651
|
Ruiz-Riquelme A, Lau HHC, Stuart E, Goczi AN, Wang Z, Schmitt-Ulms G, Watts JC. Prion-like propagation of β-amyloid aggregates in the absence of APP overexpression. Acta Neuropathol Commun 2018; 6:26. [PMID: 29615128 PMCID: PMC5883524 DOI: 10.1186/s40478-018-0529-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/21/2018] [Indexed: 11/10/2022] Open
Abstract
The amyloid cascade hypothesis posits that the initiating event in Alzheimer's disease (AD) is the aggregation and deposition of the β-amyloid (Aβ) peptide, which is a proteolytic cleavage product of the amyloid precursor protein (APP). Mounting evidence suggests that the formation and spread of prion-like Aβ aggregates during AD may contribute to disease progression. Inoculation of transgenic mice that overexpress APP with pre-formed Aβ aggregates results in the prion-like induction of cerebral Aβ deposition. To determine whether Aβ deposition can also be induced when physiological APP levels are present in the brain, we inoculated AppNL-F mice, a knock-in model of AD that avoids potential artifacts associated with APP overexpression, with Aβ aggregates derived from the brains of AD patients or transgenic mice. In all cases, induced Aβ deposition was apparent in the corpus callosum, olfactory bulb, and meningeal blood vessels of inoculated mice at 130-150 days post-inoculation, whereas uninoculated and buffer-inoculated animals exhibited minimal or no Aβ deposits at these ages. Interestingly, despite being predominantly composed of protease-resistant Aβ42 aggregates, the induced parenchymal Aβ deposits were largely diffuse and were unreactive to an amyloid-binding dye. These results demonstrate that APP overexpression is not a prerequisite for the prion-like induction of cerebral Aβ deposition. Accordingly, spreading of Aβ deposition may contribute to disease progression in AD patients.
Collapse
|
652
|
Ni J, Taniguchi A, Ozawa S, Hori Y, Kuninobu Y, Saito T, Saido TC, Tomita T, Sohma Y, Kanai M. Near-Infrared Photoactivatable Oxygenation Catalysts of Amyloid Peptide. Chem 2018. [DOI: 10.1016/j.chempr.2018.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
653
|
Izumi H, Shinoda Y, Saito T, Saido TC, Sato K, Yabuki Y, Matsumoto Y, Kanemitsu Y, Tomioka Y, Abolhassani N, Nakabeppu Y, Fukunaga K. The Disease-modifying Drug Candidate, SAK3 Improves Cognitive Impairment and Inhibits Amyloid beta Deposition in App Knock-in Mice. Neuroscience 2018; 377:87-97. [PMID: 29510211 DOI: 10.1016/j.neuroscience.2018.02.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/10/2018] [Accepted: 02/25/2018] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common form of elderly dementia in the world. At present, acetylcholine inhibitors, such as donepezil, galantamine and rivastigmine, are used for AD therapy, but the therapeutic efficacy is limited. We recently proposed T-type voltage-gated Ca2+ channels' (T-VGCCs) enhancer as a new therapeutic candidate for AD. In the current study, we confirmed the pharmacokinetics of SAK3 in the plasma and brain of mice using ultra performance liquid chromatography-tandem mass spectrometry. We also investigated the effects of SAK3 on the major symptoms of AD, such as cognitive dysfunction and amyloid beta (Aβ) accumulation, in AppNL-F knock-in (NL-F) mice, which have been established as an AD model. Chronic SAK3 (0.5 mg/kg/day) oral administration for 3 months from 9 months of age improved cognitive function and inhibited Aβ deposition in 12-month-old NL-F mice. Using microarray and real-time PCR analysis, we discovered serum- and glucocorticoid-induced protein kinase 1 (SGK1) as one of possible genes involved in the inhibition of Aβ deposition and improvement of cognitive function by SAK3. These results support the idea that T-VGCC enhancer, SAK3 could be a novel candidate for disease-modifying therapeutics for AD.
Collapse
Affiliation(s)
- Hisanao Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Keita Sato
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Yoshitomi Kanemitsu
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
654
|
Ulrich JD, Ulland TK, Mahan TE, Nyström S, Nilsson KP, Song WM, Zhou Y, Reinartz M, Choi S, Jiang H, Stewart FR, Anderson E, Wang Y, Colonna M, Holtzman DM. ApoE facilitates the microglial response to amyloid plaque pathology. J Exp Med 2018; 215:1047-1058. [PMID: 29483128 PMCID: PMC5881464 DOI: 10.1084/jem.20171265] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/28/2017] [Accepted: 02/07/2018] [Indexed: 01/22/2023] Open
Abstract
Increasing evidence suggests that apoE influences the innate immune response in neurodegeneration. Here, Ulrich et al. report that apoE influences amyloid plaque morphology and the microglial response to amyloid plaques, along with plaque-associated neuronal toxicity. One of the hallmarks of Alzheimer’s disease is the presence of extracellular diffuse and fibrillar plaques predominantly consisting of the amyloid-β (Aβ) peptide. Apolipoprotein E (ApoE) influences the deposition of amyloid pathology through affecting the clearance and aggregation of monomeric Aβ in the brain. In addition to influencing Aβ metabolism, increasing evidence suggests that apoE influences microglial function in neurodegenerative diseases. Here, we characterize the impact that apoE has on amyloid pathology and the innate immune response in APPPS1ΔE9 and APPPS1-21 transgenic mice. We report that Apoe deficiency reduced fibrillar plaque deposition, consistent with previous studies. However, fibrillar plaques in Apoe-deficient mice exhibited a striking reduction in plaque compaction. Hyperspectral fluorescent imaging using luminescent conjugated oligothiophenes identified distinct Aβ morphotypes in Apoe-deficient mice. We also observed a significant reduction in fibrillar plaque–associated microgliosis and activated microglial gene expression in Apoe-deficient mice, along with significant increases in dystrophic neurites around fibrillar plaques. Our results suggest that apoE is critical in stimulating the innate immune response to amyloid pathology.
Collapse
Affiliation(s)
- Jason D Ulrich
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Tyler K Ulland
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Thomas E Mahan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Sofie Nyström
- Department of Chemistry, IFM, Linköping University, Linköping, Sweden
| | - K Peter Nilsson
- Department of Chemistry, IFM, Linköping University, Linköping, Sweden
| | - Wilbur M Song
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Mariska Reinartz
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Radboud University Nijmegen, Nijmegen, Netherlands
| | - Seulah Choi
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Hong Jiang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Floy R Stewart
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Elise Anderson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Yaming Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.,Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO .,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
655
|
Gamma oscillations in the entorhinal-hippocampal circuit underlying memory and dementia. Neurosci Res 2018; 129:40-46. [PMID: 29438778 DOI: 10.1016/j.neures.2018.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/22/2022]
Abstract
Gamma oscillations that occur within the entorhinal cortex-hippocampal circuitry play important roles in the formation and retrieval of memory in healthy brains. Recent studies report that gamma oscillations are impaired in the entorhinal-hippocampal circuit of Alzheimer's disease (AD) patients and AD animal models. Here we review the latest advancements in studies of entorhinal-hippocampal gamma oscillations in healthy memory and dementia. This review is especially salient for readers in Alzheimer's research field not familiar with in vivo electrophysiology. Recent studies have begun to show a causal link between gamma oscillations and AD pathology, suggesting that gamma oscillations may even offer a plausible future therapeutic target.
Collapse
|
656
|
Peters DG, Pollack AN, Cheng KC, Sun D, Saido T, Haaf MP, Yang QX, Connor JR, Meadowcroft MD. Dietary lipophilic iron alters amyloidogenesis and microglial morphology in Alzheimer's disease knock-in APP mice. Metallomics 2018; 10:426-443. [PMID: 29424844 DOI: 10.1039/c8mt00004b] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized pathologically by amyloid beta (Aβ) deposition, microgliosis, and iron dyshomeostasis. Increased labile iron due to homeostatic dysregulation is believed to facilitate amyloidogenesis. Free iron is incorporated into aggregating amyloid peptides during Aβ plaque formation and increases potential for oxidative stress surrounding plaques. The goal of this work was to observe how brain iron levels temporally influence Aβ plaque formation, plaque iron concentration, and microgliosis. We fed humanized APPNL-F and APPNL-G-F knock-in mice lipophilic iron compound 3,5,5-trimethylhexanoyl ferrocene (TMHF) and iron deficient diets for twelve months. TMHF elevated brain iron by 22% and iron deficiency decreased brain iron 21% relative to control diet. Increasing brain iron with TMHF accelerated plaque formation, increased Aβ staining, and increased senile morphology of amyloid plaques. Increased brain iron was associated with increased plaque-iron loading and microglial iron inclusions. TMHF decreased IBA1+ microglia branch length while increasing roundness indicative of microglial activation. This body of work suggests that increasing mouse brain iron with TMHF potentiates a more human-like Alzheimer's disease phenotype with iron integration into Aβ plaques and associated microgliosis.
Collapse
Affiliation(s)
- Douglas G Peters
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA and Department of Neural and Behavioral Science, The Pennsylvania State University - College of Medicine, Hershey, Pennsylvania, USA
| | - Alexis N Pollack
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA
| | - Keith C Cheng
- Department of Pathology (Gittlen Cancer Research Institute), The Pennsylvania State University - College of Medicine, Hershey, Pennsylvania, USA
| | - Dongxiao Sun
- Department of Pharmacology, The Pennsylvania State University - College of Medicine, Hershey, Pennsylvania, USA
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wakō-shi, Saitama-ken, Japan
| | - Michael P Haaf
- Department of Chemistry, Ithaca College, Ithaca, New York, USA
| | - Qing X Yang
- Department of Radiology (Center for NMR Research), The Pennsylvania State University - College of Medicine, Hershey, Pennsylvania, USA
| | - James R Connor
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA
| | - Mark D Meadowcroft
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA and Department of Radiology (Center for NMR Research), The Pennsylvania State University - College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
657
|
Salas IH, Weerasekera A, Ahmed T, Callaerts-Vegh Z, Himmelreich U, D'Hooge R, Balschun D, Saido TC, De Strooper B, Dotti CG. High fat diet treatment impairs hippocampal long-term potentiation without alterations of the core neuropathological features of Alzheimer disease. Neurobiol Dis 2018; 113:82-96. [PMID: 29427755 DOI: 10.1016/j.nbd.2018.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/04/2018] [Indexed: 01/25/2023] Open
Abstract
Type 2 diabetes (T2DM) and obesity might increase the risk for AD by 2-fold. Different attempts to model the effect of diet-induced diabetes on AD pathology in transgenic animal models, resulted in opposite conclusions. Here, we used a novel knock-in mouse model for AD, which, differently from other models, does not overexpress any proteins. Long-term high fat diet treatment triggers a reduction in hippocampal N-acetyl-aspartate/myo-inositol metabolites ratio and impairs long term potentiation in hippocampal acute slices. Interestingly, these alterations do not correlate with changes in the core neuropathological features of AD, i.e. amyloidosis and Tau hyperphosphorylation. The data suggest that AD phenotypes associated with high fat diet treatment seen in other models for AD might be exacerbated because of the overexpressing systems used to study the effects of familial AD mutations. Our work supports the increasing insight that knock-in mice might be more relevant models to study the link between metabolic disorders and AD.
Collapse
Affiliation(s)
- Isabel H Salas
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND), KU Leuven, Leuven, Belgium
| | - Akila Weerasekera
- Biomedical MRI-Unit/MoSAIC, KU Leuven Campus Gasthuisberg, Leuven, Belgium
| | - Tariq Ahmed
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium; Neurological Disorders Research Center, Doha, Qatar
| | | | - Uwe Himmelreich
- Biomedical MRI-Unit/MoSAIC, KU Leuven Campus Gasthuisberg, Leuven, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
| | - Detlef Balschun
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND), KU Leuven, Leuven, Belgium; UK Dementia Research Institute (DRI-UK), ION UCL, London, UK.
| | - Carlos G Dotti
- Centro de Biologıa Molecular 'Severo Ochoa' (CSIC/UAM), Madrid, Spain.
| |
Collapse
|
658
|
Ohshima Y, Taguchi K, Mizuta I, Tanaka M, Tomiyama T, Kametani F, Yabe-Nishimura C, Mizuno T, Tokuda T. Mutations in the β-amyloid precursor protein in familial Alzheimer's disease increase Aβ oligomer production in cellular models. Heliyon 2018; 4:e00511. [PMID: 29560429 PMCID: PMC5857613 DOI: 10.1016/j.heliyon.2018.e00511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/29/2022] Open
Abstract
Soluble oligomers of amyloid-β (Aβ) peptides (AβOs) contribute to neurotoxicity in Alzheimer’s disease (AD). However, it currently remains unknown whether an increase in AβOs is the common phenotype in cellular and animal models. Furthermore, it has not yet been established whether experimental studies conducted using models overexpressing mutant genes of the amyloid precursor protein (APP) are suitable for investigating the underlying molecular mechanism of AD. We herein employed the Flp-In™ T-REx™-293 (T-REx 293) cellular system transfected with a single copy of wild-type, Swedish-, Dutch-, or London-type APP, and quantified the levels of Aβ monomers (Aβ1-40 and Aβ1-42) and AβOs using an enzyme-linked immunosorbent assay (ELISA). The levels of extracellular AβOs were significantly higher in Dutch- and London-type APP-transfected cells than in wild-type APP-transfected cells. Increased levels were also observed in Swedish-type APP-transfected cells. On the other hand, intracellular levels of AβOs were unaltered among wild-type and mutant APP-transfected cells. Intracellular levels of Aβ monomers were undetectable, and no common abnormality was observed in their extracellular levels or ratios (Aβ1-42/Aβ1-40) among the cells examined. We herein demonstrated that increased levels of extracellular AβOs are the common phenotype in cellular models harboring different types of APP mutations. Our results suggest that extracellular AβOs play a key role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Yoichi Ohshima
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan.,Department of Neurology, Kyoto Yamashiro General Medical Center, 1-27 Kizu station, Kizugawa, Kyoto, 619-0214, Japan
| | - Katsutoshi Taguchi
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Ikuko Mizuta
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Takami Tomiyama
- Department of Neuroscience, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Fuyuki Kametani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Chihiro Yabe-Nishimura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan.,Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
659
|
Orr AG, Lo I, Schumacher H, Ho K, Gill M, Guo W, Kim DH, Knox A, Saito T, Saido TC, Simms J, Toddes C, Wang X, Yu GQ, Mucke L. Istradefylline reduces memory deficits in aging mice with amyloid pathology. Neurobiol Dis 2018; 110:29-36. [PMID: 29100987 PMCID: PMC5747997 DOI: 10.1016/j.nbd.2017.10.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/26/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022] Open
Abstract
Adenosine A2A receptors are putative therapeutic targets for neurological disorders. The adenosine A2A receptor antagonist istradefylline is approved in Japan for Parkinson's disease and is being tested in clinical trials for this condition elsewhere. A2A receptors on neurons and astrocytes may contribute to Alzheimer's disease (AD) by impairing memory. However, it is not known whether istradefylline enhances cognitive function in aging animals with AD-like amyloid plaque pathology. Here, we show that elevated levels of Aβ, C-terminal fragments of the amyloid precursor protein (APP), or amyloid plaques, but not overexpression of APP per se, increase astrocytic A2A receptor levels in the hippocampus and neocortex of aging mice. Moreover, in amyloid plaque-bearing mice, low-dose istradefylline treatment enhanced spatial memory and habituation, supporting the conclusion that, within a well-defined dose range, A2A receptor blockers might help counteract memory problems in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Anna G Orr
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, CA 94158, USA.
| | - Iris Lo
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Heike Schumacher
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Michael Gill
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Weikun Guo
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Daniel H Kim
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Anthony Knox
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Jeffrey Simms
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Carlee Toddes
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Xin Wang
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
660
|
Fujita K, Chen X, Homma H, Tagawa K, Amano M, Saito A, Imoto S, Akatsu H, Hashizume Y, Kaibuchi K, Miyano S, Okazawa H. Targeting Tyro3 ameliorates a model of PGRN-mutant FTLD-TDP via tau-mediated synaptic pathology. Nat Commun 2018; 9:433. [PMID: 29382817 PMCID: PMC5789822 DOI: 10.1038/s41467-018-02821-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in the progranulin (PGRN) gene cause a tau pathology-negative and TDP43 pathology-positive form of frontotemporal lobar degeneration (FTLD-TDP). We generated a knock-in mouse harboring the R504X mutation (PGRN-KI). Phosphoproteomic analysis of this model revealed activation of signaling pathways connecting PKC and MAPK to tau prior to TDP43 aggregation and cognitive impairments, and identified PKCα as the kinase responsible for the early-stage tau phosphorylation at Ser203. Disinhibition of Gas6 binding to Tyro3 due to PGRN reduction results in activation of PKCα via PLCγ, inducing tau phosphorylation at Ser203, mislocalization of tau to dendritic spines, and spine loss. Administration of a PKC inhibitor, B-Raf inhibitor, or knockdown of molecules in the Gas6-Tyro3-tau axis rescues spine loss and cognitive impairment of PGRN-KI mice. Collectively, these results suggest that targeting of early-stage and aggregation-independent tau signaling represents a promising therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Kyota Fujita
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Xigui Chen
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65, Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Ayumu Saito
- Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Seiya Imoto
- Health Intelligence Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hiroyasu Akatsu
- Department of Medicine for Aging in Place and Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65, Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Satoru Miyano
- Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
661
|
Jakobsen JE, Johansen MG, Schmidt M, Liu Y, Li R, Callesen H, Melnikova M, Habekost M, Matrone C, Bouter Y, Bayer TA, Nielsen AL, Duthie M, Fraser PE, Holm IE, Jørgensen AL. Expression of the Alzheimer's Disease Mutations AβPP695sw and PSEN1M146I in Double-Transgenic Göttingen Minipigs. J Alzheimers Dis 2018; 53:1617-30. [PMID: 27540966 DOI: 10.3233/jad-160408] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mutations in the amyloid-β protein precursor gene (AβPP), the presenilin 1 gene (PSEN1) or the presenilin 2 gene (PSEN2) that increase production of the AβPP-derived peptide Aβ42 cause early-onset Alzheimer's disease. Rodent models of the disease show that further increase in Aβ42 production and earlier brain pathology can be obtained by coexpressing AβPP and PSEN1 mutations. To generate such elevated Aβ42 level in a large animal model, we produced Göttingen minipigs carrying in their genome one copy of a human PSEN1 cDNA with the Met146Ile (PSEN1M146I) mutation and three copies of a human AβPP695 cDNA with the Lys670Asn/Met671Leu (AβPPsw) double-mutation. Both transgenes were expressed in fibroblasts and in the brain, and their respective proteins were processed normally. Immunohistochemical staining with Aβ42-specific antibodies detected intraneuronal accumulation of Aβ42 in brains from a 10- and an 18-month-old pig. Such accumulation may represent an early event in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Jannik E Jakobsen
- Department of Biomedicine (East), Aarhus University, Aarhus C, Denmark
| | | | - Mette Schmidt
- Department of Large Animal Sciences/Reproduction, University of Copenhagen, Frederiksberg C, Denmark
| | - Ying Liu
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Rong Li
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | | | - Mette Habekost
- Department of Biomedicine (East), Aarhus University, Aarhus C, Denmark
| | - Carmela Matrone
- Department of Biomedicine (East), Aarhus University, Aarhus C, Denmark
| | - Yvonne Bouter
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Thomas A Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Monika Duthie
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ida E Holm
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark.,Department of Pathology, Randers Hospital, Randers, Denmark
| | | |
Collapse
|
662
|
Birnbaum JH, Wanner D, Gietl AF, Saake A, Kündig TM, Hock C, Nitsch RM, Tackenberg C. Oxidative stress and altered mitochondrial protein expression in the absence of amyloid-β and tau pathology in iPSC-derived neurons from sporadic Alzheimer's disease patients. Stem Cell Res 2018; 27:121-130. [PMID: 29414602 DOI: 10.1016/j.scr.2018.01.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is a prominent feature of Alzheimer's disease (AD) and increased production of reactive oxygen species (ROS) has been described in postmortem brain samples and animal models. However, these observations were made at a late stage of disease and the inability to examine an early, presymptomatic phase in human neurons impeded our understanding of cause or consequence of mitochondrial dysfunction in AD. We used human induced pluripotent stem cell-derived neuronal cells (iN cells) from sporadic AD (SAD) patients and healthy control subjects (HCS) to show aberrant mitochondrial function in patient-derived cells. We observed that neuronal cultures from some patients produced more ROS and displayed higher levels of DNA damage. Furthermore, patient-derived cells showed increased levels of oxidative phosphorylation chain complexes, whereas mitochondrial fission and fusion proteins were not affected. Surprisingly, these effects neither correlated with Aβ nor phosphorylated and total tau levels. Synaptic protein levels were also unaffected in SAD iN cells. The results of this study give new insights into constitutional metabolic changes in neurons from subjects prone to develop Alzheimer's pathology. They suggest that increased ROS production may have an integral role in the development of sporadic AD prior to the appearance of amyloid and tau pathology.
Collapse
Affiliation(s)
- Julian H Birnbaum
- University of Zurich, Institute for Regenerative Medicine, Schlieren, Switzerland; University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Debora Wanner
- University of Zurich, Institute for Regenerative Medicine, Schlieren, Switzerland
| | - Anton F Gietl
- University of Zurich, Institute for Regenerative Medicine, Schlieren, Switzerland
| | - Antje Saake
- University of Zurich, Institute for Regenerative Medicine, Schlieren, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Christoph Hock
- University of Zurich, Institute for Regenerative Medicine, Schlieren, Switzerland
| | - Roger M Nitsch
- University of Zurich, Institute for Regenerative Medicine, Schlieren, Switzerland; University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- University of Zurich, Institute for Regenerative Medicine, Schlieren, Switzerland; University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland.
| |
Collapse
|
663
|
Hashimoto S, Ishii A, Kamano N, Watamura N, Saito T, Ohshima T, Yokosuka M, Saido TC. Endoplasmic reticulum stress responses in mouse models of Alzheimer's disease: Overexpression paradigm versus knockin paradigm. J Biol Chem 2018; 293:3118-3125. [PMID: 29298895 DOI: 10.1074/jbc.m117.811315] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/19/2017] [Indexed: 12/16/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is believed to play an important role in the etiology of Alzheimer's disease (AD). The accumulation of misfolded proteins and perturbation of intracellular calcium homeostasis are thought to underlie the induction of ER stress, resulting in neuronal dysfunction and cell death. Several reports have shown an increased ER stress response in amyloid precursor protein (APP) and presenilin1 (PS1) double-transgenic (Tg) AD mouse models. However, whether the ER stress observed in these mouse models is actually caused by AD pathology remains unclear. APP and PS1 contain one and nine transmembrane domains, respectively, for which it has been postulated that overexpressed membrane proteins can become wedged in a misfolded configuration in ER membranes, thereby inducing nonspecific ER stress. Here, we used an App-knockin (KI) AD mouse model that accumulates amyloid-β (Aβ) peptide without overexpressing APP to investigate whether the ER stress response is heightened because of Aβ pathology. Thorough examinations indicated that no ER stress responses arose in App-KI or single APP-Tg mice. These results suggest that PS1 overexpression or mutation induced a nonspecific ER stress response that was independent of Aβ pathology in the double-Tg mice. Moreover, we observed no ER stress in a mouse model of tauopathy (P301S-Tau-Tg mice) at various ages, suggesting that ER stress is also not essential in tau pathology-induced neurodegeneration. We conclude that the role of ER stress in AD pathogenesis needs to be carefully addressed in future studies.
Collapse
Affiliation(s)
- Shoko Hashimoto
- From the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan,
| | - Ayano Ishii
- From the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan.,Laboratory of Comparative Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-City, Tokyo 180-8602, Japan
| | - Naoko Kamano
- From the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan
| | - Naoto Watamura
- From the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan.,Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan, and
| | - Takashi Saito
- From the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan.,Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan, and
| | - Makoto Yokosuka
- Laboratory of Comparative Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-City, Tokyo 180-8602, Japan
| | - Takaomi C Saido
- From the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan,
| |
Collapse
|
664
|
Wu Z, Nakanishi H. Old and new inflammation and infection hypotheses of Alzheimer's disease: focus on Microglia-aging for chronic neuroinflammation. Nihon Yakurigaku Zasshi 2018; 150:141-147. [PMID: 28890476 DOI: 10.1254/fpj.150.141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
665
|
Alzheimer's Disease Model System Using Drosophila. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:25-40. [PMID: 29951813 DOI: 10.1007/978-981-13-0529-0_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the most epidemic neuronal dysfunctions among elderly people. It is accompanied by neuronal disorders along with learning and memory defects, as well as massive neurodegeneration phenotype. The presence of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques, called senile plaques (SPs), and brain atrophy are typically observed in the brains of AD patients. It has been over 20 years since the discovery that small peptide, called beta-amyloid (Aβ), has pivotal role for the disease formation. Since then, a variety of drugs have been developed to cure AD; however, there is currently no effective drug for the disorder. This therapeutic void reflects lacks of ideal model system, which can evaluate the progression of AD in a short period. Recently, large numbers of AD model system have been established using Drosophila melanogaster by overproducing Aβ molecules in the brain. These systems successfully reflect some of the symptoms along with AD. In this review, we would like to point out "pros and cons" of Drosophila AD models.
Collapse
|
666
|
Tanaka H, Kondo K, Chen X, Homma H, Tagawa K, Kerever A, Aoki S, Saito T, Saido T, Muramatsu SI, Fujita K, Okazawa H. The intellectual disability gene PQBP1 rescues Alzheimer's disease pathology. Mol Psychiatry 2018; 23:2090-2110. [PMID: 30283027 PMCID: PMC6250680 DOI: 10.1038/s41380-018-0253-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/09/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Early-phase pathologies of Alzheimer's disease (AD) are attracting much attention after clinical trials of drugs designed to remove beta-amyloid (Aβ) aggregates failed to recover memory and cognitive function in symptomatic AD patients. Here, we show that phosphorylation of serine/arginine repetitive matrix 2 (SRRM2) at Ser1068, which is observed in the brains of early phase AD mouse models and postmortem end-stage AD patients, prevents its nuclear translocation by inhibiting interaction with T-complex protein subunit α. SRRM2 deficiency in neurons destabilized polyglutamine binding protein 1 (PQBP1), a causative gene for intellectual disability (ID), greatly affecting the splicing patterns of synapse-related genes, as demonstrated in a newly generated PQBP1-conditional knockout model. PQBP1 and SRRM2 were downregulated in cortical neurons of human AD patients and mouse AD models, and the AAV-PQBP1 vector recovered RNA splicing, the synapse phenotype, and the cognitive decline in the two mouse models. Finally, the kinases responsible for the phosphorylation of SRRM2 at Ser1068 were identified as ERK1/2 (MAPK3/1). These results collectively reveal a new aspect of AD pathology in which a phosphorylation signal affecting RNA splicing and synapse integrity precedes the formation of extracellular Aβ aggregates and may progress in parallel with tau phosphorylation.
Collapse
Affiliation(s)
- Hikari Tanaka
- 0000 0001 1014 9130grid.265073.5Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Kanoh Kondo
- 0000 0001 1014 9130grid.265073.5Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Xigui Chen
- 0000 0001 1014 9130grid.265073.5Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Hidenori Homma
- 0000 0001 1014 9130grid.265073.5Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Kazuhiko Tagawa
- 0000 0001 1014 9130grid.265073.5Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Aurelian Kerever
- 0000 0004 1762 2738grid.258269.2Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 Japan
| | - Shigeki Aoki
- 0000 0004 1762 2738grid.258269.2Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Shin-ichi Muramatsu
- 0000000123090000grid.410804.9Department of Neurology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0496 Japan
| | - Kyota Fujita
- 0000 0001 1014 9130grid.265073.5Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan. .,Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
667
|
He Z, Guo JL, McBride JD, Narasimhan S, Kim H, Changolkar L, Zhang B, Gathagan RJ, Yue C, Dengler C, Stieber A, Nitla M, Coulter DA, Abel T, Brunden KR, Trojanowski JQ, Lee VMY. Amyloid-β plaques enhance Alzheimer's brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med 2018; 24:29-38. [PMID: 29200205 PMCID: PMC5760353 DOI: 10.1038/nm.4443] [Citation(s) in RCA: 426] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is characterized by extracellular amyloid-β (Aβ) plaques and intracellular tau inclusions. However, the exact mechanistic link between these two AD lesions remains enigmatic. Through injection of human AD-brain-derived pathological tau (AD-tau) into Aβ plaque-bearing mouse models that do not overexpress tau, we recapitulated the formation of three major types of AD-relevant tau pathologies: tau aggregates in dystrophic neurites surrounding Aβ plaques (NP tau), AD-like neurofibrillary tangles (NFTs) and neuropil threads (NTs). These distinct tau pathologies have different temporal onsets and functional consequences on neural activity and behavior. Notably, we found that Aβ plaques created a unique environment that facilitated the rapid amplification of proteopathic AD-tau seeds into large tau aggregates, initially appearing as NP tau, which was followed by the formation and spread of NFTs and NTs, likely through secondary seeding events. Our study provides insights into a new multistep mechanism underlying Aβ plaque-associated tau pathogenesis.
Collapse
Affiliation(s)
- Zhuohao He
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jing L Guo
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jennifer D McBride
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sneha Narasimhan
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hyesung Kim
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lakshmi Changolkar
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ronald J Gathagan
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cuiyong Yue
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christopher Dengler
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anna Stieber
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Magdalena Nitla
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Douglas A Coulter
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Departments of Neuroscience and of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ted Abel
- Iowa Neuroscience Institute and Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Kurt R Brunden
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
668
|
Alzheimer’s Disease and Frontotemporal Lobar Degeneration: Mouse Models. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
669
|
Affiliation(s)
- Nobuhisa Iwata
- Department of Genome-based Drug Discovery
- Graduate School of Biomedical Sciences, Nagasaki University Japan
| |
Collapse
|
670
|
Wolters FJ, Ikram MA. Epidemiology of Dementia: The Burden on Society, the Challenges for Research. Methods Mol Biol 2018; 1750:3-14. [PMID: 29512062 DOI: 10.1007/978-1-4939-7704-8_1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dementia is among the leading causes of death and disability. Due to the ageing population, its prevalence is expected to nearly triple worldwide by 2050, urging the development of preventive and curative interventions. Various modifiable risk factors have been identified in community-based cohort studies, but insight into the underlying pathophysiological mechanisms is lacking. Clinical trials have thus far failed in the development of disease-modifying therapy in patients with dementia, thereby triggering a shift of focus toward the presymptomatic phase of disease. The extensive preclinical disease course of Alzheimer's disease warrants reliable, easily obtainable biomarkers to aid in timely application of preventive strategies, selecting participants for neuroprotective trials, and disease monitoring in trials and clinical practice. Biomarker and drug discovery may yield the fruits from technology-driven developments in the field of genomics, epigenetics, metabolomics, and brain imaging. In that context, bridging the gap between translational and population research may well prove a giant leap toward development of successful preventive and curative interventions against dementia.
Collapse
Affiliation(s)
- Frank J Wolters
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - M A Ikram
- Departments of Epidemiology, Radiology, Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
671
|
Reduced expression of Na +/Ca 2+ exchangers is associated with cognitive deficits seen in Alzheimer's disease model mice. Neuropharmacology 2017; 131:291-303. [PMID: 29274751 DOI: 10.1016/j.neuropharm.2017.12.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 11/21/2022]
Abstract
Na+/Ca2+ exchangers (NCXs) are expressed primarily in the plasma membrane of most cell types, where they mediate electrogenic exchange of one Ca2+ for three Na+ ions, depending on Ca2+ and Na+ electrochemical gradients across the membrane. Three mammalian NCX isoforms (NCX1, NCX2, and NCX3) are each encoded by a distinct gene. Here, we report that NCX2 and NCX3 protein and mRNA levels are relatively reduced in hippocampal CA1 of APP23 and APP-KI mice. Likewise, NCX2+/- or NCX3+/- mice exhibited impaired hippocampal LTP and memory-related behaviors. Moreover, relative to controls, calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation significantly decreased in NCX2+/- mouse hippocampus but increased in hippocampus of NCX3+/- mice. NCX2 or NCX3 heterozygotes displayed impaired maintenance of hippocampal LTP, a phenotype that in NCX2+/- mice was correlated with elevated calcineurin activity and rescued by treatment with the calcineurin (CaN) inhibitor FK506. Likewise, FK506 treatment significantly restored impaired hippocampal LTP in APP-KI mice. Moreover, Ca2+ clearance after depolarization following high frequency stimulation was slightly delayed in hippocampal CA1 regions of NCX2+/- mice. Electron microscopy revealed relatively decreased synaptic density in CA1 of NCX2+/- mice, while the number of spines with perforated synapses in CA1 significantly increased in NCX3+/- mice. We conclude that memory impairment seen in NCX2+/- and NCX3+/- mice reflect dysregulated hippocampal CaMKII activity, which alters dendritic spine morphology, findings with implications for memory deficits seen in Alzheimer's disease model mice.
Collapse
|
672
|
Jankowsky JL, Zheng H. Practical considerations for choosing a mouse model of Alzheimer's disease. Mol Neurodegener 2017; 12:89. [PMID: 29273078 PMCID: PMC5741956 DOI: 10.1186/s13024-017-0231-7] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023] Open
Abstract
Alzheimer’s disease (AD) is behaviorally identified by progressive memory impairment and pathologically characterized by the triad of β-amyloid plaques, neurofibrillary tangles, and neurodegeneration. Genetic mutations and risk factors have been identified that are either causal or modify the disease progression. These genetic and pathological features serve as basis for the creation and validation of mouse models of AD. Efforts made in the past quarter-century have produced over 100 genetically engineered mouse lines that recapitulate some aspects of AD clinicopathology. These models have been valuable resources for understanding genetic interactions that contribute to disease and cellular reactions that are engaged in response. Here we focus on mouse models that have been widely used stalwarts of the field or that are recently developed bellwethers of the future. Rather than providing a summary of each model, we endeavor to compare and contrast the genetic approaches employed and to discuss their respective advantages and limitations. We offer a critical account of the variables which may contribute to inconsistent findings and the factors that should be considered when choosing a model and interpreting the results. We hope to present an insightful review of current AD mouse models and to provide a practical guide for selecting models best matched to the experimental question at hand.
Collapse
Affiliation(s)
- Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Hui Zheng
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
673
|
Bignante EA, Ponce NE, Heredia F, Musso J, Krawczyk MC, Millán J, Pigino GF, Inestrosa NC, Boccia MM, Lorenzo A. APP/Go protein Gβγ-complex signaling mediates Aβ degeneration and cognitive impairment in Alzheimer's disease models. Neurobiol Aging 2017; 64:44-57. [PMID: 29331876 DOI: 10.1016/j.neurobiolaging.2017.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/05/2017] [Accepted: 12/10/2017] [Indexed: 11/15/2022]
Abstract
Deposition of amyloid-β (Aβ), the proteolytic product of the amyloid precursor protein (APP), might cause neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the direct involvement of APP in the mechanism of Aβ-induced degeneration in AD remains on debate. Here, we analyzed the interaction of APP with heterotrimeric Go protein in primary hippocampal cultures and found that Aβ deposition dramatically enhanced APP-Go protein interaction in dystrophic neurites. APP overexpression rendered neurons vulnerable to Aβ toxicity by a mechanism that required Go-Gβγ complex signaling and p38-mitogen-activated protein kinase activation. Gallein, a selective pharmacological inhibitor of Gβγ complex, inhibited Aβ-induced dendritic and axonal dystrophy, abnormal tau phosphorylation, synaptic loss, and neuronal cell death in hippocampal neurons expressing endogenous protein levels. In the 3xTg-AD mice, intrahippocampal application of gallein reversed memory impairment associated with early Aβ pathology. Our data provide further evidence for the involvement of APP/Go protein in Aβ-induced degeneration and reveal that Gβγ complex is a signaling target potentially relevant for developing therapies for halting Aβ degeneration in AD.
Collapse
Affiliation(s)
- Elena Anahi Bignante
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto Universitario de Ciencias Biomédicas de Córdoda (IUCBC), Argentina
| | - Nicolás Eric Ponce
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia Heredia
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juliana Musso
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Krawczyk
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Millán
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo F Pigino
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Punta Arenas, Chile
| | - Mariano M Boccia
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo Lorenzo
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
674
|
Castillo E, Leon J, Mazzei G, Abolhassani N, Haruyama N, Saito T, Saido T, Hokama M, Iwaki T, Ohara T, Ninomiya T, Kiyohara Y, Sakumi K, LaFerla FM, Nakabeppu Y. Comparative profiling of cortical gene expression in Alzheimer's disease patients and mouse models demonstrates a link between amyloidosis and neuroinflammation. Sci Rep 2017; 7:17762. [PMID: 29259249 PMCID: PMC5736730 DOI: 10.1038/s41598-017-17999-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by accumulation of amyloid β (Aβ) and neurofibrillary tangles. Oxidative stress and inflammation are considered to play an important role in the development and progression of AD. However, the extent to which these events contribute to the Aβ pathologies remains unclear. We performed inter-species comparative gene expression profiling between AD patient brains and the App NL-G-F/NL-G-F and 3xTg-AD-H mouse models. Genes commonly altered in App NL-G-F/NL-G-F and human AD cortices correlated with the inflammatory response or immunological disease. Among them, expression of AD-related genes (C4a/C4b, Cd74, Ctss, Gfap, Nfe2l2, Phyhd1, S100b, Tf, Tgfbr2, and Vim) was increased in the App NL-G-F/NL-G-F cortex as Aβ amyloidosis progressed with exacerbated gliosis, while genes commonly altered in the 3xTg-AD-H and human AD cortices correlated with neurological disease. The App NL-G-F/NL-G-F cortex also had altered expression of genes (Abi3, Apoe, Bin2, Cd33, Ctsc, Dock2, Fcer1g, Frmd6, Hck, Inpp5D, Ly86, Plcg2, Trem2, Tyrobp) defined as risk factors for AD by genome-wide association study or identified as genetic nodes in late-onset AD. These results suggest a strong correlation between cortical Aβ amyloidosis and the neuroinflammatory response and provide a better understanding of the involvement of gender effects in the development of AD.
Collapse
Affiliation(s)
- Erika Castillo
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Julio Leon
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Guianfranco Mazzei
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Naoki Haruyama
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Masaaki Hokama
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Neurosurgery, Japan Community Health Care Organization Kyushu Hospital, Kitakyushu, 806-8501, Japan
| | - Toru Iwaki
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yutaka Kiyohara
- Hisayama Research Institute for Lifestyle Diseases, Hisayama, Fukuoka, Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697, USA
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
675
|
Pchitskaya E, Kraskovskaya N, Chernyuk D, Popugaeva E, Zhang H, Vlasova O, Bezprozvanny I. Stim2-Eb3 Association and Morphology of Dendritic Spines in Hippocampal Neurons. Sci Rep 2017; 7:17625. [PMID: 29247211 PMCID: PMC5732248 DOI: 10.1038/s41598-017-17762-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/30/2017] [Indexed: 01/14/2023] Open
Abstract
Mushroom spines form strong synaptic contacts and are essential for memory storage. We have previously demonstrated that neuronal store-operated calcium entry (nSOC) in hippocampal neurons is regulated by STIM2 protein. This pathway plays a key role in stability of mushroom spines and is compromised in different mice models of Alzheimer's disease (AD). Actin was thought to be the sole cytoskeleton compartment presented in dendritic spines, however, recent studies demonstrated that dynamic microtubules with EB3 capped plus-ends transiently enter spines. We showed that STIM2 forms an endoplasmic reticulum (ER) Ca2+ -dependent complex with EB3 via Ser-x-Ile-Pro aminoacid motif and that disruption of STIM2-EB3 interaction resulted in loss of mushroom spines in hippocampal neurons. Overexpression of EB3 causes increase of mushroom spines fraction and is able to restore their deficiency in hippocampal neurons obtained from PS1-M146V-KI AD mouse model. STIM2 overexpression failed to restore mushroom dendritic spines after EB3 knockdown, while in contrast EB3 overexpression rescued loss of mushroom spines resulting from STIM2 depletion. We propose that EB3 is involved in regulation of dendritic spines morphology, in part due to its association with STIM2, and that modulation of EB3 expression is a potential way to overcome synaptic loss during AD.
Collapse
Affiliation(s)
- Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Nina Kraskovskaya
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Daria Chernyuk
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Hua Zhang
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Olga Vlasova
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation. .,Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
676
|
Matsubara K, Okuda M, Shibata S, Miyaki S, Ohkubo T, Izu H, Fujii T. The delaying effect of alpha-glycerophosphocholine on senescence, transthyretin deposition, and osteoarthritis in senescence-accelerated mouse prone 8 mice. Biosci Biotechnol Biochem 2017; 82:647-653. [PMID: 29191088 DOI: 10.1080/09168451.2017.1403883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Administration of alpha-glycerophosphocholine (GPC), a choline compound in food, is expected to contribute to human health. In this study, we evaluated its effect on aging in senescence-accelerated mouse prone 8 (SAMP8) mice. Male SAMP8 mice had free access to a commercial stock diet and drinking water with or without GPC (0.07 mg/ml). Mice in the GPC group had significantly lower total senescence grading score than that of the control group at 36 weeks of age. Administration of GPC decreased the deposition of transthyretin (TTR), an amyloidogenic protein, in the brain. Aggregated TTR activated microglia and led to neuroinflammation. Thus, GPC would protect the brain by reducing TTR deposition and preventing neuroinflammation. In a histological study of knee joints, it was found that SAMP8 mice administered GPC showed decreased joint degeneration. These results suggest that GPC delays the aging process and may be a useful compound in anti-aging functional food development.
Collapse
Affiliation(s)
- Kiminori Matsubara
- a Department of Human Life Science Education, Graduate School of Education , Hiroshima University , Higashi-Hiroshima , Japan
| | - Mayumi Okuda
- a Department of Human Life Science Education, Graduate School of Education , Hiroshima University , Higashi-Hiroshima , Japan
| | - Sachi Shibata
- b Department of Nutrition and Life Science, Faculty of Life Science and Biotechnology , Fukuyama University , Fukuyama , Japan
| | - Shigeru Miyaki
- c Medical Center for Translational and Clinical Research , Hiroshima University Hospital , Hiroshima , Japan
| | - Takeshi Ohkubo
- d Department of Health Nutrition , Sendai Shirayuri Women's College , Sendai , Japan
| | - Hanae Izu
- e National Research Institute of Brewing , Higashi-Hiroshima , Japan
| | - Tsutomu Fujii
- e National Research Institute of Brewing , Higashi-Hiroshima , Japan.,f School of Applied Biological Science, Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| |
Collapse
|
677
|
Savas JN, Wang YZ, DeNardo LA, Martinez-Bartolome S, McClatchy DB, Hark TJ, Shanks NF, Cozzolino KA, Lavallée-Adam M, Smukowski SN, Park SK, Kelly JW, Koo EH, Nakagawa T, Masliah E, Ghosh A, Yates JR. Amyloid Accumulation Drives Proteome-wide Alterations in Mouse Models of Alzheimer's Disease-like Pathology. Cell Rep 2017; 21:2614-2627. [PMID: 29186695 PMCID: PMC5726791 DOI: 10.1016/j.celrep.2017.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/26/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022] Open
Abstract
Amyloid beta (Aβ) peptides impair multiple cellular pathways and play a causative role in Alzheimer's disease (AD) pathology, but how the brain proteome is remodeled by this process is unknown. To identify protein networks associated with AD-like pathology, we performed global quantitative proteomic analysis in three mouse models at young and old ages. Our analysis revealed a robust increase in Apolipoprotein E (ApoE) levels in nearly all brain regions with increased Aβ levels. Taken together with prior findings on ApoE driving Aβ accumulation, this analysis points to a pathological dysregulation of the ApoE-Aβ axis. We also found dysregulation of protein networks involved in excitatory synaptic transmission. Analysis of the AMPA receptor (AMPAR) complex revealed specific loss of TARPγ-2, a key AMPAR-trafficking protein. Expression of TARPγ-2 in hAPP transgenic mice restored AMPA currents. This proteomic database represents a resource for the identification of protein alterations responsible for AD.
Collapse
Affiliation(s)
- Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Yi-Zhi Wang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura A DeNardo
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Daniel B McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Timothy J Hark
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Natalie F Shanks
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kira A Cozzolino
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mathieu Lavallée-Adam
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Samuel N Smukowski
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sung Kyu Park
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffery W Kelly
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Edward H Koo
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Terunaga Nakagawa
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anirvan Ghosh
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
678
|
Latif-Hernandez A, Shah D, Craessaerts K, Saido T, Saito T, De Strooper B, Van der Linden A, D'Hooge R. Subtle behavioral changes and increased prefrontal-hippocampal network synchronicity in APP NL-G-F mice before prominent plaque deposition. Behav Brain Res 2017; 364:431-441. [PMID: 29158112 DOI: 10.1016/j.bbr.2017.11.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023]
Abstract
Amyloid-β (Aβ) peptides occur in the brains of patients with Alzheimer's disease (AD), but their role in functional impairment is still debated. High levels of APP and APP fragments in mice that overexpress APP might confound their use in preclinical research. We examined the occurrence of behavioral, cognitive and neuroimaging changes in APPNL-G-F knock-in mice that display Aβ42 amyloidosis in the absence of APP overexpression. Female APPNL-G-F mice (carrying Swedish, Iberian and Arctic APP mutations) were compared to APPNL mice (APP Swedish) at 3, 7 and 10 months. Mice were subjected to a test battery that referred to clinical AD symptoms, comprising cage activity, open field, elevated plus maze, social preference and novelty test, and spatial learning, reversal learning and spatial reference memory performance. Our assessment confirmed that behavior at these early ages was largely unaffected in these mice in accordance with previous reports, with some subtle behavioral changes, mainly in social and anxiety-related test performance. Resting-state functional MRI (rsfMRI) assessed connectivity between hippocampal and prefrontal regions with an established role in flexibility, learning and memory. Increased prefrontal-hippocampal network synchronicity was found in 3-month-old APPNL-G-F mice. These functional changes occurred before prominent amyloid plaque deposition.
Collapse
Affiliation(s)
| | - Disha Shah
- Bio-Imaging Lab, University of Antwerp, Belgium
| | | | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, Riken Brain Science Institute, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, Riken Brain Science Institute, Japan
| | | | | | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, KU Leuven, Belgium.
| |
Collapse
|
679
|
Cai H, Wang Y, He J, Cai T, Wu J, Fang J, Zhang R, Guo Z, Guan L, Zhan Q, Lin L, Xiao Y, Pan H, Wang Q. Neuroprotective effects of bajijiasu against cognitive impairment induced by amyloid-β in APP/PS1 mice. Oncotarget 2017; 8:92621-92634. [PMID: 29190943 PMCID: PMC5696209 DOI: 10.18632/oncotarget.21515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/03/2017] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological degenerative disease. The main clinical manifestations of AD include progressive cognitive impairment and alteration of personality. Senile plaques, neuroinflammation, and destruction of synapse structure stability are the main pathological features of AD. Bajijiasu(BJJS) is extracted from Morinda Officinalis, a Chinese herb. In this study, we explored the effect of BJJS on AD from many aspects in APPswe/PSEN1ΔE9 (APP/PS1) double transgenic mice. The Morris water maze and novel object recognition tests results showed that BJJS could significantly improve the learning and memory abilities in APP/PS1 mice. BJJS treatment increased the level of insulin degradation enzyme (IDE) and neprilysin (NEP) and decreased the level of β-site app cleaving enzyme 1(BACE1) in the brain of APP/PS1 mice. BJJS-treated APP/PS1 mice appeared to have reductions of Aβ deposition and senile plaques, and showed higher levels of neurotrophic factors in the brain. We also found that BJJS had an inhibitory function on neuroinflammation in APP/PS1 mice. In addition, the synapse structure relevant proteins were elevated in the brain of BJJS-treated APP/PS1 mice. The present results indicated that BJJS could attenuate cognitive impairment via ameliorating the AD-related pathological alterations in APP/PS1 mice. These findings suggest that BJJS may be a potential therapeutic strategy in Alzheimer's disease.
Collapse
Affiliation(s)
- Haobin Cai
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Neurology & Psychology, Shenzhen Hospital Affiliated to Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Yijie Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiayang He
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Tiantian Cai
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jun Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiansong Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Rong Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhouke Guo
- Department of Neurology & Psychology, Shenzhen Hospital Affiliated to Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Li Guan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qinkai Zhan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Li Lin
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Xiao
- Guangzhou Medical University, Guangzhou 510182, China
| | - Huafeng Pan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
680
|
Kobayashi Y, Sugahara H, Shimada K, Mitsuyama E, Kuhara T, Yasuoka A, Kondo T, Abe K, Xiao JZ. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer's disease. Sci Rep 2017; 7:13510. [PMID: 29044140 PMCID: PMC5647431 DOI: 10.1038/s41598-017-13368-2] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023] Open
Abstract
It has previously been shown that the consumption of probiotics may have beneficial effects not only on peripheral tissues but also on the central nervous system and behavior via the microbiota-gut-brain axis, raising the possibility that treatment with probiotics could be an effective therapeutic strategy for managing neurodegenerative disorders. In this study, we investigated the effects of oral administration of Bifidobacterium breve strain A1 (B. breve A1) on behavior and physiological processes in Alzheimer's disease (AD) model mice. We found that administration of B. breve A1 to AD mice reversed the impairment of alternation behavior in a Y maze test and the reduced latency time in a passive avoidance test, indicating that it prevented cognitive dysfunction. We also demonstrated that non-viable components of the bacterium or its metabolite acetate partially ameliorated the cognitive decline observed in AD mice. Gene profiling analysis revealed that the consumption of B. breve A1 suppressed the hippocampal expressions of inflammation and immune-reactive genes that are induced by amyloid-β. Together, these findings suggest that B. breve A1 has therapeutic potential for preventing cognitive impairment in AD.
Collapse
Affiliation(s)
- Yodai Kobayashi
- Morinaga Milk Industry Co., Ltd Next Generation Science Institute, 5-1-83 Higashihara, Zama, Kanagawa, 252-8583, Japan.
| | - Hirosuke Sugahara
- Morinaga Milk Industry Co., Ltd Next Generation Science Institute, 5-1-83 Higashihara, Zama, Kanagawa, 252-8583, Japan
| | - Kousuke Shimada
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Eri Mitsuyama
- Morinaga Milk Industry Co., Ltd Next Generation Science Institute, 5-1-83 Higashihara, Zama, Kanagawa, 252-8583, Japan
| | - Tetsuya Kuhara
- Morinaga Milk Industry Co., Ltd Next Generation Science Institute, 5-1-83 Higashihara, Zama, Kanagawa, 252-8583, Japan
| | - Akihito Yasuoka
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Takashi Kondo
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Keiko Abe
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Tokyo, Japan
| | - Jin-Zhong Xiao
- Morinaga Milk Industry Co., Ltd Next Generation Science Institute, 5-1-83 Higashihara, Zama, Kanagawa, 252-8583, Japan
| |
Collapse
|
681
|
Eskandari-Sedighi G, Daude N, Gapeshina H, Sanders DW, Kamali-Jamil R, Yang J, Shi B, Wille H, Ghetti B, Diamond MI, Janus C, Westaway D. The CNS in inbred transgenic models of 4-repeat Tauopathy develops consistent tau seeding capacity yet focal and diverse patterns of protein deposition. Mol Neurodegener 2017; 12:72. [PMID: 28978354 PMCID: PMC5628424 DOI: 10.1186/s13024-017-0215-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/27/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND MAPT mutations cause neurodegenerative diseases such as frontotemporal dementia but, strikingly, patients with the same mutation may have different clinical phenotypes. METHODS Given heterogeneities observed in a transgenic (Tg) mouse line expressing low levels of human (2 N, 4R) P301L Tau, we backcrossed founder stocks of mice to C57BL/6Tac, 129/SvEvTac and FVB/NJ inbred backgrounds to discern the role of genetic versus environmental effects on disease-related phenotypes. RESULTS Three inbred derivatives of a TgTauP301L founder line had similar quality and steady-state quantity of Tau production, accumulation of abnormally phosphorylated 64-68 kDa Tau species from 90 days of age onwards and neuronal loss in aged Tg mice. Variegation was not seen in the pattern of transgene expression and seeding properties in a fluorescence-based cellular assay indicated a single "strain" of misfolded Tau. However, in other regards, the aged Tg mice were heterogeneous; there was incomplete penetrance for Tau deposition despite maintained transgene expression in aged animals and, for animals with Tau deposits, distinctions were noted even within each subline. Three classes of rostral deposition in the cortex, hippocampus and striatum accounted for 75% of pathology-positive mice yet the mean ages of mice scored as class I, II or III were not significantly different and, hence, did not fit with a predictable progression from one class to another defined by chronological age. Two other patterns of Tau deposition designated as classes IV and V, occurred in caudal structures. Other pathology-positive Tg mice of similar age not falling within classes I-V presented with focal accumulations in additional caudal neuroanatomical areas including the locus coeruleus. Electron microscopy revealed that brains of Classes I, II and IV animals all exhibit straight filaments, but with coiled filaments and occasional twisted filaments apparent in Class I. Most strikingly, Class I, II and IV animals presented with distinct western blot signatures after trypsin digestion of sarkosyl-insoluble Tau. CONCLUSIONS Qualitative variations in the neuroanatomy of Tau deposition in genetically constrained slow models of primary Tauopathy establish that non-synchronous, focal events contribute to the pathogenic process. Phenotypic diversity in these models suggests a potential parallel to the phenotypic variation seen in P301L patients.
Collapse
Affiliation(s)
- Ghazaleh Eskandari-Sedighi
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
| | - Hristina Gapeshina
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
| | - David W Sanders
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, USA
| | - Razieh Kamali-Jamil
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Jing Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
| | - Beipei Shi
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, USA
| | - Christopher Janus
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada. .,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
682
|
Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond) 2017; 131:2451-2468. [PMID: 28963120 DOI: 10.1042/cs20160727] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests that vascular risk factors contribute to neurodegeneration, cognitive impairment and dementia. While there is considerable overlap between features of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD), it appears that cerebral hypoperfusion is the common underlying pathophysiological mechanism which is a major contributor to cognitive decline and degenerative processes leading to dementia. Sustained cerebral hypoperfusion is suggested to be the cause of white matter attenuation, a key feature common to both AD and dementia associated with cerebral small vessel disease (SVD). White matter changes increase the risk for stroke, dementia and disability. A major gap has been the lack of mechanistic insights into the evolution and progress of VCID. However, this gap is closing with the recent refinement of rodent models which replicate chronic cerebral hypoperfusion. In this review, we discuss the relevance and advantages of these models in elucidating the pathogenesis of VCID and explore the interplay between hypoperfusion and the deposition of amyloid β (Aβ) protein, as it relates to AD. We use examples of our recent investigations to illustrate the utility of the model in preclinical testing of candidate drugs and lifestyle factors. We propose that the use of such models is necessary for tackling the urgently needed translational gap from preclinical models to clinical treatments.
Collapse
|
683
|
Sekiya M, Maruko-Otake A, Hearn S, Sakakibara Y, Fujisaki N, Suzuki E, Ando K, Iijima KM. EDEM Function in ERAD Protects against Chronic ER Proteinopathy and Age-Related Physiological Decline in Drosophila. Dev Cell 2017. [PMID: 28633019 DOI: 10.1016/j.devcel.2017.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The unfolded protein response (UPR), which protects cells against accumulation of misfolded proteins in the ER, is induced in several age-associated degenerative diseases. However, sustained UPR activation has negative effects on cellular functions and may worsen disease symptoms. It remains unknown whether and how UPR components can be utilized to counteract chronic ER proteinopathies. We found that promotion of ER-associated degradation (ERAD) through upregulation of ERAD-enhancing α-mannosidase-like proteins (EDEMs) protected against chronic ER proteinopathy without inducing toxicity in a Drosophila model. ERAD activity in the brain decreased with aging, and upregulation of EDEMs suppressed age-dependent behavioral decline and extended the lifespan without affecting the UPR gene expression network. Intriguingly, EDEM mannosidase activity was dispensable for these protective effects. Therefore, upregulation of EDEM function in the ERAD protects against ER proteinopathy in vivo and thus represents a potential therapeutic target for chronic diseases.
Collapse
Affiliation(s)
- Michiko Sekiya
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan.
| | - Akiko Maruko-Otake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Stephen Hearn
- Microscopy Shared Resource, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yasufumi Sakakibara
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Naoki Fujisaki
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-0027, Japan
| | - Emiko Suzuki
- Structural Biology Center, National Institute of Genetics and Gene Network Laboratory, School of Life Science, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Kanae Ando
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Koichi M Iijima
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-0027, Japan.
| |
Collapse
|
684
|
Okano H, Sasaki E, Yamamori T, Iriki A, Shimogori T, Yamaguchi Y, Kasai K, Miyawaki A. Brain/MINDS: A Japanese National Brain Project for Marmoset Neuroscience. Neuron 2017; 92:582-590. [PMID: 27809998 DOI: 10.1016/j.neuron.2016.10.018] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 10/04/2015] [Accepted: 10/07/2016] [Indexed: 11/18/2022]
Abstract
Brain/MINDS (Brain Mapping by Integrated Neurotechnologies for Disease Studies) is a national brain project started by Japan in 2014. With the goal of developing the common marmoset as a model animal for neuroscience, the project aims to build a multiscale marmoset brain map, develop new technologies for experimentalists, create transgenic lines for brain disease modeling, and integrate translational findings from the clinical biomarker landscape. Brain/MINDS will collaborate with global brain projects to share technologies and resources.
Collapse
Affiliation(s)
- Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Brain Science Institute, Wako-shi, Saitama, 351-0198, Japan; Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Erika Sasaki
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan; Advanced Research Center, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science Institute, Wako-shi, Saitama, 351-0198, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako-shi, Saitama, 351-0198, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Wako-shi, Saitama, 351-0198, Japan
| | - Yoko Yamaguchi
- Neuroinformatics Japan Center, RIKEN Brain Science Institute, Wako-shi, Saitama, 351-0198, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
685
|
Storck SE, Pietrzik CU. Endothelial LRP1 - A Potential Target for the Treatment of Alzheimer's Disease : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla. Pharm Res 2017; 34:2637-2651. [PMID: 28948494 DOI: 10.1007/s11095-017-2267-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022]
Abstract
The accumulation of the neurotoxin beta-amyloid (Aβ) is a major hallmark in Alzheimer's disease (AD). Aβ homeostasis in the brain is governed by its production and various clearance mechanisms. Both pathways are influenced by the ubiquitously expressed low-density lipoprotein receptor-related protein 1 (LRP1). In cerebral blood vessels, LRP1 is an important mediator for the rapid removal of Aβ from brain via transport across the blood-brain barrier (BBB). Here, we summarize recent findings on LRP1 function and discuss the targeting of LRP1 as a modulator for AD pathology and drug delivery into the brain.
Collapse
Affiliation(s)
- Steffen E Storck
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099, Mainz, Germany
| | - Claus U Pietrzik
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099, Mainz, Germany.
| |
Collapse
|
686
|
RIPK1 mediates a disease-associated microglial response in Alzheimer's disease. Proc Natl Acad Sci U S A 2017; 114:E8788-E8797. [PMID: 28904096 DOI: 10.1073/pnas.1714175114] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dysfunction of microglia is known to play an important role in Alzheimer's disease (AD). Here, we investigated the role of RIPK1 in microglia mediating the pathogenesis of AD. RIPK1 is highly expressed by microglial cells in human AD brains. Using the amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model, we found that inhibition of RIPK1, using both pharmacological and genetic means, reduced amyloid burden, the levels of inflammatory cytokines, and memory deficits. Furthermore, inhibition of RIPK1 promoted microglial degradation of Aβ in vitro. We characterized the transcriptional profiles of adult microglia from APP/PS1 mice and identified a role for RIPK1 in regulating the microglial expression of CH25H and Cst7, a marker for disease-associated microglia (DAM), which encodes an endosomal/lysosomal cathepsin inhibitor named Cystatin F. We present evidence that RIPK1-mediated induction of Cst7 leads to an impairment in the lysosomal pathway. These data suggest that RIPK1 may mediate a critical checkpoint in the transition to the DAM state. Together, our study highlights a non-cell death mechanism by which the activation of RIPK1 mediates the induction of a DAM phenotype, including an inflammatory response and a reduction in phagocytic activity, and connects RIPK1-mediated transcription in microglia to the etiology of AD. Our results support that RIPK1 is an important therapeutic target for the treatment of AD.
Collapse
|
687
|
Whyte LS, Hemsley KM, Lau AA, Hassiotis S, Saito T, Saido TC, Hopwood JJ, Sargeant TJ. Reduction in open field activity in the absence of memory deficits in the App NL-G-F knock-in mouse model of Alzheimer's disease. Behav Brain Res 2017; 336:177-181. [PMID: 28887197 DOI: 10.1016/j.bbr.2017.09.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 12/21/2022]
Abstract
The recent development of knock-in mouse models of Alzheimer's disease provides distinct advantages over traditional transgenic mouse models that rely on over-expression of amyloid precursor protein. Two such knock-in models that have recently been widely adopted by Alzheimer's researchers are the AppNL-F and AppNL-G-F mice. This study aimed to further characterise the behavioural phenotype and amyloid plaque distribution of AppNL-G-F/NL-G-F (C57BL/6J background) mice at six-months of age. An attempt to replicate a previous study that observed deficits in working memory in the Y-maze, showed no difference between AppNL-G-F/NL-G-F and wild-type mice. Further assessment of these mice using the novel object recognition test and Morris water maze also revealed no differences between AppNL-G-F/NL-G-F and wild-type mice. Despite a lack of demonstrated cognitive deficits, we report a reduction in locomotor/exploratory activity in an open field. Histological examination of AppNL-G-F/NL-G-F mice showed widespread distribution of amyloid plaques at this age. We conclude that whilst at six-months of age, memory deficits are not sufficiently robust to be replicated in varying environments, amyloid plaque burden is significant in AppNL-G-F/NL-G-F knock-in brain.
Collapse
Affiliation(s)
- Lauren S Whyte
- The University of Adelaide, School of Medicine, North Terrace, Adelaide, Australia; Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia
| | - Kim M Hemsley
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia
| | - Adeline A Lau
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia
| | - Sofia Hassiotis
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - John J Hopwood
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia
| | - Timothy J Sargeant
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia.
| |
Collapse
|
688
|
Mast N, Saadane A, Valencia-Olvera A, Constans J, Maxfield E, Arakawa H, Li Y, Landreth G, Pikuleva IA. Cholesterol-metabolizing enzyme cytochrome P450 46A1 as a pharmacologic target for Alzheimer's disease. Neuropharmacology 2017; 123:465-476. [PMID: 28655608 PMCID: PMC5546235 DOI: 10.1016/j.neuropharm.2017.06.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/27/2022]
Abstract
Cytochrome P450 46A1 (CYP46A1 or cholesterol 24-hydroxylase) controls cholesterol elimination from the brain and plays a role in higher order brain functions. Genetically enhanced CYP46A1 expression in mouse models of Alzheimer's disease mitigates the manifestations of this disease. We enhanced CYP46A1 activity pharmacologically by treating 5XFAD mice, a model of rapid amyloidogenesis, with a low dose of the anti-HIV medication efavirenz. Efavirenz was administered from 1 to 9 months of age, and mice were evaluated at specific time points. At one month of age, cholesterol homeostasis was already disturbed in the brain of 5XFAD mice. Nevertheless, efavirenz activated CYP46A1 and mouse cerebral cholesterol turnover during the first four months of administration. This treatment time also reduced amyloid burden and microglia activation in the cortex and subiculum of 5XFAD mice as well as protein levels of amyloid precursor protein and the expression of several genes involved in inflammatory response. However, mouse short-term memory and long-term spatial memory were impaired, whereas learning in the context-dependent fear test was improved. Additional four months of drug administration (a total of eight months of treatment) improved long-term spatial memory in the treated as compared to the untreated mice, further decreased amyloid-β content in 5XFAD brain, and also decreased the mortality rate among male mice. We propose a mechanistic model unifying the observed efavirenz effects. We suggest that CYP46A1 activation by efavirenz could be a new anti-Alzheimer's disease treatment and a tool to study and identify normal and pathological brain processes affected by cholesterol maintenance.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Aicha Saadane
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ana Valencia-Olvera
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James Constans
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Erin Maxfield
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hiroyuki Arakawa
- Behavioral Core, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Young Li
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gary Landreth
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
689
|
Wang H, Williams D, Griffin J, Saito T, Saido TC, Fraser PE, Rogaeva E, Schmitt-Ulms G. Time-course global proteome analyses reveal an inverse correlation between Aβ burden and immunoglobulin M levels in the APPNL-F mouse model of Alzheimer disease. PLoS One 2017; 12:e0182844. [PMID: 28832675 PMCID: PMC5568403 DOI: 10.1371/journal.pone.0182844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/25/2017] [Indexed: 01/12/2023] Open
Abstract
Alzheimer disease (AD) stands out amongst highly prevalent diseases because there is no effective treatment nor can the disease be reliably diagnosed at an early stage. A hallmark of AD is the accumulation of aggregation-prone amyloid β peptides (Aβ), the main constituent of amyloid plaques. To identify Aβ-dependent changes to the global proteome we used the recently introduced APPNL-F mouse model of AD, which faithfully recapitulates the Aβ pathology of the disease, and a workflow that interrogated the brain proteome of these mice by quantitative mass spectrometry at three different ages. The elevated Aβ burden in these mice was observed to cause almost no changes to steady-state protein levels of the most abundant >2,500 brain proteins, including 12 proteins encoded by well-confirmed AD risk loci. The notable exception was a striking reduction in immunoglobulin heavy mu chain (IGHM) protein levels in homozygote APPNL-F/NL-F mice, relative to APPNL-F/wt littermates. Follow-up experiments revealed that IGHM levels generally increase with age in this model. Although discovered with brain samples, the relative IGHM depletion in APPNL-F/NL-F mice was validated to manifest systemically in the blood, and did not extend to other blood proteins, including immunoglobulin G. Results presented are consistent with a cause-effect relationship between the excessive accumulation of Aβ and the selective depletion of IGHM levels, which may be of relevance for understanding the etiology of the disease and ongoing efforts to devise blood-based AD diagnostics.
Collapse
Affiliation(s)
- Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Jennifer Griffin
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Hirosawa, Wako-shi, Saitama, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Hirosawa, Wako-shi, Saitama, Japan
| | - Paul E. Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
690
|
Store-Operated Calcium Channel Complex in Postsynaptic Spines: A New Therapeutic Target for Alzheimer's Disease Treatment. J Neurosci 2017; 36:11837-11850. [PMID: 27881772 DOI: 10.1523/jneurosci.1188-16.2016] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 12/11/2022] Open
Abstract
Mushroom dendritic spine structures are essential for memory storage and the loss of mushroom spines may explain memory defects in aging and Alzheimer's disease (AD). The stability of mushroom spines depends on stromal interaction molecule 2 (STIM2)-mediated neuronal-store-operated Ca2+ influx (nSOC) pathway, which is compromised in AD mouse models, in aging neurons, and in sporadic AD patients. Here, we demonstrate that the Transient Receptor Potential Canonical 6 (TRPC6) and Orai2 channels form a STIM2-regulated nSOC Ca2+ channel complex in hippocampal mushroom spines. We further demonstrate that a known TRPC6 activator, hyperforin, and a novel nSOC positive modulator, NSN21778 (NSN), can stimulate activity of nSOC pathway in the spines and rescue mushroom spine loss in both presenilin and APP knock-in mouse models of AD. We further show that NSN rescues hippocampal long-term potentiation impairment in APP knock-in mouse model. We conclude that the STIM2-regulated TRPC6/Orai2 nSOC channel complex in dendritic mushroom spines is a new therapeutic target for the treatment of memory loss in aging and AD and that NSN is a potential candidate molecule for therapeutic intervention in brain aging and AD. SIGNIFICANCE STATEMENT Mushroom dendritic spine structures are essential for memory storage and the loss of mushroom spines may explain memory defects in Alzheimer's disease (AD). This study demonstrated that Transient Receptor Potential Canonical 6 (TRPC6) and Orai2 form stromal interaction molecule 2 (STIM2)-regulated neuronal-store-operated Ca2+ influx (nSOC) channel complex in hippocampal synapse and the resulting Ca2+ influx is critical for long-term maintenance of mushroom spines in hippocampal neurons. A novel nSOC-positive modulator, NSN21778 (NSN), rescues mushroom spine loss and synaptic plasticity impairment in AD mice models. The TRPC6/Orai2 nSOC channel complex is a new therapeutic target and NSN is a potential candidate molecule for therapeutic intervention in brain aging and AD.
Collapse
|
691
|
Calpain Activation in Alzheimer's Model Mice Is an Artifact of APP and Presenilin Overexpression. J Neurosci 2017; 36:9933-6. [PMID: 27656030 DOI: 10.1523/jneurosci.1907-16.2016] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/05/2016] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Intraneuronal calcium stimulates the calpain-dependent conversion of p35 to p25, a CDK5 activator. It is widely believed that amyloid β peptide (Aβ) induces this conversion that, in turn, has an essential role in Alzheimer's disease pathogenesis. However, in vivo studies on p25 generation used transgenic mice overexpressing mutant amyloid precursor protein (APP) and presenilin (PS). Here, using single App knock-in mice, we show that p25 generation is an artifact caused by membrane protein overexpression. We show that massive Aβ42 accumulation without overexpression of APP or presenilin does not produce p25, whereas p25 generation occurred with APP/PS overexpression and in postmortem mouse brain. We further support this finding using mice deficient for calpastatin, the sole calpain-specific inhibitor protein. Thus, the intracerebral environment of the APP/PS mouse brain and postmortem brain is an unphysiological state. SIGNIFICANCE STATEMENT We recently estimated using single App knock-in mice that accumulate amyloid β peptide without transgene overexpression that 60% of the phenotypes observed in Alzheimer's model mice overexpressing mutant amyloid precursor protein (APP) or APP and presenilin are artifacts (Saito et al., 2014). The current study further supports this estimate by invalidating key results from papers that were published in Cell These findings suggest that more than 3000 publications based on APP and APP/PS overexpression must be reevaluated.
Collapse
|
692
|
Eaton SL, Wishart TM. Bridging the gap: large animal models in neurodegenerative research. Mamm Genome 2017; 28:324-337. [PMID: 28378063 PMCID: PMC5569151 DOI: 10.1007/s00335-017-9687-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/25/2017] [Indexed: 01/08/2023]
Abstract
The world health organisation has declared neurological disorders as one of the greatest public health risks in the world today. Yet, despite this growing concern, the mechanisms underpinning many of these conditions are still poorly understood. This may in part be due to the seemingly diverse nature of the initiating insults ranging from genetic (such as the Ataxia's and Lysosomal storage disorders) through to protein misfolding and aggregation (i.e. Prions), and those of a predominantly unknown aetiology (i.e. Alzheimer's and Parkinson's disease). However, efforts to elucidate mechanistic regulation are also likely to be hampered because of the complexity of the human nervous system, the apparent selective regional vulnerability and differential degenerative progression. The key to elucidating these aetiologies is determining the regional molecular cascades, which are occurring from the early through to terminal stages of disease progression. Whilst much molecular data have been captured at the end stage of disease from post-mortem analysis in humans, the very early stages of disease are often conspicuously asymptomatic, and even if they were not, repeated sampling from multiple brain regions of "affected" patients and "controls" is neither ethical nor possible. Model systems therefore become fundamental for elucidating the mechanisms governing these complex neurodegenerative conditions. However, finding a model that precisely mimics the human condition can be challenging and expensive. Whilst cellular and invertebrate models are frequently used in neurodegenerative research and have undoubtedly yielded much useful data, the comparatively simplistic nature of these systems makes insights gained from such a stand alone model limited when it comes to translation. Given the recent advances in gene editing technology, the options for novel model generation in higher order species have opened up new and exciting possibilities for the field. In this review, we therefore explain some of the reasons why larger animal models often appear to give a more robust recapitulation of human neurological disorders and why they may be a critical stepping stone for effective therapeutic translation.
Collapse
Affiliation(s)
- S L Eaton
- Roslin Institute and Royal (Dick) Veterinary studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - T M Wishart
- Roslin Institute and Royal (Dick) Veterinary studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- Euan MacDonald Centre for MND Research, Chancellor's Building, 49 Little France, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
693
|
Abolishing Tau cleavage by caspases at Aspartate 421 causes memory/synaptic plasticity deficits and pre-pathological Tau alterations. Transl Psychiatry 2017; 7:e1198. [PMID: 28786980 PMCID: PMC5611732 DOI: 10.1038/tp.2017.165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 01/03/2023] Open
Abstract
TAU mutations are genetically linked to fronto-temporal dementia (FTD) and hyper-phosphorylated aggregates of Tau form neurofibrillary tangles (NFTs) that constitute a pathological hallmark of Alzheimer disease (AD) and FTD. These observations indicate that Tau has a pivotal role in the pathogenesis of neurodegenerative disorders. Tau is cleaved by caspases at Aspartate421, to form a Tau metabolite known as δTau; δTau is increased in AD, due to the hyper-activation of caspases in AD brains. δTau is considered a critical toxic moiety underlying neurodegeneration, which initiates and facilitates NFT formation. As Tau is a therapeutic target in neurodegeneration, it is important to rigorously determine whether δTau is a toxic Tau species that should be pharmacologically attacked. To directly address these questions, we have generated a knock-in (KI) mouse called TauDN-that expresses a Tau mutant that cannot be cleaved by caspases. TauDN mice present short-term memory deficits and synaptic plasticity defects. Moreover, mice carrying two mutant Tau alleles show increased total insoluble hyper-phosphorylated Tau in the forebrain. These data are in contrast with the concept that δTau is a critical toxic moiety underlying neurodegeneration, and suggest that cleavage of Tau by caspases represents a negative feedback mechanism aimed to eliminate toxic Tau species. Alternatively, it is possible that either a reduction or an increase in δTau leads to synaptic dysfunction, memory impairments and Tau pathology. Both possibilities will have to be considered when targeting caspase cleavage of Tau in AD therapy.
Collapse
|
694
|
Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, De Strooper B, Hardy J, Vassar R, Winblad B, Saido TC. APP mouse models for Alzheimer's disease preclinical studies. EMBO J 2017; 36:2473-2487. [PMID: 28768718 PMCID: PMC5579350 DOI: 10.15252/embj.201797397] [Citation(s) in RCA: 478] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/09/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022] Open
Abstract
Animal models of human diseases that accurately recapitulate clinical pathology are indispensable for understanding molecular mechanisms and advancing preclinical studies. The Alzheimer's disease (AD) research community has historically used first‐generation transgenic (Tg) mouse models that overexpress proteins linked to familial AD (FAD), mutant amyloid precursor protein (APP), or APP and presenilin (PS). These mice exhibit AD pathology, but the overexpression paradigm may cause additional phenotypes unrelated to AD. Second‐generation mouse models contain humanized sequences and clinical mutations in the endogenous mouse App gene. These mice show Aβ accumulation without phenotypes related to overexpression but are not yet a clinical recapitulation of human AD. In this review, we evaluate different APP mouse models of AD, and review recent studies using the second‐generation mice. We advise AD researchers to consider the comparative strengths and limitations of each model against the scientific and therapeutic goal of a prospective preclinical study.
Collapse
Affiliation(s)
- Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Japan .,Department of Neurology and Neurological Science, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Per Nilsson
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Japan.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Japan
| | - Kenichi Nagata
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Japan.,Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Bart De Strooper
- Dementia Research Institute, University College London, London, UK.,Department for Neurosciences, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - John Hardy
- Reta Lila Research Laboratories and the Department of Molecular Neuroscience, University College London Institute of Neurology, London, UK
| | - Robert Vassar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Japan
| |
Collapse
|
695
|
Alzheimer’s-Causing Mutations Shift Aβ Length by Destabilizing γ-Secretase-Aβn Interactions. Cell 2017; 170:443-456.e14. [DOI: 10.1016/j.cell.2017.07.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/06/2017] [Accepted: 07/06/2017] [Indexed: 11/20/2022]
|
696
|
Nakazono T, Lam TN, Patel AY, Kitazawa M, Saito T, Saido TC, Igarashi KM. Impaired In Vivo Gamma Oscillations in the Medial Entorhinal Cortex of Knock-in Alzheimer Model. Front Syst Neurosci 2017; 11:48. [PMID: 28713250 PMCID: PMC5491963 DOI: 10.3389/fnsys.2017.00048] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/13/2017] [Indexed: 01/01/2023] Open
Abstract
The entorhinal cortex (EC) has bidirectional connections with the hippocampus and plays a critical role in memory formation and retrieval. EC is one of the most vulnerable regions in the brain in early stages of Alzheimer’s disease (AD), a neurodegenerative disease with progressive memory impairments. Accumulating evidence from healthy behaving animals indicates gamma oscillations (30–100 Hz) as critical for mediating interactions in the circuit between EC and hippocampus. However, it is still unclear whether gamma oscillations have causal relationship with memory impairment in AD. Here we provide the first evidence that in vivo gamma oscillations in the EC are impaired in an AD mouse model. Cross-frequency coupling of gamma (30–100 Hz) oscillations to theta oscillations was reduced in the medial EC of anesthetized amyloid precursor protein knock-in (APP-KI) mice. Phase locking of spiking activity of layer II/III pyramidal cells to the gamma oscillations was significantly impaired. These data indicate that the neural circuit activities organized by gamma oscillations were disrupted in the medial EC of AD mouse model, and point to gamma oscillations as one of possible mechanisms for cognitive dysfunction in AD patients.
Collapse
Affiliation(s)
- Tomoaki Nakazono
- Department of Anatomy and Neurobiology, University of CaliforniaIrvine, Irvine, CA, United States.,Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvine, Irvine, CA, United States
| | - Travis N Lam
- Department of Anatomy and Neurobiology, University of CaliforniaIrvine, Irvine, CA, United States.,Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvine, Irvine, CA, United States
| | - Ayushi Y Patel
- Department of Anatomy and Neurobiology, University of CaliforniaIrvine, Irvine, CA, United States.,Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvine, Irvine, CA, United States
| | - Masashi Kitazawa
- Department of Medicine, University of CaliforniaIrvine, Irvine, CA, United States
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWako, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWako, Japan
| | - Kei M Igarashi
- Department of Anatomy and Neurobiology, University of CaliforniaIrvine, Irvine, CA, United States.,Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvine, Irvine, CA, United States.,Japan Science and Technology AgencyTokyo, Japan
| |
Collapse
|
697
|
Ittner A, Chua SW, Bertz J, Volkerling A, van der Hoven J, Gladbach A, Przybyla M, Bi M, van Hummel A, Stevens CH, Ippati S, Suh LS, Macmillan A, Sutherland G, Kril JJ, Silva APG, Mackay JP, Poljak A, Delerue F, Ke YD, Ittner LM. Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer's mice. Science 2017; 354:904-908. [PMID: 27856911 DOI: 10.1126/science.aah6205] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/09/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022]
Abstract
Amyloid-β (Aβ) toxicity in Alzheimer's disease (AD) is considered to be mediated by phosphorylated tau protein. In contrast, we found that, at least in early disease, site-specific phosphorylation of tau inhibited Aβ toxicity. This specific tau phosphorylation was mediated by the neuronal p38 mitogen-activated protein kinase p38γ and interfered with postsynaptic excitotoxic signaling complexes engaged by Aβ. Accordingly, depletion of p38γ exacerbated neuronal circuit aberrations, cognitive deficits, and premature lethality in a mouse model of AD, whereas increasing the activity of p38γ abolished these deficits. Furthermore, mimicking site-specific tau phosphorylation alleviated Aβ-induced neuronal death and offered protection from excitotoxicity. Our work provides insights into postsynaptic processes in AD pathogenesis and challenges a purely pathogenic role of tau phosphorylation in neuronal toxicity.
Collapse
Affiliation(s)
- Arne Ittner
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia.
| | - Sook Wern Chua
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Josefine Bertz
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Alexander Volkerling
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Julia van der Hoven
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Amadeus Gladbach
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Magdalena Przybyla
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Mian Bi
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Annika van Hummel
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia.,Motor Neuron Disease Unit, School of Medical Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Claire H Stevens
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Stefania Ippati
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Lisa S Suh
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia.,Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Alexander Macmillan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Greg Sutherland
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Jillian J Kril
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Ana P G Silva
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Joel P Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Anne Poljak
- Biomedical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Fabien Delerue
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia.,Transgenic Animal Unit, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Yazi D Ke
- Motor Neuron Disease Unit, School of Medical Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Lars M Ittner
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia. .,Transgenic Animal Unit, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia.,Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
| |
Collapse
|
698
|
Scekic-Zahirovic J, Oussini HE, Mersmann S, Drenner K, Wagner M, Sun Y, Allmeroth K, Dieterlé S, Sinniger J, Dirrig-Grosch S, René F, Dormann D, Haass C, Ludolph AC, Lagier-Tourenne C, Storkebaum E, Dupuis L. Motor neuron intrinsic and extrinsic mechanisms contribute to the pathogenesis of FUS-associated amyotrophic lateral sclerosis. Acta Neuropathol 2017; 133:887-906. [PMID: 28243725 PMCID: PMC5427169 DOI: 10.1007/s00401-017-1687-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/08/2017] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Motor neuron-extrinsic mechanisms have been shown to participate in the pathogenesis of ALS-SOD1, one familial form of amyotrophic lateral sclerosis (ALS). It remains unclear whether such mechanisms contribute to other familial forms, such as TDP-43 and FUS-associated ALS. Here, we characterize a single-copy mouse model of ALS-FUS that conditionally expresses a disease-relevant truncating FUS mutant from the endogenous murine Fus gene. We show that these mice, but not mice heterozygous for a Fus null allele, develop similar pathology as ALS-FUS patients and a mild motor neuron phenotype. Most importantly, CRE-mediated rescue of the Fus mutation within motor neurons prevented degeneration of motor neuron cell bodies, but only delayed appearance of motor symptoms. Indeed, we observed downregulation of multiple myelin-related genes, and increased numbers of oligodendrocytes in the spinal cord supporting their contribution to behavioral deficits. In all, we show that mutant FUS triggers toxic events in both motor neurons and neighboring cells to elicit motor neuron disease.
Collapse
|
699
|
Selective lowering of synapsins induced by oligomeric α-synuclein exacerbates memory deficits. Proc Natl Acad Sci U S A 2017; 114:E4648-E4657. [PMID: 28533388 DOI: 10.1073/pnas.1704698114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mounting evidence indicates that soluble oligomeric forms of amyloid proteins linked to neurodegenerative disorders, such as amyloid-β (Aβ), tau, or α-synuclein (αSyn) might be the major deleterious species for neuronal function in these diseases. Here, we found an abnormal accumulation of oligomeric αSyn species in AD brains by custom ELISA, size-exclusion chromatography, and nondenaturing/denaturing immunoblotting techniques. Importantly, the abundance of αSyn oligomers in human brain tissue correlated with cognitive impairment and reductions in synapsin expression. By overexpressing WT human αSyn in an AD mouse model, we artificially enhanced αSyn oligomerization. These bigenic mice displayed exacerbated Aβ-induced cognitive deficits and a selective decrease in synapsins. Following isolation of various soluble αSyn assemblies from transgenic mice, we found that in vitro delivery of exogenous oligomeric αSyn but not monomeric αSyn was causing a lowering in synapsin-I/II protein abundance. For a particular αSyn oligomer, these changes were either dependent or independent on endogenous αSyn expression. Finally, at a molecular level, the expression of synapsin genes SYN1 and SYN2 was down-regulated in vivo and in vitro by αSyn oligomers, which decreased two transcription factors, cAMP response element binding and Nurr1, controlling synapsin gene promoter activity. Overall, our results demonstrate that endogenous αSyn oligomers can impair memory by selectively lowering synapsin expression.
Collapse
|
700
|
Batiuk MY, de Vin F, Duqué SI, Li C, Saito T, Saido T, Fiers M, Belgard TG, Holt MG. An immunoaffinity-based method for isolating ultrapure adult astrocytes based on ATP1B2 targeting by the ACSA-2 antibody. J Biol Chem 2017; 292:8874-8891. [PMID: 28373281 DOI: 10.1074/jbc.m116.765313] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/10/2017] [Indexed: 12/21/2022] Open
Abstract
Astrocytes are a major cell type in the mammalian CNS. Astrocytes are now known to play a number of essential roles in processes including synapse formation and function, as well as blood-brain barrier formation and control of cerebral blood flow. However, our understanding of the molecular mechanisms underlying astrocyte development and function is still rudimentary. This lack of knowledge is at least partly due to the lack of tools currently available for astrocyte biology. ACSA-2 is a commercially available antibody originally developed for the isolation of astrocytes from young postnatal mouse brain, using magnetic cell-sorting methods, but its utility in isolating cells from adult tissue has not yet been published. Using a modified protocol, we now show that this tool can also be used to isolate ultrapure astrocytes from the adult brain. Furthermore, using a variety of techniques (including single-cell sequencing, overexpression and knockdown assays, immunoblotting, and immunohistochemistry), we identify the ACSA-2 epitope for the first time as ATP1B2 and characterize its distribution in the CNS. Finally, we show that ATP1B2 is stably expressed in multiple models of CNS injury and disease. Hence, we show that the ACSA-2 antibody possesses the potential to be an extremely valuable tool for astrocyte research, allowing the purification and characterization of astrocytes (potentially including injury and disease models) without the need for any specialized and expensive equipment. In fact, our results suggest that ACSA-2 should be a first-choice method for astrocyte isolation and characterization.
Collapse
Affiliation(s)
- Mykhailo Y Batiuk
- From the Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research.,the Laboratory of Glia Biology, KU Leuven Department of Neuroscience, and
| | - Filip de Vin
- From the Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research.,the Laboratory of Glia Biology, KU Leuven Department of Neuroscience, and
| | - Sandra I Duqué
- From the Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research.,the Laboratory of Glia Biology, KU Leuven Department of Neuroscience, and
| | - Chen Li
- From the Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research.,the Laboratory of Glia Biology, KU Leuven Department of Neuroscience, and
| | - Takashi Saito
- the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0106, Japan, and
| | - Takaomi Saido
- the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0106, Japan, and
| | - Mark Fiers
- the VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - T Grant Belgard
- the Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, United Kingdom
| | - Matthew G Holt
- From the Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, .,the Laboratory of Glia Biology, KU Leuven Department of Neuroscience, and
| |
Collapse
|