651
|
Xiang Q, Li M, Wen J, Ren F, Yang Z, Jiang X, Chen Y. The bioactivity and applications of pomegranate peel extract: A review. J Food Biochem 2022; 46:e14105. [PMID: 35128669 DOI: 10.1111/jfbc.14105] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Pomegranate peel (PP) is a by-product in the processing of pomegranate products, which is usually discarded as a waste. However, a large number of researches have shown that pomegranate peel extract (PPE) is rich in a variety of phenolic substances, among which ellagic acid (EA), as one of the main active components, has significant biological activities, such as anti-oxidation, anti-tumor, anti-inflammatory, neuroprotection, anti-viral, and anti-bacterial. We analyzed the mechanism of EA's biological activity, and discussed its application in the food industry, for instance, food preservation, food additives, and functional foods. Combined with the research status of PPE, we discussed the limitations and development potential of PPE, in order to provide theoretical reference and scientific basis for the development and utilization of pomegranate by-products. PRACTICAL APPLICATIONS: Pomegranate peel (PP), the inedible part of the fruit, is usually treated as waste. In recent years, researchers have been committed to exploring various bioactive ingredients in PP and exploring its potential benefits to human health, which has far-reaching significance. In this paper, the chemical constituents of polyphenols in PP were reviewed, mainly focusing on the biological activity and mechanism of ellagic acid (EA). We reviewed the applications and invention patents of pomegranate peel extract (PPE) in food field, including food preservation, food additive, and functional foods, providing reference for the recycling and reuse of PP.
Collapse
Affiliation(s)
- Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meifeng Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhou Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
652
|
Vini R, Azeez JM, Remadevi V, Susmi TR, Ayswarya RS, Sujatha AS, Muraleedharan P, Lathika LM, Sreeharshan S. Urolithins: The Colon Microbiota Metabolites as Endocrine Modulators: Prospects and Perspectives. Front Nutr 2022; 8:800990. [PMID: 35187021 PMCID: PMC8849129 DOI: 10.3389/fnut.2021.800990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Selective estrogen receptor modulators (SERMs) have been used in hormone related disorders, and their role in clinical medicine is evolving. Tamoxifen and raloxifen are the most commonly used synthetic SERMs, and their long-term use are known to create side effects. Hence, efforts have been directed to identify molecules which could retain the beneficial effects of estrogen, at the same time produce minimal side effects. Urolithins, the products of colon microbiota from ellagitannin rich foodstuff, have immense health benefits and have been demonstrated to bind to estrogen receptors. This class of compounds holds promise as therapeutic and nutritional supplement in cardiovascular disorders, osteoporosis, muscle health, neurological disorders, and cancers of breast, endometrium, and prostate, or, in essence, most of the hormone/endocrine-dependent diseases. One of our findings from the past decade of research on SERMs and estrogen modulators, showed that pomegranate, one of the indirect but major sources of urolithins, can act as SERM. The prospect of urolithins to act as agonist, antagonist, or SERM will depend on its structure; the estrogen receptor conformational change, availability and abundance of co-activators/co-repressors in the target tissues, and also the presence of other estrogen receptor ligands. Given that, urolithins need to be carefully studied for its SERM activity considering the pleotropic action of estrogen receptors and its numerous roles in physiological systems. In this review, we unveil the possibility of urolithins as a potent SERM, which we are currently investigating, in the hormone dependent tissues.
Collapse
Affiliation(s)
- Ravindran Vini
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Juberiya M. Azeez
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Viji Remadevi
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - T. R. Susmi
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - R. S. Ayswarya
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | | - Lakshmi Mohan Lathika
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sreeja Sreeharshan
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: Sreeja Sreeharshan
| |
Collapse
|
653
|
Dwibedi V, Jain S, Singhal D, Mittal A, Rath SK, Saxena S. Inhibitory activities of grape bioactive compounds against enzymes linked with human diseases. Appl Microbiol Biotechnol 2022; 106:1399-1417. [PMID: 35106636 DOI: 10.1007/s00253-022-11801-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
A quest for identification of novel, safe and efficient natural compounds, as additives in the modern food and cosmetic industries, has been prompted by concerns about toxicity and side effects of synthetic products. Plant phenolic compounds are one of the most documented natural products due to their multifarious biological applications. Grape (Vitis vinifera) is an important source of phenolic compounds such as phenolic acids, tannins, quinones, coumarins and, most importantly, flavonoids/flavones. This review crisply encapsulates enzyme inhibitory activities of various grape polyphenols towards different key human-ailment-associated enzymes: xanthine oxidase (gout), tyrosinase (hyperpigmentation), α-amylase and α-glucosidase (diabetes mellitus), pancreatic lipase (obesity), cholinesterase (Alzheimer's disease), angiotensin i-converting enzymes (hypertension), α-synuclein (Parkinson's disease) and histone deacetylase (various diseases). The review also depicts the enzyme inhibitory mechanism of various grape polyphenols and briefly discusses their stature as potential therapeutic and drug development candidates. KEY POINTS: • Nineteen major bioactive polyphenols from the grape/grape products and their disease targets are presented • Sixty-two important polyphenols as enzyme inhibitors from grape/grape products are presented • A thorough description and graphical presentation of biological significance of polyphenols against various diseases.
Collapse
Affiliation(s)
- Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147001, India
| | - Sahil Jain
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Divya Singhal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Anuradha Mittal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Santosh Kumar Rath
- Department of Pharmaceutical Chemistry, Danteswari College of Pharmacy, Borpadar, Jagdalpur, Chhattisgarh, 494221, India.
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147001, India
| |
Collapse
|
654
|
Lack of berberine effect on bone mechanical properties in rats with experimentally induced diabetes. Pharmacotherapy 2022; 146:112562. [DOI: 10.1016/j.biopha.2021.112562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022]
|
655
|
The Anti-Inflammatory, Anti-Apoptotic and Antioxidant Effects of a Pomegranate-Peel Extract against Acrylamide-Induced Hepatotoxicity in Rats. Life (Basel) 2022; 12:life12020224. [PMID: 35207511 PMCID: PMC8878900 DOI: 10.3390/life12020224] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
The Acrylamide is a toxic compound generated under oxidative stress arising from intracellular ROS production and induced toxicity. It is frequently used in industry and generated through the heating of tobacco and foods high in carbohydrates. The exact mechanism of its toxicity is still unclear. In this study, an extract of the peels of pomegranate (Punica granatum L.), a nutritious and visually appealing fruit with a diverse bioactive profile, was examined for its potential anti-apoptotic, antioxidant, and anti-inflammatory effects. A total of 40 adult male Wistar rats were allocated into four groups of 10 rats each: Group 1 was a negative-control group (CNT) and received normal saline; Group 2 was a positive-control acrylamide group and received acrylamide orally at a dose of 20 mg/kg/bw; in Group 3, the rats were supplemented with pomegranate-peel extract (P.P; 150 mg/kg/bw) orally on a daily basis for 3 weeks, administered simultaneously with the acrylamide treatment described for Group 2; Group 4 was a protective group, and the animals received the pomegranate-peel extract and acrylamide as stated for Groups 2 and 3, with the pomegranate-peel extract (P.P. extract) administered 1 week earlier than the acrylamide. The results indicate that acrylamide exposure increased the serum levels of AST, ALT, creatinine, interleukin-1 beta, and interleukin-6 in an extraordinary manner. In addition, it increased the lipid peroxidation marker malondialdehyde (MDA) and simultaneously weakened antioxidant biomarker activities (SOD, GSH, and catalase) and reduced the levels of interleukin-10. The pomegranate-peel extract was shown to reduce the inflammatory blood markers of interleukin-1 beta and IL-6. Glutathione peroxidase, superoxide dismutase, catalase, and interleukin-10 were all significantly elevated in comparison to the acrylamide-treatment group as a result of the significant reduction in MDA levels induced by the P.P extract. In addition, the pomegranate-peel extract normalized the cyclooxygenase-2 (COX2), transforming growth factor-beta 1 (TGF-β1), and caspase-3 levels, with a significant upregulation of the mRNA expression of heme oxygenase-1 (HO-1), nuclear factor erythroid 2 (Nrf2), and Bcl-2. Therefore, these data reveal that pomegranate peel has anti-inflammatory, antiapoptotic, free-radical-scavenging, and powerful antioxidant activity that protects against acrylamide toxicity.
Collapse
|
656
|
Fan FY, Zhou SJ, Qian H, Zong BZ, Huang CS, Zhu RL, Guo HW, Gong SY. Effect of Yellowing Duration on the Chemical Profile of Yellow Tea and the Associations with Sensory Traits. Molecules 2022; 27:molecules27030940. [PMID: 35164205 PMCID: PMC8839223 DOI: 10.3390/molecules27030940] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
The yellowing process is the crucial step to form the characteristic sensory and chemical properties of yellow tea. To investigate the chemical changes and the associations with sensory traits during yellowing, yellow teas with different yellowing times (0–13 h) were prepared for sensory evaluation and chemical analysis. The intensities of umami and green-tea aroma were reduced whereas sweet taste, mellow taste and sweet aroma were increased under long-term yellowing treatment. A total of 230 chemical constituents were determined, among which 25 non-volatiles and 42 volatiles were the key chemical contributors to sensory traits based on orthogonal partial least squares discrimination analysis (OPLS-DA), multiple factor analysis (MFA) and multidimensional alignment (MDA) analysis. The decrease in catechins, flavonol glycosides and caffeine and the increase in certain amino acids contributed to the elevated sweet taste and mellow taste. The sweet, woody and herbal odorants and the fermented and fatty odorants were the key contributors to the characteristic sensory feature of yellow tea with sweet aroma and over-oxidation aroma, including 7 ketones, 5 alcohols, 1 aldehyde, 5 acids, 4 esters, 5 hydrocarbons, 1 phenolic compound and 1 sulfocompound. This study reveals the sensory trait-related chemical changes in the yellowing process of tea, which provides a theoretical basis for the optimization of the yellowing process and quality control of yellow tea.
Collapse
Affiliation(s)
- Fang-Yuan Fan
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Sen-Jie Zhou
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Hong Qian
- Deqing Agricultural Technology Extension Center, 883 Zhongxingbei Road, Huzhou 313200, China;
| | - Bang-Zheng Zong
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Chuang-Sheng Huang
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Ruo-Lan Zhu
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Hao-Wei Guo
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Shu-Ying Gong
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
- Correspondence: ; Tel.: +86-(571)-88982519
| |
Collapse
|
657
|
Asci F, Vivacqua G, Zampogna A, D’Onofrio V, Mazzeo A, Suppa A. Wearable Electrochemical Sensors in Parkinson's Disease. SENSORS 2022; 22:s22030951. [PMID: 35161694 PMCID: PMC8839454 DOI: 10.3390/s22030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder associated with widespread aggregation of α-synuclein and dopaminergic neuronal loss in the substantia nigra pars compacta. As a result, striatal dopaminergic denervation leads to functional changes in the cortico-basal-ganglia-thalamo-cortical loop, which in turn cause most of the parkinsonian signs and symptoms. Despite tremendous advances in the field in the last two decades, the overall management (i.e., diagnosis and follow-up) of patients with PD remains largely based on clinical procedures. Accordingly, a relevant advance in the field would require the development of innovative biomarkers for PD. Recently, the development of miniaturized electrochemical sensors has opened new opportunities in the clinical management of PD thanks to wearable devices able to detect specific biological molecules from various body fluids. We here first summarize the main wearable electrochemical technologies currently available and their possible use as medical devices. Then, we critically discuss the possible strengths and weaknesses of wearable electrochemical devices in the management of chronic diseases including PD. Finally, we speculate about possible future applications of wearable electrochemical sensors in PD, such as the attractive opportunity for personalized closed-loop therapeutic approaches.
Collapse
Affiliation(s)
| | - Giorgio Vivacqua
- Integrated Research Center (PRAAB), Campus Biomedico University of Roma, Via Alvaro del Portillo 21, 00125 Rome, RM, Italy;
| | - Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, RM, Italy; (A.Z.); (V.D.); (A.M.)
| | - Valentina D’Onofrio
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, RM, Italy; (A.Z.); (V.D.); (A.M.)
| | - Adolfo Mazzeo
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, RM, Italy; (A.Z.); (V.D.); (A.M.)
| | - Antonio Suppa
- IRCCS Neuromed, 86077 Pozzilli, IS, Italy;
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, RM, Italy; (A.Z.); (V.D.); (A.M.)
- Correspondence: ; Tel.: +39-06-49914544
| |
Collapse
|
658
|
Qiu J, Chen Y, Zhuo J, Zhang L, Liu J, Wang B, Sun D, Yu S, Lou H. Urolithin A promotes mitophagy and suppresses NLRP3 inflammasome activation in lipopolysaccharide-induced BV2 microglial cells and MPTP-induced Parkinson's disease model. Neuropharmacology 2022; 207:108963. [PMID: 35065082 DOI: 10.1016/j.neuropharm.2022.108963] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/28/2021] [Accepted: 01/15/2022] [Indexed: 02/07/2023]
Abstract
Microglia-mediated neuroinflammation and mitochondrial dysfunction play critical role in the pathogenic process of Parkinson's disease (PD). Mitophagy plays central role in mitochondrial quality control. Hence, regulation of microglial activation through mitophagy could be a valuable strategy in controlling microglia-mediated neurodegeneration and neuroinflammation. Urolithin A (UA) is a natural compound produced by gut bacteria from ingested ellagitannins (ETs) and ellagic acid (EA). Several preclinical studies have reported the beneficial effects of UA on age-related conditions by increasing mitophagy and blunting excessive inflammatory responses. However, the specific role of UA in pathology of PD remains unknown. In this study, we showed that treatment with UA reduced the loss of dopaminergic neurons, ameliorated behavioral deficits and neuroinflammation in MPTP mouse model of PD. Further study revealed that UA promotes mitophagy, restores mitochondrial function and attenuate proinflammatory response in BV2 microglial cells exposed to LPS. Moreover, UA also reduced NLRP3 inflammasome activation both in vitro and in vivo. Importantly, disruption of microglial mitophagy with pharmacological or genetic approach partly blunted the neuroprotective effects of UA in MPTP mouse model of PD. Collectively, these results provide strong evidence that UA protects against dopaminergic neurodegeneration and neuroinflammation. The mechanism may be related with its inhibition of NLRP3 inflammasome activation via promoting mitophagy in microglia.
Collapse
Affiliation(s)
- Jingru Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ye Chen
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jing Zhuo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Li Zhang
- Department of Pharmacy, Jinan Second People's Hospital, Jinan, Shandong, 250001, China
| | - Jia Liu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Baozhu Wang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Deqing Sun
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Haiyan Lou
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
659
|
Are We What We Eat? Impact of Diet on the Gut-Brain Axis in Parkinson's Disease. Nutrients 2022; 14:nu14020380. [PMID: 35057561 PMCID: PMC8780419 DOI: 10.3390/nu14020380] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease is characterized by motor and non-motor symptoms, such as defects in the gut function, which may occur before the motor symptoms. To date, there are therapies that can improve these symptoms, but there is no cure to avoid the development or exacerbation of this disorder. Dysbiosis of gut microbiota could have a crucial role in the gut–brain axis, which is a bidirectional communication between the central nervous system and the enteric nervous system. Diet can affect the microbiota composition, impacting gut–brain axis functionality. Gut microbiome restoration through probiotics, prebiotics, synbiotics or other dietary means could have the potential to slow PD progression. In this review, we will discuss the influence of diet on the bidirectional communication between gut and brain, thus supporting the hypothesis that this disorder could begin in the gut. We also focus on how food-based therapies might then have an influence on PD and could ameliorate non-motor as well as motor symptoms.
Collapse
|
660
|
El Mouhab EH, Rebai O, Zekri S, Charfi L, Boukhchina S, Amri M. Morus alba Leaf Extract Attenuates Glyphosate-Induced Oxidative Stress, Inflammation and Alleviates Liver Injury in Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.24.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
661
|
Markova E, Taneska L, Kostovska M, Shalabalija D, Mihailova L, Glavas Dodov M, Makreski P, Geskovski N, Petrushevska M, N Taravari A, Simonoska Crcarevska M. Design and evaluation of nanostructured lipid carriers loaded with Salvia officinalis extract for Alzheimer's disease treatment. J Biomed Mater Res B Appl Biomater 2022; 110:1368-1390. [PMID: 35019231 DOI: 10.1002/jbm.b.35006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/24/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022]
Abstract
Considering the potential of Salvia officinalis in prevention and treatment of Alzheimer's disease (AD), as well as the ability of nanostructured lipid carriers (NLC) to successfully deliver drug molecules across blood-brain barrier (BBB), the objective of this study was design, development, optimization and characterization of freeze-dried salvia officinalis extract (FSE) loaded NLC intended for intranasal administration. NLC were prepared by solvent evaporation method and the optimization was carried out using central composite design (CCD) of experiments. Further, the optimized formulation (NLCo) was coated either with chitosan (NLCc) or poloxamer (NLCp). Surface characterization of the particles demonstrated a spherical shape with smooth exterior. Particle size of optimal formulations after 0.45 μm pore size filtration ranged from 127 ± 0.68 nm to 140 ± 0.74 nm. The zeta potential was -25.6 ± 0.404 mV; 22.4 ± 1.106 mV and - 6.74 ± 0.609 mV for NLCo, NLCc, and NLCp, respectively. Differential scanning calorimetry (DSC) confirmed the formation of NLC whereas Fourier-transform infrared spectroscopy confirmed the FSE encapsulation into particles. All formulations showcased relatively high drug loading (>86.74 mcg FSE/mg solid lipid) and were characterized by prolonged and controlled release that followed Peppas-Sahlin in vitro release kinetic model. Protein adsorption studies revealed the lowest adsorption of the proteins onto NLCp (43.53 ± 0.07%) and highest protein adsorption onto NLCc (55.97 ± 0.75%) surface. The modified ORAC assay demonstrated higher antioxidative activity for NLCo (95.31 ± 1.86%) and NLCc (97.76 ± 4.00%) as compared to FSE (90.30 ± 1.53%). Results obtained from cell cultures tests pointed to the potential of prepared NLCs for FSE brain targeting and controlled release.
Collapse
Affiliation(s)
- Elena Markova
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Lea Taneska
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Monika Kostovska
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Dushko Shalabalija
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Ljubica Mihailova
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Marija Glavas Dodov
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Petre Makreski
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Marija Petrushevska
- Institute of Pharmacology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Arben N Taravari
- University Clinic for Neurology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Maja Simonoska Crcarevska
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| |
Collapse
|
662
|
Woerman AL, Tamgüney G. Body-first Parkinson's disease and variant Creutzfeldt-Jakob disease - similar or different? Neurobiol Dis 2022; 164:105625. [PMID: 35026401 DOI: 10.1016/j.nbd.2022.105625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 10/19/2022] Open
Abstract
In several neurodegenerative disorders, proteins that typically exhibit an α-helical structure misfold into an amyloid conformation rich in β-sheet content. Through a self-templating mechanism, these amyloids are able to induce additional protein misfolding, facilitating their propagation throughout the central nervous system. This disease mechanism was originally identified for the prion protein (PrP), which misfolds into PrPSc in a number of disorders, including variant Creutzfeldt-Jakob disease (vCJD) and bovine spongiform encephalopathy (BSE). More recently, the prion mechanism of disease was expanded to include other proteins that rely on this self-templating mechanism to cause progressive degeneration, including α-synuclein misfolding in Parkinson's disease (PD). Several studies now suggest that PD patients can be subcategorized based on where in the body misfolded α-synuclein originates, either the brain or the gut, similar to patients developing sporadic CJD or vCJD. In this review, we discuss the human and animal model data indicating that α-synuclein and PrPSc misfolding originates in the gut in body-first PD and vCJD, and summarize the data identifying the role of the autonomic nervous system in the gut-brain axis of both diseases.
Collapse
Affiliation(s)
- Amanda L Woerman
- Institute for Applied Life Sciences and Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Gültekin Tamgüney
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
663
|
Oyenihi OR, Oyenihi AB, Alabi TD, Tade OG, Adeyanju AA, Oguntibeju OO. Reactive oxygen species: Key players in the anticancer effects of apigenin? J Food Biochem 2022; 46:e14060. [PMID: 34997605 DOI: 10.1111/jfbc.14060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023]
Abstract
Reactive oxygen species (ROS) exhibit a double-edged sword in cancer-hence their modulation has been an attractive strategy in cancer prevention and therapy. The abundance of scientific information on the pro-oxidant effects of apigenin in cancer cells suggests the crucial role of ROS in its mechanisms of action. Although apigenin is known to enhance the cellular ROS levels to cytotoxic degrees in cancer cells in vitro, it remains to be determined if these pro-oxidant effects prevail or are relevant in experimental tumor models and clinical trials. Here, we critically examine the pro-oxidant and antioxidant effects of apigenin in cancer to provide insightful perspectives on the association between its ROS-modulating action and anticancer potential. We also discussed these effects in a cell/tissue type-specific context to highlight the factors influencing the switch between antioxidant and pro-oxidant effects. Finally, we raised some questions that need addressing for the potential translation of these studies into clinical applications. Further research into this duality in oxidant actions of apigenin, especially in vivo, may enable better exploitation of its anticancer potential. PRACTICAL APPLICATION: Apigenin is a naturally occurring compound found in chamomile flowers, parsley, celery, peppermint, and citrus fruits. Many human trials of dietary interventions with apigenin-containing herbs and flavonoid mixture on oxidative stress markers, for instance, point to their antioxidant effects and health benefits in many diseases. Preclinical studies suggest that apigenin alone or its combination with chemotherapeutics has a strong anti-neoplastic effect and can induce ROS-mediated cytotoxicity at concentrations in the micromolar (μM) range, which may not be feasible with dietary interventions. Enhancing the in vivo pharmacokinetic properties of apigenin may be indispensable for its potential cancer-specific pro-oxidant therapy and may provide relevant information for clinical studies of apigenin either as a single agent or an adjuvant to chemotherapeutics.
Collapse
Affiliation(s)
- Omolola R Oyenihi
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Ayodeji B Oyenihi
- Functional Foods Research Unit, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Toyin D Alabi
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Oluwatosin G Tade
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne A Adeyanju
- Department of Biological Sciences, Faculty of Applied Sciences, KolaDaisi University, Ibadan, Oyo State, Nigeria
| | - Oluwafemi O Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
664
|
Liu J, Jiang J, Qiu J, Wang L, Zhuo J, Wang B, Sun D, Yu S, Lou H. Urolithin A protects dopaminergic neurons in experimental models of Parkinson's disease by promoting mitochondrial biogenesis through the SIRT1/PGC-1α signaling pathway. Food Funct 2022; 13:375-385. [PMID: 34905594 DOI: 10.1039/d1fo02534a] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mitochondrial dysfunction contributes to the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). Therapeutic strategies targeting mitochondrial dysfunction hold considerable promise for the treatment of PD. Recent reports have highlighted the protective role of urolithin A (UA), a gut metabolite produced from ellagic acid-containing foods such as pomegranates, berries and walnuts, in several neurological disorders including Alzheimer's disease and ischemic stroke. However, the potential role of UA in PD has not been characterized. In this study, we investigated the underlying mechanisms for role of UA in 6-OHDA-induced neurotoxicity in cell cultures and mice model of PD. Our results revealed that UA protected against 6-OHDA cytotoxicity and apoptosis in PC12 cells. Meanwhile, administration of UA to 6-OHDA lesioned mice ameliorated both motor deficits and nigral-striatal dopaminergic neurotoxicity. More important, UA treatment significantly attenuated 6-OHDA-induced mitochondrial dysfunction in PC12 cells accompanied by enhanced mitochondrial biogenesis. Mechanistically, we demonstrated that UA exerts neuroprotective effects by promoting mitochondrial biogenesis via SIRT1-PGC-1α signaling pathway. Taken together, these data provide new insights into the novel role of UA in regulating mitochondrial dysfunction and suggest that UA may have potential therapeutic applications for PD.
Collapse
Affiliation(s)
- Jia Liu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Jingjing Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Jingru Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Liyan Wang
- Center for Experimental Nuclear Medicine and Electron Microscopy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jing Zhuo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Baozhu Wang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Deqing Sun
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Haiyan Lou
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
665
|
Kowalczewski PŁ, Olejnik A, Świtek S, Bzducha-Wróbel A, Kubiak P, Kujawska M, Lewandowicz G. Bioactive compounds of potato ( Solanum tuberosum L.) juice: from industry waste to food and medical applications. CRITICAL REVIEWS IN PLANT SCIENCES 2022; 41:52-89. [DOI: 10.1080/07352689.2022.2057749] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Stanisław Świtek
- Department of Agronomy, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Kubiak
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Grażyna Lewandowicz
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
666
|
Sayibu M, Chu J, Tosin Yinka A, Rufai OH, Shahani R, Jin MA. COVID-19 smart surveillance: Examination of Knowledge of Apps and mobile thermometer detectors (MTDs) in a high-risk society. Digit Health 2022; 8:20552076221132092. [PMID: 36420316 PMCID: PMC9677298 DOI: 10.1177/20552076221132092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 08/01/2024] Open
Abstract
BACKGROUND Technological innovations gained momentum and supported COVID-19 intelligence surveillance among high-risk populations globally. We examined technology surveillance using mobile thermometer detectors (MTDs), knowledge of App, and self-efficacy as a means of sensing body temperature as a measure of COVID-19 risk mitigation. In a cross-sectional survey, we explored COVID-19 risk mitigation, mobile temperature detectable by network syndromic surveillance mobility, detachable from clinicians, and laboratory diagnoses to elucidate the magnitude of community monitoring. MATERIALS AND METHODS In a cross-sectional survey, we create in-depth comprehension of risk mitigation, mobile temperature Thermometer detector, and other variables for surveillance and monitoring among 850 university students and healthcare workers. An applied structural equation model was adopted for analysis with Amos v.24. We established that mobile usability knowledge of APP could effectively aid in COVID-19 intelligence risk mitigation. Moreover, both self-efficacy and mobile temperature positively strengthened data visualization for public health decision-making. RESULTS The algorithms utilize a validated point-of-center test to ascertain the HealthCode scanning system for a positive or negative COVID-19 notification. The MTD is an alternative personal self-testing procedure used to verify temperature rates based on previous SARS-CoV-2 and future mobility digital health. Personal self-care of MTD mobility and knowledge of mHealth apps can specifically manage COVID-19 mitigation in high or low terrestrial areas. We found mobile usability, mobile self-efficacy, and app knowledge were statistically significant to COVID-19 mitigation. Additionally, interaction strengthened the positive relationship between self-efficacy and COVID-19. Data aggregation is entrusted with government database agencies, using natural language processing and machine learning mechanisms to validate and analyze. CONCLUSION The study shows that temperature thermometer detectors, mobile usability, and knowledge of App enhanced COVID-19 risk mitigation in a high or low-risk environment. The standardizing dataset is necessary to ensure privacy and security preservation of data ethics.
Collapse
Affiliation(s)
- Muhideen Sayibu
- Department of Philosophy of Sciences and
Technology, University of Science and Technology of
China, Hefei-Anhui, China
| | - Jianxun Chu
- Department of Philosophy of Sciences and
Technology, University of Science and Technology of
China, Hefei-Anhui, China
| | | | - Olayemi Hafeez Rufai
- Department of Philosophy of Sciences and
Technology, University of Science and Technology of
China, Hefei-Anhui, China
| | - Riffat Shahani
- Department of Philosophy of Sciences and
Technology, University of Science and Technology of
China, Hefei-Anhui, China
| | - MA Jin
- Department of medicine, Hefei First People's Hospital, The Third
Affiliated Hospital of Anhui Medical University, China
| |
Collapse
|
667
|
Papuc C, Goran GV, Predescu CN, Tudoreanu L, Ștefan G. Plant polyphenols mechanisms of action on insulin resistance and against the loss of pancreatic beta cells. Crit Rev Food Sci Nutr 2022; 62:325-352. [PMID: 32901517 DOI: 10.1080/10408398.2020.1815644] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus describes a group of metabolic disorders characterized by a prolonged period hyperglycemia with long-lasting detrimental effects on the cardiovascular and nervous systems, kidney, vision, and immunity. Many plant polyphenols are shown to have beneficial activity for the prevention and treatment of diabetes, by different mechanisms. This review article is focused on synthesizing the mechanisms by which polyphenols decrease insulin resistance and inhibit loss of pancreatic islet β-cell mass and function. To achieve the objectives, this review summarizes the results of the researches realized in recent years in clinical trials and in various experimental models, on the effects of foods rich in polyphenols, polyphenolic extracts, and commercially polyphenols on insulin resistance and β-cells death. Dietary polyphenols are able to reduce insulin resistance alleviating the IRS-1/PI3-k/Akt signaling pathway, and to reduce the loss of pancreatic islet β-cell mass and function by several molecular mechanisms, such as protection of the surviving machinery of cells against the oxidative insult; increasing insulin secretion in pancreatic β-cells through activation of the FFAR1; cytoprotective effect on β-cells by activation of autophagy; protection of β-cells to act as activators for anti-apoptotic pathways and inhibitors for apoptotic pathway; stimulating of insulin release, presumably by transient ATP-sensitive K+ channel inhibition and whole-cell Ca2+ stimulation; involvement in insulin release that act on ionic currents and membrane potential as inhibitor of delayed-rectifier K+ current (IK(DR)) and activator of current. dietary polyphenols could be used as potential anti-diabetic agents to prevent and alleviate diabetes and its complications, but further studies are needed.
Collapse
Affiliation(s)
- Camelia Papuc
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Gheorghe V Goran
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Corina N Predescu
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Liliana Tudoreanu
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Georgeta Ștefan
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| |
Collapse
|
668
|
Viana MDB, de Aquino PEA, Estadella D, Ribeiro DA, Viana GSDB. Cannabis sativa and Cannabidiol: A Therapeutic Strategy for the Treatment of Neurodegenerative Diseases? Med Cannabis Cannabinoids 2022; 5:207-219. [PMID: 36467781 PMCID: PMC9710321 DOI: 10.1159/000527335] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/04/2022] [Indexed: 08/27/2023] Open
Abstract
This work is a literature review, presenting the current state of the use of cannabinoids on neurodegenerative diseases. The emphasis is on Parkinson's (PD) and Alzheimer's (AD) diseases, the two most prevalent neurological diseases. The review goes from Cannabis sativa and its hundreds of bioactive compounds to Δ9-tetrahydrocannabinol (THC) and mainly cannabidiol (CBD) and their interactions with the endocannabinoid receptors (CB1 and CB2). CBD molecular targets were also focused on to explain its neuroprotective action mechanism on neurodegenerative diseases. Although THC is the main psychoactive component of C. sativa, and it may induce transient psychosis-like symptoms, growing evidence suggests that CBD may have protective effects against the psychotomimetic effects of THC and therapeutic properties. Furthermore, a great number of recent works on the neuroprotective and anti-inflammatory CBD effects and its molecular targets are also reviewed. We analyzed CBD actions in preclinical and in clinical trials, conducted with PD and AD patients. Although the data on preclinical assays are more convincing, the same is not true with the clinical data. Despite the consensus among researchers on the potential of CBD as a neuroprotective agent, larger and well-designed randomized clinical trials will be necessary to gather conclusive results concerning the use of CBD as a therapeutic strategy for the treatment of diseases such as PD and AD.
Collapse
Affiliation(s)
- Milena de Barros Viana
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Campus Santos, Santos, Brazil
| | | | - Débora Estadella
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Campus Santos, Santos, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Campus Santos, Santos, Brazil
| | | |
Collapse
|
669
|
Sadeghi-Zadeh M, Homayouni Moghadam F, Nasr-Esfahani MH. Ferulic Acid Induces NURR1 Expression and Promotes Dopaminergic Differentiation in Neural Precursor Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:78-87. [PMID: 36397809 PMCID: PMC9653552 DOI: 10.22088/ijmcm.bums.11.1.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023]
Abstract
Degeneration of dopaminergic (DA) neurons in the substantia nigra is known as the main cause of Parkinson's disease (PD). Preventing the loss of DA neurons alongside the cell-replacement therapy have brought tremendous hope for the treatment of PD. For this purpose, various studies have been done to find the specific DA neuro-protective compounds or progressing DA-differentiation methods. Ferulic acid (FA) has strong neuro-protective effects, but at this point its role on protection and differentiation of DA neurons is not well-defined. Mouse neural stem cells (mNSCs) were treated with FA and expressions of TH (tyrosine hydroxylase) and NURR1 as the DA neuron specific markers were determined using real time qRT-PCR and immunostaining assays . Finally, efficacy of FA on DA differentiation was evaluated in comparison with other methods using fibroblast growth factor 8b (FGF8b) and sonic hedgehog (SHH). Treatment with FA could increase the Th and Nurr1 gene expressions in mNSCs. Also, it enhanced β - tubullin - III expression and increased the neurite length in treated groups. Real time qRT-PCR and immunostaining assays showed that FA could increase DA differentiation in mNSCs effectively. Also, gene expression profile in some groups showed that FA can raise the differentiation rate of other neuronal subtypes such as cholinergic neurons. FA effectively induces the DA differentiation in neural precursor cells by its ability to increase the expression of the NURR1 transcription factor, which is a known transcription factor for differentiation of midbrain DA neurons.
Collapse
Affiliation(s)
- Maryam Sadeghi-Zadeh
- Department of Biology, ACECR Institute of Higher Education, Isfahan, Iran.,Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Farshad Homayouni Moghadam
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Corresponding Author: Farshad Homayouni Moghadam Address: Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. E-mail:
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
670
|
Mittal KR, Pharasi N, Sarna B, Singh M, Rachana, Haider S, Singh SK, Dua K, Jha SK, Dey A, Ojha S, Mani S, Jha NK. Nanotechnology-based drug delivery for the treatment of CNS disorders. Transl Neurosci 2022; 13:527-546. [PMID: 36741545 PMCID: PMC9883694 DOI: 10.1515/tnsci-2022-0258] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 01/26/2023] Open
Abstract
Approximately 6.8 million people die annually because of problems related to the central nervous system (CNS), and out of them, approximately 1 million people are affected by neurodegenerative diseases that include Alzheimer's disease, multiple sclerosis, epilepsy, and Parkinson's disease. CNS problems are a primary concern because of the complexity of the brain. There are various drugs available to treat CNS disorders and overcome problems with toxicity, specificity, and delivery. Barriers like the blood-brain barrier (BBB) are a challenge, as they do not allow therapeutic drugs to cross and reach their target. Researchers have been searching for ways to allow drugs to pass through the BBB and reach the target sites. These problems highlight the need of nanotechnology to alter or manipulate various processes at the cellular level to achieve the desired attributes. Due to their nanosize, nanoparticles are able to pass through the BBB and are an effective alternative to drug administration and other approaches. Nanotechnology has the potential to improve treatment and diagnostic techniques for CNS disorders and facilitate effective drug transfer. With the aid of nanoengineering, drugs could be modified to perform functions like transference across the BBB, altering signaling pathways, targeting specific cells, effective gene transfer, and promoting regeneration and preservation of nerve cells. The involvement of a nanocarrier framework inside the delivery of several neurotherapeutic agents used in the treatment of neurological diseases is reviewed in this study.
Collapse
Affiliation(s)
- Khushi R. Mittal
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Nandini Pharasi
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Bhavya Sarna
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Manisha Singh
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Rachana
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Shazia Haider
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata700073, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Shalini Mani
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
671
|
Sohrabi M, Sahu B, Kaur H, Hasler WA, Prakash A, Combs CK. Gastrointestinal Changes and Alzheimer's Disease. Curr Alzheimer Res 2022; 19:335-350. [PMID: 35718965 PMCID: PMC10497313 DOI: 10.2174/1567205019666220617121255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is a well-described mechanism of communication between the brain and gastrointestinal system in which both organs influence the function of the other. This bi-directional communication suggests that disease in either organ may affect function in the other. OBJECTIVE To assess whether the evidence supports gastrointestinal system inflammatory or degenerative pathophysiology as a characteristic of Alzheimer's disease (AD). METHODS A review of both rodent and human studies implicating gastrointestinal changes in AD was performed. RESULTS Numerous studies indicate that AD changes are not unique to the brain but also occur at various levels of the gastrointestinal tract involving both immune and neuronal changes. In addition, it appears that numerous conditions and diseases affecting regions of the tract may communicate to the brain to influence disease. CONCLUSION Gastrointestinal changes represent an overlooked aspect of AD, representing a more system influence of this disease.
Collapse
Affiliation(s)
- Mona Sohrabi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Bijayani Sahu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Harpreet Kaur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Wendie A Hasler
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Atish Prakash
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Colin K Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| |
Collapse
|
672
|
Hussain S, Syeda A, Alshammari M, Alnasser S, Alenzi N, Alanazi S, Nandakumar K. Cognition enhancing effect of rosemary (Rosmarinus officinalis L.) in lab animal studies: a systematic review and meta-analysis. Braz J Med Biol Res 2022; 55:e11593. [PMID: 35170682 PMCID: PMC8851910 DOI: 10.1590/1414-431x2021e11593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/17/2021] [Indexed: 12/02/2022] Open
Abstract
Patients with mild cognitive impairment eventually progress to Alzheimer's disease (AD) causing a strong impact on public health. Rosmarinus officinalis has long been known as the herb of remembrance and can be a potential cognition enhancer for AD. The aim of this review was to summarize the qualitative and quantitative aspects of R. officinalis and its active constituents in enhancing cognition. A structured search was conducted on Google Scholar and PubMed to find relevant studies that assessed the effect of R. officinalis extract or any of its active constituents on cognitive performance in animals. The following information was extracted from each study: 1) article information; 2) characteristics of study animals; 3) type of intervention: type, dose, duration, and frequency of administration of R. officinalis; and 4) type of outcome measure. Data were analyzed using Review Manager and meta-analysis was performed by computing the standardized mean difference. Twenty-three studies were selected for qualitative analysis and fifteen for meta-analysis. From the fifteen included papers, 22 with 35 comparisons were meta-analyzed. Effect sizes for intact and cognitively impaired animals were 1.19 (0.74, 1.64) and 0.57 (0.19, 0.96), indicating a positive effect on both groups. The subgroup analyses showed substantial unexplained heterogeneity among studies. Overall, R. officinalis improved cognitive outcomes in normal and impaired animals, and results were robust across species, type of extract, treatment duration, and type of memory. However, studies had a considerable amount of heterogeneity, and subgroup analyses failed to find any heterogeneity moderator.
Collapse
Affiliation(s)
- S.M. Hussain
- City University College of Ajman, United Arab Emirates
| | - A.F. Syeda
- Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - M. Alshammari
- Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - S. Alnasser
- Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | | | - S.T. Alanazi
- College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | | |
Collapse
|
673
|
Santos MDO, Camilo CJ, Macedo JGF, Lacerda MNSD, Lopes CMU, Rodrigues AYF, Costa JGMD, Souza MMDA. Copaifera langsdorffii Desf.: A chemical and pharmacological review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
674
|
Effect of Morus alba leaf extract dose on lipid oxidation, microbiological stability, and sensory evaluation of functional liver pâtés during refrigerated storage. PLoS One 2021; 16:e0260030. [PMID: 34941877 PMCID: PMC8699953 DOI: 10.1371/journal.pone.0260030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/29/2021] [Indexed: 11/19/2022] Open
Abstract
Mulberry (Morus alba L.), and above all the extract from the leaves of this plant, is a natural medicine that has been used in traditional medicine for hundreds of years. Mulberry leaves contains polyphenol compounds: flavonoids, coumarins, numerous phenolic acids, as well as terpenes and steroids. The antioxidant effect of these compounds may be beneficial to the fat fraction of meat products, thereby increasing their functional qualities. The aim of the study was to evaluate the effectiveness of the use of mulberry water leaf extract, as an additive limiting adverse fat changes and affecting the functionality in model liver pâtés. Pork pâtés were prepared by replacing 20% of animal fat with rapeseed oil (RO), and water extract of mulberry leaves was added in the proportion of 0.2%, 0.6% and 1.0%. It has been shown that the addition of mulberry leaf extract delayed the appearance of primary and secondary fat oxidation products. The most effective antioxidant effect during 15-day storage was observed in the sample with the addition of 0.6% and 1.0% water mulberry leaf extract. These samples also showed inhibiting activity against angiotensin-converting enzymes and cholinesterase's. During storage, the tested pâtés had a high sensory quality with unchanged microbiological quality. Mulberry leaf extract can be an interesting addition to the production of fat meat products, delaying adverse changes in the lipid fraction and increasing the functionality of products.
Collapse
|
675
|
Xu J, Cao K, Liu X, Zhao L, Feng Z, Liu J. Punicalagin Regulates Signaling Pathways in Inflammation-Associated Chronic Diseases. Antioxidants (Basel) 2021; 11:29. [PMID: 35052533 PMCID: PMC8773334 DOI: 10.3390/antiox11010029] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 01/04/2023] Open
Abstract
Inflammation is a complex biological defense system associated with a series of chronic diseases such as cancer, arthritis, diabetes, cardiovascular and neurodegenerative diseases. The extracts of pomegranate fruit and peel have been reported to possess health-beneficial properties in inflammation-associated chronic diseases. Punicalagin is considered to be the major active component of pomegranate extracts. In this review we have focused on recent studies into the therapeutic effects of punicalagin on inflammation-associated chronic diseases and the regulatory roles in NF-κB, MAPK, IL-6/JAK/STAT3 and PI3K/Akt/mTOR signaling pathways. We have concluded that punicalagin may be a promising therapeutic compound in preventing and treating inflammation-associated chronic diseases, although further clinical studies are required.
Collapse
Affiliation(s)
- Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (K.C.); (X.L.); (L.Z.)
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (K.C.); (X.L.); (L.Z.)
| | - Xuyun Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (K.C.); (X.L.); (L.Z.)
| | - Lin Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (K.C.); (X.L.); (L.Z.)
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (K.C.); (X.L.); (L.Z.)
- University of Health and Rehabilitation Sciences, Qingdao 266071, China
| |
Collapse
|
676
|
Skaperda Z, Tekos F, Vardakas P, Nepka C, Kouretas D. Reconceptualization of Hormetic Responses in the Frame of Redox Toxicology. Int J Mol Sci 2021; 23:ijms23010049. [PMID: 35008472 PMCID: PMC8744777 DOI: 10.3390/ijms23010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 02/01/2023] Open
Abstract
Cellular adaptive mechanisms emerging after exposure to low levels of toxic agents or stressful stimuli comprise an important biological feature that has gained considerable scientific interest. Investigations of low-dose exposures to diverse chemical compounds signify the non-linear mode of action in the exposed cell or organism at such dose levels in contrast to the classic detrimental effects induced at higher ones, a phenomenon usually referred to as hormesis. The resulting phenotype is a beneficial effect that tests our physiology within the limits of our homeostatic adaptations. Therefore, doses below the region of adverse responses are of particular interest and are specified as the hormetic gain zone. The manifestation of redox adaptations aiming to prevent from disturbances of redox homeostasis represent an area of particular interest in hormetic responses, observed after exposure not only to stressors but also to compounds of natural origin, such as phytochemicals. Findings from previous studies on several agents demonstrate the heterogeneity of the specific zone in terms of the molecular events occurring. Major factors deeply involved in these biphasic phenomena are the bioactive compound per se, the dose level, the duration of exposure, the cell, tissue or even organ exposed to and, of course, the biomarker examined. In the end, the molecular fate is a complex toxicological event, based on beneficial and detrimental effects, which, however, are poorly understood to date.
Collapse
Affiliation(s)
- Zoi Skaperda
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (Z.S.); (F.T.); (P.V.)
| | - Fotios Tekos
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (Z.S.); (F.T.); (P.V.)
| | - Periklis Vardakas
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (Z.S.); (F.T.); (P.V.)
| | - Charitini Nepka
- Department of Pathology, University Hospital of Larissa, 41334 Larissa, Greece;
| | - Demetrios Kouretas
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (Z.S.); (F.T.); (P.V.)
- Correspondence: ; Tel.: +30-2410-565-277; Fax: +30-2410-565-293
| |
Collapse
|
677
|
Ardah MT, Eid N, Kitada T, Haque ME. Ellagic Acid Prevents α-Synuclein Aggregation and Protects SH-SY5Y Cells from Aggregated α-Synuclein-Induced Toxicity via Suppression of Apoptosis and Activation of Autophagy. Int J Mol Sci 2021; 22:13398. [PMID: 34948195 PMCID: PMC8707649 DOI: 10.3390/ijms222413398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopamine neurons and the deposition of misfolded proteins known as Lewy bodies (LBs), which contain α-synuclein (α-syn). The causes and molecular mechanisms of PD are not clearly understood to date. However, misfolded proteins, oxidative stress, and impaired autophagy are believed to play important roles in the pathogenesis of PD. Importantly, α-syn is considered a key player in the development of PD. The present study aimed to assess the role of Ellagic acid (EA), a polyphenol found in many fruits, on α-syn aggregation and toxicity. Using thioflavin and seeding polymerization assays, in addition to electron microscopy, we found that EA could dramatically reduce α-syn aggregation. Moreover, EA significantly mitigated the aggregated α-syn-induced toxicity in SH-SY5Y cells and thus enhanced their viability. Mechanistically, these cytoprotective effects of EA are mediated by the suppression of apoptotic proteins BAX and p53 and a concomitant increase in the anti-apoptotic protein, BCL-2. Interestingly, EA was able to activate autophagy in SH-SY5Y cells, as evidenced by normalized/enhanced expression of LC3-II, p62, and pAKT. Together, our findings suggest that EA may attenuate α-syn toxicity by preventing aggregation and improving viability by restoring autophagy and suppressing apoptosis.
Collapse
Affiliation(s)
- Mustafa T Ardah
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain P.O. Box 17666, United Arab Emirates;
| | - Nabil Eid
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain P.O. Box 17666, United Arab Emirates;
| | - Tohru Kitada
- Otawa-Kagaku, Parkinson Clinic and Research, Kamakura 247-0061, Japan;
| | - M. Emdadul Haque
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain P.O. Box 17666, United Arab Emirates;
| |
Collapse
|
678
|
Tang L, Jiang J, Song G, Wang Y, Zhuang Z, Tan Y, Xia Y, Huang X, Feng X. Design, synthesis, and biological evaluation of novel urolithins derivatives as potential phosphodiesterase II inhibitors. Sci Rep 2021; 11:23792. [PMID: 34893678 PMCID: PMC8664850 DOI: 10.1038/s41598-021-03194-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
A series of urolithins derivatives were designed and synthesized, and their structures have been confirmed by 1H NMR, 13C NMR, and HR-MS. The inhibitory activity of these derivatives on phosphodiesterase II (PDE2) was thoroughly studied with 3-hydroxy-8-methyl-6H-benzo[C]chromen-6-one and 3-hydroxy-7,8,9,10-tetrahydro-6H-benzo[C] chromen-6-one as the lead compounds. The biological activity test showed that compound 2e had the best inhibitory activity on PDE2 with an IC50 of 33.95 μM. This study provides a foundation for further structural modification and transformation of urolithins to obtain PDE2 inhibitor small molecules with better inhibitory activity.
Collapse
Affiliation(s)
- Long Tang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, China.,School of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.,School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, 213164, China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, China.,School of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Guoqiang Song
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, 213164, China
| | - Yajing Wang
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, 213164, China
| | - Ziheng Zhuang
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, 213164, China
| | - Ying Tan
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, 213164, China
| | - Yan Xia
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, 213164, China
| | - Xianfeng Huang
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, 213164, China
| | - Xiaoqing Feng
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
679
|
Beta vulgaris L. (Beetroot) Methanolic Extract Prevents Hepatic Steatosis and Liver Damage in T2DM Rats by Hypoglycemic, Insulin-Sensitizing, Antioxidant Effects, and Upregulation of PPARα. BIOLOGY 2021; 10:biology10121306. [PMID: 34943221 PMCID: PMC8698622 DOI: 10.3390/biology10121306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Beetroot is one of the most consumable plants across the world. Previous studies have shown many health benefits of beetroot, with evidence of having potent hypoglycemic, antioxidant, and anti-inflammatory effects. The data obtained from this study further confirmed this effect in streptozotocin-diabetic animals. They showed the ability of methanolic beetroot extract to prevent the associated hepatic oxidative stress, inflammation, steatosis, and dyslipidaemia. However, the protection mechanisms involve, at least, upregulation of endogenous antioxidants, anti-apoptotic Bcl2, and PPARα. Abstract The present study examined if methanolic beetroot extract (BE) could prevent dyslipidemia and hepatic steatosis and damage in a type-2 diabetes mellitus (T2DM) rat model and studied some mechanisms of action. T2DM was induced in adult male Wistar rats by a low single dose of streptozotocin (STZ) (35 mg/kg, i.p) and a high-fat diet (HFD) feeding for 5 weeks. Control or T2DM rats then continued on standard or HFDs for another 12 weeks and were treated with the vehicle or BE (250 or 500 mg/kg). BE, at both doses, significantly improved liver structure and reduced hepatic lipid accumulation in the livers of T2DM rats. They also reduced body weight gain, serum glucose, insulin levels, serum and hepatic levels of cholesterol, triglycerides, free fatty acids, and serum levels of low-density lipoproteins in T2DM rats. In concomitant, they significantly reduced serum levels of aspartate and alanine aminotransferases, hepatic levels of malondialdehyde, tumor-necrosis factor-α, interleukin-6, and mRNA of Bax, cleaved caspase-3, and SREBP1/2. However, both doses of BE significantly increased hepatic levels of total glutathione, superoxide dismutase, and mRNA levels of Bcl2 and PPARα in the livers of both the control and T2DM rats. All of these effects were dose-dependent and more profound with doses of 500 mg/kg. In conclusion, chronic feeding of BE to STZ/HFD-induced T2DM in rats prevents hepatic steatosis and liver damage by its hypoglycemic and insulin-sensitizing effects and its ability to upregulate antioxidants and PPARα.
Collapse
|
680
|
Suárez-Montenegro ZJ, Ballesteros-Vivas D, Gallego R, Valdés A, Sánchez-Martínez JD, Parada-Alfonso F, Ibáñez E, Cifuentes A. Neuroprotective Potential of Tamarillo ( Cyphomandra betacea) Epicarp Extracts Obtained by Sustainable Extraction Process. Front Nutr 2021; 8:769617. [PMID: 34869538 PMCID: PMC8634709 DOI: 10.3389/fnut.2021.769617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
Tamarillo (Cyphomandra betacea (Cav.) Sendt.), or tree tomato, is a tropical fruit from the Andean region of South America; it is highly rich in vitamins, minerals, and polyphenolic compounds. In this study, extracts from tamarillo epicarp (TE) were obtained by pressurized liquid extraction (PLE), and their in-vitro neuroprotective potential was assessed. A central composite design with response surface methodology was performed to optimize PLE as a function of solvent composition and temperature. Selected response variables were extraction yield, total phenolic content (TPC), total flavonoid content (TFC), total carotenoid content (TCC), antioxidant (ABTS), and anti-inflammatory (LOX) activities, and anti-acetylcholinesterase (AChE) inhibitory capacity. According to the desirability function, the optimal conditions were 100% ethanol and 180°C with a 0.87 desirability value. Next, the anti-butyrylcholinesterase enzyme (BChE), reactive oxygen species (ROS), and reactive nitrogen species (RNS) inhibition as well as cytotoxicity in HK-2, THP-1 monocytes, and SH-5YSY neuroblastoma cell lines were studied for the TE extract obtained under optimized conditions. The optimum TE extract provided the following results: extraction yield (36.25%), TPC (92.09 mg GAE/g extract), TFC (4.4 mg QE/g extract), TCC (107.15 mg CE/g extract), antioxidant capacity (ABTS, IC50 = 6.33 mg/ml extract), LOX (IC50 = 48.3 mg/ml extract), and AChE (IC50 = 97.46 mg/ml extract), and showed no toxicity at concentration up to 120 μg/ml extract for all the tested cell lines. Finally, chemical characterization by liquid chromatography-tandem mass spectrometry (UHPLC-q-TOF-MS/MS) of the optimum TE extract exhibited an important presence of hydroxycinnamic acid derivatives and other phenolic acids as well as quercetin hexoside and rutin, as main metabolites responsible for the observed biological properties. All these results suggested that TE, which represents between 8 and 15% of the total fruit, could become a promising natural by-product with a potential "multitarget" activity against Alzheimer's disease.
Collapse
Affiliation(s)
- Zully Jimena Suárez-Montenegro
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain.,Departamento de Procesos Industriales, Facultad de Ingenieria Agroindustrial, Universidad de Nariño, Pasto, Colombia
| | - Diego Ballesteros-Vivas
- High Pressure Laboratory, Departamento de Química, Facultad de Ciencias, Food Chemistry Research Group, Universidad Nacional de Colombia, Bogotá, Colombia.,Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Rocío Gallego
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain
| | - Alberto Valdés
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain
| | | | - Fabián Parada-Alfonso
- High Pressure Laboratory, Departamento de Química, Facultad de Ciencias, Food Chemistry Research Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Elena Ibáñez
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain
| | - Alejandro Cifuentes
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain
| |
Collapse
|
681
|
Kongdang P, Dukaew N, Pruksakorn D, Koonrungsesomboon N. Biochemistry of Amaranthus polyphenols and their potential benefits on gut ecosystem: A comprehensive review of the literature. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114547. [PMID: 34425138 DOI: 10.1016/j.jep.2021.114547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Amaranthus is phytonutrients-rich plant distributed worldwide and has been recognized as having medicinal value in traditional use against several diseases and conditions. There are a large amount of research data on the polyphenol profiles of Amaranthus plants and their links with potential benefits against gastrointestinal disorders. AIM OF THE REVIEW This review article aims to provide a comprehensive review of Amaranthus phenolic compounds and their microbial metabolites, as well as the biological and/or pharmacological effects of those compounds/metabolites. METHODOLOGY The relevant information about the genus Amaranthus was collected from various sources and databases, including Google Scholar, Google Books, PubMed, Web of Science, Scopus, Science Direct, and other internet sources. The World Flora Online (2021) database was used to verify the scientific names of the plants. RESULTS Comprehensive review of identified compounds in Amaranthus plants revealed the presence of phenolic acids, flavonoids, and coumarins in each part of the plants. The biotransformation by gut microbiota enzymes prominently produces diverse bioactive metabolites that are potentially active than their precursors. Lines of the evidence support the beneficial roles of Amaranthus extracts in several gastrointestinal diseases, particularly with the polar extracts of several plant parts. Dietary fibers in Amaranthus plants also coordinate the alteration of gut microbiota-related metabolisms and may be beneficial to certain gastrointestinal disorders in particular, such as constipation. CONCLUSIONS Amaranthus plants are rich in polyphenols and dietary fibers. Several microbial metabolites are biologically active, so alteration of gut microbiota is largely linked to the metabolic feature of the plants. Based on the evidence available to date, several Amaranthus plants containing a combination of phytonutrients, particularly polyphenols and dietary fibers, may be a promising candidate that is of interest to be further developed for use in the treatment of certain gastrointestinal conditions/disorders.
Collapse
Affiliation(s)
- Patiwat Kongdang
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Nahathai Dukaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
| | - Nut Koonrungsesomboon
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
682
|
Glibenclamide ameliorates the expression of neurotrophic factors in sevoflurane anaesthesia-induced oxidative stress and cognitive impairment in hippocampal neurons of old rats. J Vet Res 2021; 65:527-538. [PMID: 35112009 PMCID: PMC8775723 DOI: 10.2478/jvetres-2021-0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Several antidiabetic medications have been proposed as prospective treatments for cognitive impairments in type 2 diabetes patients, glibenclamide (GBC) among them. Our research aimed to evaluate the impact of GBC on hippocampal learning memory and inflammation due to enhanced neurotrophic signals induced by inhalation of sevoflurane. Material and Methods Rats (Sprague Dawley, both sexes) were assigned to four groups: a control (vehicle, p.o.), GBC (10 mg/kg b.w.; p.o.), low-dose sevoflurane and low-dose sevoflurane + GBC (10 mg/kg b.w.; p.o.) for 23 days. Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining was performed to analyse the count of apoptotic cells and ELISA was conducted to assess the protein signals. A Western blot, a Y-maze test, and a Morris maze test were performed, and the results analysed. Blood and tissues were collected, and isolation of RNA was performed with qRT-PCR. Results The Morris maze test results revealed an improvement in the length of the escape latency on days 1 (P < 0.05), 2 (P < 0.01), 3, and 4 in the low-dose Sevo group. Time spent in the quadrant and crossing axis and the percentage of spontaneous alterations showed a substantial decrease in the low-dose Sevo group which received GBC at 10 mg/kg b.w. Significant increases were shown in IL-6 and TNF-α levels in the low-dose Sevo group, whereas a decrease was evident in the GBC group. Conclusion Our results indicate that glibenclamide may be a novel drug to prevent sevoflurane inhalation-induced impaired learning and reduce brain-derived neurotrophic factor release, which may be a vital target for the development of potential therapies for cognitive deficits and neurodegeneration.
Collapse
|
683
|
Aichinger G. Natural Dibenzo-α-Pyrones: Friends or Foes? Int J Mol Sci 2021; 22:13063. [PMID: 34884865 PMCID: PMC8657677 DOI: 10.3390/ijms222313063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Natural dibenzo-α-pyrones (DAPs) can be viewed from two opposite angles. From one angle, the gastrointestinal metabolites urolithins are regarded as beneficial, while from the other, the emerging mycotoxin alternariol and related fungal metabolites are evaluated critically with regards to potential hazardous effects. Thus, the important question is: can the structural characteristics of DAP subgroups be held responsible for distinct bioactivity patterns? If not, certain toxicological and/or pharmacological aspects of natural DAPs might yet await elucidation. Thus, this review focuses on comparing published data on the two groups of natural DAPs regarding both adverse and beneficial effects on human health. Literature on genotoxic, estrogenic, endocrine-disruptive effects, as well as on the induction of the cellular anti-oxidative defense system, anti-inflammatory properties, the inhibition of kinases, the activation of mitophagy and the induction of autophagy, is gathered and critically reviewed. Indeed, comparing published data suggests similar bioactivity profiles of alternariol and urolithin A. Thus, the current stratification into hazardous Alternaria toxins and healthy urolithins seems debatable. An extrapolation of bioactivities to the other DAP sub-class could serve as a promising base for further research. Conclusively, urolithins should be further evaluated toward high-dose toxicity, while alternariol derivatives could be promising chemicals for the development of therapeutics.
Collapse
Affiliation(s)
- Georg Aichinger
- Laboratory of Toxicology, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
684
|
Abu-Taweel GM, Al-Mutary MG. Pomegranate juice moderates anxiety- and depression-like behaviors in AlCl 3-treated male mice. J Trace Elem Med Biol 2021; 68:126842. [PMID: 34418746 DOI: 10.1016/j.jtemb.2021.126842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/12/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE Aluminum trichloride (AlCl3) exposure was proven to encourage some behavioral deficits and eventually induces anxiety and depression in rodents animals. Therefore, this experiment aimed to scout about the effects of pomegranate juice on anxiety- and depression-like behaviors caused by AlCl3 in male mice. METHODS Six groups of male mice were administrated orally for 35 days by PJ and AlCl3. The control group (G-I) received tap water, while the PJ groups (G-II and G-III) were treated with 20 % and 40 % PJ, respectively. The AlCl3 group (G-IV) was treated with 400 mg/kg/day of AlCl3, and the last two groups (G-V and G-VI) were treated with AlCl3 and 20 % PJ or 40 % PJ, respectively. Then, the open-field (O-F), elevated plus maze (EPM), tail suspension (TS), forced swimming (FS), and light/dark box (L/DB) tests were applied for anxiety- and depression-like behavior studies. In addition, neurotransmitters and oxidative parameters in the brain were evaluated. The plasma cortisol was measured at the end of the experiment. RESULTS Behavioral analyses showed that PJ inhibited AlCl3-induced depressive and anxiogenic effects in the O-F, EPM, TS, FS, L/DB tests. In addition, neurochemical results indicated that PJ at 20 % concentration minimized the AlCl3 toxicity on dopamine (DOP), serotonin (SER), and acetylcholinesterase (AChE) levels in the for-brain of male mice. Moreover, PJ moderated the AlCl3 effects by decreasing the level of thiobarbituric acid reactive substances (TBARS), and enhancing catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST) and glutathione (GSH) activities. The plasma cortisol increased in male mice treated with AlCl3 and in a group treated with a high dose of PJ. CONCLUSION Our results proposed that the anxiety- and depression-like behaviors induced by AlCl3 exposure in male mice can be ameliorated by PJ treatment, probably through the inhibition of oxidative damage and minimizing the changes in neurotransmitters and hormonal activity.
Collapse
Affiliation(s)
- Gasem Mohammad Abu-Taweel
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan, 45142, Saudi Arabia
| | - Mohsen Ghaleb Al-Mutary
- Department of Basic Sciences, College of Education, Imam Abdulrahman Bin Faisal University, P.O. Box 2375, Dammam, 14513, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
685
|
Abd-El-Fattah ME, Dessouki AA, Abdelnaeim NS, Emam BM. Protective effect of Beta vulgaris roots supplementation on anemic phenylhydrazine-intoxicated rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65731-65742. [PMID: 34322802 DOI: 10.1007/s11356-021-15302-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Anemia is a public health problem that affects many people worldwide. Beetroot (Beta vulgaris) is a plant supposed to have many healthy features. The present study was done to evaluate the anti-anemic effect of beetroot supplement on anemia induced by phenylhydrazine in albino rats. Fifty rats were randomly divided into five equal groups. The control group was kept normal rats. In the second group, anemia was induced in rats by intraperitoneal injection of phenylhydrazine at 60 mg/kg in 3 divided doses daily, for 3 consecutive days. The last three groups received phenylhydrazine as the anemic group. Then, the third group received beetroot extract in dose 200 mg/kg for 24 days. The fourth group received beetroot powder in dose 1000 mg/kg for 24 days. The last group received iron (III) hydroxide polymaltose complex in dose 5mg/kg for 24 days. Our results showed that hemolytic anemia induced by phenylhydrazine in rats caused alteration in the blood picture, iron indices, serum biochemical parameters, antioxidant biomarkers, and histopathological picture. However, the supplementation with beetroot ameliorated these alterations, especially beetroot powder which showed powerful health effects compared to beetroot extract and iron preparation.
Collapse
Affiliation(s)
| | - Amina A Dessouki
- Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Noha S Abdelnaeim
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Bassant M Emam
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
686
|
Núñez-Gómez V, Periago MJ, Navarro-González I, Campos-Cava MP, Baenas N, González-Barrio R. Influence of Raspberry and Its Dietary Fractions on the In vitro Activity of the Colonic Microbiota from Normal and Overweight Subjects. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:494-500. [PMID: 34697672 PMCID: PMC8629792 DOI: 10.1007/s11130-021-00923-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
Raspberry is a source of dietary fibre and phenolic compounds, which are metabolised by the gut microbiota, resulting in the production of short chain fatty acids (SCFAs) and phenolic catabolites; but the formation of these compounds depends on the microbiota composition. The aim of this study was to investigate whether the raspberry and its fractions (phenolic extract, total and insoluble dietary fibre) affect the microbial activity depending on the body weight condition. For this, in vitro fermentations of raspberry fractions were carried out using faeces from normal-weight (NW) and overweight volunteers (OW) during 48 h, and phenolic catabolites and SCFAs were analysed at 0, 6, 24 and 48 h. The whole raspberry and the phenolic extract produced greater quantities of urolithins and total SCFAs when compared with fibre fractions, reaching the highest amount between 24 and 48 h. The body weight condition was an important factor, since faeces from NW led to greater production of urolithins from non-extractable phenolic compounds bound to fibre fractions, whereas in OW the urolithins production was higher from the fractions with more extractable polyphenols. In summary, the whole raspberry has been shown to have a prebiotic effect, mainly due to its phenolic compounds content rather than its fibre content.
Collapse
Affiliation(s)
- Vanesa Núñez-Gómez
- Grupo de Nutrición y Bromatología, Departamento de Tecnología de los Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100, Murcia, Spain.
| | - Ma Jesús Periago
- Grupo de Nutrición y Bromatología, Departamento de Tecnología de los Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100, Murcia, Spain
| | - Inmaculada Navarro-González
- Grupo de Nutrición y Bromatología, Departamento de Tecnología de los Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100, Murcia, Spain
| | - Ma Piedad Campos-Cava
- Grupo de Nutrición y Bromatología, Departamento de Tecnología de los Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100, Murcia, Spain
| | - Nieves Baenas
- Grupo de Nutrición y Bromatología, Departamento de Tecnología de los Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100, Murcia, Spain
| | - Rocío González-Barrio
- Grupo de Nutrición y Bromatología, Departamento de Tecnología de los Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
687
|
Prakash S, Carter WG. The Neuroprotective Effects of Cannabis-Derived Phytocannabinoids and Resveratrol in Parkinson's Disease: A Systematic Literature Review of Pre-Clinical Studies. Brain Sci 2021; 11:1573. [PMID: 34942876 PMCID: PMC8699487 DOI: 10.3390/brainsci11121573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Currently, there are no pharmacological treatments able to reverse nigral degeneration in Parkinson's disease (PD), hence the unmet need for the provision of neuroprotective agents. Cannabis-derived phytocannabinoids (CDCs) and resveratrol (RSV) may be useful neuroprotective agents for PD due to their anti-oxidative and anti-inflammatory properties. To evaluate this, we undertook a systematic review of the scientific literature to assess the neuroprotective effects of CDCs and RSV treatments in pre-clinical in vivo animal models of PD. The literature databases MEDLINE, EMBASE, PsychINFO, PubMed, and Web of Science core collection were systematically searched to cover relevant studies. A total of 1034 publications were analyzed, of which 18 met the eligibility criteria for this review. Collectively, the majority of PD rodent studies demonstrated that treatment with CDCs or RSV produced a significant improvement in motor function and mitigated the loss of dopaminergic neurons. Biochemical analysis of rodent brain tissue suggested that neuroprotection was mediated by anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms. This review highlights the neuroprotective potential of CDCs and RSV for in vivo models of PD and therefore suggests their potential translation to human clinical trials to either ameliorate PD progression and/or be implemented as a prophylactic means to reduce the risk of development of PD.
Collapse
Affiliation(s)
| | - Wayne G. Carter
- Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK;
| |
Collapse
|
688
|
Neuroprotective Potential of Synthetic Mono-Carbonyl Curcumin Analogs Assessed by Molecular Docking Studies. Molecules 2021; 26:molecules26237168. [PMID: 34885751 PMCID: PMC8659060 DOI: 10.3390/molecules26237168] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022] Open
Abstract
Cognitive decline in dementia is associated with deficiency of the cholinergic system. In this study, five mono-carbonyl curcumin analogs were synthesized, and on the basis of their promising in vitro anticholinesterase activities, they were further investigated for in vivo neuroprotective and memory enhancing effects in scopolamine-induced amnesia using elevated plus maze (EPM) and novel object recognition (NOR) behavioral mice models. The effects of the synthesized compounds on the cholinergic system involvement in the brain hippocampus and their binding mode in the active site of cholinesterases were also determined. Compound h2 (p < 0.001) and h3 (p < 0.001) significantly inhibited the cholinesterases and reversed the effects of scopolamine by significantly reducing TLT (p < 0.001) in EPM, while (p < 0.001) increased the time exploring the novel object. The % discrimination index (DI) was significantly increased (p < 0.001) in the novel object recognition test. The mechanism of cholinesterase inhibition was further validated through molecular docking study using MOE software. The results obtained from the in vitro, in vivo and ex vivo studies showed that the synthesized curcumin analogs exhibited significantly higher memory-enhancing potential, and h3 could be an effective neuroprotective agent. However, more study is suggested to explore its exact mechanism of action.
Collapse
|
689
|
Targeting Mitochondria by Plant Secondary Metabolites: A Promising Strategy in Combating Parkinson's Disease. Int J Mol Sci 2021; 22:ijms222212570. [PMID: 34830453 PMCID: PMC8619002 DOI: 10.3390/ijms222212570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is one of the most prevalent and debilitating neurodegenerative conditions, and is currently on the rise. Several dysregulated pathways are behind the pathogenesis of PD; however, the critical targets remain unclear. Accordingly, there is an urgent need to reveal the key dysregulated pathways in PD. Prevailing reports have highlighted the importance of mitochondrial and cross-talked mediators in neurological disorders, genetic changes, and related complications of PD. Multiple pathophysiological mechanisms of PD, as well as the low efficacy and side effects of conventional neuroprotective therapies, drive the need for finding novel alternative agents. Recently, much attention has been paid to using plant secondary metabolites (e.g., flavonoids/phenolic compounds, alkaloids, and terpenoids) in the modulation of PD-associated manifestations by targeting mitochondria. In this line, plant secondary metabolites have shown promising potential for the simultaneous modulation of mitochondrial apoptosis and reactive oxygen species. This review aimed to address mitochondria and multiple dysregulated pathways in PD by plant-derived secondary metabolites.
Collapse
|
690
|
Bushmeleva K, Vyshtakalyuk A, Terenzhev D, Belov T, Parfenov A, Sharonova N, Nikitin E, Zobov V. Radical Scavenging Actions and Immunomodulatory Activity of Aronia melanocarpa Propylene Glycol Extracts. PLANTS (BASEL, SWITZERLAND) 2021; 10:2458. [PMID: 34834824 PMCID: PMC8619177 DOI: 10.3390/plants10112458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 05/20/2023]
Abstract
Researchers are attracted to the wide-ranging, useful components in Aronia melanocarpa berries. They are searching for the most effective ways to extract the active substances that can enhance the body's protective properties. The current study presents detailed information about the extracts from A. melanocarpa fruits frozen and dried under mild conditions and their chemical composition. In Wistar rats with induced immunosuppression, the effect of chokeberry fruit extracts on the leukocyte formula, phagocytic activity, and cytokine system was studied. It was shown that the A. melanocarpa frozen fruit extract contains more anthocyanins, sugars, and ascorbic acid, and has a more pronounced antioxidant activity determined by the ability to bind APPH-radicals. Moreover, the extract showed membrane-protective and cytoprotective properties against RPMI-1788 cell line. The extract from dried raw material shows a higher antioxidant activity due to the ability to bind DPPH-radicals. It was revealed that extracts from A. melanocarpa fruits promote rapid immune system recovery in rats, normalize the leukocyte count, and improve monocyte and neutrophil phagocytic indicators. Research on the cytokine profile revealed that the anti-inflammatory properties in A. melanocarpa extracts were more pronounced in dried extracts. For several cytokines, a normalization of quantity was noted.
Collapse
Affiliation(s)
- Kseniya Bushmeleva
- Laboratory for Plant Raw Material Conversion for Organic Farming, Federal State Budgetary Institution of Science Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevskogo Str., 420111 Tatarstan, Russia
| | - Alexandra Vyshtakalyuk
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Dmitriy Terenzhev
- Laboratory for Plant Raw Material Conversion for Organic Farming, Federal State Budgetary Institution of Science Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevskogo Str., 420111 Tatarstan, Russia
| | - Timur Belov
- Laboratory for Plant Raw Material Conversion for Organic Farming, Federal State Budgetary Institution of Science Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevskogo Str., 420111 Tatarstan, Russia
| | - Andrey Parfenov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Natalia Sharonova
- Laboratory for Plant Raw Material Conversion for Organic Farming, Federal State Budgetary Institution of Science Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevskogo Str., 420111 Tatarstan, Russia
| | - Evgeniy Nikitin
- Laboratory for Plant Raw Material Conversion for Organic Farming, Federal State Budgetary Institution of Science Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevskogo Str., 420111 Tatarstan, Russia
| | - Vladimir Zobov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| |
Collapse
|
691
|
Đukanović S, Ganić T, Lončarević B, Cvetković S, Nikolić B, Tenji D, Randjelović D, Mitić-Ćulafić D. Elucidating the antibiofilm activity of Frangula emodin against Staphylococcus aureus biofilms. J Appl Microbiol 2021; 132:1840-1855. [PMID: 34779074 DOI: 10.1111/jam.15360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
AIMS Because the Staphylococcus aureus is one of the most well-known pathogens associated with medical devices and nosocomial infections, the aim of the study was to examine antibiofilm potential of emodin against it. METHODS AND RESULTS Antibacterial activity was examined through microdilution assay. Antibiofilm testing included crystal violet staining of biofilm biomass and morphology analysis by Atomic force microscopy (AFM). Furthermore, aerobic respiration was monitored using the Micro-Oxymax respirometer. For investigation of gene expression qRT-PCR was performed. Emodin demonstrated strong antibacterial activity and ability to inhibit biofilm formation of all tested strains. The effect on preformed biofilms was spotted in few strains. AFM revealed that emodin affects biofilm structure and roughness. Monitoring of respiration under emodin treatment in planktonic and biofilm form revealed that emodin influenced aerobic respiration. Moreover, qRT-PCR showed that emodin modulates expression of icaA, icaD, srrA and srrB genes, as well as RNAIII, and that this activity was strain-specific. CONCLUSION The results obtained in this study indicate the novel antibiofilm activity of emodin and its multiple pathways of action. SIGNIFICANCE AND IMPACT OF STUDY This is the first study that examined pathways through which emodin expressed its antibiofilm activity.
Collapse
Affiliation(s)
| | - Tea Ganić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Branka Lončarević
- Institute for Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | | - Biljana Nikolić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Dina Tenji
- Faculty of Science, University of Novi Sad, Novi Sad, Serbia
| | - Danijela Randjelović
- Institute for Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
692
|
Queiroz Junior NF, Steffani JA, Machado L, Longhi PJH, Montano MAE, Martins M, Machado SA, Machado AK, Cadoná FC. Antioxidant and cytoprotective effects of avocado oil and extract ( Persea americana Mill) against rotenone using monkey kidney epithelial cells (Vero). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:875-890. [PMID: 34256683 DOI: 10.1080/15287394.2021.1945515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxidative stress is known to be involved in development of numerous diseases including cardiovascular, respiratory, renal, kidney and cancer. Thus, investigations that mimic oxidative stress in vitro may play an important role to find new strategies to control oxidative stress and subsequent consequences are important. Rotenone, widely used as a pesticide has been used as a model to simulate oxidative stress. However, this chemical was found to produce several diseases. Therefore, the aim of this study was to investigate the antioxidant and cytoprotective effect of avocado (Persea americana Mill) extract and oil in monkey kidney epithelial cells (VERO) exposed to rotenone. VERO cells were exposed to IC50 of rotenone in conjunction with different concentrations of avocado extract and oil (ranging from 1 to 1000 µg/ml), for 24 hr. Subsequently, cell viability and oxidative metabolism were assessed. Data demonstrated that avocado extract and oil in the presence of rotenone increased cellular viability at all tested concentrations compared to cells exposed only to rotenone. In addition, extract and avocado oil exhibited antioxidant action as evidenced by decreased levels of reactive oxygen species (ROS), superoxide ion, and lipid peroxidation, generated by rotenone. Further, avocado extract and oil appeared to be safe, since these compounds did not affect cell viability and or generate oxidative stress. Therefore, avocado appears to display a promising antioxidant potential by decreasing oxidative stress.
Collapse
Affiliation(s)
| | - Jovani Antônio Steffani
- Postgraduate Program of Biosciences and Health, West University of Santa Catarina, Joaçaba, SC, Brazil
| | - Larissa Machado
- Biological Sciences Course, West University of Santa Catarina, Joaçaba, SC, Brazil
| | | | | | - Mathias Martins
- Postgraduate Program in Health and Animal Production, West University of Santa Catarina, Joaçaba, SC, Brazil
| | - Sérgio Abreu Machado
- Postgraduate Program in Health and Animal Production, West University of Santa Catarina, Joaçaba, SC, Brazil
| | | | - Francine Carla Cadoná
- Postgraduate Program in Sciences of Health and Life, Franciscan University, Santa Maria, RS, Brazil
| |
Collapse
|
693
|
Chen L, Zhu Y, Hu Z, Wu S, Jin C. Beetroot as a functional food with huge health benefits: Antioxidant, antitumor, physical function, and chronic metabolomics activity. Food Sci Nutr 2021; 9:6406-6420. [PMID: 34760270 PMCID: PMC8565237 DOI: 10.1002/fsn3.2577] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Previously, beetroot is mainly consumed as a food additive. In recent years, the beetroot, especially the betalains (betanin) and nitrates it contains, now has received increasing attention for their effective biological activity. Betalains have been proven to eliminate oxidative and nitrative stress by scavenging DPPH, preventing DNA damage, and reducing LDL. It also has been found to exert antitumor activity by inhibiting cell proliferation, angiogenesis, inducing cell apoptosis, and autophagy. In some chronic diseases, nitrate is the main component for lowing blood lipids, glucose, and pressure, while its role in treating hypertension and hyperglycemia has not been clearly stated. Moreover, the intake of nitrate-rich beetroot could enhance athletic performance and attenuate muscle soreness in certain types of exercise. The objective of this review is to provide sufficient evidence for the clarification of health benefits of beetroot, especially in the aspect of biooxidation, neoplastic diseases, some chronic diseases, and energy supplementation.
Collapse
Affiliation(s)
- Liping Chen
- Department of PharmacySchool of MedicineSir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | - Yuankang Zhu
- College of Second Clinical MedicalWenzhou Medical UniversityWenzhouChina
| | - Zijing Hu
- Chemical Biology Research CenterCollege of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Shengjie Wu
- Department of PharmacySchool of MedicineSir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | - Chengtao Jin
- Department of PharmacySchool of MedicineSir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| |
Collapse
|
694
|
p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 2021; 71:101443. [PMID: 34390849 DOI: 10.1016/j.arr.2021.101443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The p21-activated kinases (PAKs) belong to serine/threonine kinases family, regulated by ∼21 kDa small signaling G proteins RAC1 and CDC42. The mammalian PAK family comprises six members (PAK1-6) that are classified into two groups (I and II) based on their domain architecture and regulatory mechanisms. PAKs are implicated in a wide range of cellular functions. PAK1 has recently attracted increasing attention owing to its involvement in oncogenesis, tumor progression, and metastasis as well as several life-limiting diseases and pathological conditions. In Caenorhabditis elegans, PAK1 functions limit the lifespan under basal conditions by inhibiting forkhead transcription factor DAF-16. Interestingly, PAK depletion extended longevity and attenuated the onset of age-related phenotypes in a premature-aging mouse model and delayed senescence in mammalian fibroblasts. These observations implicate PAKs as not only oncogenic but also aging kinases. Therefore, PAK-targeting genetic and/or pharmacological interventions, particularly PAK1-targeting, could be a viable strategy for developing cancer therapies with relatively no side effects and promoting healthy longevity. This review describes PAK family proteins, their biological functions, and their role in regulating aging and longevity using C. elegans. Moreover, we discuss the effect of small-molecule PAK1 inhibitors on the lifespan and healthspan of C. elegans.
Collapse
|
695
|
Iglesias-Aguirre CE, Cortés-Martín A, Ávila-Gálvez MÁ, Giménez-Bastida JA, Selma MV, González-Sarrías A, Espín JC. Main drivers of (poly)phenol effects on human health: metabolite production and/or gut microbiota-associated metabotypes? Food Funct 2021; 12:10324-10355. [PMID: 34558584 DOI: 10.1039/d1fo02033a] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite the high human interindividual variability in response to (poly)phenol consumption, the cause-and-effect relationship between some dietary (poly)phenols (flavanols and olive oil phenolics) and health effects (endothelial function and prevention of LDL oxidation, respectively) has been well established. Most of the variables affecting this interindividual variability have been identified (food matrix, gut microbiota, single-nucleotide-polymorphisms, etc.). However, the final drivers for the health effects of (poly)phenol consumption have not been fully identified. At least partially, these drivers could be (i) the (poly)phenols ingested that exert their effect in the gastrointestinal tract, (ii) the bioavailable metabolites that exert their effects systemically and/or (iii) the gut microbial ecology associated with (poly)phenol metabolism (i.e., gut microbiota-associated metabotypes). However, statistical associations between health effects and the occurrence of circulating and/or excreted metabolites, as well as cross-sectional studies that correlate gut microbial ecologies and health, do not prove a causal role unequivocally. We provide a critical overview and perspective on the possible main drivers of the effects of (poly)phenols on human health and suggest possible actions to identify the putative actors responsible for the effects.
Collapse
Affiliation(s)
- Carlos E Iglesias-Aguirre
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - María Á Ávila-Gálvez
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Instituto de Biologia Experimental e Tecnológica (IBET), Apartado 12, 2781-901, Oeiras, Portugal
| | - Juan A Giménez-Bastida
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - María V Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| |
Collapse
|
696
|
Kujawska M, Bhardwaj SK, Mishra YK, Kaushik A. Using Graphene-Based Biosensors to Detect Dopamine for Efficient Parkinson's Disease Diagnostics. BIOSENSORS 2021; 11:433. [PMID: 34821649 PMCID: PMC8615362 DOI: 10.3390/bios11110433] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease in which the neurotransmitter dopamine (DA) depletes due to the progressive loss of nigrostriatal neurons. Therefore, DA measurement might be a useful diagnostic tool for targeting the early stages of PD, as well as helping to optimize DA replacement therapy. Moreover, DA sensing appears to be a useful analytical tool in complex biological systems in PD studies. To support the feasibility of this concept, this mini-review explores the currently developed graphene-based biosensors dedicated to DA detection. We discuss various graphene modifications designed for high-performance DA sensing electrodes alongside their analytical performances and interference studies, which we listed based on their limit of detection in biological samples. Moreover, graphene-based biosensors for optical DA detection are also presented herein. Regarding clinical relevance, we explored the development trends of graphene-based electrochemical sensing of DA as they relate to point-of-care testing suitable for the site-of-location diagnostics needed for personalized PD management. In this field, the biosensors are developed into smartphone-connected systems for intelligent disease management. However, we highlighted that the focus should be on the clinical utility rather than analytical and technical performance.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Sheetal K. Bhardwaj
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Amsterdam Scientific Instruments B.V., Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA;
| |
Collapse
|
697
|
Hepatoprotective Effect and Potential Mechanism of Aqueous Extract from Phyllanthus emblica on Carbon-Tetrachloride-Induced Liver Fibrosis in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5345821. [PMID: 34712342 PMCID: PMC8548103 DOI: 10.1155/2021/5345821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
Liver fibrosis is a pathological variation caused by almost all chronic liver injuries. As an edible and medicinal natural resource, Phyllanthus emblica (PE) has been reported to possess hepatoprotective, antioxidant, and anti-inflammatory activities and may have an ameliorating effect on hepatic fibrosis. To investigate the protective effect of the aqueous extract of PE (AEPE) against liver fibrosis and to uncover its related mechanisms, the chemical profile of AEPE was characterized by high performance liquid chromatography (HPLC) and sulfuric acid-phenol method. Ameliorative effects of different doses of AEPE were investigated in carbon-tetrachloride- (CCl4-) induced liver fibrosis rats by analyzing biochemical markers, morphologic pathology, and related proteins expression in liver tissue. The results indicated that AEPE (1.8, 3.6 g/kg) could significantly reduce levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), collagen IV (Col IV), type III precollagen (PCIII), hyaluronic acid (HA), laminin (LN), malondialdehyde (MDA), nitric oxide (NO), protein carbonyl (PC), tumor necrosis factor-α(TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and hydroxyproline (Hyp) and increase the levels of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT). Hematoxylin-eosin (H&E), Sirius red, and Masson staining showed AEPE-treated improved fibrotic lesions and inflammatory cell infiltration. Meanwhile, AEPE treatment also significantly downregulates the expression of α-smooth muscle actin (α-SMA) and transforming growth factor-β1 (TGF-β1) in the liver tissue and serum, respectively. In conclusion, AEPE possesses curative efficacy against liver fibrosis through its antioxidant, anti-inflammatory, and antifibrotic effects.
Collapse
|
698
|
Kryl'skii ED, Razuvaev GA, Potapova TN, Akinina AI, Nihaev LE. Functioning of the Antioxidant Defense System in Rotenone-Induced Parkinson's Disease. Bull Exp Biol Med 2021; 171:716-721. [PMID: 34705173 DOI: 10.1007/s10517-021-05302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 11/28/2022]
Abstract
A comprehensive study of the functioning of antioxidant system in rats with rotenone-induced parkinsonism was conducted. The development of pathology led to inhibition of the majority of the studied antioxidant enzymes in the brain and blood serum of animals, which can be associated with decompensation of oxidative stress under conditions of prolonged mitochondrial dysfunction. These changes apparently make an important contribution into neuronal degeneration in the cerebral cortex and striatum and motor disorders in experimental animals.
Collapse
Affiliation(s)
- E D Kryl'skii
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Voronezh, Russia.
| | - G A Razuvaev
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Voronezh, Russia
| | - T N Potapova
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Voronezh, Russia
| | - A I Akinina
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Voronezh, Russia
| | - L E Nihaev
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Voronezh, Russia
| |
Collapse
|
699
|
Jayatunga DPW, Hone E, Khaira H, Lunelli T, Singh H, Guillemin GJ, Fernando B, Garg ML, Verdile G, Martins RN. Therapeutic Potential of Mitophagy-Inducing Microflora Metabolite, Urolithin A for Alzheimer's Disease. Nutrients 2021; 13:nu13113744. [PMID: 34836000 PMCID: PMC8617978 DOI: 10.3390/nu13113744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction including deficits of mitophagy is seen in aging and neurodegenerative disorders including Alzheimer’s disease (AD). Apart from traditionally targeting amyloid beta (Aβ), the main culprit in AD brains, other approaches include investigating impaired mitochondrial pathways for potential therapeutic benefits against AD. Thus, a future therapy for AD may focus on novel candidates that enhance optimal mitochondrial integrity and turnover. Bioactive food components, known as nutraceuticals, may serve as such agents to combat AD. Urolithin A is an intestinal microbe-derived metabolite of a class of polyphenols, ellagitannins (ETs). Urolithin A is known to exert many health benefits. Its antioxidant, anti-inflammatory, anti-atherogenic, anti-Aβ, and pro-mitophagy properties are increasingly recognized. However, the underlying mechanisms of urolithin A in inducing mitophagy is poorly understood. This review discusses the mitophagy deficits in AD and examines potential molecular mechanisms of its activation. Moreover, the current knowledge of urolithin A is discussed, focusing on its neuroprotective properties and its potential to induce mitophagy. Specifically, this review proposes potential mechanisms by which urolithin A may activate and promote mitophagy.
Collapse
Affiliation(s)
- Dona Pamoda W. Jayatunga
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
| | - Eugene Hone
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
- Cooperative Research Centre for Mental Health, Carlton, VIC 3053, Australia
| | - Harjot Khaira
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (H.K.); (T.L.); (H.S.); (M.L.G.)
| | - Taciana Lunelli
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (H.K.); (T.L.); (H.S.); (M.L.G.)
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (H.K.); (T.L.); (H.S.); (M.L.G.)
| | - Gilles J. Guillemin
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
- St. Vincent’s Centre for Applied Medical Research, Sydney, NSW 2011, Australia
| | - Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
| | - Manohar L. Garg
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (H.K.); (T.L.); (H.S.); (M.L.G.)
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, 8 Verdun Street., Nedlands, WA 6009, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Correspondence: ; Tel.: +61-8-9347-4200
| |
Collapse
|
700
|
Singh B, Singh H, Singh B, Kumar N, Rajput A, Sidhu D, Kaur A, Arora S, Kaur S. A comprehensive review on medicinal herbs and novel formulations for the prevention of Alzheimer's disease. Curr Drug Deliv 2021; 19:212-228. [PMID: 34779370 DOI: 10.2174/1567201818666211015152733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases reported in the aging population across the globe. About 46.8 million people are reported to have dementia, and AD is mainly responsible for dementia in aged people. Alzheimer's disease (AD) is thought to occur due to the accumulation of β-amyloid (Aβ) in the neocortex portion of the brain, nitric oxide mediated dysfunctioning of blood-brain barrier, reduced activity of serine racemase enzyme, cell cycle disturbances, damage of N-methyl-D-aspartate (NMDA) receptors and glutamatergic neurotransmission. Modern treatment methods target the pathways responsible for the disease. To date, solely symptomatic treatments exist for this disease, all making an attempt to counterbalance the neurotransmitter disturbance. Treatments able to prevent or at least effectively modifying the course of AD, referred to as 'disease-modifying' drugs, are still under extensive research. Effective treatments entail a better indulgence of the herbal bioactives by novel drug delivery systems. The herbal bioactive administered by novel drug delivery systems have proved beneficial in treating this disease. This review provides detailed information about the role of medicinal plants and their formulations in treating Alzheimer disease which will be highly beneficial for the researchers working in this area.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Brahmjot Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Navkaran Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Disha Sidhu
- Department Pharmaceutical Sciences, Guru Nanak Dev University, Grand Trunk Road, Off, NH 1 . India
| | - Amandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| |
Collapse
|