651
|
Affiliation(s)
- M S Wolfe
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
652
|
Abstract
At least four different genes have been identified that are associated with inherited susceptibiltiy to Alzheimer's disease. Some of the genes are highly penetrant (PS1, PS2, beta APP); the other, APOE, is a weaker susceptibility factor. Several additional genes are suspected to exist but have not yet been cloned.
Collapse
Affiliation(s)
- P H St George-Hyslop
- Department of Medicine (Division of Neurology), University Health Network, University of Toronto, Toronto, Ontario, Canada M5S 3H2.
| |
Collapse
|
653
|
Affiliation(s)
- M S Wolfe
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
654
|
Arendash GW, King DL, Gordon MN, Morgan D, Hatcher JM, Hope CE, Diamond DM. Progressive, age-related behavioral impairments in transgenic mice carrying both mutant amyloid precursor protein and presenilin-1 transgenes. Brain Res 2001; 891:42-53. [PMID: 11164808 DOI: 10.1016/s0006-8993(00)03186-3] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study provides a comprehensive behavioral characterization during aging of transgenic mice bearing both presenilin-1 (PS1) and amyloid precursor protein (APP(670,671)) mutations. Doubly transgenic mice and non-transgenic controls were evaluated at ages wherein beta-amyloid (Abeta) neuropathology in APP+PS1 mice is low (5-7 months) or very extensive (15-17 months). Progressive cognitive impairment was observed in transgenic mice for both water maze acquisition and radial arm water maze working memory. However, transgenicity did not affect Y-maze alternations, circular platform performance, standard water maze retention, or visible platform recognition at either age, nor did transgenicity affect anxiety levels in elevated plus-maze testing. In sensorimotor tasks, transgenic mice showed a progressive increase in open field activity, a progressive impairment in string agility, and an early-onset impairment in balance beam. None of these sensorimotor changes appeared to be contributory to any cognitive impairments observed, however. Non-transgenic mice showed no progressive behavioral change in any measure evaluated. Given the age-related cognitive impairments presently observed in APP+PS1 transgenic mice and their progressive Abeta deposition/neuroinflammation, Abeta neuropathology could be involved in these progressive cognitive impairments. As such, the APP+PS1 transgenic mouse offers unique opportunities to develop therapeutics to treat or prevent Alzheimer's Disease through modulation of Abeta deposition/neuroinflammation.
Collapse
Affiliation(s)
- G W Arendash
- Alzheimer's Research Laboratory, Department of Biology, University of South Florida, Tampa, FL 33620, USA.
| | | | | | | | | | | | | |
Collapse
|
655
|
Presenilin-1 P264L knock-in mutation: differential effects on abeta production, amyloid deposition, and neuronal vulnerability. J Neurosci 2001. [PMID: 11102478 DOI: 10.1523/jneurosci.20-23-08717.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pathogenic mechanism linking presenilin-1 (PS-1) gene mutations to familial Alzheimer's disease (FAD) is uncertain, but has been proposed to include increased neuronal sensitivity to degeneration and enhanced amyloidogenic processing of the beta-amyloid precursor protein (APP). We investigated this issue by using gene targeting with the Cre-lox system to introduce an FAD-linked P264L mutation into the endogenous mouse PS-1 gene, an approach that maintains normal regulatory controls over expression. Primary cortical neurons derived from PS-1 homozygous mutant knock-in mice exhibit basal neurodegeneration similar to their PS-1 wild-type counterparts. Staurosporine and Abeta1-42 induce apoptosis, and neither the dose dependence nor maximal extent of cell death is altered by the PS-1 knock-in mutation. Similarly, glutamate-induced neuronal necrosis is unaffected by the PS-1P264L mutation. The lack of effect of the PS-1P264L mutation is confirmed by measures of basal- and toxin-induced caspase and calpain activation, biochemical indices of apoptotic and necrotic signaling, respectively. To analyze the influence of the PS-1P264L knock-in mutation on APP processing and the development of AD-type neuropathology, we created mouse lines carrying mutations in both PS-1 and APP. In contrast to the lack of effect on neuronal vulnerability, cortical neurons cultured from PS-1P264L homozygous mutant mice secrete Abeta42 at an increased rate, whereas secretion of Abeta40 is reduced. Moreover, the PS-1 knock-in mutation selectively increases Abeta42 levels in the mouse brain and accelerates the onset of amyloid deposition and its attendant reactive gliosis, even as a single mutant allele. We conclude that expression of an FAD-linked mutant PS-1 at normal levels does not generally increase cortical neuronal sensitivity to degeneration. Instead, enhanced amyloidogenic processing of APP likely is critical to the pathogenesis of PS-1-linked FAD.
Collapse
|
656
|
D'Andrea MR, Nagele RG, Wang HY, Peterson PA, Lee DH. Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer's disease. Histopathology 2001; 38:120-34. [PMID: 11207825 DOI: 10.1046/j.1365-2559.2001.01082.x] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Amyloid has recently been shown to accumulate intracellularly in the brains of patients with Alzheimer's disease (AD), yet amyloid plaques are generally thought to arise from gradual extracellular amyloid deposition. We have investigated the possibility of a link between these two apparently conflicting observations. METHODS AND RESULTS Immunohistochemistry and digital image analysis was used to examine the detailed localization of beta-amyloid(42) (A beta 42), a major component of amyloid plaques, in the entorhinal cortex and hippocampus of AD brains. A beta 42 first selectively accumulates in the perikaryon of pyramidal cells as discrete, granules that appear to be cathepsin D-positive, suggesting that they may represent lysosomes or lysosome-derived structures. AD brain regions abundantly populated with pyramidal neurones exhibiting excessive A beta 42 accumulations also contained evidence of neuronal lysis. Lysis of these A beta 42-burdened neurones apparently resulted in a local, radial dispersion of their cytoplasmic contents, including A beta 42 and lysosomal enzymes, into the surrounding extracellular space. A nuclear remnant was found at the dense core of many amyloid plaques, strengthening the idea that each amyloid plaque represents the end product of a single neuronal cell lysis. The inverse relationship between the amyloid plaque density and pyramidal cell density in the AD brain regions also supports this possibility, as does the close correlation between plaque size and the size of local pyramidal cells. CONCLUSIONS Our findings suggest that excessive intracellular accumulation of A beta 42-positive material in pyramidal cells can result in cell lysis, and that cell lysis is an important source of amyloid plaques and neuronal loss in AD brains.
Collapse
Affiliation(s)
- M R D'Andrea
- The R W Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania 19477, USA.
| | | | | | | | | |
Collapse
|
657
|
Russo C, Salis S, Dolcini V, Venezia V, Song XH, Teller JK, Schettini G. Amino-terminal modification and tyrosine phosphorylation of [corrected] carboxy-terminal fragments of the amyloid precursor protein in Alzheimer's disease and Down's syndrome brain. Neurobiol Dis 2001; 8:173-80. [PMID: 11162251 DOI: 10.1006/nbdi.2000.0357] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The carboxy-terminal fragments (CTFs) of the amyloid precursor protein (APP) are considered beta-amyloid (Abeta) precursors as well as molecular species possibly amyloidogenic and neurotoxic by [corrected] in vitro or in animal models. The CTF's role in the pathogenesis of Alzheimer's disease (AD) is however relatively unexplored in human brain. In this study, we analyzed brain extracted CTFs in subjects with AD, non-AD control, and Down's syndrome (DS) cases. Our data indicate that: (i) In fetal DS subjects CTFs levels are increased in comparison to age-matched control, suggesting that the enhanced CTFs formation is important for the early occurrence of plaques deposition in DS. No significant difference in CTFs level [corrected] between AD and age-matched control cases. (ii) CTFs modified at their N-terminus are the direct precursors of similarly N-terminally modified Abeta peptides, which constitute the most abundant species in AD and DS plaques. This observation suggests that N-truncated Abeta peptides are formed directly at beta-secretase level and not through a progressive proteolysis of full-length Abeta1-40/42. (iii) Among the differently cleaved CTFs, only the 22- and 12.5-kDa CTF polypeptides are tyrosine phosphorylated in both AD and control brain while the full-length APP and the CTFs migrating below the 12.5-kDa marker are not phosphorylated, suggesting that APP and CTFs may be involved in different pathways depending on their length and sequences. This study provides evidence that CTFs constitute in human brain a molecular species directly involved in AD pathogenesis and in the development of the AD-like pathology in DS subjects.
Collapse
Affiliation(s)
- C Russo
- Section of Pharmacology and Neuroscience, National Cancer Institute, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
658
|
Alzheimer’s Disease: Physiological and Pathogenetic Role of the Amyloid Precursor Protein (APP), its Aβ-Amyloid Domain and Free Aβ-Amyloid Peptide. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/978-3-662-04399-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
659
|
Houlden H, Baker M, McGowan E, Lewis P, Hutton M, Crook R, Wood NW, Kumar-Singh S, Geddes J, Swash M, Scaravilli F, Holton JL, Lashley T, Tomita T, Hashimoto T, Verkkoniemi A, Kalimo H, Somer M, Paetau A, Martin JJ, Van Broeckhoven C, Golde T, Hardy J, Haltia M, Revesz T. Variant Alzheimer's disease with spastic paraparesis and cotton wool plaques is caused by PS-1 mutations that lead to exceptionally high amyloid-? concentrations. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200011)48:5<806::aid-ana18>3.0.co;2-f] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
660
|
Okochi M, Eimer S, Bottcher A, Baumeister R, Romig H, Walter J, Capell A, Steiner H, Haass C. A loss of function mutant of the presenilin homologue SEL-12 undergoes aberrant endoproteolysis in Caenorhabditis elegans and increases abeta 42 generation in human cells. J Biol Chem 2000; 275:40925-32. [PMID: 11013240 DOI: 10.1074/jbc.m005254200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The familial Alzheimer's disease-associated presenilins (PSs) occur as a dimeric complex of proteolytically generated fragments, which functionally supports endoproteolysis of Notch and the beta-amyloid precursor protein (betaAPP). A homologous gene, sel-12, has been identified in Caenorhabditis elegans. We now demonstrate that wild-type (wt) SEL-12 undergoes endoproteolytic cleavage in C. elegans similar to the PSs in human tissue. In contrast, SEL-12 C60S protein expressed from the sel-12(ar131) allele is miscleaved in C. elegans, resulting in a larger mutant N-terminal fragment. Neither SEL-12 wt nor C60S undergo endoproteolytic processing upon expression in human cells, suggesting that SEL-12 is cleaved by a C. elegans-specific endoproteolytic activity. The loss of function of sel-12 in C. elegans is not associated with a dominant negative activity in human cells, because SEL-12 C60S and the corresponding PS1 C92S mutation do not interfere with Notch1 cleavage. Moreover, both mutant variants increase the aberrant production of the highly amyloidogenic 42-amino acid version of amyloid beta-peptide similar to familial Alzheimer's disease-associated human PS mutants. Our data therefore demonstrate that the C60S mutation in SEL-12 is associated with aberrant endoproteolysis and a loss of function in C. elegans, whereas a gain of misfunction is observed upon expression in human cells.
Collapse
Affiliation(s)
- M Okochi
- Adolf Butenandt-Institute, Department of Biochemistry, Laboratory for Alzheimer's Disease Research, Ludwig-Maximilians-University, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
661
|
Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J, Mount HT, Nixon RA, Mercken M, Bergeron C, Fraser PE, St George-Hyslop P, Westaway D. A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 2000; 408:979-82. [PMID: 11140685 DOI: 10.1038/35050110] [Citation(s) in RCA: 1074] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Much evidence indicates that abnormal processing and extracellular deposition of amyloid-beta peptide (A beta), a proteolytic derivative of the beta-amyloid precursor protein (betaAPP), is central to the pathogenesis of Alzheimer's disease (reviewed in ref. 1). In the PDAPP transgenic mouse model of Alzheimer's disease, immunization with A beta causes a marked reduction in burden of the brain amyloid. Evidence that A beta immunization also reduces cognitive dysfunction in murine models of Alzheimer's disease would support the hypothesis that abnormal A beta processing is essential to the pathogenesis of Alzheimer's disease, and would encourage the development of other strategies directed at the 'amyloid cascade'. Here we show that A beta immunization reduces both deposition of cerebral fibrillar A beta and cognitive dysfunction in the TgCRND8 murine model of Alzheimer's disease without, however, altering total levels of A beta in the brain. This implies that either a approximately 50% reduction in dense-cored A beta plaques is sufficient to affect cognition, or that vaccination may modulate the activity/abundance of a small subpopulation of especially toxic A beta species.
Collapse
Affiliation(s)
- C Janus
- Centre for Research in Neurodegenerative Diseases, Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
662
|
Collins JS, Perry RT, Watson B, Harrell LE, Acton RT, Blacker D, Albert MS, Tanzi RE, Bassett SS, McInnis MG, Campbell RD, Go RC. Association of a haplotype for tumor necrosis factor in siblings with late-onset Alzheimer disease: the NIMH Alzheimer Disease Genetics Initiative. AMERICAN JOURNAL OF MEDICAL GENETICS 2000; 96:823-30. [PMID: 11121190 DOI: 10.1002/1096-8628(20001204)96:6<823::aid-ajmg26>3.0.co;2-i] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tumor necrosis factor (TNF), a proinflammatory cytokine, may be involved in the pathogenesis of Alzheimer disease (AD) based on observations that senile plaques have been found to upregulate proinflammatory cytokines. Additionally, nonsteroidal anti-inflammatory drugs have been found to delay and prevent the onset of AD. A collaborative genome-wide scan for AD genes in 266 late-onset families implicated a 20 centimorgan region at chromosome 6p21.3 that includes the TNF gene. Three TNF polymorphisms, a -308 TNF promoter polymorphism, whose TNF2 allele is associated with autoimmune inflammatory diseases and strong transcriptional activity, the -238 TNF promoter polymorphism, and the microsatellite TNFa, whose 2 allele is associated with a high TNF secretion, were typed in 145 families consisting of 562 affected and unaffected siblings. These polymorphisms formed a haplotype, 2-1-2, respectively, that was significantly associated with AD (P = 0.005) using the sibling disequilibrium test. Singly, the TNFa2 allele was also significantly associated (P = 0.04) with AD in these 145 families. This TNF association with AD lends further support for an inflammatory process in the pathogenesis of AD. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:823-830, 2000.
Collapse
Affiliation(s)
- J S Collins
- Department of Epidemiology and International Health, University of Alabama at Birmingham, Birmingham, Alabama 35294-0022, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
663
|
Noll E, Medina M, Hartley D, Zhou J, Perrimon N, Kosik KS. Presenilin affects arm/beta-catenin localization and function in Drosophila. Dev Biol 2000; 227:450-64. [PMID: 11071766 DOI: 10.1006/dbio.2000.9925] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Presenilin is an essential gene for development that when disrupted leads to a neurogenic phenotype that closely resembles Notch loss of function in Drosophila. In humans, many naturally occurring mutations in Presenilin 1 or 2 cause early onset Alzheimer's disease. Both loss of expression and overexpression of Presenilin suggested a role for this protein in the localization of Armadillo/beta-catenin. In blastoderm stage Presenilin mutants, Arm is aberrantly distributed, often in Ubiquitin-immunoreactive cytoplasmic inclusions predominantly located basally in the cell. These inclusions were not observed in loss of function Notch mutants, suggesting that failure to process Notch is not the only consequence of the loss of Presenilin function. Human presenilin 1 expressed in Drosophila produces embryonic phenotypes resembling those associated with mutations in Armadillo and exhibited reduced Armadillo at the plasma membrane that is likely due to retention of Armadillo in a complex with Presenilin. The interaction between Armadillo/beta-catenin and Presenilin 1 requires a third protein which may be delta-catenin. Our results suggest that Presenilin may regulate the delivery of a multiprotein complex that regulates Armadillo trafficking between the adherens junction and the proteasome.
Collapse
Affiliation(s)
- E Noll
- Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
664
|
Grilli M, Diodato E, Lozza G, Brusa R, Casarini M, Uberti D, Rozmahel R, Westaway D, St George-Hyslop P, Memo M, Ongini E. Presenilin-1 regulates the neuronal threshold to excitotoxicity both physiologically and pathologically. Proc Natl Acad Sci U S A 2000; 97:12822-7. [PMID: 11070093 PMCID: PMC18848 DOI: 10.1073/pnas.97.23.12822] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A direct pathophysiological role of Familial Alzheimer's Disease (FAD)-associated Presenilin 1 (PS1) mutations in neuronal vulnerability remains a controversial matter. We evaluated the relationship between PS1 and excitotoxicity in four different experimental models of neurotoxicity by using primary neurons from (i) transgenic (tg) mice overexpressing a human FAD-linked PS1 variant (L286V mutation), (ii) tg mice overexpressing human wild-type (wt) PS1, (iii) PS1 knockout mice, and (iv) wt mice in which PS1 gene expression was knocked down by antisense treatment. We found that primary neurons overexpressing mutated PS1 showed an increased vulnerability to both excitotoxic and hypoxic-hypoglycemic damage when compared with neurons obtained from either mice overexpressing human wt PS1 or in wt mice. In addition, reduced excitotoxic damage was obtained in neurons in which PS1 expression was absent or diminished. Data obtained in in vivo experimental models of excitotoxicity partially supported the in vitro observations. Accelerated neuronal death was demonstrated in the hippocampus of mice overexpressing mutated PS1 after peripheral administration of kainic acid in comparison with wt animals. However, measurement of the infarct volume after middle cerebral artery occlusion did not show significant difference between the two animal groups. The results altogether suggest that expression of FAD-linked PS1 variants increases the vulnerability of neurons to a specific type of damage in which excitotoxicity plays a relevant role. In addition, they support the view that reduction of endogenous PS1 expression results in neuroprotection.
Collapse
Affiliation(s)
- M Grilli
- Schering-Plough Research Institute, Department of Central Nervous System/Cardiovascular Research, San Raffaele Science Park, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
665
|
Kawahara M, Kuroda Y. Molecular mechanism of neurodegeneration induced by Alzheimer's beta-amyloid protein: channel formation and disruption of calcium homeostasis. Brain Res Bull 2000; 53:389-97. [PMID: 11136994 DOI: 10.1016/s0361-9230(00)00370-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The etiology of Alzheimer's disease has been suggested to be linked to the neurodegeneration induced by beta-amyloid protein (AbetaP), however, the mechanism underlying the latter remains unknown. We have previously shown the direct incorporation of AbetaP into neuronal membranes of immortalized hypothalamic neurons (GT1-7 cells) associated with the formation of calcium-permeable pores, and the elevation of the intracellular calcium concentrations in the GT1-7 cells. Taking together our results and those of numerous other studies, we hypothesize that the disruption of calcium homeostasis by AbetaP-channels may be the molecular basis of the neurotoxicity of AbetaP, and the development of Alzheimer's disease. It is also proposed that the constituents of membrane lipids may play important roles in the process of this channel formation. Our hypothesis may also explain the mechanism of development of other 'conformational diseases', such as prion disease or type 2 diabetes mellitus, which share some common features with Alzheimer's disease.
Collapse
Affiliation(s)
- M Kawahara
- Department of Molecular and Cellular Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan.
| | | |
Collapse
|
666
|
Howlett DR, Simmons DL, Dingwall C, Christie G. In search of an enzyme: the beta-secretase of Alzheimer's disease is an aspartic proteinase. Trends Neurosci 2000; 23:565-70. [PMID: 11074266 DOI: 10.1016/s0166-2236(00)01647-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The deposition of beta-amyloid (Abeta) in the brain is a neuropathological feature of Alzheimer's disease. Abeta is cleaved from its precursor protein (APP) by processing at its N and C termini by enzymes known as beta- and gamma-secretases,respectively. The identity of these enzymes has been elusive but the search for the N-terminal secretase might have ended recently with the almost simultaneous publication by five major laboratories claiming a transmembrane aspartic proteinase to be the long sought after beta-secretase. Even at this early stage of its characterization, this aspartic proteinase fulfils many of the key criteria necessary for beta-secretase. The race is now on to develop inhibitors that could prove effective in halting the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- D R Howlett
- The Dept of Neuroscience Research, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Essex, CM19 5AW, Harlow, UK
| | | | | | | |
Collapse
|
667
|
Abstract
Alzheimer's disease (AD) is the most common cause of progressive decline of cognitive function in aged humans, and is characterized by the presence of numerous senile plaques and neurofibrillary tangles accompanied by neuronal loss. Some, but not all, of the neuropathological alterations and cognitive impairment in AD can be reproduced genetically and pharmacologically in animals. It should be possible to discover novel drugs that slow the progress or alleviate the clinical symptoms of AD by using these animal models. We review the recent progress in the development of animal models of AD and discuss how to use these model animals to evaluate novel anti-dementia drugs.
Collapse
Affiliation(s)
- K Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Showa-ku, 466-8560, Nagoya, Japan
| | | |
Collapse
|
668
|
Nakajima M, Shimizu T, Shirasawa T. Notch-1 activation by familial Alzheimer's disease (FAD)-linked mutant forms of presenilin-1. J Neurosci Res 2000; 62:311-7. [PMID: 11020224 DOI: 10.1002/1097-4547(20001015)62:2<311::aid-jnr16>3.0.co;2-g] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We prepared a cleavage site-directed antibody against Notch-1, that specifically recognized the cleaved Notch-1 intracellular domain (NICD). To assess Notch-1 processing and its nuclear localization in familial Alzheimer's disease (FAD)-linked presenilin-1 (PS-1) mutants, we overexpressed wild type, M146V, A246E, C410Y, or deltaE9 PS-1 mutant with a membrane-bound Notch-1 in a PS-1-deficient cell line. On Western blot and immunocytochemical analyses using the NICD specific antibody, M146V and A246E mutants showed the comparable levels of Notch-1 processing and nuclear localizing activities to wild type PS-1 whereas C410Y and deltaE9 mutants failed to show these activities. These results suggest that the loss or partial loss of PS-1 activities in Notch-1 proteolysis and its nuclear translocation may be irrelevant for the neuropathology of Alzheimer's disease.
Collapse
Affiliation(s)
- M Nakajima
- Department of Molecular Genetics, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | |
Collapse
|
669
|
Clarke EE, Shearman MS. Quantitation of amyloid-beta peptides in biological milieu using a novel homogeneous time-resolved fluorescence (HTRF) assay. J Neurosci Methods 2000; 102:61-8. [PMID: 11000412 DOI: 10.1016/s0165-0270(00)00280-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many of the recent advances in the understanding of the pathological processes underlying Alzheimer's disease have come about as a result of the development of assays that can specifically quantitate in biological milieu amyloid-beta (A beta) peptides ending at amino-acid positions Ala-42 (A beta(42)) and Val-40 (A beta(40)). The existing technologies, however, although proven in their utility are limited in their application with regards to sample manipulation and suitability for high-throughput screening. To overcome these limitations, in this report we describe the development of a novel homogeneous time-resolved fluorescence (HTRF) immunoassay for A beta(42) and A beta(40) peptides. This assay has the sensitivity, selectivity and dynamic range to allow specific, direct quantitation of A beta peptides in cell culture medium, plasma, cerebrospinal fluid and brain tissue extracts, and has the major advantage of minimising sample manipulation and its inherent inaccuracies.
Collapse
Affiliation(s)
- E E Clarke
- Department of Molecular Biology, Merck Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, UK.
| | | |
Collapse
|
670
|
Leutner S, Czech C, Schindowski K, Touchet N, Eckert A, Müller WE. Reduced antioxidant enzyme activity in brains of mice transgenic for human presenilin-1 with single or multiple mutations. Neurosci Lett 2000; 292:87-90. [PMID: 10998555 DOI: 10.1016/s0304-3940(00)01449-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease-related mutations in the presenilin-1 gene (PS1) are leading to an elevated production of neurotoxic beta-amyloid 1-42 and may additionally enhance oxidative stress. Here, we provide in vivo evidence indicating that brains of transgenic mice expressing different human Alzheimer-linked PS1 mutations exhibit a reduced activity of two antioxidant enzymes. For this purpose, mice transgenic for human PS1 and for single and multiple PS1 mutations were generated. Mice with multiple PS1 mutations showed a significantly decreased activity of the antioxidant enzymes Cu/Zn superoxide dismutase and glutathione reductase already at an age of 3-4 months. As expected, this effect was less pronounced for the mice with a single PS1 mutation. By contrast, animals bearing normal human PS1 showed significantly elevated enzyme activities relative to non-transgenic littermate controls.
Collapse
Affiliation(s)
- S Leutner
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Marie-Curie-Strasse 9, N 260, 60439 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
671
|
Mathews PM, Cataldo AM, Kao BH, Rudnicki AG, Qin X, Yang JL, Jiang Y, Picciano M, Hulette C, Lippa CF, Bird TD, Nochlin D, Walter J, Haass C, Lévesque L, Fraser PE, Andreadis A, Nixon RA. Brain Expression of Presenilins in Sporadic and Early-onset, Familial Alzheimer’s Disease. Mol Med 2000. [DOI: 10.1007/bf03401825] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
672
|
Nixon RA, Cataldo AM, Mathews PM. The endosomal-lysosomal system of neurons in Alzheimer's disease pathogenesis: a review. Neurochem Res 2000; 25:1161-72. [PMID: 11059790 DOI: 10.1023/a:1007675508413] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A prominent feature of brain pathology in Alzheimer's disease is a robust activation of the neuronal lysosomal system and major cellular pathways converging on the lysosome, namely, endocytosis and autophagy. Recent studies that identify a disturbance of the endocytic pathway as one of the earliest known manifestation of Alzheimer's disease provide insight into how beta-amyloidogenesis might be promoted in sporadic Alzheimer's disease, the most prevalent and least well understood form of the disease. Primary lysosomal dysfunction has historically been linked to neurodegeneration. New data now directly implicate cathepsins as proteases capable of initiating, as well as executing, cell death programs in certain pathologic states. These and other studies support the view that the progressive alterations of lysosomal function observed during aging and Alzheimer's disease contribute importantly to the neurodegenerative process in Alzheimer's disease.
Collapse
Affiliation(s)
- R A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962, USA.
| | | | | |
Collapse
|
673
|
Barkats M, Millecamps S, Abrioux P, Geoffroy MC, Mallet J. Overexpression of glutathione peroxidase increases the resistance of neuronal cells to Abeta-mediated neurotoxicity. J Neurochem 2000; 75:1438-46. [PMID: 10987823 DOI: 10.1046/j.1471-4159.2000.0751438.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Senile plaques are neuropathological manifestations in Alzheimer's disease (AD) and are composed mainly of extracellular deposits of amyloid beta-peptide (Abeta). Various data suggest that the accumulation of Abeta may contribute to neuronal degeneration and that Abeta neurotoxicity could be mediated by oxygen free radicals. Removal of free radicals by antioxidant scavengers or enzymes was found to protect neuronal cells in culture from Abeta toxicity. However, the nature of the free radicals involved is still unclear. In this study, we investigated whether the neuronal overexpression of glutathione peroxidase (GPx), the major hydrogen peroxide (H2O2)-de-grading enzyme in neurons, could increase their survival in a cellular model of Abeta-induced neurotoxicity. We infected pheochromocytoma (PC12) cells and rat embryonic cultured cortical neurons with an adenoviral vector encoding GPx (Ad-GPx) prior to exposure to toxic concentrations of Abeta(25-35) or (1-40). Both PC12 and cortical Ad-GPx-infected cells were significantly more resistant to Abeta-induced injury. These data strengthen the hypothesis of a role of H2O2 in the mechanism of Abeta toxicity and highlight the potential of Ad-GPx to reduce Abeta-induced damage to neurons. These findings may have applications in gene therapy for AD.
Collapse
Affiliation(s)
- M Barkats
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, CNRS UMR C9923, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
674
|
Guo Y, Zhang SX, Sokol N, Cooley L, Boulianne GL. Physical and genetic interaction of filamin with presenilin in Drosophila. J Cell Sci 2000; 113 Pt 19:3499-508. [PMID: 10984440 DOI: 10.1242/jcs.113.19.3499] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Presenilins were first identified as causative factors in early onset, familial Alzheimer's Disease (FAD). They are predicted to encode a highly conserved novel family of eight transmembrane domain proteins with a large hydrophilic loop between TM6 and TM7 that is the site of numerous FAD mutations. Here, we show that the loop region of Drosophila and human presenilins interacts with the C-terminal domain of Drosophila filamin. Furthermore, we show that Drosophila has at least two major filamin forms generated by alternative splicing from a gene that maps to position 89E10-89F4 on chromosome 3. The longest form is enriched in the central nervous system and ovaries, shares 41.7% overall amino acid identity with human filamin (ABP-280) and contains an N-terminal actin-binding domain. The shorter form is broadly expressed and encodes an alternatively spliced form of the protein lacking the actin-binding domain. Finally, we show that presenilin and filamin are expressed in overlapping patterns in Drosophila and that dominant adult phenotypes produced by overexpression of presenilin can be suppressed by overexpression of filamin in the same tissue. Taken together, these results suggest that presenilin and filamin functionally interact during development.
Collapse
Affiliation(s)
- Y Guo
- Program in Developmental Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
675
|
Aging increased amyloid peptide and caused amyloid plaques in brain of old APP/V717I transgenic mice by a different mechanism than mutant presenilin1. J Neurosci 2000. [PMID: 10964951 DOI: 10.1523/jneurosci.20-17-06452.2000] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aging of transgenic mice that overexpress the London mutant of amyloid precursor protein (APP/V717I) (Moechars et al., 1999a) was now demonstrated not to affect the normalized levels of alpha- or beta-cleaved secreted APP nor of the beta-C-terminal stubs. This indicated that aging did not markedly disturb either alpha- or beta-secretase cleavage of APP and failed to explain the origin of the massive amounts of amyloid peptides Abeta40 and Abeta42, soluble and precipitated as amyloid plaques in the brain of old APP/V717I transgenic mice. We tested the hypothesis that aging acted on presenilin1 (PS1) to affect gamma-secretase-mediated production of amyloid peptides by comparing aged APP/V717I transgenic mice to double transgenic mice coexpressing human PS1 and APP/V717I. In double transgenic mice with mutant (A246E) but not wild-type human PS1, brain amyloid peptide levels increased and resulted in amyloid plaques when the mice were only 6-9 months old, much earlier than in APP/V717I transgenic mice (12-15 months old). Mutant PS1 increased mainly brain Abeta42 levels, whereas in aged APP/V717I transgenic mice, both Abeta42 and Abeta40 increased. This resulted in a dramatic difference in the Abeta42/Abeta40 ratio of precipitated or plaque-associated amyloid peptides, i.e., 3.11+/-0.22 in double APP/V717I x PS1/A246E transgenic mice compared with 0.43 +/- 0.07 in aged APP/V717I transgenic mice, and demonstrated a clear difference between the effect of aging and the effect of the insertion of a mutant PS1 transgene. In conclusion, we demonstrate that aging did not favor amyloidogenic over nonamyloidogenic processing of APP, nor did it exert a mutant PS1-like effect on gamma-secretase. Therefore, the data are interpreted to suggest that parenchymal and vascular accumulation of amyloid in aging brain resulted from failure to clear the amyloid peptides rather than from increased production.
Collapse
|
676
|
Harigaya Y, Saido TC, Eckman CB, Prada CM, Shoji M, Younkin SG. Amyloid beta protein starting pyroglutamate at position 3 is a major component of the amyloid deposits in the Alzheimer's disease brain. Biochem Biophys Res Commun 2000; 276:422-7. [PMID: 11027491 DOI: 10.1006/bbrc.2000.3490] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The amyloid beta protein (Abeta) deposited in the Alzheimer's disease (AD) brain is heterogeneous at both its amino and carboxyl termini. Recent studies of the genetic forms of AD indicate that the aggregation and deposition of Abeta42 may be a common initiating event in all forms of AD. Here, we analyzed the amino termini of the Abeta species deposited in the AD brain, focusing specifically on species with amino-terminal pyroglutamate at position 3 (Abeta3(pE)). Immunocytochemical analysis of AD brains with an antibody specific for Abeta3(pE) confirmed that these species deposit in blood vessels and senile plaques. Using specific sandwich ELISAs, we determined the amounts of Abeta3(pE)-40 and Abeta3(pE)-42(43) in AD brain compared with other forms. This analysis showed that Abeta3(pE)-40 is closely correlated with the extent of Abeta deposition in blood vessels, whereas Abeta3(pE)-42(43) is not. In addition, Abeta3(pE)-42(43) is an important component of the Abeta deposited in senile plaques of the AD brain, constituting approximately 25% of the total Abeta42(43). In vitro comparison of Abeta1-42 and Abeta3(pE)-42 showed that Abeta3(pE)-42 is highly prone to oligomerization. These findings suggest that Abeta3(pE)-42 may be particularly important in AD pathogenesis.
Collapse
Affiliation(s)
- Y Harigaya
- Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, Florida 32224, USA.
| | | | | | | | | | | |
Collapse
|
677
|
Sawamura N, Morishima-Kawashima M, Waki H, Kobayashi K, Kuramochi T, Frosch MP, Ding K, Ito M, Kim TW, Tanzi RE, Oyama F, Tabira T, Ando S, Ihara Y. Mutant presenilin 2 transgenic mice. A large increase in the levels of Abeta 42 is presumably associated with the low density membrane domain that contains decreased levels of glycerophospholipids and sphingomyelin. J Biol Chem 2000; 275:27901-8. [PMID: 10846187 DOI: 10.1074/jbc.m004308200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N141I mutation in presenilin (PS) 2 is tightly linked with a form of autosomal dominant familial Alzheimer's disease in the Volga German families. We previously reported that mouse brains harboring mutant PS2 contained increased levels of amyloid beta protein (Abeta) 42 in the Tris-saline-soluble fraction (Oyama, F., Sawamura, N., Kobayashi, K., Morishima-Kawashima, M., Kuramochi, T., Ito, M., Tomita, T., Maruyama, K., Saido, T. C., Iwatsubo, T., Capell, A., Walter, J., Grünberg, J., Ueyama, Y., Haass, C. and Ihara, Y. (1998) J. Neurochem. 71, 313-322). Here, using a new extraction protocol, we quantitated the Abeta40 and Abeta42 levels in the Tris-saline-insoluble fraction. The insoluble Abeta levels were found to be higher than the soluble Abeta levels, and the insoluble Abeta42 levels were markedly increased in mutant PS2 transgenic mice. To investigate the origin of the insoluble Abeta42, we prepared the detergent-insoluble, low density membrane fraction. This fraction from two independent lines of mutant PS2 transgenic mice contained remarkably increased levels of Abeta42 and significantly low levels of glycerophospholipids and sphingomyelin. This unexpected finding suggests that a large increase in the levels of Abeta42 in mutant PS2 mice is presumably induced through alterations of the lipid composition in the low density membrane domain in the brain.
Collapse
Affiliation(s)
- N Sawamura
- Department of Neuropathology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
678
|
Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, Song YQ, Rogaeva E, Chen F, Kawarai T, Supala A, Levesque L, Yu H, Yang DS, Holmes E, Milman P, Liang Y, Zhang DM, Xu DH, Sato C, Rogaev E, Smith M, Janus C, Zhang Y, Aebersold R, Farrer LS, Sorbi S, Bruni A, Fraser P, St George-Hyslop P. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 2000; 407:48-54. [PMID: 10993067 DOI: 10.1038/35024009] [Citation(s) in RCA: 707] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nicastrin, a transmembrane glycoprotein, forms high molecular weight complexes with presenilin 1 and presenilin 2. Suppression of nicastrin expression in Caenorhabditis elegans embryos induces a subset of notch/glp-1 phenotypes similar to those induced by simultaneous null mutations in both presenilin homologues of C. elegans (sel-12 and hop-1). Nicastrin also binds carboxy-terminal derivatives of beta-amyloid precursor protein (betaAPP), and modulates the production of the amyloid beta-peptide (A beta) from these derivatives. Missense mutations in a conserved hydrophilic domain of nicastrin increase A beta42 and A beta40 peptide secretion. Deletions in this domain inhibit A beta production. Nicastrin and presenilins are therefore likely to be functional components of a multimeric complex necessary for the intramembranous proteolysis of proteins such as Notch/GLP-1 and betaAPP.
Collapse
Affiliation(s)
- G Yu
- Centre for Research in Neurodegenerative Diseases, Toronto Western Hospital, and Department of Medicine (Neurology), University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
679
|
Yoo AS, Cheng I, Chung S, Grenfell TZ, Lee H, Pack-Chung E, Handler M, Shen J, Xia W, Tesco G, Saunders AJ, Ding K, Frosch MP, Tanzi RE, Kim TW. Presenilin-mediated modulation of capacitative calcium entry. Neuron 2000; 27:561-72. [PMID: 11055438 DOI: 10.1016/s0896-6273(00)00066-0] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied a novel function of the presenilins (PS1 and PS2) in governing capacitative calcium entry (CCE), a refilling mechanism for depleted intracellular calcium stores. Abrogation of functional PS1, by either knocking out PS1 or expressing inactive PS1, markedly potentiated CCE, suggesting a role for PS1 in the modulation of CCE. In contrast, familial Alzheimer's disease (FAD)-linked mutant PS1 or PS2 significantly attenuated CCE and store depletion-activated currents. While inhibition of CCE selectively increased the amyloidogenic amyloid beta peptide (Abeta42), increased accumulation of the peptide had no effect on CCE. Thus, reduced CCE is most likely an early cellular event leading to increased Abeta42 generation associated with FAD mutant presenilins. Our data indicate that the CCE pathway is a novel therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- A S Yoo
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
680
|
Du Yan S, Zhu Y, Stern ED, Hwang YC, Hori O, Ogawa S, Frosch MP, Connolly ES, McTaggert R, Pinsky DJ, Clarke S, Stern DM, Ramasamy R. Amyloid β-Peptide-binding Alcohol Dehydrogenase Is a Component of the Cellular Response to Nutritional Stress. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61485-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
681
|
Mutation of Conserved Aspartates Affects Maturation of Both Aspartate Mutant and Endogenous Presenilin 1 and Presenilin 2 Complexes. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61517-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
682
|
Dewachter I, van Dorpe J, Spittaels K, Tesseur I, Van Den Haute C, Moechars D, Van Leuven F. Modeling Alzheimer's disease in transgenic mice: effect of age and of presenilin1 on amyloid biochemistry and pathology in APP/London mice. Exp Gerontol 2000; 35:831-41. [PMID: 11053674 DOI: 10.1016/s0531-5565(00)00149-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In transgenic mice that overexpress mutant Amyloid Precursor Protein [V717I], or APP/London (APP/Lo) (1999a. Early phenotypic changes in transgenic mice that overexpress different mutants of Amyloid Precursor Protein in brain. J. Biol. Chem. 274, 6483-6492; 1999b. Premature death in transgenic mice that overexpress mutant Amyloid precursor protein is preceded by severe neurodegeneration and apoptosis. Neuroscience 91, 819-830) the AD related phenotype of plaque and vascular amyloid pathology is late (12-15 months). This typical and diagnostic pathology is thereby dissociated in time from early symptoms (3-9 months) that include disturbed behavior, neophobia, aggression, glutamate excitotoxicity, defective cognition and decreased LTP. The APP/Lo transgenic mice are therefore a very interesting model to study early as well as late pathology, including the effect of age. In ageing APP*Lo mice, brain soluble and especially "insoluble" amyloid peptides dramatically increased, while normalized levels of secreted APPsalpha and APPsbeta, as well as cell-bound beta-C-stubs, remained remarkably constant, indicating normal alpha- and beta-secretase processing of APP. In double transgenic mice, i.e. APP/LoxPS1, clinical mutant PS1[A246E] but not wild-type human PS1 increased Abeta, and plaques and vascular amyloid developed at age 6-9 months. The PS1 mutant caused increasing Abeta42 production, while ageing did not. Amyloid deposits are thus formed, not by overproduction of Abeta, but by lack of clearance and/or degradation in the brain of ageing APP/Lo transgenic mice. The clearance pathways of the cerebral amyloid peptides are therefore valuable targets for fundamental research and for therapeutic potential. Although hyper-phosphorylated protein tau was evident in swollen neurites around the amyloid plaques, neurofibrillary pathology is not observed and the "tangle" aspect of AD pathology is therefore still missing from all current transgenic "amyloid" models. Also the "ApoE4" risk for late onset AD remains a problem for modeling in transgenic mice. We have generated transgenic mice that overexpress human ApoE4 (2000. Expression of Human Apolipoprotein E4 in neurons causes hyperphosphorylation of Protein tau in the brains of transgenic mice. Am. J. Pathol. 156 (3) 951-964) or human protein tau (1999. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am. J. Pathol. 155, 2153-2165) in their neurons. Both develop a similar although not identical axonopathy, with progressive degeneration of nerves and with muscle wasting resulting in motoric problems. Remarkably, ApoE4 transgenic mice are, like the tau transgenic mice, characterized by progressive hyper-phosphorylation of protein tau also in motor neurons which explains the motoric defects. Further crossing with the APP/Lo transgenic mice is ongoing to yield "multiple" transgenic mouse strains to study new aspects of amyloid and tau pathology.
Collapse
Affiliation(s)
- I Dewachter
- Experimental Genetics Group, Center for Human Genetics, Flemish Institute for Biotechnology (VIB), K.U.Leuven, Campus Gasthuisberg O&N 06, B-3000, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
683
|
Niwa K, Younkin L, Ebeling C, Turner SK, Westaway D, Younkin S, Ashe KH, Carlson GA, Iadecola C. Abeta 1-40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc Natl Acad Sci U S A 2000; 97:9735-40. [PMID: 10944232 PMCID: PMC16934 DOI: 10.1073/pnas.97.17.9735] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptides derived from proteolytic processing of the beta-amyloid precursor protein (APP), including the amyloid-beta peptide (Abeta), play a critical role in the pathogenesis of Alzheimer's dementia. We report that transgenic mice overexpressing APP and Abeta have a profound attenuation in the increase in neocortical blood flow elicited by somatosensory activation. The impairment is highly correlated with brain Abeta concentration and is reproduced in normal mice by topical neocortical application of exogenous Abeta1-40 but not Abeta1-42. Overexpression of M146L mutant presenilin-1 in APP mice enhances the production of Abeta1-42 severalfold, but it does not produce a commensurate attenuation of the hyperemic response. APP and Abeta overexpression do not diminish the intensity of neural activation, as reflected by the increase in somatosensory cortex glucose usage. Thus, Abeta-induced alterations in functional hyperemia produce a potentially deleterious mismatch between substrate delivery and energy demands imposed by neural activity.
Collapse
Affiliation(s)
- K Niwa
- Center for Clinical and Molecular Neurobiology Departments of Neurology, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
684
|
Van Uden E, Kang DE, Koo EH, Masliah E. LDL receptor-related protein (LRP) in Alzheimer's disease: towards a unified theory of pathogenesis. Microsc Res Tech 2000; 50:268-72. [PMID: 10936878 DOI: 10.1002/1097-0029(20000815)50:4<268::aid-jemt3>3.0.co;2-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To date, mutations in three genes, beta-amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2), have been found to be causally related to familial Alzheimer's disease (AD). In addition, polymorphisms in three other genes (among others), apolipoprotein E (apoE), alpha2-macroglobulin (alpham), and the low density lipoprotein receptor-related protein (LRP), are implicated to contribute to AD pathogenesis. Interestingly, the encoded gene products are all functionally related in various ways to LRP. Specifically apoE, alpha2m, secreted APP, and amyloid beta-protein (Abeta) complexed to either apoE or alpha2m are ligands of LRP. Furthermore, over-expression of presenilin 1 results in decreased expression of LRP. Since levels of many LRP ligands are increased in Alzheimer's disease and LRP and its ligands are present in senile plaques, decreased LRP function may be a central component in AD pathogenesis. This review explores the current knowledge of LRP in AD and its relationship to the other known AD susceptibility markers.
Collapse
Affiliation(s)
- E Van Uden
- Department of Neurosciences, University of California-San Diego, School of Medicine, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
685
|
Fukuchi K, Li L, Hart M, Lindsey JR. Accumulation of amyloid-beta protein in exocrine glands of transgenic mice overexpressing a carboxyl terminal portion of amyloid protein precursor. Int J Exp Pathol 2000; 81:231-9. [PMID: 10971744 PMCID: PMC2517730 DOI: 10.1046/j.1365-2613.2000.00156.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amyloid-beta protein (Abeta) and its precursor (betaPP) play important roles in the pathogenesis of Alzheimer disease and inclusion-body myositis. In humans, Abeta deposits are found in brain, skeletal muscle, and skin. Therefore, we have investigated possible Abeta deposits in multiple tissues of two transgenic mouse lines overexpressing the signal plus Abeta-bearing 99-amino acid carboxyl terminal sequences of betaPP under the control of a cytomegalovirus enhancer/beta-actin promoter. One of the lines developed Abeta-immunoreactive intracellular deposits consistently in the pancreas and lacrimal gland, and occasionally in gastric, DeSteno's, and lingual glands. Although the Abeta deposits increased during ageing and degenerative changes of the tissues were observed, little or no extracellular Abeta deposits were observed up to the age of 25 months. These lines of transgenic mice are useful for studying the molecular mechanisms of development and clearance of intracellular Abeta deposits.
Collapse
Affiliation(s)
- K Fukuchi
- Departments of Comparative Medicine; Medicine, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | |
Collapse
|
686
|
Abstract
Several recent advances have provided new insights and possibilities in defining therapeutic targets for Alzheimer's disease. Of particular importance is the identification of the beta-secretase enzyme and the demonstration that immunization of a transgenic mouse model of Alzheimer's disease with Abeta(1-42) peptide can prevent or alleviate neuropathological features of the disease.
Collapse
Affiliation(s)
- E D Thorsett
- Elan Pharmaceuticals, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
687
|
Huse JT, Doms RW. Closing in on the amyloid cascade: recent insights into the cell biology of Alzheimer's disease. Mol Neurobiol 2000; 22:81-98. [PMID: 11414282 DOI: 10.1385/mn:22:1-3:081] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Accumulation of the amyloid-beta (A beta) peptide in the central nervous system (CNS) is considered by many to be the crucial pathological insult that ultimately leads to the development of Alzheimer's disease (AD). Regulating the production and/or aggregation of A beta could therefore be of considerable benefit to patients afflicted with AD. It has long been known that A beta is derived from the proteolytic processing of the amyloid precursor protein (APP) by two enzymatic activities, beta-secretase and gamma-secretase. Recent breakthroughs have led to the identification of the aspartyl protease BACE (beta-site APP-cleaving enzyme) as beta-secretase and the probable identification of the presenilin proteins as gamma-secretases. This review discusses what is know about BACE and the presenilins, focusing on their capacity as secretases, as well as the options for therapeutic advancement the careful characterization of these proteins will provide. These findings are presented in the context of the "amyloid cascade hypothesis" and its physiological relevance in AD pathogenesis.
Collapse
Affiliation(s)
- J T Huse
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
688
|
Abstract
Alzheimer's disease (AD), characterized by neuritic plaques and neurofibrillary tangles of the brain, is experienced by more and more elderly people in a form of senile dementia. Four genes are closely linked with AD and are located on chromosomes 21, 19, 14 and 1. Transgenic technology enables the development of animal models for research into this human disease. Recently reported transgenic AD mouse models, which express AD-related mutant human genes, develop some significant aspects of AD-like pathology. The specific role of these mice in representing different targets, the consequent pathology of AD and the availability of this increasingly popular tool for investigating new therapeutic strategies for AD are reviewed.
Collapse
Affiliation(s)
- P Yu
- General Toxicology I Unit, Istituto di Ricerche Biomediche 'A. Marxer' LCG RBM S.p.A, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | | |
Collapse
|
689
|
Lah JJ, Levey AI. Endogenous presenilin-1 targets to endocytic rather than biosynthetic compartments. Mol Cell Neurosci 2000; 16:111-26. [PMID: 10924255 DOI: 10.1006/mcne.2000.0861] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Presenilin-1 (PS1), which is linked to familial Alzheimer's disease, participates in the proteolytic processing of Notch and amyloid-beta precursor protein (APP) by an unknown mechanism. Reports of PS1 localization to the endoplasmic reticulum (ER) and Golgi apparatus have focused attention on the early biosynthetic pathway as the site of PS1 function. However, it is unclear how Notch cleavage and APP processing events which occur at or near the cell surface are influenced by PS1. In contrast to some earlier studies, examination of endogenously expressed PS1 in PC12 cells by subcellular fractionation and immunofluorescence microscopy revealed a distribution distinct from that of ER and Golgi markers. Rather, PS1 colocalized with transferrin receptor, a marker for early endosomes. In addition, electron microscopic examination of intact vesicles immunoisolated with PS1 antibodies allowed visualization of endocytic tracer in endosomes. These findings identify an early endosomal pool of PS1 and suggest alternative mechanisms for PS1 interactions with APP and Notch.
Collapse
Affiliation(s)
- J J Lah
- Department of Neurology, Emory University School of Medicine, Woodruff Memorial Research Building, Suite 6000, 1639 Pierce Drive, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
690
|
Annaert W, De Strooper B. Neuronal models to study amyloid precursor protein expression and processing in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:53-62. [PMID: 10899431 DOI: 10.1016/s0925-4439(00)00032-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- W Annaert
- Neuronal Cell Biology and Gene Transfer Laboratory, Centre for Human Genetics, Flanders Interuniversitary Institute for Biotechnology, Gasthuisberg, KU Leuven, Belgium
| | | |
Collapse
|
691
|
Golde TE, Eckman CB, Younkin SG. Biochemical detection of Abeta isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:172-87. [PMID: 10899442 DOI: 10.1016/s0925-4439(00)00043-0] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Prior to the identification of the various abnormal proteins deposited as fibrillar aggregates in the Alzheimer's disease (AD) brain, there was tremendous controversy over the importance of the various lesions with respect to primacy in the pathology of AD. Nevertheless, based on analogy to systemic amyloidosis, many investigators believed that the amyloid deposits in AD played a causal role and that characterization of these deposits would hold the key to understanding this complex disease. Indeed, in retrospect, it was the initial biochemical purifications of the approximately 4 kDa amyloid beta-peptide (Abeta) from amyloid deposits in the mid 1980s that launched a new era of AD research (Glenner and Wong, Biochem. Biophys. Res. Commun. 122 (1984) 1121-1135; Wong et al., Proc. Natl. Acad Sci. USA 82 (1985) 8729 8732; and Masters et al., Proc. Natl. Acad Sci. USA 82 (1985) 4245-4249). Subsequent studies of the biology of Abeta together with genetic studies of AD have all supported the hypothesis that altered Abeta metabolism leading to aggregation plays a causal role in AD. Although there remains controversy as to whether Abeta deposited as classic amyloid or a smaller, aggregated, form causes AD, the relevance of studying the amyloid deposits has certainly been proven. Despite the significant advances in our understanding of the role of Abeta in AD pathogenesis, many important aspects of Abeta biology remain a mystery. This review will highlight those aspects of Abeta biology that have led to our increased understanding of the pathogenesis of AD as well as areas which warrant additional study.
Collapse
Affiliation(s)
- T E Golde
- Department of Pharmacology, Mayo Clinic Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
692
|
Fraser PE, Yang DS, Yu G, Lévesque L, Nishimura M, Arawaka S, Serpell LC, Rogaeva E, St George-Hyslop P. Presenilin structure, function and role in Alzheimer disease. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:1-15. [PMID: 10899427 DOI: 10.1016/s0925-4439(00)00028-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous missense mutations in the presenilins are associated with the autosomal dominant form of familial Alzheimer disease. Presenilin genes encode polytopic transmembrane proteins, which are processed by proteolytic cleavage and form high-molecular-weight complexes under physiological conditions. The presenilins have been suggested to be functionally involved in developmental morphogenesis, unfolded protein responses and processing of selected proteins including the beta-amyloid precursor protein. Although the underlying mechanism by which presenilin mutations lead to development of Alzheimer disease remains elusive, one consistent mutational effect is an overproduction of long-tailed amyloid beta-peptides. Furthermore, presenilins interact with beta-catenin to form presenilin complexes, and the physiological and mutational effects are also observed in the catenin signal transduction pathway.
Collapse
Affiliation(s)
- P E Fraser
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Ont, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
693
|
Janus C, Chishti MA, Westaway D. Transgenic mouse models of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:63-75. [PMID: 10899432 DOI: 10.1016/s0925-4439(00)00033-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- C Janus
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Ont., Canada
| | | | | |
Collapse
|
694
|
Verdile G, Martins RN, Duthie M, Holmes E, St George-Hyslop PH, Fraser PE. Inhibiting amyloid precursor protein C-terminal cleavage promotes an interaction with presenilin 1. J Biol Chem 2000; 275:20794-8. [PMID: 10801777 DOI: 10.1074/jbc.c000208200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Presenilin 1 (PS1) plays a pivotal role in the production of the amyloid-beta protein, which is central to the pathogenesis of Alzheimer's disease. It has been demonstrated that PS1 regulates the gamma-secretase proteolysis of the amyloid precursor protein (APP) C-terminal fragment (APP-C100), which is the final step in amyloid-beta protein production. The mechanism and detailed pathway of this PS1 activity has yet to be fully resolved, but it may be due to a presenilin-controlled trafficking of the APP fragment or possibly an inherent PS1 proteolytic activity. We have investigated the possibility of a direct interaction of PS1 and the APP-C100 within the high molecular mass presenilin complex. However, the APP-C100 is rapidly degraded, and if it forms, then any PS1.APP complex is likely to be very transitory. To circumvent this problem, we have utilized the protease inhibitor N-acetyl-leucyl-norleucinal (LLnL) and the lysosomotropic agent NH(4)Cl, which inhibits the turnover of the APP-C100. Under these conditions, levels of the fragment increased appreciably, and as shown by glycerol gradient analysis, the APP-C100 shifted to a higher molecular mass complex that overlapped with PS1. Immunoprecipitation studies demonstrated that a significant population of the APP-C100 co-precipitated with PS1. These findings suggest that PS1 may mediate the shuttling of APP fragments and/or facilitate their presentation for gamma-secretase cleavage through a direct interaction.
Collapse
Affiliation(s)
- G Verdile
- Sir James McCusker Alzheimer's Disease Research Unit and Department of Surgery, University of Western Australia, Hollywood Private Hospital, Nedlands, Western Australia 6009
| | | | | | | | | | | |
Collapse
|
695
|
Janus C, D'Amelio S, Amitay O, Chishti MA, Strome R, Fraser P, Carlson GA, Roder JC, St George-Hyslop P, Westaway D. Spatial learning in transgenic mice expressing human presenilin 1 (PS1) transgenes. Neurobiol Aging 2000; 21:541-9. [PMID: 10924767 DOI: 10.1016/s0197-4580(00)00107-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dominant mutations in the Presenilin 1 gene are linked to an aggressive, early-onset form of familial Alzheimer's Disease (FAD). Spatial memory of transgenic (Tg) mice expressing either mutant (lines Tg(M146L)1, Tg(M146L)76, Tg(L286V)198) or wild type (line Tg(PS1wt)195) human PS1 transgenes was investigated in the Morris water maze (WM) test at 6 and 9 months of age. The results showed that the mutated Tg mice had increased swim speed when compared to non-Tg littermates or Tg PS1 wild type mice. The swim speed difference did not, however, significantly affect the spatial learning in the WM test and all groups showed comparable search paths during training and similar spatial bias during probe trials. When re-tested at 9 months, all mice showed significantly improved learning acquisition of spatial information. The lack of progressive spatial learning impairment in mice expressing the mutated human PS1 transgene in the WM does not preclude impairments in other cognitive tasks but suggests that full phenotypic expression of mutant PS1 alleles may require co-expression of human versions of other AD-associated genes.
Collapse
Affiliation(s)
- C Janus
- Centre for Research in Neurodegenerative Disease, University of Toronto, Tanz Neuroscience Building, 6 Queen's Park Cr. W., M5S 3H2, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
696
|
Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:331-9. [PMID: 10880403 PMCID: PMC1850215 DOI: 10.1016/s0002-9440(10)64544-0] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To analyze the relationship between the deposition of amyloid beta peptides (Abeta) and neuronal loss in transgenic models of Alzheimer's disease (AD), we examined the frontal neocortex (Fc) and CA1 portion of hippocampus (CA1) in PSAPP mice doubly expressing AD-associated mutant presenilin 1 (PS1) and Swedish-type mutant beta amyloid precursor protein (APPsw) by morphometry of Abeta burden and neuronal counts. Deposition of Abeta was detected as early as 3 months of age in the Fc and CA1 of PSAPP mice and progressed to cover 28.3% of the superior frontal cortex and 18.4% of CA1 at 12 months: approximately 20- (Fc) and approximately 40- (CA1) fold greater deposition than in APPsw mice. There was no significant difference in neuronal counts in either CA1 or the frontal cortex between nontransgenic (non-tg), PS1 transgenic, APPsw, and PSAPP mice at 3 to 12 months of age. In the PSAPP mice, there was disorganization of the neuronal architecture by compact amyloid plaques, and the average number of neurons was 8 to 10% fewer than the other groups (NS, P > 0.10) in CA1 and 2 to 20% fewer in frontal cortex (NS, P = 0.31). There was no loss of total synaptophysin immunoreactivity in the Fc or dentate gyrus molecular layer of the 12-month-old PSAPP mice. Thus, although co-expression of mutant PS1 with Swedish mutant betaAPP leads to marked cortical and limbic Abeta deposition in an age-dependent manner, it does not result in the dramatic neuronal loss in hippocampus and association cortex characteristic of AD.
Collapse
|
697
|
McLaurin J, Golomb R, Jurewicz A, Antel JP, Fraser PE. Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid beta peptide and inhibit abeta -induced toxicity. J Biol Chem 2000; 275:18495-502. [PMID: 10764800 DOI: 10.1074/jbc.m906994199] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inositol has 8 stereoisomers, four of which are physiologically active. myo-Inositol is the most abundant isomer in the brain and more recently shown that epi- and scyllo-inositol are also present. myo-Inositol complexes with Abeta42 in vitro to form a small stable micelle. The ability of inositol stereoisomers to interact with and stabilize small Abeta complexes was addressed. Circular dichroism spectroscopy demonstrated that epi- and scyllo- but not chiro-inositol were able to induce a structural transition from random to beta-structure in Abeta42. Alternatively, none of the stereoisomers were able to induce a structural transition in Abeta40. Electron microscopy demonstrated that inositol stabilizes small aggregates of Abeta42. We demonstrate that inositol-Abeta interactions result in a complex that is non-toxic to nerve growth factor-differentiated PC-12 cells and primary human neuronal cultures. The attenuation of toxicity is the result of Abeta-inositol interaction, as inositol uptake inhibitors had no effect on neuronal survival. The use of inositol stereoisomers allowed us to elucidate an important structure-activity relationship between Abeta and inositol. Inositol stereoisomers are naturally occurring molecules that readily cross the blood-brain barrier and may represent a viable treatment for AD through the complexation of Abeta and attenuation of Abeta neurotoxic effects.
Collapse
Affiliation(s)
- J McLaurin
- Centre for Research in Neurodegenerative Diseases, Department of Laboratory Medicine, University of Toronto, Toronto, Ontario, M5S 3H2, Canada.
| | | | | | | | | |
Collapse
|
698
|
Honda T, Nihonmatsu N, Yasutake K, Ohtake A, Sato K, Tanaka S, Murayama O, Murayama M, Takashima A. Familial Alzheimer's disease-associated mutations block translocation of full-length presenilin 1 to the nuclear envelope. Neurosci Res 2000; 37:101-11. [PMID: 10867173 DOI: 10.1016/s0168-0102(00)00106-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polyclonal antibody, M5, to the hydrophilic loop domain of human presenilin 1 (PS1) was prepared. Western blot and immunoprecipitation analyses showed that M5 specifically recognized the processed C-terminal fragment, but not the full-length PS1. Epitope mapping analysis revealed that the essential sequence for recognition of the C-terminal fragment by M5 is DPEAQRR (302-308). The recognition of the C-terminal fragment by M5 in a processing-dependent manner was further confirmed by competitive enzyme-linked immunosorbent assay using the synthetic peptide L281 (281-311), which contains the putative processing site and the preceding amino acids to the site. Although L281 contains the epitope sequence for M5, the maximum inhibition was only 14%. Immunocytochemistry using M5 combined with hL312, which recognizes both full-length PS1 and the C-terminal fragment, allowed us to distinguish the localization of the processed C-terminal fragment from that of full-length PS1. Confocal microscopy demonstrated that the full-length form of wild-type PS1 is preferentially located in the nuclear envelope, while the processed C-terminal fragment is mainly present in the endoplasmic reticulum (ER). However, PS1 with familial Alzheimer's disease-associated mutations could not translocate to the nuclear envelope, and both the full-length and processed mutants were co-localized in the ER.
Collapse
Affiliation(s)
- T Honda
- Laboratory for Alzheimer's Disease, Brain Science Institute, RIKEN, 351-0198, Saitama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
699
|
Masliah E, Alford M, Mallory M, Rockenstein E, Moechars D, Van Leuven F. Abnormal glutamate transport function in mutant amyloid precursor protein transgenic mice. Exp Neurol 2000; 163:381-7. [PMID: 10833311 DOI: 10.1006/exnr.2000.7386] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have shown that amyloid precursor protein (APP), which plays a central role in Alzheimer's disease (AD), protects against excitotoxic neuronal injuries by regulating the function of the glial glutamate transporters. The mechanisms underlying these effects and their relationship to the neurodegenerative process in AD are under intense scrutiny. In this context, the main objective of the present study was to determine if overexpression of mutant human APP in transgenic mouse brains results in altered functioning of the excitatory amino acid transporters (EAATs). Transgenic mice expressing the 695 amino acid form of the human APP from the Thy-1 promoter showed a significant decrease in B(max) and K(D) for aspartate uptake when compared to nontransgenic controls. This decrease in glutamate transporter activity was associated with decreased protein expression of glial specific glutamate transporters, EAAT1 and 2, but did not affect mRNA levels. These results suggest that expression of mutant forms of APP disturbs astroglial transport of excitatory amino acids at the posttranscriptional level leading, in turn, to increased susceptibility to glutamate toxicity.
Collapse
Affiliation(s)
- E Masliah
- Department of Neurosciences, University of California at San Diego, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
700
|
Russo C, Schettini G, Saido TC, Hulette C, Lippa C, Lannfelt L, Ghetti B, Gambetti P, Tabaton M, Teller JK. Presenilin-1 mutations in Alzheimer's disease. Nature 2000; 405:531-2. [PMID: 10850703 DOI: 10.1038/35014735] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- C Russo
- Division of Neuropathology, Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|