negatively affect health, increasing morbidity and mortality in both animal models and humans. If the uncoupling of rhythms is contributing to AD progression or exacerbating symptoms, then it may be possible to draw from the food-entrainment literature to identify mechanisms for re-synchronizing rhythms to improve overall health and reduce the severity of symptoms. The following review will briefly summarize the circadian system, its potential role in AD, and propose using a feeding-related neuropeptide, such as ghrelin, to synchronize uncoupled rhythms. Synchronizing rhythms may be an inexpensive way to promote healthy aging and delay the onset of neurodegenerative disease such as AD.
Collapse
Affiliation(s)
- Brianne A. Kent
- Department of Psychology, University of CambridgeCambridge, UK
| |
Collapse
|
649
|
Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1556-66. [DOI: 10.1016/j.bbadis.2014.05.025] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 11/19/2022]
|
650
|
Moon ML, Joesting JJ, Lawson MA, Chiu GS, Blevins NA, Kwakwa KA, Freund GG. The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice. Metabolism 2014; 63:1131-40. [PMID: 25016520 PMCID: PMC4151238 DOI: 10.1016/j.metabol.2014.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that last beyond an acute elevation in plasma FFAs. METHODS Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 h after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. RESULTS In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hours after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24h after palmitic acid treatment. CONCLUSIONS Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated.
Collapse
Affiliation(s)
- Morgan L Moon
- Division of Nutritional Sciences, University of Illinois, Urbana IL, USA
| | - Jennifer J Joesting
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana IL, USA
| | - Marcus A Lawson
- Department of Animal Sciences, University of Illinois, Urbana IL, USA
| | - Gabriel S Chiu
- Division of Nutritional Sciences, University of Illinois, Urbana IL, USA
| | - Neil A Blevins
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana IL, USA
| | - Kristin A Kwakwa
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana IL, USA
| | - Gregory G Freund
- Division of Nutritional Sciences, University of Illinois, Urbana IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana IL, USA; Department of Animal Sciences, University of Illinois, Urbana IL, USA.
| |
Collapse
|