701
|
The Neuroprotective Role of Polydatin: Neuropharmacological Mechanisms, Molecular Targets, Therapeutic Potentials, and Clinical Perspective. Molecules 2021; 26:molecules26195985. [PMID: 34641529 PMCID: PMC8513080 DOI: 10.3390/molecules26195985] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/09/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are one of the leading causes of death and disability in humans. From a mechanistic perspective, the complexity of pathophysiological mechanisms contributes to NDDs. Therefore, there is an urgency to provide novel multi-target agents towards the simultaneous modulation of dysregulated pathways against NDDs. Besides, their lack of effectiveness and associated side effects have contributed to the lack of conventional therapies as suitable therapeutic agents. Prevailing reports have introduced plant secondary metabolites as promising multi-target agents in combating NDDs. Polydatin is a natural phenolic compound, employing potential mechanisms in fighting NDDs. It is considered an auspicious phytochemical in modulating neuroinflammatory/apoptotic/autophagy/oxidative stress signaling mediators such as nuclear factor-κB (NF-κB), NF-E2–related factor 2 (Nrf2)/antioxidant response elements (ARE), matrix metalloproteinase (MMPs), interleukins (ILs), phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt), and the extracellular regulated kinase (ERK)/mitogen-activated protein kinase (MAPK). Accordingly, polydatin potentially counteracts Alzheimer’s disease, cognition/memory dysfunction, Parkinson’s disease, brain/spinal cord injuries, ischemic stroke, and miscellaneous neuronal dysfunctionalities. The present study provides all of the neuroprotective mechanisms of polydatin in various NDDs. Additionally, the novel delivery systems of polydatin are provided regarding increasing its safety, solubility, bioavailability, and efficacy, as well as developing a long-lasting therapeutic concentration of polydatin in the central nervous system, possessing fewer side effects.
Collapse
|
702
|
Akan S, Tuna Gunes N, Erkan M. Red beetroot: Health benefits, production techniques, and quality maintaining for food industry. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Selen Akan
- Faculty of Agriculture Department of Horticulture Ankara University Ankara Turkey
| | - Nurdan Tuna Gunes
- Faculty of Agriculture Department of Horticulture Ankara University Ankara Turkey
| | - Mustafa Erkan
- Faculty of Agriculture Department of Horticulture Akdeniz University Antalya Turkey
| |
Collapse
|
703
|
Motevalian M, Tekyeh Maroof N, Nematollahi MH, Khajehasani F, Fatemi I. Atorvastatin modulates the expression of aging-related genes in the brain of aging induced by D-galactose in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1388-1394. [PMID: 35096297 PMCID: PMC8769518 DOI: 10.22038/ijbms.2021.58502.12996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Atorvastatin (AT), a competitive inhibitor of 3-hydroxymethyl-3-glutaryl-coenzyme-A reductase, is a cholesterol-lowering drug. AT has been shown to have neuroprotective, antioxidant, and anti-inflammatory properties. Previously, we have reported that AT could attenuate the behavioral, renal, and hepatic manifestations of aging. To clarify further the mechanisms involved, the present study was designed to evaluate the effect of AT on the expression of some aging-related genes in the brain of aging mice induced by D-galactose (DG). MATERIALS AND METHODS For this purpose, AT (0.1 and 1 mg/kg/p.o.) was administrated daily in DG-received (500 mg/kg/p.o.) mice model of aging for six weeks. At the end of the experiment, mice were decapitated to remove the brains. Then, the expression profiles of sirtuin 1 (Sirt1), P53, P21, Bcl-2, Bax, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), interleukin 1 beta (IL1β), tumor necrosis factor-alpha (TNFα), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and brain-derived neurotrophic factor (BDNF) were assessed using the real-time PCR method. RESULTS The present study shows that DG decreases the expression of Sirt1, Bcl-2, CAT, GPx, and BDNF while increasing the expression of P53, P21, Bax, IL-1β, iNOS, COX-2, and TNF-α. According to the findings of the present study, AT (more potentially at the dose of 1 mg/kg) modulates the expression of these aging-related genes in the brain of aging mice. CONCLUSION The results of the present study confirmed our previous reports on the anti-aging effects of AT at the gene level, the precise mechanisms and underlying pathways need further studies.
Collapse
Affiliation(s)
- Manijeh Motevalian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran , Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Tekyeh Maroof
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Khajehasani
- Department of Radiology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran,Corresponding author: Iman Fatemi. Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
704
|
Hasheminezhad SH, Boozari M, Iranshahi M, Yazarlu O, Sahebkar A, Hasanpour M, Iranshahy M. A mechanistic insight into the biological activities of urolithins as gut microbial metabolites of ellagitannins. Phytother Res 2021; 36:112-146. [PMID: 34542202 DOI: 10.1002/ptr.7290] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/06/2021] [Accepted: 09/04/2021] [Indexed: 12/26/2022]
Abstract
Urolithins are the gut metabolites produced from ellagitannin-rich foods such as pomegranates, tea, walnuts, as well as strawberries, raspberries, blackberries, and cloudberries. Urolithins are of growing interest due to their various biological activities including cardiovascular protection, anti-inflammatory activity, anticancer properties, antidiabetic activity, and antiaging properties. Several studies mostly based on in vitro and in vivo experiments have investigated the potential mechanisms of urolithins which support the beneficial effects of urolithins in the treatment of several diseases such as Alzheimer's disease, type 2 diabetes mellitus, liver disease, cardiovascular disease, and various cancers. It is now obvious that urolithins can involve several cellular mechanisms including inhibition of MDM2-p53 interaction, modulation of mitogen-activated protein kinase pathway, and suppressing nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity. Antiaging activity is the most appealing and probably the most important property of urolithin A that has been investigated in depth in recent studies, owing to its unique effects on activation of mitophagy and mitochondrial biogenesis. A recent clinical trial showed that urolithin A is safe up to 2,500 mg/day and can improve mitochondrial biomarkers in elderly patients. Regarding the importance of mitochondria in the pathophysiology of many diseases, urolithins merit further research especially in clinical trials to unravel more aspects of their clinical significance. Besides the nutritional value of urolithins, recent studies proved that urolithins can be used as pharmacological agents to prevent or cure several diseases. Here, we comprehensively review the potential role of urolithins as new therapeutic agents with a special focus on the molecular pathways that have been involved in their biological effects. The pharmacokinetics of urolithins is also included.
Collapse
Affiliation(s)
| | - Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Yazarlu
- Department of General Surgery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
705
|
Juszczyk G, Mikulska J, Kasperek K, Pietrzak D, Mrozek W, Herbet M. Chronic Stress and Oxidative Stress as Common Factors of the Pathogenesis of Depression and Alzheimer's Disease: The Role of Antioxidants in Prevention and Treatment. Antioxidants (Basel) 2021; 10:antiox10091439. [PMID: 34573069 PMCID: PMC8470444 DOI: 10.3390/antiox10091439] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
There is a growing body of scientific research showing the link between depression and dementia in Alzheimer’s disease (AD). The chronic stress contributes to the formation of oxidative stress in the parts of the brain involved in the development of depression and AD. The scientific literature reports the significant role of antioxidants, which are highly effective in treating these diseases. In this review, we have summarized the relationship between chronic stress, oxidative stress, and the changes in the brain they cause occurring in the brain. Among all the compounds showing antioxidant properties, the most promising results in AD treatment were observed for Vitamin E, coenzyme Q10 (CoQ10), melatonin, polyphenols, curcumin, and selenium. In case of depression treatment, the greatest potential was observed in curcumin, zinc, selenium, vitamin E, and saffron.
Collapse
|
706
|
Wei YX, Zheng KY, Wang YG. Gut microbiota-derived metabolites as key mucosal barrier modulators in obesity. World J Gastroenterol 2021; 27:5555-5565. [PMID: 34588751 PMCID: PMC8433617 DOI: 10.3748/wjg.v27.i33.5555] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/24/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
A significant breakthrough in the field of obesity research was the demonstration that an obese phenotype could be manipulated by modulating the gut microbiota. An important next step is to elucidate a human-relevant “map’’ of microbiota-host interactions that regulate the metabolic health of the host. An improved understanding of this crosstalk is a prerequisite for optimizing therapeutic strategies to combat obesity. Intestinal mucosal barrier dysfunction is an important contributor to metabolic diseases and has also been found to be involved in a variety of other chronic inflammatory conditions, including cancer, neurodegeneration, and aging. The mechanistic basis for intestinal barrier dysfunction accompanying metabolic disorders remains poorly understood. Understanding the molecular and cellular modulators of intestinal barrier function will help devise improved strategies to counteract the detrimental systemic consequences of gut barrier breakage. Changes in the composition and function of the gut microbiota, i.e., dysbiosis, are thought to drive obesity-related pathogenesis and may be one of the most important drivers of mucosal barrier dysfunction. Many effects of the microbiota on the host are mediated by microbiota-derived metabolites. In this review, we focus on several relatively well-studied microbial metabolites that can influence intestinal mucosal homeostasis and discuss how they might affect metabolic diseases. The design and use of microbes and their metabolites that are locally active in the gut without systemic side effects are promising novel and safe therapeutic modalities for metabolic diseases.
Collapse
Affiliation(s)
- Yan-Xia Wei
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Kui-Yang Zheng
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yu-Gang Wang
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| |
Collapse
|
707
|
Liu X, Wang C, Liu W, Song S, Fu J, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Oral Administration of Silibinin Ameliorates Cognitive Deficits of Parkinson's Disease Mouse Model by Restoring Mitochondrial Disorders in Hippocampus. Neurochem Res 2021; 46:2317-2332. [PMID: 34097239 DOI: 10.1007/s11064-021-03363-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023]
Abstract
Besides motor disorder, cognitive dysfunction is also common in Parkinson's disease (PD). Essentially no causal therapy for cognitive dysfunction of PD exists at present. In this study, a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD was used to analyze the neuroprotective potential of orally administered silibinin, a proverbial hepatoprotective flavonoid derived from the herb milk thistle (Silybum marianum). Results demonstrated that silibinin administration significantly attenuated MPTP-induced cognitive impairment in behavioral tests. Nissl staining results showed that MPTP injection significantly increases the loss of neurons in the hippocampus. However, these mice were protected by oral administration of silibinin, accompanying reduction in the cell apoptosis in the hippocampus. The hippocampal aggregates of α-synuclein (α-syn) appeared in MPTP-injected mice, but were significantly decreased by silibinin treatment. MPTP injection induced oxidative stress, as evidenced by increased malondialdehyde (MDA) and decreased superoxide dismutase (SOD). The oxidative stress was alleviated by silibinin treatment. Mitochondrial disorder including the decline of mitochondrial membrane potential (MMP) was another signature in the hippocampus of MPTP-treated mice, accompanying increased mitochondrial fission and decreased fusion. Silibinin administration restored these mitochondrial disorders, as expected for the protection against MPTP injury. These findings suggest that silibinin has a potential to be further developed as a therapeutic candidate for cognitive dysfunction in PD.
Collapse
Affiliation(s)
- Xiumin Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Chenkang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Siaoyu Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Jianing Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
708
|
Singh A, Yadawa AK, Chaturvedi S, Wahajuddin M, Mishra A, Singh S. Mechanism for antiParkinsonian effect of resveratrol: Involvement of transporters, synaptic proteins, dendrite arborization, biochemical alterations, ER stress and apoptosis. Food Chem Toxicol 2021; 155:112433. [PMID: 34302886 DOI: 10.1016/j.fct.2021.112433] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/21/2022]
Abstract
The present study was undertaken to evaluate the mechanism for antiParkinsonian effect of resveratrol employing 6-hydroxydopamine (6-OHDA) induced experimental model of Parkinson's disease (PD). Resveratrol treatment significantly protects the PD related pathological markers like level of tyrosine hydroxylase, dopamine and apoptotic proteins (Bax and cleaved caspase-3). Disease pathology involves significantly decreased level of dopamine transporter, synaptophysin and postsynaptic density protein 95 (PSD-95) along with augmented level of vesicular monoamine transporter and considerably affected the dendrite arborization. Such affected neuronal communication was significantly restored with resveratrol treatment. Biochemical alterations include the depleted level of glutathione (GSH), mitochondrial complex-I activity with concomitant increased level of lipid peroxidation, nitrite level and calcium levels, which were also significantly inhibited with resveratrol treatment. Altered calcium level induces the endoplasmic reticulum (ER) stress related signalling and phosphorylated Nuclear factor erythroid 2-related factor 2 (Nrf2), and with resveratrol treatment the level of phosphorylated Nrf2 was further increased. The concurrent depleted level of proteasome activity was observed which was attenuated with resveratrol treatment. Proinflammatory cytokines and activated astrocytes were observed which was inhibited with resveratrol treatment. In conclusion, findings suggested that resveratrol exhibits the interference in neuronal communication, oxidative stress, mitochondrial pathophysiology, ER stress, protein degradation mechanism and inflammatory responses and could be utilize in clinics to treat the PD patients.
Collapse
Affiliation(s)
- Ashish Singh
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, Lucknow, 226031, India
| | - Arun Kumar Yadawa
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, Lucknow, 226031, India
| | - Swati Chaturvedi
- Division of Pharmacokinetics and Pharmaceutics, Central Drug Research Institute, Lucknow, 226031, India
| | - M Wahajuddin
- Division of Pharmacokinetics and Pharmaceutics, Central Drug Research Institute, Lucknow, 226031, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342011, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, Lucknow, 226031, India.
| |
Collapse
|
709
|
Villalva M, Santoyo S, Salas-Pérez L, Siles-Sánchez MDLN, Rodríguez García-Risco M, Fornari T, Reglero G, Jaime L. Sustainable Extraction Techniques for Obtaining Antioxidant and Anti-Inflammatory Compounds from the Lamiaceae and Asteraceae Species. Foods 2021; 10:foods10092067. [PMID: 34574177 PMCID: PMC8472344 DOI: 10.3390/foods10092067] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Melissa officinalis L. and Origanum majorana L., within Lamiaceae family, and Calendula officinalis L. and Achillea millefolium L., within the Asteraceae, have been considered a good source of bioactive ingredients with health benefits. In this study, the supercritical fluid extraction (SFE) using pure CO2, and the ultrasound assisted extraction (UAE) were proposed as green techniques to obtain plant-based extracts with potential antioxidant and anti-inflammatory activities. Higher values of total phenolic content and antioxidant activity were achieved in UAE ethanol:water (50:50, v/v) extracts. Meanwhile, UAE pure ethanol extracts showed greater anti-inflammatory activity. RP-HPLC-PAD-ESI-QTOF-MS/MS analysis showed a vast number of phenolic compounds in the extracts, including unreported ones. O. majorana ethanol:water extract presented the highest content of phenolics and antioxidant activity; among its composition, both rosmarinic acid and luteolin glucoside derivatives were abundant. The pure ethanol extract of A. millefolium resulted in an important content of caffeoylquinic acid derivatives, luteolin-7-O-glucoside and flavonoid aglycones, which could be related to the remarkable inhibition of TNF-α, IL-1β and IL-6 cytokines. Besides, borneol and camphor, found in the volatile fraction of A. millefolium, could contributed to this latter activity. Thus, this study points out that O. majorana and A. millefolium are considered a promising source of bioactive ingredients with potential use in health promotion.
Collapse
Affiliation(s)
- Marisol Villalva
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain; (M.V.); (S.S.); (M.d.l.N.S.-S.); (M.R.G.-R.); (T.F.); (G.R.)
| | - Susana Santoyo
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain; (M.V.); (S.S.); (M.d.l.N.S.-S.); (M.R.G.-R.); (T.F.); (G.R.)
| | - Lilia Salas-Pérez
- Faculty of Accounting and Administration, Universidad Autónoma de Coahuila, Fco. Javier Mina 150, Luis Echeverría Álvarez Sector Norte, 27085 Torreón, Coahuila, Mexico;
| | - María de las Nieves Siles-Sánchez
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain; (M.V.); (S.S.); (M.d.l.N.S.-S.); (M.R.G.-R.); (T.F.); (G.R.)
| | - Mónica Rodríguez García-Risco
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain; (M.V.); (S.S.); (M.d.l.N.S.-S.); (M.R.G.-R.); (T.F.); (G.R.)
| | - Tiziana Fornari
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain; (M.V.); (S.S.); (M.d.l.N.S.-S.); (M.R.G.-R.); (T.F.); (G.R.)
| | - Guillermo Reglero
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain; (M.V.); (S.S.); (M.d.l.N.S.-S.); (M.R.G.-R.); (T.F.); (G.R.)
- Imdea-Food Institute, Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain
| | - Laura Jaime
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain; (M.V.); (S.S.); (M.d.l.N.S.-S.); (M.R.G.-R.); (T.F.); (G.R.)
- Correspondence: ; Tel.: +34-910-017-925
| |
Collapse
|
710
|
Sharifi-Rad J, Quispe C, Mukazhanova Z, Knut E, Turgumbayeva A, Kipchakbayeva A, Seitimova G, Mahomoodally MF, Lobine D, Koay A, Wang J, Sheridan H, Leyva-Gómez G, Prado-Audelo MLD, Cortes H, Rescigno A, Zucca P, Sytar O, Imran M, Rodrigues CF, Cruz-Martins N, Ekiert H, Kumar M, Abdull Razis AF, Sunusi U, Kamal RM, Szopa A. Resveratrol-Based Nanoformulations as an Emerging Therapeutic Strategy for Cancer. Front Mol Biosci 2021; 8:649395. [PMID: 34540888 PMCID: PMC8440914 DOI: 10.3389/fmolb.2021.649395] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Resveratrol is a polyphenolic stilbene derivative widely present in grapes and red wine. Broadly known for its antioxidant effects, numerous studies have also indicated that it exerts anti-inflammatory and antiaging abilities and a great potential in cancer therapy. Regrettably, the oral administration of resveratrol has pharmacokinetic and physicochemical limitations such as hampering its effects so that effective administration methods are demanding to ensure its efficiency. Thus, the present review explores the published data on the application of resveratrol nanoformulations in cancer therapy, with the use of different types of nanodelivery systems. Mechanisms of action with a potential use in cancer therapy, negative effects, and the influence of resveratrol nanoformulations in different types of cancer are also highlighted. Finally, the toxicological features of nanoresveratrol are also discussed.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Zhazira Mukazhanova
- Department of Natural Sciences and Technologies, Sarsen Amanzholov East Kazakhstan State University, Ust-Kamenogorsk, Kazakhstan
| | - Ewa Knut
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| | - Aknur Turgumbayeva
- Asfendiyarov Kazakh National Medical University, School Pharmacy, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Higher School of Medicine, Almaty, Kazakhstan
| | - Aliya Kipchakbayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Devina Lobine
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Aaron Koay
- Trinity College Dublin, NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Jinfan Wang
- Trinity College Dublin, NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Helen Sheridan
- Trinity College Dublin, NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico City, Mexico
| | - María L. Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico City, Mexico
| | - Hernán Cortes
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico City, Mexico
| | - Antonio Rescigno
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Oksana Sytar
- Department of Plant Biology, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Célia F. Rodrigues
- Laboratory for Process Engineering, Environment, Biotechnology and Energy—Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR – Central Institute for Research on Cotton Technology, Mumbai, India
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, Dutse, Nigeria
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| |
Collapse
|
711
|
Cheon M, Chung M, Park Y. Association between Dietary Intake of Flavonoids and Cancer Recurrence among Breast Cancer Survivors. Nutrients 2021; 13:nu13093049. [PMID: 34578927 PMCID: PMC8469315 DOI: 10.3390/nu13093049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/20/2022] Open
Abstract
Intake of flavonoids is associated with the incidence of breast cancer, but the association between the intake of flavonoids and cancer recurrence is unclear. This study aimed to investigate the hypothesis that intake of flavonoids and flavonoid-rich foods is negatively associated with cancer recurrence. Among 572 women who underwent breast cancer surgery, 66 patients had a cancer recurrence. Dietary data were collected using a structured 24-h dietary recall, and intake of flavonoids was calculated based on the Korea Rural Development Administration flavonoid database. Among overweight and obese patients, disease-free survival was associated with intake of flavonoids (p = 0.004) and flavonoid-rich foods (p = 0.003). Intake of flavonoids (hazard ratio (HR) = 0.249, 95% confidence interval (CI): 0.09–0.64) and flavonoid-rich foods (HR = 0.244, 95% CI: 0.09–0.66) was negatively associated with cancer recurrence after adjusting for confounding factors in overweight and obese patients. Consumption of flavonoids and flavonoid-rich foods was lower in overweight and obese patients with cancer recurrence than those without recurrence and in normal-weight patients. This study suggests that intake of flavonoids and flavonoid-rich foods could have beneficial effects on cancer recurrence in overweight and obese breast cancer survivors.
Collapse
Affiliation(s)
- Minjung Cheon
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| | - Minsung Chung
- Department of Surgery, Hanyang University Hospital, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
- Correspondence: (M.C.); (Y.P.)
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
- Correspondence: (M.C.); (Y.P.)
| |
Collapse
|
712
|
Oh KK, Adnan M, Cho DH. Network Pharmacology Study on Morus alba L. Leaves: Pivotal Functions of Bioactives on RAS Signaling Pathway and Its Associated Target Proteins against Gout. Int J Mol Sci 2021; 22:9372. [PMID: 34502281 PMCID: PMC8431517 DOI: 10.3390/ijms22179372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022] Open
Abstract
M. alba L. is a valuable nutraceutical plant rich in potential bioactive compounds with promising anti-gouty arthritis. Here, we have explored bioactives, signaling pathways, and key proteins underlying the anti-gout activity of M. alba L. leaves for the first-time utilizing network pharmacology. Bioactives in M. alba L. leaves were detected through GC-MS (Gas Chromatography-Mass Spectrum) analysis and filtered by Lipinski's rule. Target proteins connected to the filtered compounds and gout were selected from public databases. The overlapping target proteins between bioactives-interacted target proteins and gout-targeted proteins were identified using a Venn diagram. Bioactives-Proteins interactive networking for gout was analyzed to identify potential ligand-target and visualized the rich factor on the R package via the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on STRING. Finally, a molecular docking test (MDT) between bioactives and target proteins was analyzed via AutoDock Vina. Gene Set Enrichment Analysis (GSEA) demonstrated that mechanisms of M. alba L. leaves against gout were connected to 17 signaling pathways on 26 compounds. AKT1 (AKT Serine/Threonine Kinase 1), γ-Tocopherol, and RAS signaling pathway were selected as a hub target, a key bioactive, and a hub signaling pathway, respectively. Furthermore, three main compounds (γ-Tocopherol, 4-Dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene) tyramine, and Lanosterol acetate) and three key target proteins-AKT1, PRKCA, and PLA2G2A associated with the RAS signaling pathway were noted for their highest affinity on MDT. The identified three key bioactives in M. alba L. leaves might contribute to recovering gouty condition by inactivating the RAS signaling pathway.
Collapse
Affiliation(s)
| | | | - Dong Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (K.K.O.); (M.A.)
| |
Collapse
|
713
|
Kujawska M, Jourdes M, Witucki Ł, Karaźniewicz-Łada M, Szulc M, Górska A, Mikołajczak PŁ, Teissedre PL, Jodynis-Liebert J. Pomegranate Juice Ameliorates Dopamine Release and Behavioral Deficits in a Rat Model of Parkinson's Disease. Brain Sci 2021; 11:1127. [PMID: 34573149 PMCID: PMC8467386 DOI: 10.3390/brainsci11091127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/15/2022] Open
Abstract
Pomegranate juice (PJ) is a rich source of ellagitannins (ETs), precursors of colonic metabolite urolithin A, which are believed to contribute to pomegranate's neuroprotective effect. While many experimental studies involving PJ's role in Alzheimer's disease and hypoxic-ischemic brain injury have been conducted, our knowledge of pomegranate's effects against Parkinson's disease (PD) is very limited. Previously, we have reported that PJ treatment improved postural stability, which correlated well with enhancement of neuronal survival, protection against oxidative damage, and α-synuclein aggregation. Since olfactory and motor deficits are typical symptoms of PD, in this study, we aimed to investigate the capability of PJ to protect against olfactory, motoric, and neurochemical alterations. To evaluate its efficiency, Wistar rats were given a combined treatment with ROT (1.3 mg/kg b.w./day, s.c.) and PJ (500 mg/kg/day, p.o.) for 35 days. After this, we assessed the olfactory discrimination index (DI) and vertical and horizontal activities as well as levels of dopamine and its main metabolite 3,4-Dihydroxyphenylacetic acid (DOPAC) in the dissected midbrain of animals. Our findings provide the first evidence that PJ treatment protects against ROT-induced DA depletion in the midbrain, which correlates well with improved olfactory function and vertical activity as well as with the presence of urolithin A in the brain.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (A.G.); (J.J.-L.)
| | - Michael Jourdes
- Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France; (M.J.); (P.-L.T.)
- Institut des Sciences de la Vigne et du Vin, INRA, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Marta Karaźniewicz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Święcickiego 6, 60-781 Poznań, Poland;
| | - Michał Szulc
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5a, 60-806 Poznań, Poland; (M.S.); (P.Ł.M.)
| | - Agata Górska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (A.G.); (J.J.-L.)
| | - Przemysław Ł. Mikołajczak
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5a, 60-806 Poznań, Poland; (M.S.); (P.Ł.M.)
| | - Pierre-Louis Teissedre
- Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France; (M.J.); (P.-L.T.)
- Institut des Sciences de la Vigne et du Vin, INRA, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (A.G.); (J.J.-L.)
| |
Collapse
|
714
|
Chang BY, Koo BS, Kim SY. Pharmacological Activities for Morus alba L., Focusing on the Immunostimulatory Property from the Fruit Aqueous Extract. Foods 2021; 10:foods10081966. [PMID: 34441742 PMCID: PMC8393821 DOI: 10.3390/foods10081966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
Depending on the extraction method, numerous compounds that have specific pharmacological effects can be obtained from M. alba L. There is a growing scientific interest in health problems related to aging. Efforts to develop safe immune-enhancing pharmaceuticals are increasing. This review aims to summarize and critically discuss the immunity enhancement effects and pharmaceutical efficacy of M. alba L. extracts. The scientific database search was conducted using Google Scholar, Web of Science, and PubMed until May 2021. Additional articles were identified and obtained from references in the retrieved articles. Ethanol or methanol extraction of various parts of M. alba L. identified a large amount of phenols and flavonoids, which are effective for immunosuppression, antioxidants, and cardiovascular diseases, and are antibacterial, and anticancer. Water extraction of M. alba L. enhanced the innate immune response based on immune cell activation. A polysaccharide and an alkaloid related to increased macrophage activity were isolated from M. alba L. fruit extracts. M. alba L. fruit water extracts primarily induced the production of pro-inflammatory substances, in model organisms, via TLR4 in immune cells. Water extracts have been shown to be effective in pathogen defense and tumor suppression by enhancing macrophage activity. Based on our literature review on the bioactivity of M. alba L. fruit extracts, particularly in relation to their immunity enhancement activity, we anticipate that M. alba-derived pharmaceuticals will have excellent potential in future medical research.
Collapse
Affiliation(s)
- Bo-Yoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Jeonbuk, Iksan 54538, Korea;
| | - Bong-Seong Koo
- ForBioKorea Co., Ltd., Geumcheon-gu, Seoul 08592, Korea;
| | - Sung-Yeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Jeonbuk, Iksan 54538, Korea;
- Correspondence: ; Tel.: +82-63-850-6806
| |
Collapse
|
715
|
Hashem HR. Evaluation of the postnatal effects induced by Diazinon on the Growth of the mice offspring and the development of their cerebellar cortex. Cells Tissues Organs 2021; 211:539-554. [PMID: 34425578 DOI: 10.1159/000518993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Heba R Hashem
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
716
|
Scientometric and Methodological Analysis of the Recent Literature on the Health-Related Effects of Tomato and Tomato Products. Foods 2021; 10:foods10081905. [PMID: 34441682 PMCID: PMC8393598 DOI: 10.3390/foods10081905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
The health benefits of tomato, a vegetable consumed daily in human diets, have received great attention in the scientific community, and a great deal of experiments have tested their utility against several diseases. Herein, we present a scientometric analysis of recent works aimed to estimate the biological effects of tomato, focusing on bibliographic metadata, type of testers, target systems, and methods of analysis. A remarkably variable array of strategies was reported, including testers obtained by standard and special tomatoes, and the use of in vitro and in vivo targets, both healthy and diseased. In vitro, 21 normal and 36 cancer human cell lines derived from 13 different organs were used. The highest cytotoxic effects were reported on cancer blood cells. In vivo, more experiments were carried out with murine than with human systems, addressing healthy individuals, as well as stressed and diseased patients. Multivariate analysis showed that publications in journals indexed in the agriculture category were associated with the use of fresh tomatoes; conversely, medicine and pharmacology journals were associated with the use of purified and formulate testers. Studies conducted in the United States of America preferentially adopted in vivo systems and formulates, combined with blood and tissue analysis. Researchers in Italy, China, India, and Great Britain mostly carried out in vitro research using fresh tomatoes. Gene expression and proteomic analyses were associated with China and India. The emerging scenario evidences the somewhat dichotomic approaches of plant geneticists and agronomists and that of cell biologists and medicine researchers. A higher integration between these two scientific communities would be desirable to foster the assessment of the benefits of tomatoes to human health.
Collapse
|
717
|
Ali AA, Kamal MM, Khalil MG, Ali SA, Elariny HA, Bekhit A, Wahid A. Behavioral, Biochemical and Histopathological effects of Standardised Pomegranate extract with Vinpocetine, Propolis or Cocoa in a rat model of Parkinson's disease. Exp Aging Res 2021; 48:191-210. [PMID: 34384037 DOI: 10.1080/0361073x.2021.1959823] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Parkinsonism is a neurodegenerative disorder. Pomegranate (POM) has been previously shown to have a dopaminergic neuroprotective effect against parkinsonism. OBJECTIVE The aim of the current study is to investigate the possible effect of POM in combination with each of vinpocetine, propolis, or cocoa in the treatment of parkinsonism disease even without being given as adjuvant to L-dopa . METHODS Rats were divided into seven groups, one normal and six RT model groups. One of the RT groups (2.5 mg/kg/48 h/10 doses sc), for 20 days served as non-treated parkinsonism model, whereas the others were treated with either L-dopa (10 mg/kg, p.o./day) or with POM (150 mg/kg, p.o./day) together with each of the following; vinpocetine (VIN) (20 mg/kg, p.o./day), propolis (300 mg/kg, p.o./day), cocoa (24 mg/kg, p.o./day). Motor and cognitive performances were examined using four tests (catalepsy, swimming, Y-maze, open field). Striatal dopamine, norepinephrine, serotonin, GABA, glutamate, acetylcholinesterase, GSK-3β, BDNF levels were assessed as well as MDA, SOD, TAC, IL-1β, TNF-α, iNOs, and caspase-3. Also, histopathological examinations of different brain regions were determined. RESULTS Treatment with L-dopa alone or with all POM combination groups alleviated the deficits in locomotor activities, cognition, neurotransmitter levels, acetylcholinesterase activity, oxidative stress, and inflammatory markers as well as caspase-3 expression induced by RT. CONCLUSION Combinations of POM with each of VIN, propolis, or cocoa have a promising disease-modifying antiparkinsonian therapy even without being given as an adjuvant to L-dopa.
Collapse
Affiliation(s)
- Azza A Ali
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mona M Kamal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mona G Khalil
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Shimaa A Ali
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hemat A Elariny
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Amany Bekhit
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ahmed Wahid
- Pharmaceutical Biochemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
718
|
A nontoxic ionic liquid composition for the delivery of biological macromolecular anions across the skin barrier. Pharm Pat Anal 2021; 10:191-194. [PMID: 34365804 DOI: 10.4155/ppa-2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of biocompatible ionic liquids is needed in order to explore their vastly underutilized pharmaceutical potential. US10912834 patent discloses ionic liquids comprising macromolecular biological anions and alkylated cations, which provides enhanced dermal delivery and cell internalization of the large biological anions. The studies of ex vivo permeation through excised pig skin indicated significantly higher skin penetration of percent dose and enhanced drug internalization was achieved using these ionic liquids. Although, the patent advances an infant field of biological macromolecule-based ionic liquids, the evaluation of these claimed ionic liquids relies only on the in vivo cytotoxicity data and ex vivo skin permeation behavior. Exhaustive studies, including dermatokinetic evaluation and long-term animal toxicity experiments, should be performed in order to unravel the potential of the aforementioned ionic liquids.
Collapse
|
719
|
Pandey SN, Rangra NK, Singh S, Arora S, Gupta V. Evolving Role of Natural Products from Traditional Medicinal Herbs in the Treatment of Alzheimer's Disease. ACS Chem Neurosci 2021; 12:2718-2728. [PMID: 34010562 DOI: 10.1021/acschemneuro.1c00206] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease that causes dementia by impairing mental capacity growth and disrupting neurocognitive activity. Despite recent advancements in AD therapy, therapeutic effectiveness has been small, noncurative, and susceptible to drug resistance. The reality that AD's origin remains unknown and that the blood-brain barrier limits treatment effectiveness are two significant impediments to science. Plants are repositories for novel chemical entities, which provide an exciting avenue for Alzheimer's disease studies. Although several herbal remedies are unquestionably efficient, only a small number have been clinically tested for their active chemical constituents and biological activities. Using published data in the literature, we summarized commonly used medicinal plants and herbs and their phyto components for the care and diagnosis of Alzheimer's disease as an alternative therapy. In this, we summarize the main compounds found in 30 different herbal medicines that target neurodegenerative diseases. Using the experimental study of physicochemical properties, we put forward a hypothesis about potential medicinal plants and the management of Alzheimer's disease. The summary analysis demonstrates that conventional herbal medicines produce compounds with physicochemical properties with a high degree of similarities with existing approved medicines.
Collapse
Affiliation(s)
- Surya Nath Pandey
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Naresh Kumar Rangra
- Faculty of Medical Sciences & Health, Department of Pharmaceutical Sciences, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand 249404, India
| | - Sima Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Saahil Arora
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Varun Gupta
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
720
|
Platonova EY, Shaposhnikov MV, Lee HY, Lee JH, Min KJ, Moskalev A. Black chokeberry (Aronia melanocarpa) extracts in terms of geroprotector criteria. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
721
|
Abu-Taweel GM, Al-Mutary MG. Pomegranate juice reverses AlCl 3-Induced neurotoxicity and improves learning and memory in female mice. ENVIRONMENTAL RESEARCH 2021; 199:111270. [PMID: 33992638 DOI: 10.1016/j.envres.2021.111270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Aluminum is a neurotoxic element that can accumulate in the brain and cause neurodegenerative disorders. In addition, the antioxidants found in pomegranate juice (PJ) are much more than those existing in other fruits. It was proven to provide protection against neurodegenerative diseases. OBJECTIVES This experiment aimed to clarify the amelioration efficiency of PJ against aluminum chloride-induced neurobehavioral and biochemical disorders in female mice. METHODS The female mice were given oral administrations for 35 days as follows. The control group received tap water, the PJ groups received 20% and 40% pomegranate juice, the aluminum chloride (AlCl3) group was treated with 400 mg/kg AlCl3, and the last two groups received AlCl3 + 20% PJ and AlCl3 + 40% PJ, respectively. The neurobehavioral features were assessed by shuttle box, T-maze, and Morris water maze devices. Furthermore, the neurotransmitters and oxidative indicators in the brains of the female mice were determined at the end of experiment. RESULTS Significant effects of AlCl3 were observed on female mice in the body weight, during the behavioral tasks (shuttle box, T-maze, and Morris water maze), and in neurotransmitters and oxidative stress parameters. Pomegranate juice, especially at low concentrations, induced remarkable improvements in body weight, spatial memory and learning during T-maze, Morris water maze and shuttle box tasks, as well as in neurotransmitters and oxidative biomarkers in the AlCl3-treated female mice. CONCLUSION PJ reversed AlCl3-induced neurotoxicity and improved learning and memory in female mice. However, PJ contains a group of antioxidants that may be considered double-edged swords in the cellular redox status especially at high doses.
Collapse
Affiliation(s)
- Gasem M Abu-Taweel
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan, 45142, Saudi Arabia
| | - Mohsen G Al-Mutary
- Department of Basic Sciences, College of Education, Imam Abdulrahman Bin Faisal University, P.O. Box 2375, Dammam, 14513, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
722
|
Gupta A, Singh AK, Kumar R, Jamieson S, Pandey AK, Bishayee A. Neuroprotective Potential of Ellagic Acid: A Critical Review. Adv Nutr 2021; 12:1211-1238. [PMID: 33693510 PMCID: PMC8321875 DOI: 10.1093/advances/nmab007] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Ellagic acid (EA) is a dietary polyphenol present in various fruits, vegetables, herbs, and nuts. It exists either independently or as part of complex structures, such as ellagitannins, which release EA and several other metabolites including urolithins following absorption. During the past few decades, EA has drawn considerable attention because of its vast range of biological activities as well as its numerous molecular targets. Several studies have reported that the oxidative stress-lowering potential of EA accounts for its broad-spectrum pharmacological attributes. At the biochemical level, several mechanisms have also been associated with its therapeutic action, including its efficacy in normalizing lipid metabolism and lipidemic profile, regulating proinflammatory mediators, such as IL-6, IL-1β, and TNF-α, upregulating nuclear factor erythroid 2-related factor 2 and inhibiting NF-κB action. EA exerts appreciable neuroprotective activity by its free radical-scavenging action, iron chelation, initiation of several cell signaling pathways, and alleviation of mitochondrial dysfunction. Numerous in vivo studies have also explored the neuroprotective attribute of EA against various neurotoxins in animal models. Despite the increasing number of publications with experimental evidence, a critical analysis of available literature to understand the full neuroprotective potential of EA has not been performed. The present review provides up-to-date, comprehensive, and critical information regarding the natural sources of EA, its bioavailability, metabolism, neuroprotective activities, and underlying mechanisms of action in order to encourage further studies to define the clinical usefulness of EA for the management of neurological disorders.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
723
|
Beekes M. The Neural Gut-Brain Axis of Pathological Protein Aggregation in Parkinson's Disease and Its Counterpart in Peroral Prion Infections. Viruses 2021; 13:1394. [PMID: 34372600 PMCID: PMC8310171 DOI: 10.3390/v13071394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
A neuropathological hallmark of Parkinson's disease (PD) is the cerebral deposition of abnormally aggregated α-synuclein (αSyn). PD-associated αSyn (αSynPD) aggregates are assumed to act, in a prion-like manner, as proteinaceous nuclei ("seeds") capable of self-templated propagation. Braak and colleagues put forward the idea of a neural gut-brain axis mediating the centripetal spread of αSynPD pathology from the enteric nervous system (ENS) to the brain in PD. This has sparked great interest and initiated passionate discussions both in support of and opposing the suggested hypothesis. A precedent for the spread of protein seeds or seeding from the gastro-intestinal (GI) tract to the central nervous system (CNS) had been previously revealed for pathological prion protein in peroral prion infections. This article scrutinizes the similarities and dissimilarities between the pathophysiological spread of disease-associated protein aggregation along the neural gut-brain axis in peroral prion infections and PD. On this basis, evidence supporting the proposed neural gut-brain axis in PD is concluded to be not as robust as that established for peroral prion infections. New tools for the ultrasensitive detection of αSynPD-associated seeding activity in archived or fresh human tissue samples such as real-time quaking induced conversion (RT-QuIC) or protein misfolding cyclic amplification (PMCA) assays can possibly help to address this deficit in the future.
Collapse
Affiliation(s)
- Michael Beekes
- Prion and Prionoid Research Unit, ZBS 6-Proteomics and Spectroscopy, ZBS-Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
724
|
Xuan Z, Gu X, Yan S, Xie Y, Zhou Y, Zhang H, Jin H, Hu S, Mak MSH, Zhou D, Keung Tsim KW, Carlier PR, Han Y, Cui W. Dimeric Tacrine(10)-hupyridone as a Multitarget-Directed Ligand To Treat Alzheimer's Disease. ACS Chem Neurosci 2021; 12:2462-2477. [PMID: 34156230 DOI: 10.1021/acschemneuro.1c00182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with multiple pathological features. Therefore, a multitarget-directed ligands (MTDLs) strategy has been developed to treat AD. We have previously designed and synthesized dimeric tacrine(10)-hupyridone (A10E), a novel tacrine derivative with acetylcholinesterase (AChE) inhibition and brain-derived neurotrophic factor (BDNF) activation activity, by linking tacrine and a fragment of huperzine A. However, it was largely unknown whether A10E could act on other AD targets and produce cognitive-enhancing ability in AD animal models. In this study, A10E could prevent cognitive impairments in APP/PS1 transgenic mice and β-amyloid (Aβ) oligomers-treated mice, with higher potency than tacrine and huperzine A. Moreover, A10E could effectively inhibit Aβ production and deposition, alleviate neuroinflammation, enhance BDNF expression, and elevate cholinergic neurotransmission in vivo. At nanomolar concentrations, A10E could inhibit Aβ oligomers-induced neurotoxicity via the activation of tyrosine kinase receptor B (TrkB)/Akt pathway in SH-SY5Y cells. Furthermore, Aβ oligomerization and fibrillization could be directly disrupted by A10E. Importantly, A10E at high concentrations did not produce obvious hepatotoxicity. Our results indicated that A10E could produce anti-AD neuroprotective effects via the inhibition of Aβ aggregation, the activation of the BDNF/TrkB pathway, the alleviation of neuroinflammation, and the decrease of AChE activity. As MTDLs could produce additional benefits, such as overcoming the deficits of drug combination and enhancing the compliance of AD patients, our results also suggested that A10E might be developed as a promising MTDL lead for the treatment of AD.
Collapse
Affiliation(s)
- Zhenquan Xuan
- Ningbo Kangning Hospital, Ningbo 315211, China
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xinmei Gu
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Sicheng Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yanfei Xie
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yiying Zhou
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hui Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Haibo Jin
- Affiliated Hospital of Medical School Ningbo University and Ningbo City Third Hospital, Ningbo 315211, China
| | - Shengquan Hu
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Marvin S. H. Mak
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | | | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Paul R. Carlier
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Wei Cui
- Ningbo Kangning Hospital, Ningbo 315211, China
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
725
|
Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm Sin B 2021; 11:1708-1720. [PMID: 34386317 PMCID: PMC8343111 DOI: 10.1016/j.apsb.2020.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke is considered a leading cause of mortality and neurological disability, which puts a huge burden on individuals and the community. To date, effective therapy for stroke has been limited by its complex pathological mechanisms. Autophagy refers to an intracellular degrading process with the involvement of lysosomes. Autophagy plays a critical role in maintaining the homeostasis and survival of cells by eliminating damaged or non-essential cellular constituents. Increasing evidence support that autophagy protects neuronal cells from ischemic injury. However, under certain circumstances, autophagy activation induces cell death and aggravates ischemic brain injury. Diverse naturally derived compounds have been found to modulate autophagy and exert neuroprotection against stroke. In the present work, we have reviewed recent advances in naturally derived compounds that regulate autophagy and discussed their potential application in stroke treatment.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPK, 5′-adenosine monophosphate-activated protein kinase
- ATF6, activating transcription factor 6
- ATG, autophagy related genes
- Autophagy
- BCL-2, B-cell lymphoma 2
- BNIP3L, BCL2/adenovirus
- COPII, coat protein complex II
- Cerebral ischemia
- ER, endoplasmic reticulum
- FOXO, forkhead box O
- FUNDC1, FUN14 domain containing 1
- GPCR, G-protein coupled receptor
- HD, Huntington's disease
- IPC, ischemic preconditioning
- IRE1, inositol-requiring enzyme 1
- JNK, c-Jun N-terminal kinase
- LAMP, lysosomal-associated membrane protein
- LC3, light chain 3
- LKB1, liver kinase B1
- Lysosomal activation
- Mitochondria
- Mitophagy
- Natural compounds
- Neurological disorders
- Neuroprotection
- OGD/R, oxygen and glucose deprivation-reperfusion
- PD, Parkinson's disease
- PERK, protein kinase R (PKR)-like endoplasmic reticulum kinase
- PI3K, phosphatidylinositol 3-kinase
- ROS, reactive oxygen species
- SQSTM1, sequestosome 1
- TFEB, transcription factor EB
- TIGAR, TP53-induced glycolysis and apoptosis regulator
- ULK, Unc-51- like kinase
- Uro-A, urolithin A
- eIF2a, eukaryotic translation-initiation factor 2
- mTOR, mechanistic target of rapamycin
- ΔΨm, mitochondrial membrane potential
Collapse
|
726
|
Wan JY, Long Y, Zhang YL, Xiang Y, Liu SY, Li N, Zhang DK. A novel technology to reduce astringency of tea polyphenols extract and its mechanism. CHINESE HERBAL MEDICINES 2021; 13:421-429. [PMID: 36118929 PMCID: PMC9476728 DOI: 10.1016/j.chmed.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 12/08/2020] [Accepted: 03/05/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
|
727
|
Suárez Montenegro ZJ, Álvarez-Rivera G, Sánchez-Martínez JD, Gallego R, Valdés A, Bueno M, Cifuentes A, Ibáñez E. Neuroprotective Effect of Terpenoids Recovered from Olive Oil By-Products. Foods 2021; 10:foods10071507. [PMID: 34209864 PMCID: PMC8306477 DOI: 10.3390/foods10071507] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022] Open
Abstract
The neuroprotective potential of 32 natural extracts obtained from olive oil by-products was investigated. The online coupling of supercritical fluid extraction (SFE) and dynamic adsorption/desorption allowed the selective enrichment of olive leaves extracts in different terpenoids’ families. Seven commercial adsorbents based on silica gel, zeolite, aluminum oxide, and sea sand were used with SFE at three different extraction times to evaluate their selectivity towards different terpene families. Collected fractions were analyzed by gas chromatography coupled to quadrupole-time-of-flight mass spectrometry (GC-QTOF-MS) to quantify the recoveries of monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), and triterpenes (C30). A systematic analysis of the neuroprotective activity of the natural extracts was then carried out. Thus, a set of in vitro bioactivity assays including enzymatic (acetylcholinesterase (AChE), butyrylcholinesterase (BChE)), and anti-inflammatory (lipoxidase (LOX)), as well as antioxidant (ABTS), and reactive oxygen and nitrogen species (ROS and RNS, respectively) activity tests were applied to screen for the neuroprotective potential of these extracts. Statistical analysis showed that olive leaves adsorbates from SS exhibited the highest biological activity potential in terms of neuroprotective effect. Blood–brain barrier permeation and cytotoxicity in HK-2 cells and human THP-1 monocytes were studied for the selected olive leaves fraction corroborating its potential.
Collapse
|
728
|
NaCl-Induced Elicitation Alters Physiology and Increases Accumulation of Phenolic Compounds in Melissa officinalis L. Int J Mol Sci 2021; 22:ijms22136844. [PMID: 34202180 PMCID: PMC8268150 DOI: 10.3390/ijms22136844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
Abstract
In nature, plants usually produce secondary metabolites as a defense mechanism against environmental stresses. Different stresses determine the chemical diversity of plant-specialized metabolism products. In this study, we applied an abiotic elicitor, i.e., NaCl, to enhance the biosynthesis and accumulation of phenolic secondary metabolites in Melissa officinalis L. Plants were subjected to salt stress treatment by application of NaCl solutions (0, 50, or 100 mM) to the pots. Generally, the NaCl treatments were found to inhibit the growth of plants, simultaneously enhancing the accumulation of phenolic compounds (total phenolics, soluble flavonols, anthocyanins, phenolic acids), especially at 100 mM NaCl. However, the salt stress did not disturb the accumulation of photosynthetic pigments and proper functioning of the PS II photosystem. Therefore, the proposed method of elicitation represents a convenient alternative to cell suspension or hydroponic techniques as it is easier and cheaper with simple application in lemon balm pot cultivation. The improvement of lemon balm quality by NaCl elicitation can potentially increase the level of health-promoting phytochemicals and the bioactivity of low-processed herbal products.
Collapse
|
729
|
Liu X, Liu W, Wang C, Chen Y, Liu P, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Silibinin attenuates motor dysfunction in a mouse model of Parkinson's disease by suppression of oxidative stress and neuroinflammation along with promotion of mitophagy. Physiol Behav 2021; 239:113510. [PMID: 34181930 DOI: 10.1016/j.physbeh.2021.113510] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Silybum marianum (L.) Gaertn has been widely used to obtain a drug for the treatment of hepatic diseases. Silibinin (silybin), a flavonoid extracted and isolated from the fruit of S. marianumis investigated in our study to explore its motor protective potential on Parkinson's disease (PD) model mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). PD is a neurodegenerative disease that causes a debilitating movement disorder, characterized by a progressive loss of nigrostriatal (substantia nigra and striatum) dopaminergic neurons. Several studies have proven that neurodegeneration is aggravated by neuroinflammation, oxidative stress and/or the presence of α-synuclein (α-syn) aggregation. Essentially no causal therapy for PD exists at present. Our results demonstrate that silibinin significantly attenuates MPTP-induced movement disorder in behavioral tests. Immunohistochemical analysis shows that MPTP injection results in the loss of dopaminergic neurons in the substantia nigra, and the decrease of the striatal tyrosine hydroxylase. However, MPTP-injected mice were protected against dopaminergic neuronal loss by oral administration of silibinin (280 mg/kg) that increased expressions of PTEN-induced putative kinase 1 (PINK1) and Parkin, suggesting mitophagy activation. The neuroprotective mechanism of silibinin involves not only reduction of mitochondrial damage by repressing proinflammatory response and α-syn aggregation, but also enhancement of oxidative defense system. Namely, protection of dopaminergic nerves is due to promotion of mitophagy, leading to clearance of the toxic effects of damaged mitochondria. These findings suggest that silibinin has a potential to be further developed as a therapeutic candidate for PD.
Collapse
Affiliation(s)
- Xiumin Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Chenkang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yinzhe Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Panwen Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan; Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| |
Collapse
|
730
|
Sutkowska J, Hupert N, Gawron K, Strawa JW, Tomczyk M, Forlino A, Galicka A. The Stimulating Effect of Rosmarinic Acid and Extracts from Rosemary and Lemon Balm on Collagen Type I Biosynthesis in Osteogenesis Imperfecta Type I Skin Fibroblasts. Pharmaceutics 2021; 13:pharmaceutics13070938. [PMID: 34201872 PMCID: PMC8308967 DOI: 10.3390/pharmaceutics13070938] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023] Open
Abstract
Rosemary extract (RE) and lemon balm extract (LBE) attract particular attention of pharmacists due to their high therapeutic potential. Osteogenesis imperfecta (OI) type I is a heritable disease caused by mutations in type I collagen and characterized by its reduced amount. The aim of the study was to evaluate the effect of the extracts and rosmarinic acid (RA) on collagen type I level in OI skin fibroblasts. Phytochemical analysis of RE and LBE was carried out by liquid chromatography–photodiode array detection–mass spectrometry. The expression of collagen type I at transcript and protein levels was analyzed by qPCR, ELISA, SDS-urea PAGE, and Western blot. In OI patient’s fibroblasts the exposure to the extracts (0.1–100 µg/mL) and RA (0.1–100 µM) significantly increased collagen type I and the best results were obtained with 0.1–10 µM RA and 0.1–10 µg/mL of the extracts. LBE showed a greater stimulating effect than RE, likely due to a higher RA content. Moreover, collagen type III expression and matrix metalloproteinase (MMP-1, -2, -9) activity remained unchanged or decreased. The obtained data support the clinical potential of RA-rich extracts and RA itself in modulating the quantitative defect of type I collagen in type I OI.
Collapse
Affiliation(s)
- Joanna Sutkowska
- Department of Medical Chemistry, Medical University of Bialystok, ul. Mickiewicza 2A, 15-222 Bialystok, Poland;
| | - Natalia Hupert
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (N.H.); (K.G.)
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (N.H.); (K.G.)
| | - Jakub W. Strawa
- Department of Pharmacognosy, Medical University of Bialystok, ul. Mickiewicza 2A, 15-230 Bialystok, Poland; (J.W.S.); (M.T.)
| | - Michał Tomczyk
- Department of Pharmacognosy, Medical University of Bialystok, ul. Mickiewicza 2A, 15-230 Bialystok, Poland; (J.W.S.); (M.T.)
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy;
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Bialystok, ul. Mickiewicza 2A, 15-222 Bialystok, Poland;
- Correspondence:
| |
Collapse
|
731
|
Kudłacik-Kramarczyk S, Drabczyk A, Głąb M, Gajda P, Jaromin A, Czopek A, Zagórska A, Tyliszczak B. Synthesis and Physicochemical Evaluation of Bees' Chitosan-Based Hydrogels Modified with Yellow Tea Extract. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3379. [PMID: 34207214 PMCID: PMC8235593 DOI: 10.3390/ma14123379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/29/2023]
Abstract
The novelty of the research involves designing the measurement methodology aimed at determining the structure-property relationships in the chitosan-based hydrogels containing yellow tea extract. Performed investigations allowed us to determine the swelling properties of hydrogels in selected time intervals, evaluate the mutual interactions between the hydrogels and simulated physiological liquids via pH measurements and directly assess the impact of such interactions on the chemical structure of hydrogels using Fourier transform infrared (FT-IR) spectroscopy and their wettability by the measurements of the flatness of the drop on the surface of the tested samples via the static drop method. Next, the surface morphology of hydrogels was characterized by the Scanning Electron Miscorcopy (SEM) and their elasticity under the tension applied was also verified. It was proved that incubation in simulated physiological liquids resulted in a decrease in contact angles of hydrogels, even by 60%. This also caused their certain degradation which was reflected in lower intensities of bands on FT-IR spectra. Further, 23% v/v yellow tea extract in hydrogel matrices caused the decrease of their tensile strength. An increase in the amount of the crosslinker resulted in a decrease in the sorption capacity of hydrogels wherein their modification caused greater swelling ability. In general, the investigations performed provided much information on the tested materials which may be meaningful considering their application, e.g., as dressing materials.
Collapse
Affiliation(s)
- Sonia Kudłacik-Kramarczyk
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Anna Drabczyk
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Magdalena Głąb
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Paweł Gajda
- Department of Nuclear Energy, Faculty of Energy end Fuels, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland;
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, 14a Joliot-Curie St., 50-383 Wrocław, Poland;
| | - Anna Czopek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (A.C.); (A.Z.)
| | - Agnieszka Zagórska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (A.C.); (A.Z.)
| | - Bożena Tyliszczak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
732
|
Anwar HM, Georgy GS, Hamad SR, Badr WK, El Raey MA, Abdelfattah MAO, Wink M, Sobeh M. A Leaf Extract of Harrisonia abyssinica Ameliorates Neurobehavioral, Histological and Biochemical Changes in the Hippocampus of Rats with Aluminum Chloride-Induced Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10060947. [PMID: 34208063 PMCID: PMC8230640 DOI: 10.3390/antiox10060947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 01/17/2023] Open
Abstract
Aluminum (Al) is an omnipresent mineral element in the environment. The brain is a central target of Al toxicity, being highly susceptible to oxidative damage. Therefore, recognition of drugs or natural products that guard against Al-mediated neuronal cell death is a powerful strategy for prevention and treatment of neurodegenerative disorders. This work aimed to explore the potential of a leaf extract from Harrisonia abyssinica to modulate the neurobehavioral, biochemical and histopathological activities induced experimentally by Al in vivo. Rats subjected to Al treatment displayed a reduction in learning and memory performance in a passive avoidance test accompanied by a decrease in the hippocampal monoamine and glutamate levels in addition to suppression of Bcl2 expression. Moreover, malondialdehyde (MDA), inflammatory markers (TNF-α, IL-1β), apoptotic markers (caspase-3 and expression of Bax) and extracellular regulated kinase (ERK1/2) levels were elevated along with acetylcholinesterase (AChE) activity, histological changes and marked deposition of amyloid β plaques in the hippocampus region of the brain tissues being observed in Al-treated animals. Concomitant administration of the high dose of H. abyssinica (200 mg/kg b.w.) restored nearly normal levels of all parameters measured, rather than the low dose (100 mg/kg b.w.), an effect that was comparable to the reference drug (rivastigmine). Molecular docking revealed the appropriate potential of the extract components to block the active site of AChE and ERK2. In conclusion, H. abyssinica leaf extract conferred neuroprotection against Al-induced neurotoxic effects, most likely due to its high phenolic and flavonoid content.
Collapse
Affiliation(s)
- Hend Mohamed Anwar
- Department of Biochemistry, National Organization for Drug Control and Research, Giza 11221, Egypt;
| | - Gehan S. Georgy
- Department of Pharmacology, National Organization for Drug Control and Research, Giza 11221, Egypt;
| | - Sherin Ramadan Hamad
- Department of Histopathology, National Organization for Drug Control and Research, Cairo 11221, Egypt;
| | - Wafaa K. Badr
- Department of Medicinal Plants and Natural Products, National Organization of Drug Control and Research, Giza 11221, Egypt;
| | - Mohamed A. El Raey
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt;
| | | | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany;
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660–Hay MoulayRachid, Ben-Guerir 43150, Morocco
- Correspondence:
| |
Collapse
|
733
|
Makuch E, Ossowicz-Rupniewska P, Klebeko J, Janus E. Biodegradation of L-Valine Alkyl Ester Ibuprofenates by Bacterial Cultures. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3180. [PMID: 34207691 PMCID: PMC8228323 DOI: 10.3390/ma14123180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Nowadays, we consume very large amounts of medicinal substances. Medicines are used to cure, halt, or prevent disease, ease symptoms, or help in the diagnosis of illnesses. Some medications are used to treat pain. Ibuprofen is one of the most popular drugs in the world (it ranks third). This drug enters our water system through human pharmaceutical use. In this article, we describe and compare the biodegradation of ibuprofen and ibuprofen derivatives-salts of L-valine alkyl esters. Biodegradation studies of ibuprofen and its derivatives have been carried out with activated sludge. The structure modifications we received were aimed at increasing the biodegradation of the drug used. The influence of the alkyl chain length of the ester used in the biodegradation of the compound was also verified. The biodegradation results correlated with the lipophilic properties (log P).
Collapse
Affiliation(s)
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, PL-70322 Szczecin, Poland; (E.M.); (J.K.); (E.J.)
| | | | | |
Collapse
|
734
|
Sandoval IM, Marmion DJ, Meyers KT, Manfredsson FP. Gene Therapy to Modulate Alpha-Synuclein in Synucleinopathies. JOURNAL OF PARKINSONS DISEASE 2021; 11:S189-S197. [PMID: 34092656 PMCID: PMC8543271 DOI: 10.3233/jpd-212679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The protein alpha-Synuclein (α-Syn) is a key contributor to the etiology of Parkinson’s disease (PD) with aggregation, trans-neuronal spread, and/or depletion of α-Syn being viewed as crucial events in the molecular processes that result in neurodegeneration. The exact succession of pathological occurrences that lead to neuronal death are still largely unknown and are likely to be multifactorial in nature. Despite this unknown, α-Syn dose and stability, autophagy-lysosomal dysfunction, and inflammation, amongst other cellular impairments, have all been described as participatory events in the neurodegenerative process. To that end, in this review we discuss the logical points for gene therapy to intervene in α-Syn-mediated disease and review the preclinical body of work where gene therapy has been used, or could conceptually be used, to ameliorate α-Syn induced neurotoxicity. We discuss gene therapy in the traditional sense of modulating gene expression, as well as the use of viral vectors and nanoparticles as methods to deliver other therapeutic modalities.
Collapse
Affiliation(s)
- Ivette M Sandoval
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - David J Marmion
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Kimberly T Meyers
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | |
Collapse
|
735
|
Aliahmadi M, Amiri F, Bahrami LS, Hosseini AF, Abiri B, Vafa M. Effects of raw red beetroot consumption on metabolic markers and cognitive function in type 2 diabetes patients. J Diabetes Metab Disord 2021; 20:673-682. [PMID: 34222085 PMCID: PMC8212206 DOI: 10.1007/s40200-021-00798-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study aimed to investigate the effects of raw red beetroot consumption on metabolic markers and cognitive function in type 2 diabetes patients. METHODS In a quasi-experimental study, 44 type 2 diabetes patients (57 ± 4.5 years) consumed raw red beetroot (100 g, daily), for 8 weeks. Metabolic markers including body weight, glucose and lipid profile parameters, inflammatory and oxidative stress markers, paraoxonase-1 activity, hepatic enzymes, blood pressure and cognitive function were measured at the beginning and end of 8 weeks. RESULTS Raw red beetroot consumption resulted in a significant decrease in fasting blood sugar (FBS) levels (-13.53 mg/dL), glycosylated hemoglobin (HbA1c)(-0.34%), apolipoproteinB100 (ApoB100) (-8.25 mg/dl), aspartate aminotransferase (AST) (-1.75 U/L), alanine aminotransferase (ALT) (-3.7 U/L), homocysteine (-7.88 μmol/l), systolic (-0.73 mmHg) and diastolic blood pressure (-0.34 mmHg), anda significant increase in total antioxidant capacity (TAC) (105 μmol/L) and cognitive function tests (all P values <0.05). Other variables did not change significantly after the intervention. CONCLUSIONS Raw red beetroot consumption for 8 weeks in T2DM patients has beneficial impacts on cognitive function, glucose metabolism and other metabolic markers.
Collapse
Affiliation(s)
- Mitra Aliahmadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amiri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Sadat Bahrami
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Agha Fatemeh Hosseini
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
736
|
Shalabalija D, Mihailova L, Crcarevska MS, Karanfilova IC, Ivanovski V, Nestorovska AK, Novotni G, Dodov MG. Formulation and optimization of bioinspired rosemary extract loaded PEGylated nanoliposomes for potential treatment of Alzheimer's disease using design of experiments. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
737
|
Geng J, Li J, Zhu F, Chen X, Du B, Tian H, Li J. Plant sprout foods: Biological activities, health benefits, and bioavailability. J Food Biochem 2021; 46:e13777. [PMID: 34050545 DOI: 10.1111/jfbc.13777] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/01/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022]
Abstract
Plant sprout foods exhibit a lot of biological activities including anti-inflammatory, antioxidative, anticancer, antidiabetes, anti-infection, and antiviral activities. Up to the present moment, plant sprout foods have received much attention due to their abundance, good bioavailability, and health benefits for human. This review highlights the biological activities of different plant sprout foods (viz., broccoli sprout, buckwheat sprout, wheat sprout, mung bean sprout, soybean sprout, and adkuzi bean sprout) using in vitro model, animal model, and human model. Furthermore, the bioavailability of plant sprout foods is also discussed. PRACTICAL APPLICATIONS: A review of the literature was conducted to biological activities of plant sprout foods, in addition to a summary of health benefits and bioavailability of sprout foods. Several biological activities of plant sprout foods with in vitro and in vivo evidence are currently unexplored in clinical trials, because the effects of sprout foods on human tissues and cells measured by tube test do not recapitulate the actual in vivo effects. Moreover, the safety of chemoprevention strategies using sprout foods that to protect against environmental exposures and other oxidative stress-related pathologies is important. Further research is warranted to evaluate bioavailability of individual forms.
Collapse
Affiliation(s)
- Jingzhang Geng
- College of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, China.,School of Life Science and Technology, Shaanxi Nutrition and Health Engineering Research Center, Xi'an Jiaotong University, Shaanxi, China
| | - Jiaxuan Li
- College of Food Science and Technology, Hebei Agricultural University, Hebei, China
| | - Fengmei Zhu
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Hebei, China
| | - Xiangning Chen
- College of Food Science and Technology, Beijing Agricultural University, Beijing, China
| | - Bin Du
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Hebei, China
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Jun Li
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Hebei, China
| |
Collapse
|
738
|
Ray B, Mahalakshmi AM, Tuladhar S, Bhat A, Srinivasan A, Pellegrino C, Kannan A, Bolla SR, Chidambaram SB, Sakharkar MK. "Janus-Faced" α-Synuclein: Role in Parkinson's Disease. Front Cell Dev Biol 2021; 9:673395. [PMID: 34124057 PMCID: PMC8194081 DOI: 10.3389/fcell.2021.673395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/15/2021] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease (PD) is a pathological condition characterized by the aggregation and the resultant presence of intraneuronal inclusions termed Lewy bodies (LBs) and Lewy neurites which are mainly composed of fibrillar α-synuclein (α-syn) protein. Pathogenic aggregation of α-syn is identified as the major cause of LBs deposition. Several mutations in α-syn showing varied aggregation kinetics in comparison to the wild type (WT) α-syn are reported in PD (A30P, E46K, H 50Q, G51D, A53E, and A53T). Also, the cell-to-cell spread of pathological α-syn plays a significant role in PD development. Interestingly, it has also been suggested that the pathology of PD may begin in the gastrointestinal tract and spread via the vagus nerve (VN) to brain proposing the gut-brain axis of α-syn pathology in PD. Despite multiple efforts, the behavior and functions of this protein in normal and pathological states (specifically in PD) is far from understood. Furthermore, the etiological factors responsible for triggering aggregation of this protein remain elusive. This review is an attempt to collate and present latest information on α-syn in relation to its structure, biochemistry and biophysics of aggregation in PD. Current advances in therapeutic efforts toward clearing the pathogenic α-syn via autophagy/lysosomal flux are also reviewed and reported.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Asha Srinivasan
- Division of Nanoscience & Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, India
| | - Christophe Pellegrino
- Institut National de la Santé et de la Recherche Médicale, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Anbarasu Kannan
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Srinivasa Rao Bolla
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan City, Kazakhstan
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- Special Interest Group – Brain, Behaviour, and Cognitive Neurosciences Research, JSS Academy of Higher Education & Research, Mysuru, India
| | | |
Collapse
|
739
|
Design, Synthesis, and Biological Evaluation of Novel 6 H-Benzo[ c]chromen-6-one Derivatives as Potential Phosphodiesterase II Inhibitors. Int J Mol Sci 2021; 22:ijms22115680. [PMID: 34073595 PMCID: PMC8199001 DOI: 10.3390/ijms22115680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Urolithins (hydroxylated 6H-benzo[c]chromen-6-ones) are the main bioavailable metabolites of ellagic acid (EA), which was shown to be a cognitive enhancer in the treatment of neurodegenerative diseases. As part of this research, a series of alkoxylated 6H-benzo[c]chromen-6-one derivatives were designed and synthesized. Furthermore, their biological activities were evaluated as potential PDE2 inhibitors, and the alkoxylated 6H-benzo[c]chromen-6-one derivative 1f was found to have the optimal inhibitory potential (IC50: 3.67 ± 0.47 μM). It also exhibited comparable activity in comparison to that of BAY 60-7550 in vitro cell level studies.
Collapse
|
740
|
Ouknin M, Aghraz A, Chibane M, Boumezzourh A, Costa J, Majidi L. Enzyme inhibitory, antioxidant activity and phytochemical analysis of essential oil from cultivated Rosmarinus officinalis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00952-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
741
|
Okuyama S, Furukawa Y, Yoshimura M, Amakura Y, Nakajima M, Yoshida T. Oenothein B, a Bioactive Ellagitannin, Activates the Extracellular Signal-Regulated Kinase 2 Signaling Pathway in the Mouse Brain. PLANTS 2021; 10:plants10051030. [PMID: 34065522 PMCID: PMC8161343 DOI: 10.3390/plants10051030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/01/2021] [Accepted: 05/17/2021] [Indexed: 12/04/2022]
Abstract
(1) Background: Oenothein B, a cyclic dimeric ellagitannin present in various medicinal plants, has been reported to exert diverse effects that are beneficial for the treatment and prevention of diseases, including cancer and infections. We recently showed that oenothein B also functions in the brain because its oral administration to systemic inflammatory model mice reduced inflammatory responses in the brain and suppressed abnormal behavior. (2) Results: The present in vivo results demonstrated that oenothein B activated extracellular signal-regulated kinase 2 and cAMP response element-binding protein in the brain, both of which play important roles in synaptic transmission and learning/memory in the central nervous system (CNS). (3) Conclusions: These results suggest that oenothein B exerts neuroprotective effects on the CNS by not only its anti-inflammatory activity but also by enhancing neuronal signaling pathways.
Collapse
Affiliation(s)
- Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (S.O.); (M.N.)
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (S.O.); (M.N.)
- Correspondence: ; Tel.: +89-925-7111; Fax: +89-926-7162
| | - Morio Yoshimura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (M.Y.); (Y.A.); (T.Y.)
| | - Yoshiaki Amakura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (M.Y.); (Y.A.); (T.Y.)
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (S.O.); (M.N.)
| | - Takashi Yoshida
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (M.Y.); (Y.A.); (T.Y.)
- Department of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
742
|
Vásquez-Reyes S, Velázquez-Villegas LA, Vargas-Castillo A, Noriega LG, Torres N, Tovar AR. Dietary bioactive compounds as modulators of mitochondrial function. J Nutr Biochem 2021; 96:108768. [PMID: 34000412 DOI: 10.1016/j.jnutbio.2021.108768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/25/2021] [Accepted: 04/21/2021] [Indexed: 01/11/2023]
Abstract
The increase in incidence and prevalence of metabolic diseases, such as diabetes, obesity, and metabolic syndrome, is a health problem worldwide. Nutritional strategies that can impact on mitochondrial activity represent a novel and effective option to modulate energy expenditure and energetic metabolism in cells and tissues and could be used as adjuvant treatments for metabolic-associated disorders. Dietary bioactive compounds also known as "food bioactives" have proven to exert multiple health benefits and counteract metabolic alterations. In the last years, it has been consistently reported that the modulation of mitochondrial function represents one of the mechanisms behind the bioactive compounds-dependent health improvements. In this review, we focus on gathering, summarizing, and discussing the evidence that supports the effect of dietary bioactive compounds on mitochondrial activity and the relation of these effects in the pathological context. Despite the evidence presented here on in vivo and in vitro effects, more studies are needed to determine their effectiveness in humans.
Collapse
Affiliation(s)
- Sarai Vásquez-Reyes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Ariana Vargas-Castillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico.
| |
Collapse
|
743
|
Arazi H, Eghbali E. Possible Effects of Beetroot Supplementation on Physical Performance Through Metabolic, Neuroendocrine, and Antioxidant Mechanisms: A Narrative Review of the Literature. Front Nutr 2021; 8:660150. [PMID: 34055855 PMCID: PMC8155490 DOI: 10.3389/fnut.2021.660150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Athletes often seek to use dietary supplements to increase performance during exercise. Among various supplements, much attention has been paid to beetroot in recent years. Beetroot is a source of carbohydrates, fiber, protein, minerals, and vitamins; also, it is a natural source of nitrate and associated with improved sports performance. Nitrates can the modification of skeletal muscle contractile proteins or calcium handling after translation. The time to reach the peak plasma nitrate is between 1 and 3 h after consumption of a single dose of nitrate. Nitrate is metabolized by conversion to nitrite and subsequently nitric oxide. Beetroot can have various effects on athletic performance through nitric oxide. Nitric oxide is an intracellular and extracellular messenger for regulating certain cellular functions and causes vasodilation of blood vessels and increases blood flow. Nitric oxide seems to be effective in improving athletic performance by increasing oxygen, glucose, and other nutrients for better muscle fueling. Nitric oxide plays the main role in anabolic hormones, modulates the release of several neurotransmitters and the major mediators of stress involved in the acute hypothalamic-pituitary-adrenal response to exercise. Beetroot is an important source of compounds such as ascorbic acid, carotenoids, phenolic acids, flavonoids, betaline, and highly active phenolics and has high antioxidant properties. Beetroot supplement provides an important source of dietary polyphenols and due to the many health benefits. Phytochemicals of Beetroot through signaling pathways inhibit inflammatory diseases. In this study, the mechanisms responsible for these effects were examined and the research in this regard was reviewed.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Ehsan Eghbali
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
744
|
Vojdani A, Lerner A, Vojdani E. Cross-Reactivity and Sequence Homology Between Alpha-Synuclein and Food Products: A Step Further for Parkinson's Disease Synucleinopathy. Cells 2021; 10:1111. [PMID: 34063062 PMCID: PMC8147930 DOI: 10.3390/cells10051111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Parkinson's disease is characterized by non-motor/motor dysfunction midbrain neuronal death and α-synuclein deposits. The accepted hypothesis is that unknown environmental factors induce α-synuclein accumulation in the brain via the enteric nervous system. MATERIAL AND METHODS Monoclonal antibodies made against recombinant α-synuclein protein or α-synuclein epitope 118-123 were applied to the antigens of 180 frequently consumed food products. The specificity of those antibody-antigen reactions was confirmed by serial dilution and inhibition studies. The Basic Local Alignment Search Tool sequence matching program was used for sequence homologies. RESULTS While the antibody made against recombinant α-synuclein reacted significantly with 86/180 specific food antigens, the antibody made against α-synuclein epitope 118-123 reacted with only 32/180 tested food antigens. The food proteins with the greatest number of peptides that matched with α-synuclein were yeast, soybean, latex hevein, wheat germ agglutinin, potato, peanut, bean agglutinin, pea lectin, shrimp, bromelain, and lentil lectin. Conclusions: The cross-reactivity and sequence homology between α-synuclein and frequently consumed foods, reinforces the autoimmune aspect of Parkinson's disease. It is hypothesized that luminal food peptides that share cross-reactive epitopes with human α-synuclein and have molecular similarity with brain antigens are involved in the synucleinopathy. The findings deserve further confirmation by extensive research.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Laboratory, Inc., Los Angeles, CA 90035, USA;
- Cyrex Laboratories, Phoenix, AZ 85034, USA
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Aaron Lerner
- Chaim Sheba Medical Center, Zabludowicz Center for Autoimmune Diseases, Tel-Hashomer 52621, Israel
| | - Elroy Vojdani
- Regenera Medical,11620 Wilshire Blvd., Ste. 470, Los Angeles, CA 90025, USA;
| |
Collapse
|
745
|
Potential therapeutic natural products against Alzheimer's disease with Reference of Acetylcholinesterase. Biomed Pharmacother 2021; 139:111609. [PMID: 33915501 DOI: 10.1016/j.biopha.2021.111609] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD), is the most common type of dementia primarily affecting the later years of life. Its prevalence is likely to increase in any aging population and will be a major burden on healthcare system by the mid of the century. Despite scientific and technological breakthroughs in the last 50 years, that have expanded our understanding of the disease on a system, cellular and molecular level, therapies that could stop or slow the progression of the disease are still unavailable. The Food and Drug Administration (FDA), has approved acetylcholinesterase (AChE) inhibitors (donepezil, galantamine, tacrine and rivastigmine) and glutamate receptor antagonist (memantine) for the treatment of AD. In this review we summarize the studies reporting phytocompounds and extracts from medicinal plants that show AChE inhibitory activities and could be of potential benefit in AD. Future research directions are suggested and recommendations made to expand the use of medicinal plants and their formulations to prevent, mitigate and treat AD.
Collapse
|
746
|
Guan R, Van Le Q, Yang H, Zhang D, Gu H, Yang Y, Sonne C, Lam SS, Zhong J, Jianguang Z, Liu R, Peng W. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. CHEMOSPHERE 2021; 271:129499. [PMID: 33445014 DOI: 10.1016/j.chemosphere.2020.129499] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Phytochemicals refer to active substances in plant-based diets. Phytochemicals found in for example fruits, vegetables, grains and seed oils are considered relatively safe for consumption due to mammal-plant co-evolution and adaptation. A number of human diseases are related to oxidative stress caused by for example chemical environmental contaminants in air, water and food; while also lifestyle including smoking and lack of exercise and dietary preferences are important factors for disease development in humans. Here we explore the dietary sources of antioxidant phytochemicals that have beneficial effects on oxidative stress, cardiovascular and neurological diseases as well as cancer. Plant-based diets usually contain phenolic acids, flavonoids and carotenoids, which have strong antioxidant properties, and therefore remove the excess of active oxygen in the body, and protect cells from damage, reducing the risk of cardiovascular and Alzheimer's disease. In most cases, obesity is related to diet and inactivity and plant-based diets change lipid composition and metabolism, which reduce obesity related hazards. Cruciferous and Allium vegetables are rich in organic sulphides that can act on the metabolism of carcinogens and therefore used as anti-cancer and suppressing agents while dietary fibres and plant sterols may improve intestinal health and prevent intestinal diseases. Thus, we recommend a diet rich in fruits, vegetables, and grains as its content of phytochemicals may have the potential to prevent or improve a broad sweep of various diseases.
Collapse
Affiliation(s)
- Ruirui Guan
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Han Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangquan Zhang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhu Jianguang
- Pharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Runqiang Liu
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
747
|
The Effect of Yellow Tea Leaves Camellia sinensis on the Quality of Stored Chocolate Confectionery. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chocolate and tea leaves are considered the most valuable sources of highly bioactive polyphenols due to their potential anti-cancer properties and beneficial effects on the cardiovascular and nervous systems. The objective of the present study was the development of a sensory profiling modality that is correlated with the taste of the chocolate enriched with yellow tea phytochemicals. The additive concentration was optimized in white chocolate and the designed product was evaluated using the sensory profiling method. It was shown that the yellow tea extract in chocolate had a significant effect on the taste and color of the product. Addition of 2.0% yellow tea powdered extract increased the value of color acceptance and caused an intensification of the aromas, particularly the leafy taste, compared to the control samples. The next step of the study was to determine the influence of tea addition in white, milk and dark chocolate subjected to 6 months of storage. The designed chocolates were tested for their activity as antioxidants (DPPH, ABTS and ORAC assay) and cholinesterase inhibitors (AChE, BChE assay). It was confirmed that the yellow tea addition affected the activity of prepared chocolates with respect to radical scavenging activity and was highest for dark chocolate with yellow tea where the values were as follows: 4373 mg Tx/100 g (DPPH), 386 mg Tx/100 g (ABTS) and 4363 µM Tx/100 g (ORAC). An increase in the anti-radical activity of chocolate with yellow tea was found after 3 months of storage, but the subsequent 3 months of storage resulted in its reduction. AChE values ranged from 0.118 to 0.730 [µM eserine/g dw] and from 0.095 to 0.480 [µM eserine/g dw] for BChE assay. Total capacity to inhibit AChE and BChE differed depending on the type of chocolate and was negatively influenced by the half-year storage. Summarizing tested values for individual samples were higher, with increasing content of cocoa liquor and yellow tea extract in the product. The results of the research show that the use of yellow tea in confectionery is promising and may appoint a new direction in functional foods.
Collapse
|
748
|
Sadowska-Bartosz I, Bartosz G. Biological Properties and Applications of Betalains. Molecules 2021; 26:2520. [PMID: 33925891 PMCID: PMC8123435 DOI: 10.3390/molecules26092520] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Betalains are water-soluble pigments present in vacuoles of plants of the order Caryophyllales and in mushrooms of the genera Amanita, Hygrocybe and Hygrophorus. Betalamic acid is a constituent of all betalains. The type of betalamic acid substituent determines the class of betalains. The betacyanins (reddish to violet) contain a cyclo-3,4-dihydroxyphenylalanine (cyclo-DOPA) residue while the betaxanthins (yellow to orange) contain different amino acid or amine residues. The most common betacyanin is betanin (Beetroot Red), present in red beets Beta vulgaris, which is a glucoside of betanidin. The structure of this comprehensive review is as follows: Occurrence of Betalains; Structure of Betalains; Spectroscopic and Fluorescent Properties; Stability; Antioxidant Activity; Bioavailability, Health Benefits; Betalains as Food Colorants; Food Safety of Betalains; Other Applications of Betalains; and Environmental Role and Fate of Betalains.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland;
| |
Collapse
|
749
|
Salami AT, Okotie GE, Echendu PN, Akpamu U, Olaleye SB. Potassium bromate (KBrO 3) modulates oxidative stress and inflammatory biomarkers in sodium hydroxide (NaOH) - induced Crohn's colitis in Wistar rats. Can J Physiol Pharmacol 2021; 99:989-999. [PMID: 33848442 DOI: 10.1139/cjpp-2020-0678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Potassium bromate (KBrO3) present in consumed ozonised water was recently documented to exacerbate experimental gastric ulcer. Information, however, is vague as regards its effects in the colon where water reabsorption occurs. In this study, we observed the possible effects of KBrO3 on oxidative stress and inflammatory biomarkers in sodium hydroxide (NaOH) - induced Crohn's colitis (CC). Wistar rats (180-200 g) were divided into six groups (n = 10): (i) control; (ii) untreated CC (induced by 1.4% NaOH; intra-rectal administration); and (iii-vi) CC treated with vitamin E, KBrO3, vitamin E+KBrO3, and sulphazalazine, respectively, for 7 days. Body weight and stool score were monitored daily. By day 3 and 7, excised colon was evaluated for ulcer scores and biochemical and histological analysis. Blood samples collected on days 3 and 7 were assayed for haematological indices using standard methods. Data were subjected to analysis of variance (ANOVA) and p ≤ 0.05 considered significant. Platelet/lymphocyte ratio, colonic ulcer score, malondialdehyde, and mast cells were significantly decreased while colonic sulfhydryl, and Ca2+- and Na+/K+-ATPase activities were increased following KBrO3 treatment compared with untreated CC. These findings suggest that KBrO3 may mitigate against NaOH-induced CC via inhibiting mast cell population and oxidative and inflammatory content but stimulating colonic sulfhydryl and Ca2+- and Na+/K+-ATPase activities.
Collapse
Affiliation(s)
- Adeola Temitope Salami
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Gloria Enevwo Okotie
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Precious Nekachi Echendu
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Uwaifoh Akpamu
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Samuel Babafemi Olaleye
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
750
|
Zhao J, Li K, Wang Y, Li D, Wang Q, Xie S, Wang J, Zuo Z. Enhanced anti-amnestic effect of donepezil by Ginkgo biloba extract (EGb 761) via further improvement in pro-cholinergic and antioxidative activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113711. [PMID: 33352242 DOI: 10.1016/j.jep.2020.113711] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/27/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE EGb 761 is a standardized dry extract of Ginkgo biloba L. leaves traditionally used by Eastern Asia and has been associated with beneficial effects on neurodegeneration disorders, including Alzheimer's disease. AIM OF THE STUDY Since beneficial interactions between EGb 761 and donepezil have been observed in previous clinical studies, the current study was proposed aiming to further explore related mechanisms from both pharmacokinetics and pharmacodynamics aspects. MATERIALS AND METHODS Pharmacodynamic interactions were studied in scopolamine-induced cognitive impairment rats received two-weeks treatment of vehicle, EGb 761 and/or donepezil by the Morris water maze test and ex vivo evaluation of biomarkers of cholinergic transmission and oxidative stress in rat brain. In the meantime, pharmacokinetic profiles of donepezil and bilobalide were obtained and compared among all treatment groups. In addition, impact of the bioavailable EGb 761 components on donepezil brain penetration was evaluated with the hCMEC/D3 cell monolayer model. RESULTS Scopolamine-induced rats with co-treatment of EGb 761 and donepezil had significantly improved cognitive function in the Morris water maze test with increased brain levels of superoxide dismutase and decreased brain levels of acetylcholinesterase and malondialdehyde than that with treatment of only EGb 761 or donepezil. Despite such beneficial pharmacodynamics outcomes, the two-week co-treatment of EGb 761 and donepezil did not alter the plasma pharmacokinetics and brain uptake of donepezil or bilobalide, which was further verified in the hCMEC/D3 monolayer model. CONCLUSION Co-administration of EGb 761 and donepezil exerted better anti-amnestic effect via further enhanced pro-cholinergic and antioxidative effects of EGb 761 or donepezil in scopolamine-induced cognitive impairment rat without alteration in their systemic/brain exposure.
Collapse
Affiliation(s)
- Jiajia Zhao
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Kun Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| | - Yingying Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China.
| | - Dan Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Qianwen Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Shengsheng Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China; Institute of Integrated Chinese and Western Medicine, Fudan University, Shanghai, 200040, People's Republic of China.
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China; Institute of Integrated Chinese and Western Medicine, Fudan University, Shanghai, 200040, People's Republic of China.
| |
Collapse
|