701
|
|
702
|
McPartland JM, Matias I, Di Marzo V, Glass M. Evolutionary origins of the endocannabinoid system. Gene 2006; 370:64-74. [PMID: 16434153 DOI: 10.1016/j.gene.2005.11.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/04/2005] [Accepted: 11/09/2005] [Indexed: 10/25/2022]
Abstract
Endocannabinoid system evolution was estimated by searching for functional orthologs in the genomes of twelve phylogenetically diverse organisms: Homo sapiens, Mus musculus, Takifugu rubripes, Ciona intestinalis, Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces cerevisiae, Arabidopsis thaliana, Plasmodium falciparum, Tetrahymena thermophila, Archaeoglobus fulgidus, and Mycobacterium tuberculosis. Sequences similar to human endocannabinoid exon sequences were derived from filtered BLAST searches, and subjected to phylogenetic testing with ClustalX and tree building programs. Monophyletic clades that agreed with broader phylogenetic evidence (i.e., gene trees displaying topographical congruence with species trees) were considered orthologs. The capacity of orthologs to function as endocannabinoid proteins was predicted with pattern profilers (Pfam, Prosite, TMHMM, and pSORT), and by examining queried sequences for amino acid motifs known to serve critical roles in endocannabinoid protein function (obtained from a database of site-directed mutagenesis studies). This novel transfer of functional information onto gene trees enabled us to better predict the functional origins of the endocannabinoid system. Within this limited number of twelve organisms, the endocannabinoid genes exhibited heterogeneous evolutionary trajectories, with functional orthologs limited to mammals (TRPV1 and GPR55), or vertebrates (CB2 and DAGLbeta), or chordates (MAGL and COX2), or animals (DAGLalpha and CB1-like receptors), or opisthokonta (animals and fungi, NAPE-PLD), or eukaryotes (FAAH). Our methods identified fewer orthologs than did automated annotation systems, such as HomoloGene. Phylogenetic profiles, nonorthologous gene displacement, functional convergence, and coevolution are discussed.
Collapse
Affiliation(s)
- John M McPartland
- GW Pharmaceuticals, 53 Washington Street Ext., Middlebury, VT 05753, USA.
| | | | | | | |
Collapse
|
703
|
Inoue R, Morita H, Ito Y. Newly emerging Ca2+ entry channel molecules that regulate the vascular tone. Expert Opin Ther Targets 2006; 8:321-34. [PMID: 15268627 DOI: 10.1517/14728222.8.4.321] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Local blood flow is critically determined by the arterial tone in which sustained Ca(2+) influx, activated by a variety of mechanisms, plays a central regulatory role. Recent progress in molecular biological research has disclosed unexpectedly diverse and complex facets of Ca(2+) entry channel molecules involved in this Ca(2+) influx. Candidates include several transient receptor potential (TRP) superfamily members such as TRPC1, TRPC4, TRPC6, TRPV2, TRPV4 and TRPM4, none of which exhibit simple properties attributable to a single particular role. Rather, they appear to be multimodally activated or modulated by receptor stimulation, temperature, mechanical stress or lipid second messengers generated from various sources, and may be involved in both acute vasomotor control and long-term vascular remodelling. This paper provides an overview of existing knowledge of TRP proteins, and their possible relationships with principal factors regulating the arterial tone (i.e., autonomic nerves, various autocrine and paracrine factors, and intravascular pressure).
Collapse
Affiliation(s)
- Ryuji Inoue
- Kyushu University, Department of Pharmacology, Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| | | | | |
Collapse
|
704
|
Yang XR, Lin MJ, McIntosh LS, Sham JSK. Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1267-76. [PMID: 16399784 DOI: 10.1152/ajplung.00515.2005] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transient receptor potential melastatin- (TRPM) and vanilloid-related (TRPV) channels are nonselective cation channels pertinent to diverse physiological functions. Multiple TRPM and TRPV channel subtypes have been identified and cloned in different tissues. However, their information in vascular tissue is scant. In this study, we sought to identify TRPM and TRPV channel subtypes expressed in rat deendothelialized intralobar pulmonary arteries (PAs) and aorta. With RT-PCR, mRNA of TRPM2, TRPM3, TRPM4, TRPM7, and TRPM8 of TRPM family and TRPV1, TRPV2, TRPV3, and TRPV4 of TRPV family were detected in both PAs and aorta. Quantitative real-time RT-PCR showed that TRPM8 and TRPV4 were the most abundantly expressed TRPM and TRPV subtypes, respectively. Moreover, Western blot analysis verified expression of TRPM2, TRPM8, TRPV1, and TRPV4 proteins in both types of vascular tissue. To examine the functional activities of these channels, we monitored intracellular Ca(2+) transients ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs) and aortic smooth muscle cells (ASMCs). The TRPM8 agonist menthol (300 muM) and the TRPV4 agonist 4alpha-phorbol 12,13-didecanoate (1 muM) evoked significant increases in [Ca(2+)](i) in PASMCs and ASMCs. These Ca(2+) responses were abolished in the absence of extracellular Ca(2+) or the presence of 300 muM Ni(2+) but were unaffected by 1 muM nifedipine, suggesting Ca(2+) influx via nonselective cation channels. Hence, for the first time, our results indicate that multiple functional TRPM and TRPV channels are coexpressed in rat intralobar PAs and aorta. These novel Ca(2+) entry pathways may play important roles in the regulation of pulmonary and systemic circulation.
Collapse
Affiliation(s)
- Xiao-Ru Yang
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
705
|
Sade H, Muraki K, Ohya S, Hatano N, Imaizumi Y. Activation of large-conductance, Ca2+-activated K+channels by cannabinoids. Am J Physiol Cell Physiol 2006; 290:C77-86. [PMID: 16107501 DOI: 10.1152/ajpcell.00482.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have examined the effects of the cannabinoid anandamide (AEA) and its stable analog, methanandamide (methAEA), on large-conductance, Ca2+-activated K+(BK) channels using human embryonic kidney (HEK)-293 cells, in which the α-subunit of the BK channel (BK-α), both α- and β1-subunits (BK-αβ1), or both α- and β4-subunits (BK-αβ4) were heterologously expressed. In a whole cell voltage-clamp configuration, each cannabinoid activated BK-αβ1within a similar concentration range. Because methAEA could potentiate BK-α, BK-αβ1, and BK-αβ4with similar efficacy, the β-subunits may not be involved at the site of action for cannabinoids. Under cell-attached patch-clamp conditions, application of methAEA to the bathing solution increased BK channel activity; however, methAEA did not alter channel activity in the excised inside-out patch mode even when ATP was present on the cytoplasmic side of the membrane. Application of methAEA to HEK-BK-α and HEK-BK-αβ1did not change intracellular Ca2+concentration. Moreover, methAEA-induced potentiation of BK channel currents was not affected by pretreatment with a CB1antagonist (AM251), modulators of G proteins (cholera and pertussis toxins) or by application of a selective CB2agonist (JWH133). Inhibitors of CaM, PKG, and MAPKs (W7, KT5823, and PD-98059) did not affect the potentiation. Application of methAEA to mouse aortic myocytes significantly increased BK channel currents. This study provides the first direct evidence that unknown factors in the cytoplasm mediate the ability of endogenous cannabinoids to activate BK channel currents. Cannabinoids may be hyperpolarizing factors in cells, such as arterial myocytes, in which BK channels are highly expressed.
Collapse
Affiliation(s)
- Hiroko Sade
- Dept. of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City Univ., 3-1 Tanabedori, Mizuhoku, Nagoya 467-8603, Japan
| | | | | | | | | |
Collapse
|
706
|
Bevan S. Chapter 7 TRP Channels as Thermosensors. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
707
|
Abstract
Major advances have been made over the last decade towards the elucidation of the molecular mechanisms involved in the endothelium-dependent regulation of vascular tone and blood flow. While the primary endothelium-derived vasodilator autacoid is nitric oxide, it is clear that epoxyeicosatrienoic acids and other endothelium-derived hyperpolarising factors, as well as endothelin-1 and reactive oxygen species, play a significant role in the regulation of vascular tone and gene expression. This review is intended as an overview of the signalling mechanisms that link haemodynamic stimuli (such as shear stress and cyclic stretch) and endothelial cell perturbation to the activation of enzymes generating vasoactive autacoids.
Collapse
Affiliation(s)
- R Busse
- Vascular Signalling Group, Institut für Kardiovaskuläre Physiologie, Klinikum der J.W. Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | |
Collapse
|
708
|
Owsianik G, D'hoedt D, Voets T, Nilius B. Structure–function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol 2006. [DOI: 10.1007/s10254-005-0006-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
709
|
Kim D. Chapter 12 Two‐Pore Domain Potassium Channels in Sensory Transduction. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
710
|
Michaelis UR, Fleming I. From endothelium-derived hyperpolarizing factor (EDHF) to angiogenesis: Epoxyeicosatrienoic acids (EETs) and cell signaling. Pharmacol Ther 2005; 111:584-95. [PMID: 16380164 DOI: 10.1016/j.pharmthera.2005.11.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 11/23/2005] [Indexed: 12/01/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are generated from arachidonic acid by cytochrome P450 (CYP) epoxygenases. The expression of CYP epoxygenases in endothelial cells is determined by a number of physical (fluid shear stress and cyclic stretch) and pharmacological stimuli as well as by hypoxia. The activation of CYP epoxygenases in endothelial cells is an important step in the nitric oxide and prostacyclin (PGI2)-independent vasodilatation of several vascular beds and EETs have been identified as endothelium-derived hyperpolarizing factors (EDHFs). However, in addition to regulating vascular tone, EETs modulate several signaling cascades and affect cell proliferation, cell migration, and angiogenesis. Signaling molecules modulated by EETs include tyrosine kinases and phosphatases, mitogen-activated protein kinases, protein kinase A (PKA), cyclooxygenase (COX)-2, and several transcription factors. This review summarizes the role of CYP-derived EETs in cell signaling and focuses particularly on their role as intracellular amplifiers of endothelial cell hyperpolarization as well as in cell proliferation and angiogenesis. The angiogenic properties of CYP epoxygenases and CYP-derived EETs implicate that these enzymes may well be accessible targets for anti-angiogenic as well as angiogenic therapies.
Collapse
Affiliation(s)
- U Ruth Michaelis
- Vascular Signalling Group, Institut für Kardiovaskuläre Physiologie, Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
711
|
Xu H, Fu Y, Tian W, Cohen DM. Glycosylation of the osmoresponsive transient receptor potential channel TRPV4 on Asn-651 influences membrane trafficking. Am J Physiol Renal Physiol 2005; 290:F1103-9. [PMID: 16368742 DOI: 10.1152/ajprenal.00245.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We identified a consensus N-linked glycosylation motif within the pore-forming loop between the fifth and sixth transmembrane segments of the osmoresponsive transient receptor potential (TRP) channel TRPV4. Mutation of this residue from Asn to Gln (i.e., TRPV4(N651Q)) resulted in loss of a slower migrating band on anti-TRPV4 immunoblots and a marked reduction in lectin-precipitable TRPV4 immunoreactivity. HEK293 cells transiently transfected with the mutant TRPV4(N651Q) exhibited increased calcium entry in response to hypotonic stress relative to wild-type TRPV4 transfectants. This increase in hypotonicity responsiveness was associated with an increase in plasma membrane targeting of TRPV4(N651Q) relative to wild-type TRPV4 in both HEK293 and COS-7 cells but had no effect on overall channel abundance in whole cell lysates. Residue N651 of TRPV4 is immediately adjacent to the pore-forming loop. Although glycosylation in this vicinity has not been reported for a TRP channel, the structurally related hexahelical hyperpolarization-activated cyclic nucleotide-gated channel, HCN2, and the voltage-gated potassium channel, human ether-a-go-go-related (HERG), share a nearly identically situated and experimentally confirmed N-linked glycosylation site which promotes rather than limits channel insertion into the plasma membrane. These data point to a potentially conserved structural and functional feature influencing membrane trafficking across diverse members of the voltage-gated-like ion channel superfamily.
Collapse
Affiliation(s)
- Hongshi Xu
- Mailcode PP262, Oregon Health and Science Univ., 3314 S.W. US Veterans Hospital Rd., Portland, OR 97239, USA
| | | | | | | |
Collapse
|
712
|
Flemming PK, Dedman AM, Xu SZ, Li J, Zeng F, Naylor J, Benham CD, Bateson AN, Muraki K, Beech DJ. Sensing of lysophospholipids by TRPC5 calcium channel. J Biol Chem 2005; 281:4977-82. [PMID: 16368680 DOI: 10.1074/jbc.m510301200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPC calcium channels are emerging as a ubiquitous feature of vertebrate cells, but understanding of them is hampered by limited knowledge of the mechanisms of activation and identity of endogenous regulators. We have revealed that one of the TRPC channels, TRPC5, is strongly activated by common endogenous lysophospholipids including lysophosphatidylcholine (LPC) but, by contrast, not arachidonic acid. Although TRPC5 was stimulated by agonists at G-protein-coupled receptors, TRPC5 activation by LPC occurred downstream and independently of G-protein signaling. The effect was not due to the generation of reactive oxygen species or because of a detergent effect of LPC. LPC activated TRPC5 when applied to excised membrane patches and thus has a relatively direct action on the channel structure, either because of a phospholipid binding site on the channel or because of sensitivity of the channel to perturbation of the bilayer by certain lipids. Activation showed dependence on side-chain length and the chemical head-group. The data revealed a previously unrecognized lysophospholipid-sensing capability of TRPC5 that confers the property of a lipid ionotropic receptor.
Collapse
Affiliation(s)
- Philippa K Flemming
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
713
|
Zhu P, Liu X, Labelle EF, Freedman BD. Mechanisms of hypotonicity-induced calcium signaling and integrin activation by arachidonic acid-derived inflammatory mediators in B cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:4981-9. [PMID: 16210600 DOI: 10.4049/jimmunol.175.8.4981] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously characterized the initial steps in the activation of novel (calcium-permeant) nonselective cation channels (NSCCs) and calcium release-activated calcium channels in primary murine B lymphocytes. Phospholipase C products, namely diacylglycerol and d-myo-inositol 1,4,5-trisphosphate, were identified as proximal intracellular agonists of these respective channels following mechanical stimulation of B cells. However, neither the distal steps in NSCC activation nor the contribution of these channels to sustained mechanical signaling were defined in these previous studies. In this study, single cell measurements of intracellular Ca(2+) were used to define the mechanisms of NSCC activation and demonstrate a requirement for arachidonic acid liberated from diacylglycerol. Several arachidonic acid-derived derivatives were identified that trigger Ca(2+) entry into B cells, including the lipoxygenase product 5-hydroperoxyeicosatetranenoic acid and the cytochrome P450 hydroxylase product 20-hydroxyeicosatetraenoic; however, the cytochrome P450 epoxygenase product 5,6-epoxyeicosatrienoic acid is primarily responsible for hypotonicity-induced responses. In addition to regulating calcium entry, our data suggest that eicosanoid-activated NSCCs have a separate and direct role in regulating the avidity of integrins on B cells for extracellular matrix proteins, including ICAM-1 and VCAM-1. Thus, in addition to defining a novel osmotically activated signal transduction pathway in B cells, our results have broad implications for understanding how inflammatory mediators dynamically and rapidly regulate B cell adhesion and trafficking.
Collapse
Affiliation(s)
- Peimin Zhu
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
714
|
|
715
|
Earley S, Heppner TJ, Nelson MT, Brayden JE. TRPV4 Forms a Novel Ca
2+
Signaling Complex With Ryanodine Receptors and BK
Ca
Channels. Circ Res 2005; 97:1270-9. [PMID: 16269659 DOI: 10.1161/01.res.0000194321.60300.d6] [Citation(s) in RCA: 372] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vasodilatory factors produced by the endothelium are critical for the maintenance of normal blood pressure and flow. We hypothesized that endothelial signals are transduced to underlying vascular smooth muscle by vanilloid transient receptor potential (TRPV) channels. TRPV4 message was detected in RNA from cerebral artery smooth muscle cells. In patch-clamp experiments using freshly isolated cerebral myocytes, outwardly rectifying whole-cell currents with properties consistent with those of expressed TRPV4 channels were evoked by the TRPV4 agonist 4alpha-phorbol 12,13-didecanoate (4alpha-PDD) (5 micromol/L) and the endothelium-derived arachidonic acid metabolite 11,12 epoxyeicosatrienoic acid (11,12 EET) (300 nmol/L). Using high-speed laser-scanning confocal microscopy, we found that 11,12 EET increased the frequency of unitary Ca2+ release events (Ca2+ sparks) via ryanodine receptors located on the sarcoplasmic reticulum of cerebral artery smooth muscle cells. EET-induced Ca2+ sparks activated nearby sarcolemmal large-conductance Ca2+-activated K+ (BKCa) channels, measured as an increase in the frequency of transient K+ currents (referred to as "spontaneous transient outward currents" [STOCs]). 11,12 EET-induced increases in Ca2+ spark and STOC frequency were inhibited by lowering external Ca2+ from 2 mmol/L to 10 micromol/L but not by voltage-dependent Ca2+ channel inhibitors, suggesting that these responses require extracellular Ca2+ influx via channels other than voltage-dependent Ca2+ channels. Antisense-mediated suppression of TRPV4 expression in intact cerebral arteries prevented 11,12 EET-induced smooth muscle hyperpolarization and vasodilation. Thus, we conclude that TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels that elicits smooth muscle hyperpolarization and arterial dilation via Ca2+-induced Ca2+ release in response to an endothelial-derived factor.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Calcium/metabolism
- Calcium Signaling
- Cerebral Arteries/chemistry
- Large-Conductance Calcium-Activated Potassium Channels/physiology
- Male
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/physiology
- Rats
- Rats, Sprague-Dawley
- Ryanodine Receptor Calcium Release Channel/physiology
- TRPV Cation Channels/analysis
- TRPV Cation Channels/physiology
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Scott Earley
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
716
|
Abstract
Among the 28 identified and unique mammalian TRP (transient receptor potential) channel isoforms, at least 19 are expressed in vascular endothelial cells. These channels appear to participate in a diverse range of vascular functions, including control of vascular tone, regulation of vascular permeability, mechanosensing, secretion, angiogenesis, endothelial cell proliferation, and endothelial cell apoptosis and death. Malfunction of these channels may result in disorders of the human cardiovascular system. All TRP channels, except for TRPM4 and TRPM5, are cation channels that allow Ca2+ influx. However, there is a daunting diversity in the mode of activation and regulation in each case. Specific TRP channels may be activated by different stimuli such as vasoactive agents, oxidative stress, mechanical stimuli, and heat. TRP channels may then transform these stimuli into changes in the cytosolic Ca2+, which are eventually coupled to various vascular responses. Evidence has been provided to suggest the involvement of at least the following TRP channels in vascular function: TRPC1, TRPC4, TRPC6, and TRPV1 in the control of vascular permeability; TRPC4, TRPV1, and TRPV4 in the regulation of vascular tone; TRPC4 in hypoxia-induced vascular remodeling; and TRPC3, TRPC4, and TRPM2 in oxidative stress-induced responses. However, in spite of the large body of data available, the functional role of many endothelial TRP channels is still poorly understood. Elucidating the mechanisms regulating the different endothelial TRP channels, and the associated development of drugs selectively to target the different isoforms, as a means to treat cardiovascular disease should, therefore, be a high priority.
Collapse
Affiliation(s)
- Xiaoqiang Yao
- Department of Physiology, Chinese University of Hong Kong, China.
| | | |
Collapse
|
717
|
Sharif Naeini R, Witty MF, Séguéla P, Bourque CW. An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat Neurosci 2005; 9:93-8. [PMID: 16327782 DOI: 10.1038/nn1614] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 11/14/2005] [Indexed: 11/09/2022]
Abstract
Body fluid homeostasis requires the release of arginine-vasopressin (AVP, an antidiuretic hormone) from the neurohypophysis. This release is controlled by specific and highly sensitive 'osmoreceptors' in the hypothalamus. Indeed, AVP-releasing neurons in the supraoptic nucleus (SON) are directly osmosensitive, and this osmosensitivity is mediated by stretch-inhibited cation channels. However, the molecular nature of these channels remains unknown. Here we show that SON neurons express an N-terminal splice variant of the transient receptor potential vanilloid type-1 (Trpv1), also known as the capsaicin receptor, but not full-length Trpv1. Unlike their wild-type counterparts, SON neurons in Trpv1 knockout (Trpv1(-/-)) mice could not generate ruthenium red-sensitive increases in membrane conductance and depolarizing potentials in response to hyperosmotic stimulation. Moreover, Trpv1(-/-) mice showed a pronounced serum hyperosmolality under basal conditions and severely compromised AVP responses to osmotic stimulation in vivo. These results suggest that the Trpv1 gene may encode a central component of the osmoreceptor.
Collapse
Affiliation(s)
- Reza Sharif Naeini
- Centre for Research in Neuroscience, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
| | | | | | | |
Collapse
|
718
|
Michaelis UR, Fisslthaler B, Barbosa-Sicard E, Falck JR, Fleming I, Busse R. Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. J Cell Sci 2005; 118:5489-98. [PMID: 16291720 DOI: 10.1242/jcs.02674] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Recent studies suggest that cytochrome P450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) elicit cell proliferation and promote angiogenesis. The aim of this study was to determine the role of CYP 2C8/9-derived EETs in the process of angiogenesis under hypoxic conditions. In human endothelial cells, hypoxia enhanced the activity of the CYP 2C9 promoter, increased the expression of CYP 2C mRNA and protein and augmented 11,12-EET production. In Transwell assays, the migration of endothelial cells pre-exposed to hypoxia to increase CYP expression was abolished by CYP 2C antisense oligonucleotides as well as by the CYP inhibitor MS-PPOH and the EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE). Similar findings were obtained in porcine coronary artery endothelial cells. CYP 2C9 overexpression in endothelial cells increased the association of PAK-1 with Rac, a response also elicited by the CYP 2C9 product 11,12-EET. Matrix metalloprotease (MMP) activity was increased in CYP-2C9-overexpressing cells and correlated with increased invasion through Matrigel-coated Transwell chambers: an effect sensitive to the CYP 2C9 inhibitor sulfaphenazole as well as to EEZE and the MMP inhibitor GM6001. In in vitro angiogenesis models, the EET antagonist inhibited tube formation induced by CYP 2C9 overexpression as well as that in endothelial cells exposed to hypoxia to increase CYP 2C expression. Furthermore, in the chick chorioallantoic membrane assay, EEZE abolished hypoxia-induced angiogenesis. Taken together, these data indicate that CYP 2C-derived EETs significantly affect the sequence of angiogenic events under hypoxic conditions.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Aryl Hydrocarbon Hydroxylases/genetics
- Aryl Hydrocarbon Hydroxylases/metabolism
- Aryl Hydrocarbon Hydroxylases/physiology
- Cell Hypoxia/physiology
- Cell Movement/drug effects
- Cell Movement/physiology
- Cells, Cultured
- Chick Embryo
- Cytochrome P-450 CYP2C8
- Cytochrome P-450 CYP2C9
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Cytochrome P-450 Enzyme System/physiology
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Gene Expression Regulation, Enzymologic
- Humans
- Hydroxyeicosatetraenoic Acids/antagonists & inhibitors
- Hydroxyeicosatetraenoic Acids/biosynthesis
- Matrix Metalloproteinases/drug effects
- Matrix Metalloproteinases/metabolism
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Swine
- rac GTP-Binding Proteins/drug effects
- rac GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- U Ruth Michaelis
- Institut für Kardiovaskuläre Physiologie, Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
719
|
Clapham DE, Julius D, Montell C, Schultz G. International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev 2005; 57:427-50. [PMID: 16382100 DOI: 10.1124/pr.57.4.6] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- David E Clapham
- Howard Hughes Medical Institute, Children's Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
720
|
Erriquez J, Gilardino A, Ariano P, Munaron L, Lovisolo D, Distasi C. Calcium Signals Activated by Arachidonic Acid in Embryonic Chick Ciliary Ganglion Neurons. Neurosignals 2005; 14:244-54. [PMID: 16301839 DOI: 10.1159/000088640] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 05/26/2005] [Indexed: 11/19/2022] Open
Abstract
Arachidonic acid (AA, 20:4) has been reported to modulate a variety of calcium-permeable ionic channels, both in the plasma membrane and in the endoplasmic reticulum. We have studied the effects of AA on calcium signaling in a well-characterized model of developing peripheral neurons, embryonic chick ciliary ganglion neurons in culture. When given at low non-micellar concentrations (5 microM), in the majority of cells AA directly activated a delayed and long-lasting increase in [Ca2+]i, involving both the cytoplasm and the nucleoplasm, that was completely reversed by abolition of extracellular calcium. Other fatty acids (FAs), either saturated like arachidic acid (20:0), or unsaturated like linoleic (18:2) and docosahexaenoic acid (22:6), shared its ability to activate calcium influx. This entry was not suppressed by voltage-dependent calcium channel inhibitors omega-conotoxin and nifedipine, by the voltage-independent calcium channel antagonist LOE-908, by pre-treatment with blockers of AA metabolic pathways or with pertussis toxin. The arachidonate-activated calcium pathway was permeable to Mn2+ and blocked by La3+, Gd3+ and Ni2+. In a neuronal subpopulation, AA at the same concentration was also able to elicit calcium release from thapsigargin-sensitive intracellular stores; we provide evidence that cytochrome P450 epoxygenase is involved in this process.
Collapse
Affiliation(s)
- Jessica Erriquez
- Dipartimento di Scienze Chimiche Alimentari Farmaceutiche e Farmacologiche, Università del Piemonte Orientale A. Avogadro, Novara, Italy
| | | | | | | | | | | |
Collapse
|
721
|
Arniges M, Fernández-Fernández JM, Albrecht N, Schaefer M, Valverde MA. Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 2005; 281:1580-6. [PMID: 16293632 DOI: 10.1074/jbc.m511456200] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TRPV4 cation channel exhibits a topology consisting of six predicted transmembrane domains (TM) with a putative pore loop between TM5 and TM6 and intracellular N- and C-tails, the former containing at least three ankyrin domains. Functional transient receptor potential (TRP) channels are supposed to result following the assembly of four subunits. However, the rules governing subunit assembly and protein domains implied in this process are only starting to emerge. The ankyrin, TM, and the C-tail domains have been identified as important determinants of the oligomerization process. We now describe the maturation and oligomerization of five splice variants of the TRPV4 channel. The already known TRPV4-A and TRPV4-B (delta384-444) variants and the new TRPV4-C (delta237-284), TRPV4-D (delta27-61), and TRPV4-E (delta237-284 and delta384-444) variants. All alternative spliced variants involved deletions in the cytoplasmic N-terminal region, affecting (except for TRPV4-D) the ankyrin domains. Subcellular localization, fluorescence resonance energy transfer, co-immunoprecipitation, glycosylation profile, and functional analysis of these variants permitted us to group them into two classes: group I (TRPV4-A and TRPV4-D) and group II (TRPV4-B, TRPV4-C, and TRPV4-E). Group I, unlike group II variants, were correctly processed, homo- and heteromultimerized in the endoplasmic reticulum, and were targeted to the plasma membrane where they responded to typical TRPV4 stimuli. Our results suggest that: 1) TRPV4 biogenesis involves core glycosylation and oligomerization in the endoplasmic reticulum followed by transfer to the Golgi apparatus for subsequent maturation; 2) ankyrin domains are necessary for oligomerization of TRPV4; and 3) lack of TRPV4 oligomerization determines its accumulation in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Maite Arniges
- Grup de Canalopaties, Unitat de Senyalització Cellular, Universitat Pompeu Fabra, C/Dr. Aiguader 80, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
722
|
Thebault S, Lemonnier L, Bidaux G, Flourakis M, Bavencoffe A, Gordienko D, Roudbaraki M, Delcourt P, Panchin Y, Shuba Y, Skryma R, Prevarskaya N. Novel Role of Cold/Menthol-sensitive Transient Receptor Potential Melastatine Family Member 8 (TRPM8) in the Activation of Store-operated Channels in LNCaP Human Prostate Cancer Epithelial Cells. J Biol Chem 2005; 280:39423-35. [PMID: 16174775 DOI: 10.1074/jbc.m503544200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent cloning of a cold/menthol-sensitive TRPM8 channel (transient receptor potential melastatine family member 8) from rodent sensory neurons has provided the molecular basis for the cold sensation. Surprisingly, the human orthologue of rodent TRPM8 also appears to be strongly expressed in the prostate and in the prostate cancer-derived epithelial cell line, LNCaP. In this study, we show that despite such expression, LNCaP cells respond to cold/menthol stimulus by membrane current (I(cold/menthol)) that shows inward rectification and high Ca(2+) selectivity, which are dramatically different properties from "classical" TRPM8-mediated I(cold/menthol). Yet, silencing of endogenous TRPM8 mRNA by either antisense or siRNA strategies suppresses both I(cold/menthol) and TRPM8 protein in LNCaP cells. We demonstrate that these puzzling results arise from TRPM8 localization not in the plasma, but in the endoplasmic reticulum (ER) membrane of LNCaP cells, where it supports cold/menthol/icilin-induced Ca(2+) release from the ER with concomitant activation of plasma membrane (PM) store-operated channels (SOC). In contrast, GFP-tagged TRPM8 heterologously expressed in HEK-293 cells target the PM. We also demonstrate that TRPM8 expression and the magnitude of SOC current associated with it are androgen-dependent. Our results suggest that the TRPM8 may be an important new ER Ca(2+) release channel, potentially involved in a number of Ca(2+)- and store-dependent processes in prostate cancer epithelial cells, including those that are important for prostate carcinogenesis, such as proliferation and apoptosis.
Collapse
Affiliation(s)
- Stéphanie Thebault
- Laboratoire de Physiologie Cellulaire, INSERM EMI 0228, USTL SN3, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
723
|
Bolotina VM, Csutora P. CIF and other mysteries of the store-operated Ca2+-entry pathway. Trends Biochem Sci 2005; 30:378-87. [PMID: 15951181 DOI: 10.1016/j.tibs.2005.05.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 05/06/2005] [Accepted: 05/26/2005] [Indexed: 11/25/2022]
Abstract
The molecular mechanism of the store-operated Ca2+-entry (SOCE) pathway remains one of the most intriguing and long lasting mysteries of Ca2+ signaling. The elusive calcium influx factor (CIF) that is produced upon depletion of Ca2+ stores has attracted growing attention, triggered by new discoveries that filled the gap in the chain of reactions leading to activation of store-operated channels and Ca2+ entry. Ca2+-independent phospholipase A2 emerged as a target of CIF, and a major determinant of the SOCE mechanism. Here, we present our viewpoint on CIF and conformational-coupling models of SOCE from a historical perspective, trying to resolve some of the problem areas, and summarizing our present knowledge on how depletion of intracellular Ca2+ stores signals to plasma membrane channels to open and provide Ca2+ influx that is required for many important physiological functions.
Collapse
Affiliation(s)
- Victoria M Bolotina
- Ion Channel and Calcium Unit, Boston University School of Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
724
|
Liu X, Zhu P, Freedman BD. Multiple eicosanoid-activated nonselective cation channels regulate B-lymphocyte adhesion to integrin ligands. Am J Physiol Cell Physiol 2005; 290:C873-82. [PMID: 16251477 DOI: 10.1152/ajpcell.00229.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Arachidonic acid (AA) is a substrate for a variety of proinflammatory mediators, which are generated by cyclooxygenases (COXs), lipoxygenases (LOXs), and cytochrome P-450 (CYP450) enzymes. COX (e.g., PGs and prostacyclins) and LOX (e.g., leukotrienes) products have well-established proinflammatory roles; however, little is known about the functions of CYP450 products in leukocytes. We previously found that mechanical strain generated by subjecting lymphocytes to hypotonic challenge triggered AA production and that two CYP450 products of AA, 5,6-epoxyeicosatrienoic acid (5,6-EET) and 20-hydroxyeicosatetraenoic acid (20-HETE), as well as a product of LOX, 5-(S)-hydroperoxyeicosatetrenoic acid (5-HPETE), induced Ca(2+) entry into primary B cells. The main goal of the present studies, therefore, was to define the biophysically properties of eicosanoid-activated channels responsible for Ca(2+) entry and the physiological consequences of activating these channels, including their role in mechanical signaling. We found that 5,6-EET, 20-HETE, and 5-HPETE each activated distinct Ca(2+)-permeant nonselective cation channels (NSCCs) in primary B cells. These NSCCs each regulate plasma membrane potential and B-cell adhesion to integrin ligands ICAM-1 and VCAM-1. Thus our data demonstrate that proinflammatory mediators produced in response to osmotic and/or physical stress play a direct role in regulating the B-cell membrane potential and their adhesion to specific ECM proteins. These results not only have important implications for understanding normal mechanisms of B-cell activation, differentiation, and trafficking but also point to novel targets for modulating the pathogenesis of B-cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 368E Old Vet Bldg., 3800 Spruce St., Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
725
|
Vriens J, Owsianik G, Fisslthaler B, Suzuki M, Janssens A, Voets T, Morisseau C, Hammock BD, Fleming I, Busse R, Nilius B. Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circ Res 2005; 97:908-15. [PMID: 16179585 DOI: 10.1161/01.res.0000187474.47805.30] [Citation(s) in RCA: 296] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
TRPV4 is a broadly expressed Ca2+-permeable cation channel in the vanilloid subfamily of transient receptor potential channels. TRPV4 gates in response to a large variety of stimuli, including cell swelling, warm temperatures, the synthetic phorbol ester 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), and the endogenous lipid arachidonic acid (AA). Activation by cell swelling and AA requires cytochrome P450 (CYP) epoxygenase activity to convert AA to epoxyeicosatrienoic acids (EETs) such as 5,6-EET, 8,9-EET, which both act as direct TRPV4 agonists. To evaluate the role of TRPV4 and its modulation by the CYP pathway in vascular endothelial cells, we performed Ca2+ imaging and patch-clamp measurements on mouse aortic endothelial cells (MAECs) isolated from wild-type and TRPV4(-/-) mice. All TRPV4-activating stimuli induced robust Ca2+ responses in wild-type MAECs but not in MAECs isolated from TRPV4(-/-) mice. Upregulation of CYP2C expression by preincubation with nifedipine enhanced the responses to AA and cell swelling in wild-type MAECs, whereas responses to other stimuli remained unaffected. Conversely, inhibition of CYP2C9 activity with sulfaphenazole abolished the responses to AA and hypotonic solution (HTS). Moreover, suppression of EET hydrolysis using 1-adamantyl-3-cyclo-hexylurea or indomethacin, inhibitors of soluble epoxide hydrolases (sEHs), and cyclooxygenases, respectively, enhanced the TRPV4-dependent responses to AA, HTS, and EETs but not those to 4alpha-PDD or heat. Together, our data establish that CYP-derived EETs modulate the activity of TRPV4 channels in endothelial cells and shows the unraveling of novel modulatory pathways via CYP2C modulation and sEH inhibition.
Collapse
Affiliation(s)
- J Vriens
- Department of Physiology, Campus Gasthuisberg, KU Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
726
|
Hui K, Guo Y, Feng ZP. Biophysical properties of menthol-activated cold receptor TRPM8 channels. Biochem Biophys Res Commun 2005; 333:374-82. [PMID: 15950184 DOI: 10.1016/j.bbrc.2005.05.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 05/24/2005] [Indexed: 10/25/2022]
Abstract
The temperature-sensitive transient receptor potential channel, TRPM8, was recently cloned and found to be activated by cold and menthol. Whole-cell recordings show that TRPM8 is permeable to multiple cations and exhibits a strong outward rectification. Here, we examine the mechanism underlying menthol-evoked current rectification of TRPM8 transiently expressed in tsA-201 cells at room temperature ( approximately 25 degrees C). Whole-cell currents (ruptured, bath: Na(+), K(+), Ca(2+), or Ba(2+); pipette: KCl) exhibited a strong outward rectification in the presence of menthol, consistent with previous studies. The outward K(+) current was reduced in the presence of external Ca(2+) or Ba(2+). Single-channel recordings (cell-attached) showed that menthol induced brief channel openings with two conducting states in the voltage range between -80 and +60mV. The small current (i(S)) conducted both monovalent and divalent ions, and the large one (i(L)) predominantly monovalent ions. The i-V plot for Ca(2+) was weakly outward rectifying, whereas those for monovalent ions were linear. The i(S) may result in the divalent ion-induced reduction of the whole-cell outward current. The open probability (P(o)) in all ion conditions tested was low at negative voltages and increased with depolarization, accounting for the small inward currents observed at the whole-cell level. In conclusion, our results indicate that menthol induced steep outward rectification of TRPM8 results from the voltage-dependent open channel probability and the permeating ion-dependent modulation of the unitary channel conductance.
Collapse
Affiliation(s)
- Kwokyin Hui
- Department of Physiology, University of Toronto, Toronto, Ont., Canada
| | | | | |
Collapse
|
727
|
Krummen S, Falck JR, Thorin E. Two distinct pathways account for EDHF-dependent dilatation in the gracilis artery of dyslipidaemic hApoB+/+ mice. Br J Pharmacol 2005; 145:264-70. [PMID: 15765099 PMCID: PMC1576139 DOI: 10.1038/sj.bjp.0706194] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 A universal endothelium-derived hyperpolarising factor (EDHF--non-NO/non-PGI(2)) has not been identified. EDHF, however, is essential for the physiological control of resistance artery tone. The impact of dyslipidaemia (DL), a risk factor for cardiovascular diseases, on the nature and the efficacy of EDHF has not been evaluated yet. 2 Pressurised (80 mmHg) gracilis arterial segments isolated from mice expressing the human apoB-100 and C57Bl/6 wild-type (WT) mice were used. EDHF-dependent dilatations to acetylcholine (ACh) were measured in the presence of L-NNA (100 microM, NOS inhibitor) and indomethacin (10 microM, COX inhibitor). 3 Maximal EDHF-induced dilatations were increased in DL when compared to WT (95+/-2 versus 86+/-4% in WT; P<0.05). Combination of apamin and charybdotoxin strongly reduced (P<0.05) ACh-induced dilatation in WT (22+/-4%) and DL (25+/-5%). 4 Combined addition of barium (Ba(2+)) and ouabain abolished EDHF-induced dilatations in WT arteries (13+/-3%; P<0.05). In vessels isolated from DL mice, however, only the addition of 14,15-EEZE (a 14,15-EET antagonist) to Ba(2+) and ouabain prevented EDHF-induced dilatations (5+/-3% compared to 54+/-11% in the presence of combined Ba(2+) and ouabain; P<0.05). 5 Our data suggest that EDHF-mediated dilatation depends on the opening of endothelial SK(Ca) and IK(Ca) channels. This is associated with the opening of K(ir) channels and activation of the Na(+)/K(+)-ATPase pump on smooth muscle cells leading to dilatation. In arteries from DL mice, a cytochrome P450 metabolite likely to be 14,15-EET equally contributes to the dilatory action of ACh. The early increased efficacy of EDHF in arteries isolated from DL mice may originate from the duplication of the EDHF pathways.
Collapse
Affiliation(s)
- Stéphane Krummen
- Département de chirurgie et Groupe de Recherche sur le Système Nerveux Autonome, Institut de Cardiologie de Montréal, centre de recherche, Université de Montréal, 5000 rue Bélanger, Montréal, Québec, Canada H1T 1C8
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, U.S.A
| | - Eric Thorin
- Département de chirurgie et Groupe de Recherche sur le Système Nerveux Autonome, Institut de Cardiologie de Montréal, centre de recherche, Université de Montréal, 5000 rue Bélanger, Montréal, Québec, Canada H1T 1C8
- Author for correspondence:
| |
Collapse
|
728
|
Abstract
Of Aristotle's five senses, we know that sight, smell and much of taste are initiated by ligands binding to G-protein-coupled receptors; however, the mechanical sensations of touch and hearing remain without a clear understanding of their molecular basis. Recently, the relevant force-transducing molecules--the mechanosensitive ion channels--have been identified. Such channel proteins purified from bacteria sense forces from the lipid bilayer in the absence of other proteins. Recent evidence has shown that lipids are also intimately involved in opening and closing the mechanosensitive channels of fungal, plant and animal species.
Collapse
Affiliation(s)
- Ching Kung
- Laboratory of Molecular Biology and Department of Genetics, University of Wisconsin, 1525 Linden Drive, Madison, Wisconsin 53706, USA
| |
Collapse
|
729
|
van der Stelt M, Trevisani M, Vellani V, De Petrocellis L, Schiano Moriello A, Campi B, McNaughton P, Geppetti P, Di Marzo V. Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels. EMBO J 2005; 24:3026-37. [PMID: 16107881 PMCID: PMC1201361 DOI: 10.1038/sj.emboj.7600784] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 07/21/2005] [Indexed: 11/09/2022] Open
Abstract
The endocannabinoid anandamide is able to interact with the transient receptor potential vanilloid 1 (TRPV1) channels at a molecular level. As yet, endogenously produced anandamide has not been shown to activate TRPV1, but this is of importance to understand the physiological function of this interaction. Here, we show that intracellular Ca2+ mobilization via the purinergic receptor agonist ATP, the muscarinic receptor agonist carbachol or the Ca(2+)-ATPase inhibitor thapsigargin leads to formation of anandamide, and subsequent TRPV1-dependent Ca2+ influx in transfected cells and sensory neurons of rat dorsal root ganglia (DRG). Anandamide metabolism and efflux from the cell tonically limit TRPV1-mediated Ca2+ entry. In DRG neurons, this mechanism was found to lead to TRPV1-mediated currents that were enhanced by selective blockade of anandamide cellular efflux. Thus, endogenous anandamide is formed on stimulation of metabotropic receptors coupled to the phospholipase C/inositol 1,4,5-triphosphate pathway and then signals to TRPV1 channels. This novel intracellular function of anandamide may precede its action at cannabinoid receptors, and might be relevant to its control over neurotransmitter release.
Collapse
Affiliation(s)
- Mario van der Stelt
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| | - Marcello Trevisani
- Department of Experimental Medicine and Clinical Medicine, Pharmacology Unit, University of Ferrara, Ferrara, Italy
| | - Vittorio Vellani
- Dipartimento di Scienze Biomediche, Universita' di Modena e Reggio Emilia, Modena, Italy
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Luciano De Petrocellis
- Istitute of Cibernetica Eduardo Caianiello, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
- Istitute of Cibernetica Eduardo Caianiello, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| | - Barbara Campi
- Department of Experimental Medicine and Clinical Medicine, Pharmacology Unit, University of Ferrara, Ferrara, Italy
| | - Peter McNaughton
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Piero Geppetti
- Department of Experimental Medicine and Clinical Medicine, Pharmacology Unit, University of Ferrara, Ferrara, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy. Tel.: +39 081 8675093; Fax: +39 081 8041770; E-mail:
| |
Collapse
|
730
|
Chen P, Hu S, Yao J, Moore SA, Spector AA, Fang X. Induction of cyclooxygenase-2 by anandamide in cerebral microvascular endothelium. Microvasc Res 2005; 69:28-35. [PMID: 15797258 DOI: 10.1016/j.mvr.2005.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Indexed: 02/03/2023]
Abstract
Anandamide (AEA), an endogenous cannabinoid receptor agonist, is a potent vasodilator in the cerebral microcirculation. AEA is converted to arachidonic acid (AA) by fatty acid amidohydrolase (FAAH), and the conversion of AA to prostaglandins has been proposed as a potential mechanism for the vasodilation. Although AEA stimulated prostaglandin production by mouse cerebral microvascular endothelial cells, no [(3)H]prostaglandins were produced when these cells were incubated with [3H]AEA. Incubation with R(+)-methanandamide (MAEA), a stable analogue of AEA that is not a substrate for FAAH, produced a similar increase in PGE2 production as AEA. The PGE2 production induced by either AEA or MAEA was completely inhibited by NS-398, a selective cyclooxygenase (COX)-2 inhibitor, suggesting that COX-2 was induced. AEA and MAEA increased the expression of COX-2 protein in a time-dependent manner. This increase occurred as early as 1 h and reached maximum at 2 h. Induction of COX-2 protein by AEA was partially inhibited by AM-251, a selective cannabinoid receptor-1 antagonist. Furthermore, AEA increased COX-2 promoter activity approximately twofold above baseline in a fragment ranging from -1432 to +59, the full-length of the COX-2 promoter, and the increase in COX-2 promoter activity produced by AEA was partially inhibited by AM-251. These results indicate that AEA increased COX-2 expression at the transcriptional level through, at least in part, a cannabinoid receptor-1-mediated mechanism in cerebral microvascular endothelium.
Collapse
Affiliation(s)
- Ping Chen
- Department of Biochemistry, 4-403 BSB, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
731
|
Poblete IM, Orliac ML, Briones R, Adler-Graschinsky E, Huidobro-Toro JP. Anandamide elicits an acute release of nitric oxide through endothelial TRPV1 receptor activation in the rat arterial mesenteric bed. J Physiol 2005; 568:539-51. [PMID: 16081483 PMCID: PMC1474725 DOI: 10.1113/jphysiol.2005.094292] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In the isolated rat mesenteric bed, the 1 min perfusion with 100 nm anandamide, a concentration that did not evoke vasorelaxation, elicited an acute release of 165.1 +/- 9.2 pmol nitric oxide (NO) that was paralleled by a 2-fold increase in cGMP tissue levels. The rise in NO released was mimicked by either (R)-(+)-methanandamide or the vanilloid receptor agonists resiniferatoxin and (E)-capsaicin but not by its inactive cis-isomer (Z)-capsaicin. The NO release elicited by either anandamide or capsaicin was reduced by the TRPV1 receptor antagonists 5'-iodoresiniferatoxin, SB 366791 and capsazepine as well as by the cannabinoid CB(1) receptor antagonists SR 141716A or AM251. The outflow of NO elicited by anandamide and capsaicin was also reduced by endothelium removal or NO synthase inhibition, suggesting the specific participation of endothelial TRPV1 receptors, rather than the novel endothelial TRPV4 receptors. Consistently, RT-PCR showed the expression of the mRNA coding for the rat TRPV1 receptor in the endothelial cell layer, in addition to its expression in sensory nerves. The participation of sensory nerves on the release of NO was precluded on the basis that neonatal denervation of the myenteric plexus sensory nerves did not modify the pattern of NO release induced by anandamide and capsaicin. We propose that low concentrations of anandamide, devoid of vasorelaxing effects, elicit an acute release of NO mediated predominantly by the activation of endothelial TRPV1 receptors whose physiological significance remains elusive.
Collapse
Affiliation(s)
- Inés M Poblete
- Centro de Regulación Celular y Patología JV Luco, Instituto MIFAB, Departmento de Fisiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago
| | | | | | | | | |
Collapse
|
732
|
Desai BN, Clapham DE. TRP channels and mice deficient in TRP channels. Pflugers Arch 2005; 451:11-8. [PMID: 16078044 DOI: 10.1007/s00424-005-1429-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
Transient receptor potential (TRP) channels are a superfamily of functionally versatile cation-permeant ion channels present in almost all mammalian cell types. Although they were initially proposed as store-operated calcium channels, recent progress shows that they exhibit a variety of regulatory and functional themes. Here, we summarize the most salient features of TRP channels, the approaches that are providing meaningful discoveries, and the challenges ahead. We primarily emphasize the understanding gleaned from mouse models engineered to be deficient in various members of TRP superfamily and from the human patients that suffer clinically due to defects in TRP channels.
Collapse
Affiliation(s)
- Bimal N Desai
- Department of Neurobiology, Harvard Medical School, Pediatric Cardiology, Children's Hospital of Boston, Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
| | | |
Collapse
|
733
|
Nilius B, Voets T. TRP channels: a TR(I)P through a world of multifunctional cation channels. Pflugers Arch 2005; 451:1-10. [PMID: 16012814 DOI: 10.1007/s00424-005-1462-y] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 04/29/2005] [Indexed: 12/23/2022]
Abstract
The "transient receptor potential" (TRP) family of ion channels comprises more than 50 cation-permeable channels expressed from yeast to man. On the basis of structural homology, the TRP family can be subdivided in to seven main subfamilies: the TRPC ('Canonical') group, the TRPV ('Vanilloid') group, the TRPM ('Melastatin') group, the TRPP ('Polycystin'), the TRPML ('Mucolipin'), the TRPA ('Ankyrin') and the TRPN ('NOMP') family. The cloning and characterization of members of this cation channel family has exploded during recent years, leading to a plethora of data concerning TRPs in a variety of cell types, tissues and species. This paper briefly reviews the TRP superfamily and the basic properties of its many members as a reader's guide in this Special Issue. Hopefully, a better understanding of TRP channel physiology will provide important insight into the relationship between TRP channel dysfunction and human diseases.
Collapse
Affiliation(s)
- Bernd Nilius
- Laboratorium voor Fysiologie, Department of Physiology, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium.
| | | |
Collapse
|
734
|
Gamper N, Reznikov V, Yamada Y, Yang J, Shapiro MS. Phosphatidylinositol [correction] 4,5-bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca2+ channels. J Neurosci 2005; 24:10980-92. [PMID: 15574748 PMCID: PMC6730206 DOI: 10.1523/jneurosci.3869-04.2004] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modulation of voltage-gated Ca2+ channels via G-protein-coupled receptors is a prime mechanism regulating neurotransmitter release and synaptic plasticity. Despite extensive studies, the molecular mechanism underlying Gq/11-mediated modulation remains unclear. We found cloned and native N-type Ca2+ channels to be regulated by phosphatidylinositol [correction] 4,5-bisphosphate (PIP2). In inside-out oocyte patches, PIP2 greatly attenuated or reversed the observed rundown of expressed channels. In sympathetic neurons, muscarinic M1 ACh receptor suppression of the Ca2+ current (ICa) was temporally correlated with PIP2 hydrolysis, blunted by PIP2 in whole-cell pipettes, attenuated by expression of PIP2-sequestering proteins, and became irreversible when PIP2 synthesis was blocked. We also probed mechanisms of receptor specificity. Although bradykinin also induced PIP2 hydrolysis, it did not inhibit ICa. However, bradykinin receptors became nearly as effective as M1 receptors when PIP2 synthesis, IP3 receptors, or the activity of neuronal Ca2+ sensor-1 were blocked, suggesting that bradykinin receptor-induced intracellular Ca2+ increases stimulate PIP2 synthesis, compensating for PIP2 hydrolysis. We suggest that differential use of PIP2 signals underlies specificity of Gq/11-coupled receptor actions on the channels
Collapse
MESH Headings
- 1-Phosphatidylinositol 4-Kinase/physiology
- Animals
- Biolistics
- Bradykinin/pharmacology
- Calcium/metabolism
- Calcium Channels, N-Type/chemistry
- Calcium Channels, N-Type/physiology
- Calcium Signaling
- Calcium-Binding Proteins/physiology
- Cells, Cultured
- Female
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Ion Transport
- Isoenzymes/physiology
- Male
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/physiology
- Neurons/physiology
- Oocytes
- Patch-Clamp Techniques
- Phosphatidylinositol 4,5-Diphosphate/biosynthesis
- Phosphatidylinositol 4,5-Diphosphate/physiology
- Phospholipase C delta
- Rabbits
- Rats
- Rats, Sprague-Dawley
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
- Recombinant Fusion Proteins/physiology
- Superior Cervical Ganglion/cytology
- Transfection
- Type C Phospholipases/physiology
- Xenopus laevis
Collapse
Affiliation(s)
- Nikita Gamper
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
735
|
Abstract
Drosophila melanogaster flies carrying the trp (transient receptor potential) mutation are rapidly blinded by bright light, because of the absence of a Ca2+-permeable ion channel in their photoreceptors. The identification of the trp gene and the search for homologs in yeast, flies, worms, zebrafish and mammals has led to the discovery of a large superfamily of related cation channels, named TRP channels. Activation of TRP channels is highly sensitive to a variety of chemical and physical stimuli, allowing them to function as dedicated biological sensors that are essential in processes such as vision, taste, tactile sensation and hearing.
Collapse
Affiliation(s)
- Thomas Voets
- Laboratory of Physiology, Campus Gasthuisberg O&N, KU Leuven, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
736
|
Abstract
Transient receptor potential vanilloid 4 (TRPV4) was identified as the mammalian homologue of the Caenorhabditis elegans osmosensory channel protein, OSM-9. In mammals, TRPV4 is activated by a variety of stimuli including thermal stress, fatty acid metabolites, and hypotonicity. Two distinct mechanisms have been described through which TRPV4 may be activated by hypotonicity: one involves the Src family of nonreceptor protein tyrosine kinases, whereas a second is mediated via arachidonic acid metabolites. TRPV4 likely plays a role in systemic osmoregulation; accordingly, it is expressed in the blood-brain barrier-deficient osmosensory nuclei of the hypothalamus. TRPV4 is also abundantly expressed in the kidney, and its precisely demarcated distribution along the kidney tubule permits speculation about a physiological role in this tissue. TRPV4-expressing and TRPV4-negative tubule segments co-exist at all levels of the kidney, from the cortex through the inner medulla. It is conceivable that basolaterally expressed TRPV4 transmits signals arising in the interstitium (e.g, changing tonicity) to more-distal tubule segments where "fine-tuning" of the incipient urine takes place.
Collapse
Affiliation(s)
- David M Cohen
- Division of Nephrology and Hypertension, Oregon Health and Science University and the Portland Veterans Affairs Medical Center, 3314 SW US Veterans Hospital Rd., Mailcode PP262, Portland, OR 97239, USA.
| |
Collapse
|
737
|
Rychkov GY, Litjens T, Roberts ML, Barritt GJ. Arachidonic acid inhibits the store-operated Ca2+ current in rat liver cells. Biochem J 2005; 385:551-6. [PMID: 15516207 PMCID: PMC1134728 DOI: 10.1042/bj20041604] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Vasopressin and other phospholipase-C-coupled hormones induce oscillations (waves) of [Ca2+]cyt (cytoplasmic Ca2+ concentration) in liver cells. Maintenance of these oscillations requires replenishment of Ca2+ in intracellular stores through Ca2+ inflow across the plasma membrane. While this may be achieved by SOCs (store-operated Ca2+ channels), some studies in other cell types indicate that it is dependent on AA (arachidonic acid)-activated Ca2+ channels. We studied the effects of AA on membrane conductance of rat liver cells using whole-cell patch clamping. We found no evidence that concentrations of AA in the physiological range could activate Ca2+-permeable channels in either H4IIE liver cells or rat hepatocytes. However, AA (1-10 microM) did inhibit (IC50=2.4+/-0.1 microM) Ca2+ inflow through SOCs (ISOC) initiated by intracellular application of Ins(1,4,5)P3 in H4IIE cells. Pre-incubation with AA did not inhibit ISOC development, but decreased maximal amplitude of the current. Iso-tetrandrine, widely used to inhibit receptor-activation of phospholipase A2, and therefore AA release, inhibited ISOC directly in H4IIE cells. It is concluded that (i) in rat liver cells, AA does not activate an AA-regulated Ca2+-permeable channel, but does inhibit SOCs, and (ii) iso-tetrandrine and tetrandrine are effective blockers of CRAC (Ca2+-release-activated Ca2+) channel-like SOCs. These results indicate that AA-activated Ca2+-permeable channels do not contribute to hormone-induced increases or oscillations in [Ca2+]cyt in liver cells. However, AA may be a physiological modulator of Ca2+ inflow in these cells.
Collapse
Affiliation(s)
- Grigori Y Rychkov
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | |
Collapse
|
738
|
de la Peña E, Mälkiä A, Cabedo H, Belmonte C, Viana F. The contribution of TRPM8 channels to cold sensing in mammalian neurones. J Physiol 2005; 567:415-26. [PMID: 15961432 PMCID: PMC1474199 DOI: 10.1113/jphysiol.2005.086546] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Different classes of ion channels have been implicated in sensing cold temperatures at mammalian thermoreceptor nerve endings. A major candidate is TRPM8, a non-selective cation channel of the transient receptor potential family, activated by menthol and low temperatures. We investigated the role of TRPM8 in cold sensing during transient expression in mouse cultured hippocampal neurones, a tissue that lacks endogenous expression of thermosensitive TRPs. In the absence of synaptic input, control hippocampal neurones were not excited by cooling. In contrast, all TRPM8-transfected hippocampal neurones were excited by cooling and menthol. However, in comparison to cold-sensitive trigeminal sensory neurones, hippocampal neurones exhibited much lower threshold temperatures, requiring temperatures below 27 degrees C to fire action potentials. These results directly demonstrate that expression of TRPM8 in mammalian neurones induces cold sensing, albeit at lower temperatures than native TRPM8-expressing neurones, suggesting the presence of additional modulatory mechanisms in the cold response of sensory neurones.
Collapse
Affiliation(s)
- Elvira de la Peña
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Apartado 18, San Juan de Alicante, 03550 Spain.
| | | | | | | | | |
Collapse
|
739
|
Lee H, Caterina MJ. TRPV channels as thermosensory receptors in epithelial cells. Pflugers Arch 2005; 451:160-7. [PMID: 15952037 DOI: 10.1007/s00424-005-1438-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
Temperature-sensitive transient receptor potential vanilloid (TRPV) ion channels are critical contributors to normal pain and temperature sensation and therefore represent attractive targets for pain therapy. When these channels were first discovered, most attention was focused on their potential contributions to direct thermal activation of peripheral sensory neurons. However, recent anatomical, physiological, and behavioral studies have provided evidence that TRPV channels expressed in skin epithelial cells may also contribute to thermosensation in vitro and in vivo. Here, we review these studies and speculate on possible communication mechanisms from cutaneous epithelial cells to sensory neurons.
Collapse
Affiliation(s)
- Hyosang Lee
- Departments of Biological Chemistry and Neuroscience, Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
740
|
Liedtke W. TRPV4 as osmosensor: a transgenic approach. Pflugers Arch 2005; 451:176-80. [PMID: 15952033 DOI: 10.1007/s00424-005-1449-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/21/2005] [Indexed: 10/25/2022]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) ion channel was named initially vanilloid-receptor-related osmotically activated channel (VR-OAC). Preliminary answers to the question, "What is the function of the trpv4 gene in live animals ?" are highlighted briefly in this review. In trpv4 null mice, TRPV4 is necessary for the maintenance of osmotic equilibrium, and in Caenorhabditis elegans transgenic for mammalian TRPV4, TRPV4 directs the osmotic avoidance response in the context of the ASH "nociceptive" neuron. The molecular mechanisms of gating of TRPV4 in vivo need to be determined; in particular, whether TRPV4 in live animals is gated via phosphorylation of defined amino-acid residues or more directly through the osmotic stimulus itself.
Collapse
Affiliation(s)
- Wolfgang Liedtke
- Center for Translational Neuroscience, Duke University Medical Center, Box 2900, Durham, NC 27710, USA.
| |
Collapse
|
741
|
Becker D, Blase C, Bereiter-Hahn J, Jendrach M. TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci 2005; 118:2435-40. [PMID: 15923656 DOI: 10.1242/jcs.02372] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tight regulation of the cell volume is important for the maintenance of cellular homeostasis. In a hypotonic environment, cells swell owing to osmosis. With many vertebrate cells, swelling is followed by an active reduction of volume, a process called regulatory volume decrease (RVD). A possible participant in RVD is the non-selective cation channel TRPV4, a member of the TRP superfamily that has been shown to react to hypotonic stimuli with a conductance for Ca2+. As a model for cell-volume regulation, we used a human keratinocyte cell line (HaCaT) that produces TRPV4 endogenously. When HaCaT cells were exposed to a hypotonic solution (200 mOsm) maximal swelling was followed by RVD. During swelling and volume regulation, a strong Ca2+ influx was measured. Gd3+, an inhibitor of TRPV4, blocked RVD of HaCaT cells and the accompanying rise of cytosolic Ca2+. To define the role of TRPV4 in volume regulation, a TRPV4-EGFP fusion protein was produced in CHO cells. CHO cells are unable to undergo RVD under hypotonic conditions and do not produce TRPV4 endogenously. Fluorescence imaging revealed that recombinant TRPV4 was localized to the cell membrane. Production of TRPV4 enabled CHO cells to undergo typical RVD after hypo-osmolarity-induced cell swelling. RVD of TRPV4-transfected CHO cells was significantly reduced by Gd3+ treatment or in Ca2+-free solution. Taken together, these results show a direct participation of TRPV4 in RVD.
Collapse
Affiliation(s)
- Daniel Becker
- Kinematic Cell Research Group, Johann Wolfgang Goethe University, Marie-Curie-Str. 9, 60439 Frankfurt, Germany
| | | | | | | |
Collapse
|
742
|
O'Neil RG, Heller S. The mechanosensitive nature of TRPV channels. Pflugers Arch 2005; 451:193-203. [PMID: 15909178 DOI: 10.1007/s00424-005-1424-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Accepted: 03/28/2005] [Indexed: 01/26/2023]
Abstract
Transient receptor potential vanilloid (TRPV) channels are widely expressed in both sensory and nonsensory cells. Whereas the channels display a broad diversity to activation by chemical and physical stimuli, activation by mechanical stimuli is common to many members of this group in both lower and higher organisms. Genetic screening in Caenorhabditis elegans has demonstrated an essential role for two TRPV channels in sensory neurons. OSM-9 and OCR-2, for example, are essential for both osmosensory and mechanosensory (nose-touch) behaviors. Likewise, two Drosophila TRPV channels, NAN and IAV, have been shown to be critical for hearing by the mechanosensitive chordotonal organs located in the fly's antennae. The mechanosensitive nature of the channels appears to be conserved in higher organisms for some TRPV channels. Two vertebrate channels, TRPV2 and TRPV4, are sensitive to hypotonic cell swelling, shear stress/fluid flow (TRPV4), and membrane stretch (TRPV2). In the osmosensing neurons of the hypothalamus (circumventricular organs), TRPV4 appears to function as an osmoreceptor, or part of an osmoreceptor complex, in control of vasopressin release, whereas in inner ear hair cells and vascular baroreceptors a mechanosensory role is suggestive, but not demonstrated. Finally, in many nonsensory cells expressing TRPV4, such as vascular endothelial cells and renal tubular epithelial cells, the channel exhibits well-developed local mechanosensory transduction processes where both cell swelling and shear stress/fluid flow lead to channel activation. Hence, many TRPV channels, or combinations of TRPV channels, display a mechanosensitive nature that underlies multiple mechanosensitive processes from worms to mammals.
Collapse
Affiliation(s)
- Roger G O'Neil
- Department of Integrative Biology and Pharmacology, Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| | | |
Collapse
|
743
|
Bogatcheva NV, Sergeeva MG, Dudek SM, Verin AD. Arachidonic acid cascade in endothelial pathobiology. Microvasc Res 2005; 69:107-27. [PMID: 15896353 DOI: 10.1016/j.mvr.2005.01.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/21/2005] [Accepted: 01/26/2005] [Indexed: 01/26/2023]
Abstract
Arachidonic acid (AA) and its metabolites (eicosanoids) represent powerful mediators, used by organisms to induce and suppress inflammation as a part of the innate response to disturbances. Several cell types participate in the synthesis and release of AA metabolites, while many cell types represent the targets for eicosanoid action. Endothelial cells (EC), forming a semi-permeable barrier between the interior space of blood vessels and underlying tissues, are of particular importance for the development of inflammation, since endothelium controls such diverse processes as vascular tone, homeostasis, adhesion of platelets and leukocytes to the vascular wall, and permeability of the vascular wall for cells and fluids. Proliferation and migration of endothelial cells contribute significantly to new vessel development (angiogenesis). This review discusses endothelial-specific synthesis and action of arachidonic acid derivatives with a particular focus on the mechanisms of signal transduction and associated intracellular protein targets.
Collapse
Affiliation(s)
- Natalia V Bogatcheva
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
744
|
Vriens J, Owsianik G, Voets T, Droogmans G, Nilius B. Invertebrate TRP proteins as functional models for mammalian channels. Pflugers Arch 2005; 449:213-26. [PMID: 15480752 DOI: 10.1007/s00424-004-1314-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transient receptor potential (TRP) channels constitute a large and diverse family of channel proteins that are expressed in many tissues and cell types in both vertebrates and invertebrates. While the biophysical features of many of the mammalian TRP channels have been described, relatively little is known about their biological roles. Invertebrate TRPs offer valuable genetic handles for characterizing the functions of these cation channels in vivo. Importantly, studies in model organisms can help to identify fundamental mechanisms involved in normal cellular functions and human disease. In this review, we give an overview of the different TRP channels known in the two most utilized invertebrate models, the nematode Caenorhabditis elegans and the fruit-fly Drosophila melanogaster, and discuss briefly the heuristic impact of these invertebrate channels with respect to TRP function in mammals.
Collapse
Affiliation(s)
- Joris Vriens
- Department of Physiology, Campus Gasthuisberg, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
745
|
Abstract
SRC family kinases are a group of nine cytoplasmic protein tyrosine kinases essential for many cell functions. Some appear to be ubiquitously expressed, whereas others are highly tissue specific. The ability of members of the SRC family to influence ion transport has been recognized for several years. Mounting evidence suggests a broad role for SRC family kinases in the cell response to both hypertonic and hypotonic stress, and in the ensuing regulatory volume increase or decrease. In addition, members of this tyrosine kinase family participate in the mechanotransduction that accompanies cell membrane deformation. Finally, at least one SRC family member operates in concert with the p38 MAPK to regulate tonicity-dependent gene transcription.
Collapse
Affiliation(s)
- David M Cohen
- Division of Nephrology, Mailcode PP262, Oregon Health and Science Univ. 3314 SW US Veterans Hospital Rd., Portland, OR 97239, USA.
| |
Collapse
|
746
|
Abstract
Transient receptor potential (TRP) ion channels are molecular gateways in sensory systems, an interface between the environment and the nervous system. Several TRPs transduce thermal, chemical, and mechanical stimuli into inward currents, an essential first step for eliciting thermal and pain sensations. Precise regulation of the expression, localization, and function of the TRP channels is crucial for their sensory role in nociceptor terminals, particularly after inflammation, when they contribute to pain hypersensitivity by undergoing changes in translation and trafficking as well as diverse posttranslational modifications.
Collapse
Affiliation(s)
- Haibin Wang
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
747
|
Abstract
In electrically nonexcitable cells, Ca2+influx is essential for regulating a host of kinetically distinct processes involving exocytosis, enzyme control, gene regulation, cell growth and proliferation, and apoptosis. The major Ca2+entry pathway in these cells is the store-operated one, in which the emptying of intracellular Ca2+stores activates Ca2+influx (store-operated Ca2+entry, or capacitative Ca2+entry). Several biophysically distinct store-operated currents have been reported, but the best characterized is the Ca2+release-activated Ca2+current, ICRAC. Although it was initially considered to function only in nonexcitable cells, growing evidence now points towards a central role for ICRAC-like currents in excitable cells too. In spite of intense research, the signal that relays the store Ca2+content to CRAC channels in the plasma membrane, as well as the molecular identity of the Ca2+sensor within the stores, remains elusive. Resolution of these issues would be greatly helped by the identification of the CRAC channel gene. In some systems, evidence suggests that store-operated channels might be related to TRP homologs, although no consensus has yet been reached. Better understood are mechanisms that inactivate store-operated entry and hence control the overall duration of Ca2+entry. Recent work has revealed a central role for mitochondria in the regulation of ICRAC, and this is particularly prominent under physiological conditions. ICRACtherefore represents a dynamic interplay between endoplasmic reticulum, mitochondria, and plasma membrane. In this review, we describe the key electrophysiological features of ICRACand other store-operated Ca2+currents and how they are regulated, and we consider recent advances that have shed insight into the molecular mechanisms involved in this ubiquitous and vital Ca2+entry pathway.
Collapse
Affiliation(s)
- Anant B Parekh
- Department of Physiology, University of Oxford, United Kingdom.
| | | |
Collapse
|
748
|
Kahn-Kirby AH, Dantzker JLM, Apicella AJ, Schafer WR, Browse J, Bargmann CI, Watts JL. Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell 2005; 119:889-900. [PMID: 15607983 DOI: 10.1016/j.cell.2004.11.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 09/16/2004] [Accepted: 10/13/2004] [Indexed: 12/30/2022]
Abstract
A variety of lipid and lipid-derived molecules can modulate TRP cation channel activity, but the identity of the lipids that affect TRP channel function in vivo is unknown. Here, we use genetic and behavioral analysis in the nematode C. elegans to implicate a subset of 20-carbon polyunsaturated fatty acids (PUFAs) in TRPV channel-dependent olfactory and nociceptive behaviors. Olfactory and nociceptive TRPV signaling are sustained by overlapping but nonidentical sets of 20-carbon PUFAs including eicosapentaenoic acid (EPA) and arachidonic acid (AA). PUFAs act upstream of TRPV family channels in sensory transduction. Short-term dietary supplementation with PUFAs can rescue PUFA biosynthetic mutants, and exogenous PUFAs elicit rapid TRPV-dependent calcium transients in sensory neurons, bypassing the normal requirement for PUFA synthesis. These results suggest that a subset of PUFAs with omega-3 and omega-6 acyl groups act as endogenous modulators of TRPV signal transduction.
Collapse
Affiliation(s)
- Amanda H Kahn-Kirby
- Neuroscience Graduate Program, 513 Parnassus, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
749
|
Grimm C, Kraft R, Schultz G, Harteneck C. Activation of the melastatin-related cation channel TRPM3 by D-erythro-sphingosine [corrected]. Mol Pharmacol 2005; 67:798-805. [PMID: 15550678 DOI: 10.1124/mol.104.006734] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
TRPM3, a member of the melastatin-like transient receptor potential channel subfamily (TRPM), is predominantly expressed in human kidney and brain. TRPM3 mediates spontaneous Ca2+ entry and nonselective cation currents in transiently transfected human embryonic kidney 293 cells. Using measurements with the Ca2+-sensitive fluorescent dye fura-2 and the whole-cell patch-clamp technique, we found that D-erythro-sphingosine, a metabolite arising during the de novo synthesis of cellular sphingolipids, activated TRPM3. Other transient receptor potential (TRP) channels tested [classic or canonical TRP (TRPC3, TRPC4, TRPC5), vanilloid-like TRP (TRPV4, TRPV5, TRPV6), and melastatin-like TRP (TRPM2)] did not significantly respond to application of sphingosine. Sphingosine-induced TRPM3 activation was not mediated by inhibition of protein kinase C, depletion of intracellular Ca2+ stores, and intracellular conversion of sphingosine to sphingosine-1-phosphate. Although sphingosine-1-phosphate and ceramides had no effect, two structural analogs of sphingosine, dihydro-D-erythro-sphingosine and N,N-dimethyl-D-erythro-sphingosine, also activated TRPM3. Sphingolipids, including sphingosine, are known to have inhibitory effects on a variety of ion channels. Thus, TRPM3 is the first ion channel activated by sphingolipids.
Collapse
Affiliation(s)
- Christian Grimm
- Institut für Pharmakologie, Charité Campus Benjamin Franklin, Thielallee 69-73, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
750
|
Abstract
The transient receptor potential (TRP) protein superfamily consists of a diverse group of cation channels that bear structural similarities to Drosophila TRP. TRP channels play important roles in nonexcitable cells; however, an emerging theme is that many TRP-related proteins are expressed predominantly in the nervous system and function in sensory physiology. The TRP superfamily is divided into seven subfamilies, the first of which is composed of the "classical" TRPs" (TRPC subfamily). Some TRPCs may be store-operated channels, whereas others appear to be activated by production of diacylglycerol or regulated through an exocytotic mechanism. Many members of a second subfamily (TRPV) function in sensory physiology and respond to heat, changes in osmolarity, odorants, and mechanical stimuli. Two members of the TRPM family function in sensory perception and three TRPM proteins are chanzymes, which contain C-terminal enzyme domains. The fourth and fifth subfamilies, TRPN and TRPA, include proteins with many ankyrin repeats. TRPN proteins function in mechanotransduction, whereas TRPA1 is activated by noxious cold and is also required for the auditory response. In addition to these five closely related TRP subfamilies, which comprise the Group 1 TRPs, members of the two Group 2 TRP subfamilies, TRPP and TRPML, are distantly related to the group 1 TRPs. Mutations in the founding members of these latter subfamilies are responsible for human diseases. Each of the TRP subfamilies are represented by members in worms and flies, providing the potential for using genetic approaches to characterize the normal functions and activation mechanisms of these channels.
Collapse
|