6901
|
Miao ZH, Wang H, Yang H, Li ZL, Zhen L, Xu CY. Intrinsically Mn2+-Chelated Polydopamine Nanoparticles for Simultaneous Magnetic Resonance Imaging and Photothermal Ablation of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16946-16952. [PMID: 26196160 DOI: 10.1021/acsami.5b06265] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Theranostic agents for magnetic resonance imaging (MRI) guided photothermal therapy have attracted intensive interest in cancer diagnosis and treatment. However, the development of biocompatible theranostic agents with high photothermal conversion efficiency and good MRI contrast effect remains a challenge. Herein, PEGylated Mn2+-chelated polydopamine (PMPDA) nanoparticles were successfully developed as novel theranostic agents for simultaneous MRI signal enhancement and photothermal ablation of cancer cells, based on intrinsic manganese-chelating properties and strong near-infrared absorption of polydopamine nanomaterials. The obtained PMPDA nanoparticles showed significant MRI signal enhancement for both in vitro and in vivo imaging. Highly effective photothermal ablation of HeLa cells exposed to PMPDA nanoparticles was then achieved upon laser irradiation for 10 min. Furthermore, the excellent biocompatibility of PMPDA nanoparticles, because of the use of Mn2+ ions as diagnostic agents and biocompatible polydopamine as photothermal agents, was confirmed by a standard MTT assay. Therefore, the developed PMPDA nanoparticles could be used as a promising theranostic agent for MRI-guided photothermal therapy of cancer cells.
Collapse
Affiliation(s)
- Zhao-Hua Miao
- †School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- ‡MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Hui Wang
- §School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Huanjie Yang
- §School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Zheng-Lin Li
- ∥Condensed Matter Science and Technology Institute, School of Science, Harbin Institute of Technology, Harbin 150000, People's Republic of China
| | - Liang Zhen
- †School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- ‡MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Cheng-Yan Xu
- †School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- ‡MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
6902
|
Zhang L, Li Y, Jin Z, Yu JC, Chan KM. An NIR-triggered and thermally responsive drug delivery platform through DNA/copper sulfide gates. NANOSCALE 2015; 7:12614-12624. [PMID: 26147639 DOI: 10.1039/c5nr02767e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanomaterials for effective drug delivery require zero pre-release and on-demand release of therapeutic drugs. In this work we demonstrate a novel drug delivery system composed of a mesoporous silica platform conjugated to CuS nanoparticles with two complementary DNA sequences. CuS nanoparticles act as both gatekeepers preventing pre-release of drugs and photothermal agents for effective killing of cancer cells. This system exhibits temperature and NIR-responsive DOX release, with an additional accelerated release rate with GSH treatment. Therefore, it can act as an effective anticancer drug delivery carrier with triggered drug release and efficient anti-cancer effect in vitro after NIR irradiation.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong SAR, China.
| | | | | | | | | |
Collapse
|
6903
|
Zhu L, Liu Y, Yang P, Liu B. Label-free Aptasensor based on Electrodeposition of Gold Nanoparticles on Graphene and Its Application in the Quantification of Adenosine Triphosphate. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.04.100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6904
|
Wang S, Chen W, Xiao W, Yang C, Xin Y, Qiu J, Hu W, Ying W, Fu Y, Tong J, Hu G, Chen Z, Fang X, Yu H, Lai W, Ruan S, Ma H. Differential Proteomic Analysis Using iTRAQ Reveals Alterations in Hull Development in Rice (Oryza sativa L.). PLoS One 2015; 10:e0133696. [PMID: 26230730 PMCID: PMC4521873 DOI: 10.1371/journal.pone.0133696] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 07/01/2015] [Indexed: 11/21/2022] Open
Abstract
Rice hull, the outer cover of the rice grain, determines grain shape and size. Changes in the rice hull proteome in different growth stages may reflect the underlying mechanisms involved in grain development. To better understand these changes, isobaric tags for relative and absolute quantitative (iTRAQ) MS/MS was used to detect statistically significant changes in the rice hull proteome in the booting, flowering, and milk-ripe growth stages. Differentially expressed proteins were analyzed to predict their potential functions during development. Gene ontology (GO) terms and pathways were used to evaluate the biological mechanisms involved in rice hull at the three growth stages. In total, 5,268 proteins were detected and characterized, of which 563 were differentially expressed across the development stages. The results showed that the flowering and milk-ripe stage proteomes were more similar to each other (r=0.61) than either was to the booting stage proteome. A GO enrichment analysis of the differentially expressed proteins was used to predict their roles during rice hull development. The potential functions of 25 significantly differentially expressed proteins were used to evaluate their possible roles at various growth stages. Among these proteins, an unannotated protein (Q7X8A1) was found to be overexpressed especially in the flowering stage, while a putative uncharacterized protein (B8BF94) and an aldehyde dehydrogenase (Q9FPK6) were overexpressed only in the milk-ripe stage. Pathways regulated by differentially expressed proteins were also analyzed. Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), and two magnesium-chelatase subunits, ChlD (Q6ATS0), and ChlI (Q53RM0), were associated with chlorophyll biosynthesis at different developmental stages. The expression of Q9SDJ2 in the flowering and milk-ripe stages was validated by qRT-PCR. The 25 candidate proteins may be pivotal markers for controlling rice hull development at various growth stages and chlorophyll biosynthesis pathway related proteins, especially magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), may provide new insights into the molecular mechanisms of rice hull development and chlorophyll associated regulation.
Collapse
Affiliation(s)
- Shuzhen Wang
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | - Wenyue Chen
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Wenfei Xiao
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Changdeng Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Ya Xin
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Jieren Qiu
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Weimin Hu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | - Wu Ying
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Yaping Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jianxin Tong
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Guocheng Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhongzhong Chen
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Xianping Fang
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Hong Yu
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Wenguo Lai
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Songlin Ruan
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
- * E-mail: (SR); (HM)
| | - Huasheng Ma
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
- * E-mail: (SR); (HM)
| |
Collapse
|
6905
|
Ojeda V, Robles-Valero J, Barreira M, Bustelo XR. The disease-linked Glu-26-Lys mutant version of Coronin 1A exhibits pleiotropic and pathway-specific signaling defects. Mol Biol Cell 2015; 26:2895-912. [PMID: 26108624 PMCID: PMC4571328 DOI: 10.1091/mbc.e15-01-0052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/18/2015] [Indexed: 11/12/2022] Open
Abstract
Coronin 1A is involved in cell shape dynamics and Rac1 GTPase signaling. Loss-of-function mutations in the Coro1A gene promote severe immunodeficiency. An immunodeficiency-linked Coro1A point mutant is described that becomes dysfunctional due to changes in actin-binding, actin-remodeling, and signaling activities. Coronin 1A (Coro1A) is involved in cytoskeletal and signaling events, including the regulation of Rac1 GTPase– and myosin II–dependent pathways. Mutations that generate truncated or unstable Coro1A proteins cause immunodeficiencies in both humans and rodents. However, in the case of the peripheral T-cell–deficient (Ptcd) mouse strain, the immunodeficiency is caused by a Glu-26-Lys mutation that targets a surface-exposed residue unlikely to affect the intramolecular architecture and stability of the protein. Here we report that this mutation induces pleiotropic effects in Coro1A protein, including the exacerbation of Coro1A-dependent actin-binding and -bundling activities; the formation of large meshworks of Coro1AE26K-decorated filaments endowed with unusual organizational, functional, and staining properties; and the elimination of Coro1A functions associated with both Rac1 and myosin II signaling. By contrast, it does not affect the ability of Coro1A to stimulate the nuclear factor of activated T-cells (NF-AT). Coro1AE26K is not a dominant-negative mutant, indicating that its pathological effects are derived from the inability to rescue the complete loss of the wild-type counterpart in cells. These results indicate that Coro1AE26K behaves as either a recessive gain-of-function or loss-of-function mutant protein, depending on signaling context and presence of the wild-type counterpart in cells.
Collapse
Affiliation(s)
- Virginia Ojeda
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - Javier Robles-Valero
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - María Barreira
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
6906
|
Li J, Hu Y, Yang J, Sun W, Cai H, Wei P, Sun Y, Zhang G, Shi X, Shen M. Facile synthesis of folic acid-functionalized iron oxide nanoparticles with ultrahigh relaxivity for targeted tumor MR imaging. J Mater Chem B 2015; 3:5720-5730. [PMID: 32262568 DOI: 10.1039/c5tb00849b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We present the polyethyleneimine (PEI)-assisted synthesis of folic acid (FA)-functionalized iron oxide (Fe3O4) nanoparticles (NPs) with ultrahigh relaxivity for in vivo targeted tumor magnetic resonance (MR) imaging. In this work, water-dispersible and stable Fe3O4 NPs were synthesized in the presence of PEI via a facile mild reduction approach. The surface PEI coating afforded the formed Fe3O4 NPs with the ability to be functionalized with polyethylene glycol (PEG)-linked FA and fluorescein isothiocyanate (FI). A further acetylation step to neutralize the remaining PEI surface amines gave rise to the formation of multifunctional FA-functionalized Fe3O4 NPs, which were subsequently characterized via different methods. We show that the developed FA-functionalized Fe3O4 NPs have a good water-dispersibility, good colloidal stability, ultrahigh r2 relaxivity (475.92 mM-1 s-1), and good hemocompatibility and cytocompatibility in the studied concentration range. The targeting specificity of the FA-modified Fe3O4 NPs to FA receptor (FAR)-overexpressing HeLa cells (a human cervical carcinoma cell line) was subsequently validated by flow cytometry and confocal microscopy. Significantly, the developed FA-modified Fe3O4 NPs can be used as a nanoprobe for targeted MR imaging of HeLa cells in vitro and the xenografted tumor model in vivo via an active FA-mediated targeting strategy. The developed multifunctional FA-modified Fe3O4 NPs with an ultrahigh r2 relaxivity may be used as an efficient nanoprobe for the targeted MR imaging of various kinds of FAR-overexpressing tumors.
Collapse
Affiliation(s)
- Jingchao Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6907
|
Zhu W, Liu K, Sun X, Wang X, Li Y, Cheng L, Liu Z. Mn2+-doped prussian blue nanocubes for bimodal imaging and photothermal therapy with enhanced performance. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11575-11582. [PMID: 25965554 DOI: 10.1021/acsami.5b02510] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Prussian blue (PB) as a clinically adapted agent recently has drawn much attention in cancer theranostics for potential applications in magnetic resonance (MR) imaging as well as photothermal cancer treatment. In this work, we take a closer look at the imaging and therapy performance of PB agents once they are doped with Mn2+. It is found that Mn2+-doped PB nanocubes exhibit increased longitudinal relaxivity along with enhanced optical absorption red-shifted to the near-infrared (NIR) region. Those properties make PB:Mn nanocubes with appropriate surface coatings rather attractive agents for biomedical imaging and cancer therapy, which have been successfully demonstrated in our in vivo experiments for effectively tumor ablation.
Collapse
Affiliation(s)
| | | | | | - Xin Wang
- §Department of Radiology the First Affiliated Hospital of Soochow University Suzhou, Jiangsu 215006, China
| | - Yonggang Li
- §Department of Radiology the First Affiliated Hospital of Soochow University Suzhou, Jiangsu 215006, China
| | | | | |
Collapse
|
6908
|
Duan X, Liu L, Jiang W, Yue J. Visible Thrombolysis Acceleration of a Nanomachine Powered by Light-Driving F0F1-ATPase Motor. NANOSCALE RESEARCH LETTERS 2015; 10:227. [PMID: 26034419 PMCID: PMC4447733 DOI: 10.1186/s11671-015-0918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
We report on thrombolysis acceleration of a nanomachine powered by light-driving δ-subunit-free F0F1-ATPase motor. It is composed of a mechanical device, locating device, energy storage device, and propeller. The rotory δ-subunit-free F0F1-ATPase motor acts as a mechanical device, which was obtained by reconstructing an original chromatophore extracted from Rhodospirillum rubrum. We found that the bioactivity of the F0F1-ATPase motor improved greatly after reconstruction. The zeta potential of the nanomachine is about -23.4 mV. Cytotoxicity induced by the nanomachine was measured using cell counting kit (CCK)-8 assay. The A549 cells incubated with different fractional concentrations of the nanomachine within 48 h did not show obvious cytotoxicity. The locating device helps the nanomachine bind to the thrombi. Energy was easily stored by exposing the nanomachine to 600-nm-wavelength irradiation, which promoted activity of the motor. The rotation of the long propeller accelerated thrombolysis of a blood clot in vitro in the presence of urokinase (UK). This result was based on visual inspection and confirmed by a series of tests.
Collapse
Affiliation(s)
- Xiaoxia Duan
- />The National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Lifeng Liu
- />Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Beijing, 100050 China
- />Department of Neurology, Liaocheng People’s Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000 China
| | - Weijian Jiang
- />Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Beijing, 100050 China
- />New Era Stroke Care and Research Institute of The Second Artillery General Hospital PLA, 16 Xinjiekouwai Avenue, Beijing, 100088 China
| | - Jiachang Yue
- />The National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
6909
|
The Human Antimicrobial Protein Calgranulin C Participates in Control of Helicobacter pylori Growth and Regulation of Virulence. Infect Immun 2015; 83:2944-56. [PMID: 25964473 DOI: 10.1128/iai.00544-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 12/18/2022] Open
Abstract
During infectious processes, antimicrobial proteins are produced by both epithelial cells and innate immune cells. Some of these antimicrobial molecules function by targeting transition metals and sequestering these metals in a process referred to as "nutritional immunity." This chelation strategy ultimately starves invading pathogens, limiting their growth within the vertebrate host. Recent evidence suggests that these metal-binding antimicrobial molecules have the capacity to affect bacterial virulence, including toxin secretion systems. Our previous work showed that the S100A8/S100A9 heterodimer (calprotectin, or calgranulin A/B) binds zinc and represses the elaboration of the H. pylori cag type IV secretion system (T4SS). However, there are several other S100 proteins that are produced in response to infection. We hypothesized that the zinc-binding protein S100A12 (calgranulin C) is induced in response to H. pylori infection and also plays a role in controlling H. pylori growth and virulence. To test this, we analyzed gastric biopsy specimens from H. pylori-positive and -negative patients for S100A12 expression. These assays showed that S100A12 is induced in response to H. pylori infection and inhibits bacterial growth and viability in vitro by binding nutrient zinc. Furthermore, the data establish that the zinc-binding activity of the S100A12 protein represses the activity of the cag T4SS, as evidenced by the gastric cell "hummingbird" phenotype, interleukin 8 (IL-8) secretion, and CagA translocation assays. In addition, high-resolution field emission gun scanning electron microscopy (FEG-SEM) was used to demonstrate that S100A12 represses biogenesis of the cag T4SS. Together with our previous work, these data reveal that multiple S100 proteins can repress the elaboration of an oncogenic bacterial surface organelle.
Collapse
|
6910
|
Jones C, Barkalina N, Coward K. Highlights from the latest articles in nanomedicine for reproductive oncology. Nanomedicine (Lond) 2015; 10:1375-7. [DOI: 10.2217/nnm.15.40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Celine Jones
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Natalia Barkalina
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| |
Collapse
|
6911
|
Abstract
Development of a functional peripheral nervous system requires axons to rapidly innervate and arborize into final target organs and then slow but not halt their growth to establish stable connections while keeping pace with organ growth. Here we examine the role of the NGF-TrkA effector protein, Coronin-1, on postganglionic sympathetic neuron final target innervation. In the absence of Coronin-1 we find that NGF-TrkA-PI3K signaling drives robust axon growth and branching in part by suppressing GSK3β. In contrast, the presence of Coronin-1 (wild-type neurons) suppresses but does not halt NGF-TrkA-dependent growth and branching. This relative suppression in axon growth behaviors is due to Coronin-1-dependent calcium release via PLC-γ1 signaling, which releases PI3K-dependent suppression of GSK3β. Finally, we demonstrate that Coro1a(-/-) mice display sympathetic axon overgrowth and overbranching phenotypes in the developing heart. Together with previous work demonstrating the Coronin-1 expression is NGF dependent, this work suggests that periods before and after NGF-TrkA-induced Coronin-1 expression (and likely other factors) defines two distinct axon growth states, which are critical for proper circuit formation in the sympathetic nervous system.
Collapse
|
6912
|
Dubash SR, Idowu OA, Sharma R. The emerging role of positron emission tomography in hepatocellular carcinoma. Hepat Oncol 2015; 2:191-200. [PMID: 30190998 DOI: 10.2217/hep.15.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide. HCC a heterogeneous disease occurring on the background of cirrhosis. The presence of cirrhosis limits the sensitivity of conventional imaging modalities in differentiating HCC from surrounding cirrhotic parenchyma. Positron emission tomography (PET) using 18F-fluorodeoxyglucose (18F-FDG) is widely used for assessing a variety of malignancies, however, has poor sensitivity in the evaluation of HCC. This has led to the investigation of other radiotracers such as 11C-acetate and 11C-choline, with improved sensitivity in terms of detection and therapeutic response. In this review, we discuss the emerging field of PET imaging for the detection, staging and assessment of treatment response in HCC. In particular we discuss the role of 18F-FDG-PET in imaging hepatocellular cancer, the limitations of this PET tracer and emerging novel PET tracers being investigated that exploit key metabolic processes including fatty acid and lipid synthesis, choline kinase activity and gene expression.
Collapse
Affiliation(s)
- Suraiya R Dubash
- Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK.,Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | - Oluwagbemiga A Idowu
- Department of Medical Oncology, Hammersmith Hospital, London, UK.,Department of Medical Oncology, Hammersmith Hospital, London, UK
| | - Rohini Sharma
- Division of Translational & Experimental Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK.,Medical Oncology & Clinical Pharmacology, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK.,Division of Translational & Experimental Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK.,Medical Oncology & Clinical Pharmacology, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| |
Collapse
|
6913
|
Zhang D, Wu M, Zeng Y, Wu L, Wang Q, Han X, Liu X, Liu J. Chlorin e6 Conjugated Poly(dopamine) Nanospheres as PDT/PTT Dual-Modal Therapeutic Agents for Enhanced Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8176-8187. [PMID: 25837008 DOI: 10.1021/acsami.5b01027] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Photodynamic therapy (PDT), using a combination of chemical photosensitizers (PS) and light, has been successfully applied as a noninvasive therapeutic procedure to treat tumors by inducing apoptosis or necrosis of cancer cells. However, most current clinically used PS have suffered from the instability in physiological conditions which lead to low photodynamic therapy efficacy. Herein, a highly biocompatible poly(dopamine) (PDA) nanoparticle conjugated with Chlorin e6 (referenced as the PDA-Ce6 nanosphere) was designed as a nanotherapeutic agent to achieve simultaneous photodynamic/photothermal therapy (PDT/PTT). Compared to the free Ce6, the PDA-Ce6 nanosphere exhibited significantly higher PDT efficacy against tumor cells, because of the enhanced cellular uptake and subsequently greater reactive oxygen species (ROS) production upon laser irradiation at 670 nm. Meanwhile, the PDA-Ce6 nanosphere could be also used as a photoabsorbing agent for PTT, because of the excellent photothermal conversion ability of PDA nanoparticle under laser irradiation at 808 nm. Moreover, our prepared nanosphere had extremely low dark toxicity, while excellent phototoxicity under the combination laser irradiation of 670 and 808 nm, both in vitro and in vivo, compared to any single laser irradiation alone. Therefore, our prepared PDA-Ce6 nanosphere could be applied as a very promising dual-modal phototherapeutic agent for enhanced cancer therapy in future clinical applications.
Collapse
Affiliation(s)
- Da Zhang
- †The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- ‡The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Ming Wu
- †The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- ‡The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Yongyi Zeng
- †The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- ‡The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China
- §Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Lingjie Wu
- †The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- ‡The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Qingtang Wang
- †The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- ‡The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiao Han
- ∥Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiaolong Liu
- †The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- ‡The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Jingfeng Liu
- †The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- ‡The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China
- §Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| |
Collapse
|
6914
|
Li C, Xiong Y, Yang X, Wang L, Zhang S, Dai N, Li M, Ren T, Yang Y, Zhou SF, Gan L, Wang D. Lost expression of ADAMTS5 protein associates with progression and poor prognosis of hepatocellular carcinoma. Drug Des Devel Ther 2015; 9:1773-1783. [PMID: 25848214 PMCID: PMC4378293 DOI: 10.2147/dddt.s77069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Altered expression of ADAMTS5 is associated with human carcinogenesis and tumor progression. However, the role of ADAMTS5 in hepatocellular carcinoma (HCC) is unclear. This study analyzed ADAMTS5 expression in HCC tissues and tested for association with clinicopathological and survival data from HCC patients and then explored the role of ADAMTS5 in HCC cells in vitro. Paraffin blocks from 48 HCC patients were used to detect ADAMTS5 and vascular endothelial growth factor (VEGF) expression and microvessel density (MVD). A normal liver cell line and HCC cell lines were used to detect ADAMTS5 expression and for ADAMTS5 manipulation. ADAMTS5 cDNA was stably transfected into HCC cells and ADAMTS5 expression assessed by Western blot analysis. Tumor cell-conditioned growth medium was used to assess human umbilical vein endothelial cell migration and Matrigel tube formation. Xenograft assay was performed to determine the role of ADAMTS5 in vivo. The data showed that the expression of ADAMTS5 was reduced in HCC, which was inversely associated with VEGF expression, MVD, and tumor size and associated with poor overall survival of HCC patients. Lentivirus-mediated ADAMTS5 expression significantly inhibited tumor angiogenesis by downregulating in vitro expression of VEGF and inhibiting migration and tube formations, and also inhibited tumor growth and VEGF expression and reduced MVD in vivo in a mouse xenograft model. Taken together, these results suggest that ADAMTS5 plays a role in suppression of HCC progression, which could be further studied as a promising novel therapeutic target and a potential prognostic marker in HCC.
Collapse
Affiliation(s)
- Chongyi Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
- Department of Biochemistry and Molecular Biology, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Yanli Xiong
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Xueqin Yang
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Lin’ang Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Shiheng Zhang
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Nan Dai
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Tao Ren
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Yuxin Yang
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Lixia Gan
- Department of Biochemistry and Molecular Biology, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
6915
|
Wu M, Zhang D, Zeng Y, Wu L, Liu X, Liu J. Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy. NANOTECHNOLOGY 2015; 26:115102. [PMID: 25721867 DOI: 10.1088/0957-4484/26/11/115102] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this paper, a core–shell nanocomposite of clusters of superparamagnetic iron oxide nanoparticles coated with poly(dopamine) (SPION clusters@PDA) is fabricated as a magnetic field-directed theranostic agent that combines the capabilities of highly sensitive magnetic resonance imaging (MRI) and photothermal cancer therapy. The highly concentrated SPION cluster core is suitable for sensitive MRI due to its superparamagnetic properties, and the poly(dopamine) coating layer can induce cancer cell death under near-infrared (NIR) laser irradiation because of the photothermal conversion ability of PDA. MRI scanning reveals that the nanocomposite has relatively high r2 and r2(*) relaxivities, and the r2(*) values are nearly threefold higher than the r2 values because of the clustering of the SPIONs in the nanocomposite core. Due to the rapid response to magnetic field gradients, enhanced cellular uptake of our nanocomposite mediated by an external magnetic field can be achieved, thus producing significantly enhanced local photothermal killing efficiency against cancer cells under NIR irritation.
Collapse
|
6916
|
Design and fabrication of an aptasensor for chloramphenicol based on energy transfer of CdTe quantum dots to graphene oxide sheet. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:611-9. [DOI: 10.1016/j.msec.2014.12.052] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/08/2014] [Accepted: 12/17/2014] [Indexed: 11/21/2022]
|
6917
|
BoseDasgupta S, Moes S, Jenoe P, Pieters J. Cytokine-induced macropinocytosis in macrophages is regulated by 14-3-3ζ through its interaction with serine-phosphorylated coronin 1. FEBS J 2015; 282:1167-81. [PMID: 25645340 DOI: 10.1111/febs.13214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/12/2014] [Accepted: 01/23/2015] [Indexed: 01/27/2023]
Abstract
The induction of macropinocytosis in macrophages during an inflammatory response is important for clearance of pathogenic microbes as well as the generation of appropriate immune responses. Recent data suggest that cytokine stimulation of macrophages induces macropinocytosis through phosphorylation of the protein coronin 1, thereby redistributing coronin 1 from the cell cortex to the cytoplasm followed by the activation of phosphoinositol-3 (PI-3) kinase. However, how coronin 1 phosphorylation regulates these processes remains unclear. We here define an essential role for 14-3-3ζ in cytokine-induced and coronin-1-dependent macropinocytosis in macrophages. We found that, upon stimulation, phosphorylated coronin 1 transiently associated with 14-3-3ζ and receptor of activated C kinase 1 (RACK1). Importantly, downregulation of 14-3-3ζ, but not RACK1, prevented relocation of coronin 1, as well as the induction of PI-3 kinase activity and thereby macropinocytosis upon cytokine stimulation. Together these data define an essential role for 14-3-3ζ in the regulation of macropinocytosis in macrophages upon cytokine stimulation through modulation of the localization of coronin 1.
Collapse
|
6918
|
Lux F, Sancey L, Bianchi A, Crémillieux Y, Roux S, Tillement O. Gadolinium-based nanoparticles for theranostic MRI-radiosensitization. Nanomedicine (Lond) 2015; 10:1801-15. [PMID: 25715316 DOI: 10.2217/nnm.15.30] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A rapid development of gadolinium-based nanoparticles is observed due to their attractive properties as MRI-positive contrast agents. Indeed, they display high relaxivity, adapted biodistribution and passive uptake in the tumor thanks to enhanced permeability and retention effect. In addition to these imaging properties, it has been recently shown that they can act as effective radiosensitizers under different types of irradiation (radiotherapy, neutron therapy or hadron therapy). These new therapeutic modalities pave the way to therapy guided by imaging and to personalized medicine.
Collapse
Affiliation(s)
- François Lux
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
| | - Lucie Sancey
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
| | - Andrea Bianchi
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS UMR5536, Université Bordeaux, Bordeaux, France
| | - Yannick Crémillieux
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS UMR5536, Université Bordeaux, Bordeaux, France
| | - Stéphane Roux
- Institut UTINAM, UMR6213 UFC-CNRS, Université de Franche-Comté, Besançon cedex, France
| | - Olivier Tillement
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
| |
Collapse
|
6919
|
Punwani D, Pelz B, Yu J, Arva NC, Schafernak K, Kondratowicz K, Makhija M, Puck JM. Coronin-1A: immune deficiency in humans and mice. J Clin Immunol 2015; 35:100-7. [PMID: 25666293 DOI: 10.1007/s10875-015-0130-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Divya Punwani
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, Box 0519, 513 Parnassus Avenue, HSE 301A, San Francisco, CA, 94143-0519, USA
| | | | | | | | | | | | | | | |
Collapse
|
6920
|
Zeng H, Xu LB, Wen JM, Zhang R, Zhu MS, Shi XD, Liu C. Hepatocellular carcinoma with bile duct tumor thrombus: a clinicopathological analysis of factors predictive of recurrence and outcome after surgery. Medicine (Baltimore) 2015; 94:e364. [PMID: 25569656 PMCID: PMC4602832 DOI: 10.1097/md.0000000000000364] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although hepatocellular carcinoma (HCC) with bile duct tumor thrombus (BDTT) is a rare entity, most patients experience tumor recurrence even after curative resection and the prognosis remains dismal. This study aimed to analyze the clinicopathological risk factors for recurrence and poor outcome after surgical treatment of HCC with BDTT.Clinicopathological data of 37 patients with HCC and BDTT who underwent surgical treatment from July 2005 to June 2012 at the authors' hospital were reviewed retrospectively. Prognostic factors and potential risk factors for recurrence were assessed by Cox proportional hazard model and binary logistic regression model, respectively.Among the 37 patients, anatomical and nonanatomical liver resection was performed in 26 and 11 patients, respectively. The resection was considered curative in 19 patients and palliative in 18 patients. Also, 21 cases had tumor recurrence after operation and 7 cases of them were reoperated. Multivariate binary logistic regression model revealed that surgical curability was the only independent risk factor associated with postoperative tumor recurrence (P = 0.034). In addition, postoperative overall survival rates at 1, 2, and 3 years were 64.2%, 38.9%, and 24.3%, respectively. Cox multivariate analysis indicated that surgical curability and tumor recurrence were independent prognostic factors for both overall survival and recurrence-free survival (P < 0.05).Although patients with HCC and BDTT had a relatively high rate of early recurrence after surgery, relatively favorable long-term outcome after curative hepatic resection could be achieved. Therefore, extensive and curative surgical treatment should be recommended when complete resection can be achieved and liver functional reserve is satisfactory.
Collapse
Affiliation(s)
- Hong Zeng
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation (HZ, L-bX, RZ, M-sZ, X-dS, CL), Medical Research Center; Department of Pathology (HZ); Department of Hepato-pancreato-biliary Surgery (L-bX, RZ, M-sZ, X-dS, CL), Sun Yat-sen Memorial Hospital; and Department of Pathology (J-mW), First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
6921
|
Xue P, Cheong KK, Wu Y, Kang Y. An in-vitro study of enzyme-responsive Prussian blue nanoparticles for combined tumor chemotherapy and photothermal therapy. Colloids Surf B Biointerfaces 2015; 125:277-83. [DOI: 10.1016/j.colsurfb.2014.10.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/18/2014] [Accepted: 10/31/2014] [Indexed: 11/30/2022]
|
6922
|
Morii S, Doi Y, Makita T, Takeda S, Saito S, Okabe S. A case of de novo hepatitis B associated with statin administered at 64 months later following allogeneic hematopoietic stem cells transplantation. KANZO 2015; 56:661-667. [DOI: 10.2957/kanzo.56.661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Shinji Morii
- Department of Gastroenterology, Matsudo City Hospital
| | - Yoko Doi
- Department of Gastroenterology, Matsudo City Hospital
| | - Tomoo Makita
- Department of Gastroenterology, Matsudo City Hospital
| | | | - Shuichi Saito
- Department of Gastroenterology, Matsudo City Hospital
| | | |
Collapse
|
6923
|
Wu M, Wang Q, Liu X, Liu J. Highly efficient loading of doxorubicin in Prussian Blue nanocages for combined photothermal/chemotherapy against hepatocellular carcinoma. RSC Adv 2015; 5:30970-30980. [DOI: 10.1039/c4ra16138f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Doxorubicin-loaded Prussian Blue-based nanoparticles for combined photothermal/chemotherapy against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- The Liver Center of Fujian Province
| | - Qingtang Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- The Liver Center of Fujian Province
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- The Liver Center of Fujian Province
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- The Liver Center of Fujian Province
| |
Collapse
|
6924
|
Moshous D, de Villartay JP. The expanding spectrum of human coronin 1A deficiency. Curr Allergy Asthma Rep 2014; 14:481. [PMID: 25269405 DOI: 10.1007/s11882-014-0481-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since the first discovery of coronin in the amoeba Dictyostelium discoideum, remarkable insights have been gained regarding the structure and function of coronins, highly conserved from yeast to humans. It has been speculated that coronins have evolved from actin-binding molecules in lower eukaryotes to regulators of various cellular processes in mammals. Indeed, coronins are not only involved in cytokinesis, cell motility, and other actin-related processes but they are also implicated in immune homeostasis and calcium-calcineurin signaling. Most strikingly, coronin 1 deficiencies give rise to immune deficiencies in mice and humans that are characterized by severe T lymphocytopenia. Whereas complete absence of coronin 1A is associated with severe combined immunodeficiency in humans, hypomorphic mutations lead to a profound defect in naïve T cells, expansion of oligoclonal memory T cells, and exquisite susceptibility to EBV-associated B cell lymphoproliferation. Recent publications show that coronin 1A also plays a role in natural killer cell cytotoxic function and in neurobehavioral processes. It can be expected that future identification of coronin 1A-deficient patients will further extend the phenotypic spectrum thereby increasing our knowledge of this fascinating molecule.
Collapse
Affiliation(s)
- Despina Moshous
- INSERM UMR1163, Genome Dynamics in the Immune System, Paris, France,
| | | |
Collapse
|
6925
|
Gorshkov K, Zhang J. Visualization of cyclic nucleotide dynamics in neurons. Front Cell Neurosci 2014; 8:395. [PMID: 25538560 PMCID: PMC4255612 DOI: 10.3389/fncel.2014.00395] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/04/2014] [Indexed: 12/22/2022] Open
Abstract
The second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) transduce many neuromodulatory signals from hormones and neurotransmitters into specific functional outputs. Their production, degradation and signaling are spatiotemporally regulated to achieve high specificity in signal transduction. The development of genetically encodable fluorescent biosensors has provided researchers with useful tools to study these versatile second messengers and their downstream effectors with unparalleled spatial and temporal resolution in cultured cells and living animals. In this review, we introduce the general design of these fluorescent biosensors and describe several of them in more detail. Then we discuss a few examples of using cyclic nucleotide fluorescent biosensors to study regulation of neuronal function and finish with a discussion of advances in the field. Although there has been significant progress made in understanding how the specific signaling of cyclic nucleotide second messengers is achieved, the mechanistic details in complex cell types like neurons are only just beginning to surface. Current and future fluorescent protein reporters will be essential to elucidate the role of cyclic nucleotide signaling dynamics in the functions of individual neurons and their networks.
Collapse
Affiliation(s)
- Kirill Gorshkov
- Laboratory of Dr. Jin Zhang, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | - Jin Zhang
- Laboratory of Dr. Jin Zhang, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| |
Collapse
|
6926
|
Cheng L, Gong H, Zhu W, Liu J, Wang X, Liu G, Liu Z. PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. Biomaterials 2014; 35:9844-9852. [PMID: 25239041 DOI: 10.1016/j.biomaterials.2014.09.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Theranostic agents with both imaging and therapeutic functions have attracted enormous interests in cancer diagnosis and treatment in recent years. In this work, we develop a novel theranostic agent based on Prussian blue nanocubes (PB NCs), a clinically approved agent with strong near-infrared (NIR) absorbance and intrinsic paramagnetic property, for in vivo bimodal imaging-guided photothermal therapy. After being coated with polyethylene glycol (PEG), the obtained PB-PEG NCs are highly stable in various physiological solutions. In vivo T1-weighted magnetic resonance (MR) and photoacoustic tomography (PAT) bimodal imaging uncover that PB-PEG NCs after intravenous (i.v.) injection show high uptake in the tumor. Utilizing the strong and super stable NIR absorbance of PB, in vivo cancer treatment is then conducted upon i.v. injection of PB-PEG NCs followed by NIR laser irradiation of the tumors, achieving excellent therapeutic efficacy in a mouse tumor model. Comprehensive blood tests and careful histological examinations reveal no apparent toxicity of PB-PEG NCs to mice at our tested dose, which is two-fold of the imaging/therapy dose, within two months. Our work highlights the great promise of Prussian blue with well engineered surface coating as a multifunctional nanoprobe for imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Liang Cheng
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Hua Gong
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenwen Zhu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingjing Liu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoyong Wang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, China.
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
6927
|
Pathological circuit function underlying addiction and anxiety disorders. Nat Neurosci 2014; 17:1635-43. [PMID: 25402855 DOI: 10.1038/nn.3849] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/29/2014] [Indexed: 02/07/2023]
Abstract
Current models of addiction and anxiety stem from the idea that aberrant function and remodeling of neural circuits cause the pathological behaviors. According to this hypothesis, a disease-defining experience (for example, drug reward or stress) would trigger specific forms of synaptic plasticity, which in susceptible subjects would become persistent and lead to the disease. While the notion of synaptic diseases has received much attention, no candidate disorder has been sufficiently investigated to yield new, rational therapies that could be tested in the clinic. Here we review the arguments in favor of abnormal neuronal plasticity underlying addiction and anxiety disorders, with a focus on the functional diversity of neurons that make up the circuits involved. We argue that future research must strive to obtain a comprehensive description of the relevant functional anatomy. This will allow identification of molecular mechanisms that govern the induction and expression of disease-relevant plasticity in identified neurons. To establish causality, one will have to test whether normalization of function can reverse pathological behavior. With these elements in hand, it will be possible to propose blueprints for manipulations to be tested in translational studies. The challenge is daunting, but new techniques, above all optogenetics, may enable decisive advances.
Collapse
|
6928
|
Cai Z, Zeng Y, Xu B, Gao Y, Wang S, Zeng J, Chen L, Huang A, Liu X, Liu J. Galectin-4 serves as a prognostic biomarker for the early recurrence / metastasis of hepatocellular carcinoma. Cancer Sci 2014; 105:1510-1517. [PMID: 25230111 PMCID: PMC4462376 DOI: 10.1111/cas.12536] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/06/2014] [Accepted: 09/09/2014] [Indexed: 12/22/2022] Open
Abstract
Galectin-4 is a multifunctional lectin found at both intracellular and extracellular sites. It could serve as a tumor suppressor intracellularly and promote tumor metastases extracellularly during colorectal cancer development. However, galectin-4 expression and its prognostic value for patients with hepatocellular carcinoma (HCC) have not been well investigated. Here we report that galectin-4 was significantly downregulated in early recurrent/metastatic HCC patients, when compared to non-recurrent/metastatic HCC patients. Low expression of gelectin-4 was well associated with larger tumor size, microvascular invasion, malignant differentiation, more advanced TNM stage, and poor prognosis. Cancer cell migration and invasion could be significantly reduced through overexpression of galectin-4, but upregulated by knocking down of galectin-4 in vitro. Moreover, the serum galectin-4 level could be significantly elevated solely by hepatitis B virus infection. Combined with clinicopathological features, the higher serologic level of galectin-4 was well associated with more aggressive characteristics of HCC. Taken together, galectin-4 expression closely associates with HCC progression and might have potential use as a prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Zhixiong Cai
- Mengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou, China
- The Liver Center of Fujian Province, Fujian Medical UniversityFuzhou, China
| | - Yongyi Zeng
- Mengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou, China
- The Liver Center of Fujian Province, Fujian Medical UniversityFuzhou, China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical UniversityFuzhou, China
| | - Bo Xu
- Mengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou, China
- The Liver Center of Fujian Province, Fujian Medical UniversityFuzhou, China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical UniversityFuzhou, China
| | - Yunzhen Gao
- Mengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou, China
- The Liver Center of Fujian Province, Fujian Medical UniversityFuzhou, China
| | - Sen Wang
- Mengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou, China
- The Liver Center of Fujian Province, Fujian Medical UniversityFuzhou, China
| | - Jinhua Zeng
- Mengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou, China
- The Liver Center of Fujian Province, Fujian Medical UniversityFuzhou, China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical UniversityFuzhou, China
| | - Lihong Chen
- Mengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou, China
- The Liver Center of Fujian Province, Fujian Medical UniversityFuzhou, China
- Department of Pathology, School of Basic Medical Science, Fujian Medical UniversityFuzhou, China
| | - Aimin Huang
- Mengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou, China
- The Liver Center of Fujian Province, Fujian Medical UniversityFuzhou, China
- Department of Pathology, School of Basic Medical Science, Fujian Medical UniversityFuzhou, China
| | - Xiaolong Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou, China
- The Liver Center of Fujian Province, Fujian Medical UniversityFuzhou, China
| | - Jingfeng Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou, China
- The Liver Center of Fujian Province, Fujian Medical UniversityFuzhou, China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical UniversityFuzhou, China
| |
Collapse
|
6929
|
Abstract
In this paper, a novel high sensitive nanobiosensor based on the combination of F0F1-ATPase molecular motor and Φ100nm tapered optical fiber is described, which as we known has never been reported before. Since the tapered optical fiber tip is well matched with the F0F1-ATPase complex in size, a superb sensitivity is theoretically expected. Experimental results show that this nanobiosensor’s sensitivity is about 3.5 times higher than the result of the experiment conducted on a F0F1-ATPase modified ordinary Φ50μm multimode fiber biosensor. The detecting time could be decreased correspondingly. Therefore a cheap, high sensitivity ,fast response, single molecule detection of biomolecules such as epidemic viruses would be achievable using this tapered optical fiber-based F0F1-ATPase nanobiosensor.
Collapse
|
6930
|
Xu B, Cai Z, Zeng Y, Chen L, Du X, Huang A, Liu X, Liu J. α-Methylacyl-CoA racemase (AMACR) serves as a prognostic biomarker for the early recurrence/metastasis of HCC. J Clin Pathol 2014; 67:974-979. [PMID: 25092674 PMCID: PMC4215266 DOI: 10.1136/jclinpath-2014-202378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/01/2014] [Accepted: 07/19/2014] [Indexed: 01/15/2023]
Abstract
AIMS Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, and it is still lacking effective prognostic biomarkers so far. Previous results of the iTRAQ-based quantitative proteomics study (iTRAQ-2DLC-MS/MS) have shown that α-methylacyl-CoA racemase (AMACR) might be a promising prognostic biomarker for the early recurrence/metastasis of hepatocellular carcinoma (HCC). Here a large-scale cohort clinical study was performed to evaluate its prognostic potential. METHODS HCC samples from patients (n=158) were used for the construction of tissue microarray. The expression level of AMACR was determined by immunohistochemical staining. A large-scale cohort clinical study between the expression of AMACR and some major clinical parameter has been performed to assess the prognostic potential of AMACR for the early recurrence/metastasis of HCC. RESULTS Some important clinical parameters such as α-fetoprotein, tumour numbers, dissemination to regional lymph nodes, tumour capsule and portal vein tumour thrombosis are significantly associated with the low expression of AMACR. The expression of AMACR was an independent factor for the survival of patients with HCC. The median survival time was 17 months in the low-expression group compared with 45 months in the high-expression group. CONCLUSIONS This study reveals that the AMACR might be a potential prognostic marker for predicting early recurrence/metastasis of HCC after hepatectomy.
Collapse
Affiliation(s)
- Bo Xu
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yongyi Zeng
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, People's Republic of China
| | - Lihong Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, People's Republic of China
- Department of Pathology, School of Basic Medical Science, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiaobo Du
- Department of Urology, The First People's Hospital of Yueyang, Yueyang, People's Republic of China
| | - Aimin Huang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, People's Republic of China
- Department of Pathology, School of Basic Medical Science, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jingfeng Liu
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
6931
|
Molecular mechanisms and functional implications of polarized actin remodeling at the T cell immunological synapse. Cell Mol Life Sci 2014; 72:537-556. [PMID: 25355055 DOI: 10.1007/s00018-014-1760-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/22/2014] [Accepted: 10/13/2014] [Indexed: 02/05/2023]
Abstract
Transient,specialized cell-cell interactions play a central role in leukocyte function by enabling specific intercellular communication in the context of a highly dynamic systems level response. The dramatic structural changes required for the formation of these contacts are driven by rapid and precise cytoskeletal remodeling events. In recent years, the immunological synapse that forms between a T lymphocyte and its antigen-presenting target cell has emerged as an important model system for understanding immune cell interactions. In this review, we discuss how regulators of the cortical actin cytoskeleton control synaptic architecture and in this way specify T cell function.
Collapse
|
6932
|
BoseDasgupta S, Pieters J. Striking the Right Balance Determines TB or Not TB. Front Immunol 2014; 5:455. [PMID: 25339950 PMCID: PMC4189424 DOI: 10.3389/fimmu.2014.00455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/06/2014] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis continues to be one of the most successful pathogens on earth. Upon inhalation of M. tuberculosis by a healthy individual, the host immune system will attempt to eliminate these pathogens using a combination of immune defense strategies. These include the recruitment of macrophages and other phagocytes to the site of infection, production of cytokines that enhance the microbicidal capacity of the macrophages, as well as the activation of distinct subsets of leukocytes that work in concert to fight the infection. However, being as successful as it is, M. tuberculosis has evolved numerous strategies to subvert host immunity at virtual every level. As a consequence, one third of the world inhabitants carry M. tuberculosis, and tuberculosis continuous to cause disease in more than 8 million people with deadly consequences in well over 1 million patients each year. In this review, we discuss several of the strategies that M. tuberculosis employs to circumvent host immunity, as well as describe some of the mechanisms that the host uses to counter such subversive strategies. As for many other infectious diseases, the ultimate outcome is usually defined by the relative strength of the virulence strategies employed by the tubercle bacillus versus the arsenal of immune defense mechanisms of the infected host.
Collapse
Affiliation(s)
| | - Jean Pieters
- Biozentrum, University of Basel , Basel , Switzerland
| |
Collapse
|
6933
|
A review on emerging diagnostic assay for viral detection: the case of avian influenza virus. Mol Biol Rep 2014; 42:187-99. [PMID: 25245956 DOI: 10.1007/s11033-014-3758-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
Abstract
Biotechnology-based detection systems and sensors are in use for a wide range of applications in biomedicine, including the diagnostics of viral pathogens. In this review, emerging detection systems and their applicability for diagnostics of viruses, exemplified by the case of avian influenza virus, are discussed. In particular, nano-diagnostic assays presently under development or available as prototype and their potentials for sensitive and rapid virus detection are highlighted.
Collapse
|
6934
|
BoseDasgupta S, Pieters J. Coronin 1 trimerization is essential to protect pathogenic mycobacteria within macrophages from lysosomal delivery. FEBS Lett 2014; 588:3898-905. [PMID: 25217836 DOI: 10.1016/j.febslet.2014.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/23/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
Coronin 1 is a member of the evolutionarily conserved coronin protein family. Coronin proteins are characterized by the presence of a central WD repeat and a C-terminal coiled coil that in coronin 1 is responsible for trimerization. Coronin 1 was identified as a host protein protecting intracellularly residing mycobacteria from degradation by activating the Ca(2+)/calcineurin pathway but whether or not trimerization is essential for this function remains unknown. We here show that trimerization is essential to promote mycobacterial survival within macrophages and activate calcineurin. Furthermore, macrophage activation that induces serine-phosphorylation on coronin 1 resulted in coronin 1 monomerization. These results suggest that modulation of coronin 1 oligomerization is an effective way to determine the outcome of a mycobacterial infection in macrophages.
Collapse
|
6935
|
Terzi YK, Kocaefe YC, Ayter S. Coronin 1A inhibits neurite outgrowth in PC12 cells. Neurosci Lett 2014; 582:38-42. [PMID: 25179994 DOI: 10.1016/j.neulet.2014.08.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 11/30/2022]
Abstract
Regenerative response to central nervous system damage in mammals is limited because of inhibitor signals which consist of myelin associated inhibitor proteins and chondroitin sulfate proteoglycans. Inhibitor signals mainly affect cytoskeleton elements which are important for axonal sprouting and neurite outgrowth. Coronin 1A is an actin cytoskeleton associated protein. Coronin 1A shows its effect on actin cytoskeleton through binding to the Arp2/3 complex which is a key nucleator of actin polymerization and regulates its activation on actin cytoskeleton. Coronin 1A-Arp2/3 interaction is regulated by phosphorylation of Coronin 1A from the C and N terminal region. Thus, Coronin 1A-Arp2/3 complex is one of the targets of inhibitory signaling cascades. The aim of this study was to investigate the effect of Coronin 1A on neurite outgrowth in PC12 cells in vitro. The results showed that Coronin 1A is expressed in differentiated PC12 cells and localized along axonal sprouting region of the neurites. Other results showed that overexpression of Coronin 1A in PC12 cells effects neurite outgrowth. Neurite lengths of the Coronin 1A overexpressing PC12 cells were lower than the untransfected (p<0.001) and control transfected (p=0.002) PC12 cells. These results indicate that Coronin 1A has an inhibitory effect on neurite outgrowth in vitro.
Collapse
Affiliation(s)
- Yunus Kasim Terzi
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, Sihhiye, 06100, Ankara, Turkey
| | - Yusuf Cetin Kocaefe
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, Sihhiye, 06100, Ankara, Turkey
| | - Sukriye Ayter
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, Sihhiye, 06100, Ankara, Turkey.
| |
Collapse
|
6936
|
Wolman MA, de Groh ED, McBride SM, Jongens TA, Granato M, Epstein JA. Modulation of cAMP and ras signaling pathways improves distinct behavioral deficits in a zebrafish model of neurofibromatosis type 1. Cell Rep 2014; 8:1265-70. [PMID: 25176649 PMCID: PMC5850931 DOI: 10.1016/j.celrep.2014.07.054] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/20/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder associated with attention deficits and learning disabilities. The primary known function of neurofibromin, encoded by the NF1 gene, is to downregulate Ras activity. We show that nf1-deficient zebrafish exhibit learning and memory deficits and that acute pharmacological inhibition of downstream targets of Ras (MAPK and PI3K) restores memory consolidation and recall but not learning. Conversely, acute pharmacological enhancement of cAMP signaling restores learning but not memory. Our data provide compelling evidence that neurofibromin regulates learning and memory by distinct molecular pathways in vertebrates and that deficits produced by genetic loss of function are reversible. These findings support the investigation of cAMP signaling enhancers as a companion therapy to Ras inhibition in the treatment of cognitive dysfunction in NF1.
Collapse
Affiliation(s)
- Marc A Wolman
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric D de Groh
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sean M McBride
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas A Jongens
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6937
|
Zeng Y, Zhang D, Wu M, Liu Y, Zhang X, Li L, Li Z, Han X, Wei X, Liu X. Lipid-AuNPs@PDA nanohybrid for MRI/CT imaging and photothermal therapy of hepatocellular carcinoma. ACS APPLIED MATERIALS & INTERFACES 2014; 6:14266-14277. [PMID: 25090604 DOI: 10.1021/am503583s] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy. Herein, we report the synthesis and characterization of a multifunctional theranostic agent (referred to as LA-LAPNHs) for targeted magnetic resonance imaging/computed X-ray tomography (MRI/CT) dual-mode imaging and photothermal therapy of hepatocellular carcinoma. The LA-LAPNHs were characterized as having a core-shell structure with the gold nanoparticles (AuNPs)@polydopamine (PDA) as the inner core, the indocyanine green (ICG), which is electrostatically absorbed onto the surface of PDA, as the photothermal therapeutic agent, and the lipids modified with gadolinium-1,4,7,10-tetraacetic acid and lactobionic acid (LA), which is self-assembled on the outer surface as the shell. The LA-LAPNHs could be selectively internalized into the hepatocellular cell line (HepG2 cells) but not into HeLa cells due to the specific recognition ability of LA to asialoglycoprotein receptor. Additionally, the dual-mode imaging ability of the LA-LAPNH aqueous solution was confirmed by enhanced MR and CT imaging showing a shorter T1 relaxation time and a higher Hounsfield unit value, respectively. In addition, the LA-LAPNHs showed significant photothermal cytotoxicity against liver cancer cells with near-infrared irradiation due to their strong absorbance in the region between 700 and 850 nm. In summary, this study demonstrates that LA-LAPNHs may be a promising candidate for targeted MR/CT dual-mode imaging and photothermal therapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yongyi Zeng
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University , Fuzhou 350005, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6938
|
Shen Z, Zhang X, Chai Y, Zhu Z, Yi P, Feng G, Li W, Ou G. Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development. Dev Cell 2014; 30:625-36. [PMID: 25155554 DOI: 10.1016/j.devcel.2014.07.017] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/07/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
Abstract
Conditional gene knockout animals are valuable tools for studying the mechanisms underlying cell and developmental biology. We developed a conditional knockout strategy by spatiotemporally manipulating the expression of an RNA-guided DNA endonuclease, CRISPR-Cas9, in Caenorhabditis elegans somatic cell lineages. We showed that this somatic CRISPR-Cas9 technology provides a quick and efficient approach to generate conditional knockouts in various cell types at different developmental stages. Furthermore, we demonstrated that this method outperforms our recently developed somatic TALEN technique and enables the one-step generation of multiple conditional knockouts. By combining these techniques with live-cell imaging, we showed that an essential embryonic gene, Coronin, which is associated with human neurobehavioral dysfunction, regulates actin organization and cell morphology during C. elegans postembryonic neuroblast migration and neuritogenesis. We propose that the somatic CRISPR-Cas9 platform is uniquely suited for conditional gene editing-based biomedical research.
Collapse
Affiliation(s)
- Zhongfu Shen
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xianliang Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peishan Yi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guoxin Feng
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6939
|
Salamun J, Kallio JP, Daher W, Soldati-Favre D, Kursula I. Structure of Toxoplasma gondii coronin, an actin-binding protein that relocalizes to the posterior pole of invasive parasites and contributes to invasion and egress. FASEB J 2014; 28:4729-47. [PMID: 25114175 DOI: 10.1096/fj.14-252569] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coronins are involved in the regulation of actin dynamics in a multifaceted way, participating in cell migration and vesicular trafficking. Apicomplexan parasites, which exhibit an actin-dependent gliding motility that is essential for traversal through tissues, as well as invasion of and egress from host cells, express only a single coronin, whereas higher eukaryotes possess several isoforms. We set out to characterize the 3-D structure, biochemical function, subcellular localization, and genetic ablation of Toxoplasma gondii coronin (TgCOR), to shed light on its biological role. A combination of X-ray crystallography, small-angle scattering of X-rays, and light scattering revealed the atomic structure of the conserved WD40 domain and the dimeric arrangement of the full-length protein. TgCOR binds to F-actin and increases the rate and extent of actin polymerization. In vivo, TgCOR relocalizes transiently to the posterior pole of motile and invading parasites, independent of actin dynamics, but concomitant to microneme secretory organelle discharge. TgCOR contributes to, but is not essential for, invasion and egress. Taken together, our data point toward a role for TgCOR in stabilizing newly formed, short filaments and F-actin cross-linking, as well as functions linked to endocytosis and recycling of membranes.
Collapse
Affiliation(s)
- Julien Salamun
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Juha P Kallio
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and German Electron Synchrotron (DESY), Hamburg, Germany; and
| | - Wassim Daher
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland;
| | - Inari Kursula
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and German Electron Synchrotron (DESY), Hamburg, Germany; and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
6940
|
Coronin1 proteins dictate rac1 intracellular dynamics and cytoskeletal output. Mol Cell Biol 2014; 34:3388-406. [PMID: 24980436 DOI: 10.1128/mcb.00347-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rac1 regulates lamellipodium formation, myosin II-dependent contractility, and focal adhesions during cell migration. While the spatiotemporal assembly of those processes is well characterized, the signaling mechanisms involved remain obscure. We report here that the cytoskeleton-related Coronin1A and -1B proteins control a myosin II inactivation-dependent step that dictates the intracellular dynamics and cytoskeletal output of active Rac1. This step is signaling-branch specific, since it affects the functional competence of active Rac1 only when forming complexes with downstream ArhGEF7 and Pak proteins in actomyosin-rich structures. The pathway is used by default unless Rac1 is actively rerouted away from the structures by upstream activators and signals from other Rho GTPases. These results indicate that Coronin1 proteins are at the center of a regulatory hub that coordinates Rac1 activation, effector exchange, and the F-actin organization state during cell signaling. Targeting this route could be useful to hamper migration of cancer cells harboring oncogenic RAC1 mutations.
Collapse
|
6941
|
X-linked lymphoproliferative syndromes and related autosomal recessive disorders. Curr Opin Allergy Clin Immunol 2014; 13:614-22. [PMID: 24113228 DOI: 10.1097/aci.0000000000000008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW X-linked lymphoproliferative (XLP) syndromes and related autosomal disorders are severe primary immune deficiencies triggered by infection with Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis. Recent findings reviewed herein provided key new insights into the genetic and immunological basis of these diseases. They also improved our comprehension of the immunological mechanisms controlling EBV infection. RECENT FINDINGS Mutations of an X-linked gene, SH2D1A, which encodes the signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), are responsible for most cases of XLP disorders. More recently, other genetic causes for XLP syndromes and autosomal recessive variants of this disease were elucidated. Mutations in genes such as XIAP, ITK, and CD27 were identified. The clinical manifestations and immunological defects seen in these patients were characterized. SUMMARY The similarities and differences in immunological defects and clinical manifestations between XLP syndromes and related autosomal recessive disorders enabled important new insights into the pathogenesis of these diseases. They also helped our comprehension of the mechanisms implicated in the control of EBV infection. They suggested that CD8+ T cells, natural killer (NK) cells, and NKT cells are critically involved.
Collapse
|
6942
|
Bagkos G, Koufopoulos K, Piperi C. A new model for mitochondrial membrane potential production and storage. Med Hypotheses 2014; 83:175-81. [PMID: 24907229 DOI: 10.1016/j.mehy.2014.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/10/2014] [Indexed: 02/05/2023]
Abstract
Mitochondrial membrane potential (MMP) is the most reliable indicator of mitochondrial function. The MMP value range of -136 to -140mV has been considered optimal for maximum ATP production for all living organisms. Even small changes from the above range result in a large fall in ATP production and a large increase in ROS production. The resulting bioenergetic deregulation is considered as the causative agent for numerous major human diseases. Normalization of MMP value improves mitochondrial function and gives excellent therapeutic results. In order for a systematic effective treatment of these diseases to be developed, a detailed knowledge of the mechanism of MMP production is absolutely necessary. However, despite the long-standing research efforts, a concrete mechanism for MMP production has not been found yet. The present paper proposes a novel mechanism of MMP production based on new considerations underlying the function of the two basic players of MMP production, the electron transport chain (ETC) and the F1F0 ATP synthase. Under normal conditions, MMP is almost exclusively produced by the electron flow through ETC complexes I-IV, creating a direct electric current that stops in subunit II of complex IV and gradually charges MMP. However, upon ETC dysfunction F1F0 ATP synthase reverses its action and starts to hydrolyze ATP. ATP hydrolysis further produces electric energy which is transferred, in the form of a direct electric current, from F1 to F0 where is used to charge MMP. This new model is expected to redirect current experimental research on mitochondrial bioenergetics and indicate new therapeutic schemes for mitochondrial disorders.
Collapse
Affiliation(s)
- Georgios Bagkos
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece
| | - Kostas Koufopoulos
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece.
| |
Collapse
|
6943
|
Liu S, Wang X, Pang S, Na W, Yan X, Su X. Fluorescence detection of adenosine-5'-triphosphate and alkaline phosphatase based on the generation of CdS quantum dots. Anal Chim Acta 2014; 827:103-10. [PMID: 24833001 DOI: 10.1016/j.aca.2014.04.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 12/24/2022]
Abstract
We have developed an analytical method to detect adenosine-5'-triphosphate (ATP) and alkaline phosphatase (ALP) based on the generation of CdS quantum dots (QDs). We demonstrated that Cd(2+) cation reacts with S(2-) anion to generate fluorescent CdS QDs in the presence of some certain amount of ATP. With increase in the ATP concentration, the fluorescence intensity of CdS QDs was also enhanced. ATP can be converted into adenosine by the dephosphorylation of ALP, so that the generation of CdS QDs would be inhibited in the presence of ALP. Therefore, this novel analysis system could be applied to assay ATP and ALP based on the growth of fluorescent CdS QDs.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xinyan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shu Pang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Weidan Na
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xu Yan
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
6944
|
Jayachandran R, Liu X, BoseDasgupta S, Müller P, Zhang CL, Moshous D, Studer V, Schneider J, Genoud C, Fossoud C, Gambino F, Khelfaoui M, Müller C, Bartholdi D, Rossez H, Stiess M, Houbaert X, Jaussi R, Frey D, Kammerer RA, Deupi X, de Villartay JP, Lüthi A, Humeau Y, Pieters J. Coronin 1 regulates cognition and behavior through modulation of cAMP/protein kinase A signaling. PLoS Biol 2014; 12:e1001820. [PMID: 24667537 PMCID: PMC3965382 DOI: 10.1371/journal.pbio.1001820] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/12/2014] [Indexed: 01/14/2023] Open
Abstract
Cognitive and behavioral disorders are thought to be a result of neuronal dysfunction, but the underlying molecular defects remain largely unknown. An important signaling pathway involved in the regulation of neuronal function is the cyclic AMP/Protein kinase A pathway. We here show an essential role for coronin 1, which is encoded in a genomic region associated with neurobehavioral dysfunction, in the modulation of cyclic AMP/PKA signaling. We found that coronin 1 is specifically expressed in excitatory but not inhibitory neurons and that coronin 1 deficiency results in loss of excitatory synapses and severe neurobehavioral disabilities, including reduced anxiety, social deficits, increased aggression, and learning defects. Electrophysiological analysis of excitatory synaptic transmission in amygdala revealed that coronin 1 was essential for cyclic-AMP-protein kinase A-dependent presynaptic plasticity. We further show that upon cell surface stimulation, coronin 1 interacted with the G protein subtype Gαs to stimulate the cAMP/PKA pathway. The absence of coronin 1 or expression of coronin 1 mutants unable to interact with Gαs resulted in a marked reduction in cAMP signaling. Strikingly, synaptic plasticity and behavioral defects of coronin 1-deficient mice were restored by in vivo infusion of a membrane-permeable cAMP analogue. Together these results identify coronin 1 as being important for cognition and behavior through its activity in promoting cAMP/PKA-dependent synaptic plasticity and may open novel avenues for the dissection of signal transduction pathways involved in neurobehavioral processes.
Collapse
Affiliation(s)
| | - Xiaolong Liu
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Chun-Lei Zhang
- Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | | | - Vera Studer
- Biozentrum, University of Basel, Basel, Switzerland
| | - Jacques Schneider
- Department of Radiology, University Children Hospital, UKBB, Basel, Switzerland
| | - Christel Genoud
- Center for Cellular Imaging and NanoAnalytics, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | - Malik Khelfaoui
- Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | | | | | | | | | - Xander Houbaert
- Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | - Rolf Jaussi
- Biomolecular Research Laboratory, Paul Scherrer Institute, Villigen, Switzerland
| | - Daniel Frey
- Biomolecular Research Laboratory, Paul Scherrer Institute, Villigen, Switzerland
| | - Richard A. Kammerer
- Biomolecular Research Laboratory, Paul Scherrer Institute, Villigen, Switzerland
| | - Xavier Deupi
- Biomolecular Research Laboratory, Paul Scherrer Institute, Villigen, Switzerland
- Condensed Matter Theory, Paul Scherrer Institute, Villigen, Switzerland
| | | | | | - Yann Humeau
- Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
6945
|
Chen X, Ge L, Guo B, Yan M, Hao N, Xu L. Homogeneously ultrasensitive electrochemical detection of adenosine triphosphate based on multiple signal amplification strategy. Biosens Bioelectron 2014; 58:48-56. [PMID: 24613969 DOI: 10.1016/j.bios.2014.02.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
Abstract
An ultrasensitive electrochemical aptasensor was successfully fabricated for the detection of adenosine triphosphate (ATP). For the first time, one detection system combined several elements: magnetic aptamer sequences for target recognition and separation, a DNAzyme assisted cyclic signal amplification strategy, layer-by-layer (LBL) quantum dots (QDs) composites for promoting square wave anodic stripping voltammetric (SWASV) analysis and Bi, Nafion (Nf) and three-dimensional ordered macroporous polyaniline-ionic liquid (Bi/Nf/3DOM PANI-IL) film modified glassy carbon electrode (GCE) for monitoring enhanced SWASV signal. The modification of Nf/3DOM PANI-IL on GCE showed that the preconcentration efficiency was improved by the electrostatic absorption of Cd(2+) with negative Nf layer with the enhanced analytical sensitivity due to a large active surface area of 3DOM structure. The increased SWASV peak current values of the label (CdS)4@SiO2 composites were found to be proportional to the logarithmic value of ATP concentrations in the range of 1pM-10nM and 10nM-1µM, with the detection limit as low as 0.5pM. The proposed aptasensor has shown an excellent performance such as high sensitivity, good selectivity and analytical application in real samples. The results demonstrated that the multiple signal amplified strategy we developed was feasible for clinical ATP assay and would provide a promising model for the detection of other small molecules.
Collapse
Affiliation(s)
- Xiaojun Chen
- College of Sciences, Nanjing Tech University, Nanjing 211816, PR China.
| | - Lingna Ge
- College of Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Buhua Guo
- College of Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Ming Yan
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Ning Hao
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Lin Xu
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
6946
|
Vinet AF, Fiedler T, Studer V, Froquet R, Dardel A, Cosson P, Pieters J. Initiation of multicellular differentiation in Dictyostelium discoideum is regulated by coronin A. Mol Biol Cell 2014; 25:688-701. [PMID: 24403600 PMCID: PMC3937094 DOI: 10.1091/mbc.e13-04-0219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Multicellular development of Dictyostelium is induced by starvation and is crucial for its long-term survival. Coronin A mediates the transition from growth to development of the cells and initiates the cAMP-dependent relay by regulating the response to secreted cell density and nutrient deprivation factors. Many biological systems respond to environmental changes by activating intracellular signaling cascades, resulting in an appropriate response. One such system is represented by the social amoeba Dictyostelium discoideum. When food sources become scarce, these unicellular cells can initiate a cAMP-driven multicellular aggregation program to ensure long-term survival. On starvation, the cells secrete conditioned medium factors that initiate cAMP signal transduction by inducing expression of genes such as cAMP receptors and adenylate cyclase. The mechanisms involved in the activation of the first pulses of cAMP release have been unclear. We here show a crucial role for the evolutionarily conserved protein coronin A in the initiation of the cAMP response. On starvation, coronin A–deficient cells failed to up-regulate the expression of cAMP-regulated genes, thereby failing to initiate development, despite a normal prestarvation response. Of importance, external addition of cAMP to coronin A–deficient cells resulted in normal chemotaxis and aggregate formation, thereby restoring the developmental program and suggesting a functional cAMP relay in the absence of coronin A. These results suggest that coronin A is dispensable for cAMP sensing, chemotaxis, and development per se but is part of a signal transduction cascade essential for system initiation leading to multicellular development in Dictyostelium.
Collapse
Affiliation(s)
- Adrien F Vinet
- Biozentrum, University of Basel, 4056 Basel, Switzerland Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
6947
|
Abstract
Immunodeficiencies with nonfunctional T cells comprise a heterogeneous group of conditions characterized by altered function of T lymphocytes in spite of largely preserved T cell development. Some of these forms are due to hypomorphic mutations in genes causing severe combined immunodeficiency. More recently, advances in human genome sequencing have facilitated the identification of novel genetic defects that do not affect T cell development, but alter T cell function and homeostasis. Along with increased susceptibility to infections, these conditions are characterized by autoimmunity and higher risk of malignancies. The study of these diseases, and of corresponding animal models, has provided fundamental insights on the mechanisms that govern immune homeostasis.
Collapse
|
6948
|
Niggli V. Insights into the mechanism for dictating polarity in migrating T-cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:201-70. [PMID: 25262243 DOI: 10.1016/b978-0-12-800178-3.00007-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review is focused on mechanisms of chemokine-induced polarization of T-lymphocytes. Polarization involves, starting from spherical cells, formation of a morphologically and functionally different rear (uropod) and front (leading edge). This polarization is required for efficient random and directed T-cell migration. The addressed topics concern the specific location of cell organelles and of receptors, signaling molecules, and cytoskeletal proteins in chemokine-stimulated polarized T-cells. In chemokine-stimulated, polarized T-cells, specific proteins, signaling molecules and organelles show enrichment either in the rear, the midzone, or the front; different from the random location in spherical resting cells. Possible mechanisms involved in this asymmetric location will be discussed. A major topic is also the functional role of proteins and cell organelles in T-cell polarization and migration. Specifically, the roles of adhesion and chemokine receptors, cytoskeletal proteins, signaling molecules, scaffolding proteins, and membrane microdomains in these processes will be discussed. The polarity which is established during contact formation of T-cells with antigen-presenting cells is not discussed in detail.
Collapse
Affiliation(s)
- Verena Niggli
- Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
6949
|
Tchang VSY, Mekker A, Siegmund K, Karrer U, Pieters J. Diverging role for coronin 1 in antiviral CD4+ and CD8+ T cell responses. Mol Immunol 2013; 56:683-92. [DOI: 10.1016/j.molimm.2013.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/24/2013] [Accepted: 05/04/2013] [Indexed: 11/24/2022]
|
6950
|
Cheng Z, Yi P, Wang X, Chai Y, Feng G, Yang Y, Liang X, Zhu Z, Li W, Ou G. Conditional targeted genome editing using somatically expressed TALENs in C. elegans. Nat Biotechnol 2013; 31:934-7. [PMID: 23955274 DOI: 10.1038/nbt.2674] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/22/2013] [Indexed: 11/08/2022]
Abstract
We have developed a method for the generation of conditional knockouts in Caenorhabditis elegans by expressing transcription activator-like effector nucleases (TALENs) in somatic cells. Using germline transformation with plasmids encoding TALENs under the control of an inducible or tissue-specific promoter, we observed effective gene modifications and resulting phenotypes in specific developmental stages and tissues. We further used this method to bypass the embryonic requirement of cor-1, which encodes the homolog of human severe combined immunodeficiency (SCID) protein coronin, and we determined its essential role in cell migration in larval Q-cell lineages. Our results show that TALENs expressed in the somatic cells of model organisms provide a versatile tool for functional genomics.
Collapse
Affiliation(s)
- Ze Cheng
- 1] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China. [2] School of Life Sciences, Peking University, Beijing, China. [3]
| | | | | | | | | | | | | | | | | | | |
Collapse
|