701
|
Page CE, Coutellier L. Prefrontal excitatory/inhibitory balance in stress and emotional disorders: Evidence for over-inhibition. Neurosci Biobehav Rev 2019; 105:39-51. [PMID: 31377218 DOI: 10.1016/j.neubiorev.2019.07.024] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 01/04/2023]
Abstract
Chronic stress-induced emotional disorders like anxiety and depression involve imbalances between the excitatory glutamatergic system and the inhibitory GABAergic system in the prefrontal cortex (PFC). However, the precise nature and trajectory of excitatory/inhibitory (E/I) imbalances in these conditions is not clear, with the literature reporting glutamatergic and GABAergic findings that are at times contradictory and inconclusive. Here we propose and discuss the hypothesis that chronic stress-induced emotional dysfunction involves hypoactivity of the PFC due to increased inhibition. We will also discuss E/I imbalances in the context of sex differences. In this review, we will synthesize research about how glutamatergic and GABAergic systems are perturbed by chronic stress and in related emotional disorders like anxiety and depression and propose ideas for reconciling contradictory findings in support of the hypothesis of over-inhibition. We will also discuss evidence for how aspects of the GABAergic system such as parvalbumin (PV) cells can be targeted therapeutically for reinstating activity and plasticity in the PFC and treating stress-related disorders.
Collapse
Affiliation(s)
- Chloe E Page
- Department of Neuroscience, Ohio State University, Columbus OH, United States
| | - Laurence Coutellier
- Department of Neuroscience, Ohio State University, Columbus OH, United States; Department of Psychology, Ohio State University, Columbus OH, United States.
| |
Collapse
|
702
|
Ousdal OT, Milde AM, Craven AR, Ersland L, Endestad T, Melinder A, Huys QJ, Hugdahl K. Prefrontal glutamate levels predict altered amygdala-prefrontal connectivity in traumatized youths. Psychol Med 2019; 49:1822-1830. [PMID: 30223909 PMCID: PMC6650776 DOI: 10.1017/s0033291718002519] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 05/22/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neurobiological models of stress and stress-related mental illness, including post-traumatic stress disorder, converge on the amygdala and the prefrontal cortex (PFC). While a surge of research has reported altered structural and functional connectivity between amygdala and the medial PFC following severe stress, few have addressed the underlying neurochemistry. METHODS We combined resting-state functional magnetic resonance imaging measures of amygdala connectivity with in vivo MR-spectroscopy (1H-MRS) measurements of glutamate in 26 survivors from the 2011 Norwegian terror attack and 34 control subjects. RESULTS Traumatized youths showed altered amygdala-anterior midcingulate cortex (aMCC) and amygdala-ventromedial prefrontal cortex (vmPFC) connectivity. Moreover, the trauma survivors exhibited reduced levels of glutamate in the vmPFC which fits with the previous findings of reduced levels of Glx (glutamate + glutamine) in the aMCC (Ousdal et al., 2017) and together suggest long-term impact of a traumatic experience on glutamatergic pathways. Importantly, local glutamatergic metabolite levels predicted the individual amygdala-aMCC and amygdala-vmPFC functional connectivity, and also mediated the observed group difference in amygdala-aMCC connectivity. CONCLUSIONS Our findings suggest that traumatic stress may influence amygdala-prefrontal neuronal connectivity through an effect on prefrontal glutamate and its compounds. Understanding the neurochemical underpinning of altered amygdala connectivity after trauma may ultimately lead to the discovery of new pharmacological agents which can prevent or treat stress-related mental illness.
Collapse
Affiliation(s)
- Olga Therese Ousdal
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Anne Marita Milde
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Regional Centre for Child and Youth Mental Health and Child Welfare, UNI Research Health, Bergen, Norway
| | - Alexander R. Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- NORMENT, Centre of Excellence, University of Oslo, Oslo, Norway
| | - Lars Ersland
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Tor Endestad
- Institute of Psychology, University of Oslo, Oslo, Norway
| | | | - Quentin J. Huys
- Translational Neuromodeling Unit, Institute of Biomedical Engineering, University of Zürich and Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland
- Department of Psychiatry, Centre for Addiction Disorders, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zürich, Zurich, Switzerland
| | - Kenneth Hugdahl
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- NORMENT, Centre of Excellence, University of Oslo, Oslo, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| |
Collapse
|
703
|
Correro AN, Nielson KA. A Review of Minority Stress as a Risk Factor for Cognitive Decline in Lesbian, Gay, Bisexual, and Transgender (LGBT) Elders. JOURNAL OF GAY & LESBIAN MENTAL HEALTH 2019; 24:2-19. [PMID: 33014237 PMCID: PMC7531820 DOI: 10.1080/19359705.2019.1644570] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/14/2019] [Accepted: 07/09/2019] [Indexed: 01/20/2023]
Abstract
Lesbian, gay, bisexual, and transgender (LGBT) older adults comprise a unique and growing subset of the aging population. The historical context in which they came of age was imbued with victimization and discrimination. These experiences are subjectively stressful and collectively known as minority stress. Older LGBT adults continue to face stressors related to their gender and sexual identities in their daily lives. Importantly, chronic minority stress (CMS), like other forms of chronic stress, is harmful to health and well-being. CMS contributes to LGBT health disparities, including cardiovascular disease and depression, conditions that in turn increase risk for premature cognitive decline. Furthermore, long-term exposure to stress hormones is associated with accelerated brain aging. Yet, the cognitive functioning of LGBT elders and the influence of CMS on their cognition is all but unexplored. In this review, we examine the influences of CMS in LGBT elders and connect those influences to existing research on stress and cognitive aging. We propose a testable model describing how CMS in LGBT elders heightens risk for premature cognitive aging and how ameliorating factors may help protect from CMS risk. Research is desperately needed to calibrate this model toward improving LGBT quality of life and mental health practices.
Collapse
Affiliation(s)
| | - Kristy A. Nielson
- Department of Psychology, Marquette University
- Department of Neurology and the Center for Imaging Research, Medical College of Wisconsin
| |
Collapse
|
704
|
Effects of Limonene on Chronic Restraint Stress-Induced Memory Impairment and Anxiety in Male Rats. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09800-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
705
|
Gerosa L, Grillo B, Forastieri C, Longaretti A, Toffolo E, Mallei A, Bassani S, Popoli M, Battaglioli E, Rusconi F. SRF and SRFΔ5 Splicing Isoform Recruit Corepressor LSD1/KDM1A Modifying Structural Neuroplasticity and Environmental Stress Response. Mol Neurobiol 2019; 57:393-407. [DOI: 10.1007/s12035-019-01720-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
706
|
Kim SY, Kark SM, Daley RT, Alger SE, Rebouças D, Kensinger EA, Payne JD. Interactive effects of stress reactivity and rapid eye movement sleep theta activity on emotional memory formation. Hippocampus 2019; 30:829-841. [PMID: 31313866 DOI: 10.1002/hipo.23138] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022]
Abstract
Sleep and stress independently enhance emotional memory consolidation. In particular, theta oscillations (4-7 Hz) during rapid eye movement (REM) sleep increase coherence in an emotional memory network (i.e., hippocampus, amygdala, and prefrontal cortex) and enhance emotional memory. However, little is known about how stress during learning might interact with subsequent REM theta activity to affect emotional memory. In the current study, we examined whether the relationship between REM theta activity and emotional memory differs as a function of pre-encoding stress exposure and reactivity. Participants underwent a psychosocial stressor (the Trier Social Stress Task; n = 32) or a comparable control task (n = 32) prior to encoding. Task-evoked cortisol reactivity was assessed by salivary cortisol rise from pre- to post-stressor, and participants in the stress condition were additionally categorized as high or low cortisol responders via a median split. During incidental encoding, participants studied 150 line drawings of negative, neutral, and positive images, followed by the complete color photo. All participants then slept overnight in the lab with polysomnographic recording. The next day, they were given a surprise recognition memory task. Results showed that memory was better for emotional relative to neutral information. Critically, these findings were observed only in the stress condition. No emotional memory benefit was observed in the control condition. In stressed participants, REM theta power significantly predicted memory for emotional information, specifically for positive items. This relationship was observed only in high cortisol responders. For low responders and controls, there was no relationship between REM theta and memory of any valence. These findings provide evidence that elevated stress at encoding, and accompanying changes in neuromodulators such as cortisol, may interact with theta activity during REM sleep to promote selective consolidation of emotional information.
Collapse
Affiliation(s)
- Sara Y Kim
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana
| | - Sarah M Kark
- Department of Psychology, Boston College, Chestnut Hill, Massachusetts
| | - Ryan T Daley
- Department of Psychology, Boston College, Chestnut Hill, Massachusetts
| | - Sara E Alger
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana.,Walter Reed Army Institute of Research, Silver Spring
| | - Daniella Rebouças
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana
| | | | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
707
|
Lee MJ, Ryu JS, Won SK, Namgung U, Jung J, Lee SM, Park JY. Effects of Acupuncture on Chronic Stress-Induced Depression-Like Behavior and Its Central Neural Mechanism. Front Psychol 2019; 10:1353. [PMID: 31333523 PMCID: PMC6625224 DOI: 10.3389/fpsyg.2019.01353] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
Depression is a serious psychiatric disorder with an enormous socioeconomic burden, and it is commonly comorbid with pain, chronic fatigue, or other inflammatory diseases. Recent studies have shown that acupuncture is an effective therapeutic method for reducing depressive symptoms; however, the underlying mechanism remains unknown. In this study, we investigated the effects of acupuncture on chronic stress-induced depression-like behavior and its central neural mechanisms in the brain. We induced chronic restraint stress (CRS) in male C57BL/6 mice for 14 or 28 consecutive days. Acupuncture treatment was performed at KI10·LR8·LU8·LR4 or control points for 7 or 14 days. Depression-like behavior was assessed with the open field test. Then, brain neural activity involving c-Fos and serotonin-related mechanisms via the 5-HT1A and 5-HT1B receptors were investigated. Acupuncture treatment at KI10·LR8·LU8·LR4 points rescued the depressive-like behavior, while control points (LU8·LR4·HT8·LR2) and non-acupoints on the hips did not. Brain neural activity was changed in the hippocampus, cingulate cortex, motor cortex, insular cortex, thalamus, and the hypothalamus after acupuncture treatment. Acupuncture treatment increased expression of 5-HT1A receptor in the cortex, hippocampus, thalamus, and the hypothalamus, and of 5-HT1B in the cortex and thalamus. In conclusion, acupuncture treatment at KI10·LR8·LU8·LR4 was effective in alleviating the depressive-like behavior in mice, and this therapeutic effect was produced through central brain neural activity and serotonin receptor modulation.
Collapse
Affiliation(s)
- Min-Ju Lee
- Department of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Jae-Sang Ryu
- Department of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Seul-Ki Won
- Department of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Uk Namgung
- Department of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Jeeyoun Jung
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - So-Min Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Ji-Yeun Park
- Department of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon, South Korea
| |
Collapse
|
708
|
Jiang Y, Tian Y, Wang Z. Age-Related Structural Alterations in Human Amygdala Networks: Reflections on Correlations Between White Matter Structure and Effective Connectivity. Front Hum Neurosci 2019; 13:214. [PMID: 31333430 PMCID: PMC6624785 DOI: 10.3389/fnhum.2019.00214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/11/2019] [Indexed: 11/25/2022] Open
Abstract
The amygdala, which is involved in human social information processing and socio-emotional response neuronal circuits, is segmented into three subregions that are responsible for perception, affiliation, and aversion. Though there is different functional and effective connectivity (EC) among these networks, age-related structural changes and associations between structure and function within the amygdala remain unclear. Here, we used diffusion tensor imaging (DTI) data (106 participants) to investigate age-related structural changes in fractional anisotropy (FA) of amygdalar subregions. We also examined the relationship between FA and EC within the subregions. We found that the FA of the amygdalar subregions exhibited inverted-U-shape trends with age. Moreover, over the human lifespan, there were negative correlations between the FA of the right ventrolateral amygdala (VLA.R) and the Granger-based EC (GC) of VLA.R → perception network (PerN), the FA of the VLA.R and the GC of the net flow from VLA.R → PerN, and the FA of the left dorsal amygdala (DorA.L) and the GC of the aversion network (AveN). Conversely, there was a positive correlation between the FA of the DorA.L and the GC of the net flow from DorA.L → AveN. Our results suggest that age-related changes in the function of the brain are constrained by the underlying white matter architectures, while the functional information flow changes influence white matter structure. This work increases our understanding of the neuronal mechanisms in the maturation and aging process.
Collapse
Affiliation(s)
- Yuhao Jiang
- Bio-information College, ChongQing University of Posts and Telecommunications, ChongQing, China
| | - Yin Tian
- Bio-information College, ChongQing University of Posts and Telecommunications, ChongQing, China
| | - Zhongyan Wang
- Bio-information College, ChongQing University of Posts and Telecommunications, ChongQing, China
| |
Collapse
|
709
|
Goldfarb EV. Enhancing memory with stress: Progress, challenges, and opportunities. Brain Cogn 2019; 133:94-105. [PMID: 30553573 PMCID: PMC9972486 DOI: 10.1016/j.bandc.2018.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 02/04/2023]
Abstract
Stress can strongly influence what we learn and remember, including by making memories stronger. Experiments probing stress effects on hippocampus-dependent memory in rodents have revealed modulatory factors and physiological mechanisms by which acute stress can enhance long-term memory. However, extending these findings and mechanisms to understand when stress will enhance declarative memory in humans faces important challenges. This review synthesizes human and rodent studies of stress and memory, examining translational gaps related to measurements of declarative memory and stress responses in humans. Human studies diverge from rodent research by assessing declarative memories that may not depend on the hippocampus and by measuring peripheral rather than central stress responses. This highlights opportunities for future research across species, including assessing stress effects on hippocampal-dependent memory processes in humans and relating peripheral stress responses to stress effects on the function of memory-related brain regions in rodents. Together, these investigations will facilitate the translation of stress effects on memory function from rodents to humans and inform interventions that can harness the positive effects of stress on long-term memory.
Collapse
Affiliation(s)
- Elizabeth V Goldfarb
- Yale Stress Center, Department of Psychiatry, Yale University, 2 Church Street South, Suite 209, New Haven, CT 06519, United States.
| |
Collapse
|
710
|
Banagozar Mohammadi A, Torbati M, Farajdokht F, Sadigh-Eteghad S, Fazljou SMB, Vatandoust SM, Golzari SE, Mahmoudi J. Sericin alleviates restraint stress induced depressive- and anxiety-like behaviors via modulation of oxidative stress, neuroinflammation and apoptosis in the prefrontal cortex and hippocampus. Brain Res 2019; 1715:47-56. [DOI: 10.1016/j.brainres.2019.03.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 12/20/2022]
|
711
|
Saboory E, Mohammadi S, Dindarian S, Mohammadi H. Prenatal stress and elevated seizure susceptibility: Molecular inheritable changes. Epilepsy Behav 2019; 96:122-131. [PMID: 31132613 DOI: 10.1016/j.yebeh.2019.04.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
Stressful episodes are common during early-life and may have a wide range of negative effects on both physical and mental status of the offspring. In addition to various neurobehavioral complications induced by prenatal stress (PS), seizure is a common complication with no fully explained cause. In this study, the association between PS and seizure susceptibility was reviewed focusing on sex differences and various underlying mechanisms. The role of drugs in the initiation of seizure and the effects of PS on the nervous system that prone the brain for seizure, especially the hypothalamic-pituitary-adrenal (HPA) axis, are also discussed in detail by reviewing the papers studying the effect of PS on glutamatergic, gamma-aminobutyric acid (GABA)ergic, and adrenergic systems in the context of seizure and epilepsy. Finally, epigenetic changes in epilepsy are described, and the underlying mechanisms of this change are expanded. As the effects of PS may be life-lasting, it is possible to prevent future psychiatric and behavioral disorders including epilepsy by preventing avoidable PS risk factors.
Collapse
Affiliation(s)
- Ehsan Saboory
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Sedra Mohammadi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | - Sina Dindarian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hozan Mohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
712
|
Azogu I, Cossette I, Mukunzi J, Ibeke O, Plamondon H. Sex-specific differences in adult cognition and neuroplasticity following repeated combinatory stress and TrkB receptor antagonism in adolescence. Horm Behav 2019; 113:21-37. [PMID: 30995444 DOI: 10.1016/j.yhbeh.2019.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 01/19/2023]
Abstract
Evidence supports brain-derived neurotrophic factor (BDNF) and its primary receptor tyrosine-related kinase B (TrkB) as targets in the treatment of mood disorders. This study characterized the impact of a 10-day combinatory stress paradigm (alternating days of restraint stress and forced swim) and administration of the selective TrkB antagonist ANA-12 (0.5 mg/kg, i.p.) during adolescence in male and female Wistar rats on adulthood behavioral and neurochemical responses. The social interaction/preference (SIT/SP), and Y maze conditioned place preference (YMCPP) and passive avoidance tests (YMPAT), initiated on PND 62, served to determine sex-related behavioral responses. Results support reduced sociability in females in the SIT/SP, but no impact of ANA-12 to regulate sociability or social memory. Blockade of TrkB during adolescence facilitated YMCPP-related reward behavior in both sexes, and reduced YMPAT fear conditioning in females. Following behavioral testing, rats were exposed to 5-min acute forced swim and brains collected 2 h post swim to determine effects of adolescent TrkB blockade and stress exposure on neurochemical regulators of stress and plasticity. Findings show elevated glucocorticoid receptor (GR-) and TrkB-immunoreactivity (ir) in the amygdalar central nucleus, and GR-ir in the hypothalamic paraventricular nucleus of females compared to males. In the hippocampal CA1, BDNF-ir was lower in females versus males, and GR-ir was elevated in stress versus non-stress males. Together, we demonstrate that inherent sex-specific differences, which may modulate impact of adolescence stress exposure and TrkB inhibition, differentially affect male and female adulthood behavior and biochemical response profiles, suggesting that these responses are in part conditioned by prior experience.
Collapse
Affiliation(s)
- Idu Azogu
- Behavioral Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Isabelle Cossette
- Behavioral Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Joana Mukunzi
- Behavioral Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Ogechi Ibeke
- Behavioral Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Helene Plamondon
- Behavioral Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada.
| |
Collapse
|
713
|
Jansen van Vuren E, Malan L, von Känel R, Magnusson M, Lammertyn L, Malan NT. BDNF increases associated with constant troponin T levels and may protect against poor cognitive interference control: The SABPA prospective study. Eur J Clin Invest 2019; 49:e13116. [PMID: 30932178 DOI: 10.1111/eci.13116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/13/2019] [Accepted: 03/28/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) modulates brain health and cognition, which can interfere with executive cognitive function. BDNF was implicated with microcirculatory ischaemia and may reflect cardiomyocyte injury. We aimed to determine whether prospective changes (%Δ) in BDNF and cardiac troponin T (cTnT) will be associated with executive cognitive function in a bi-ethnic cohort. DESIGN A prospective investigation was conducted over a three-year period in a bi-ethnic sex cohort (N = 338; aged 20-65 years) from South Africa. Fasting serum samples for BDNF and cTnT were obtained. The STROOP-color-word conflict test (CWT) was applied to assess executive cognitive function at baseline. RESULTS In Blacks, BDNF (P < 0.001) increased over the three-year period while cTnT did not change. In contrast, in Whites, BDNF and cTnT decreased over three years. In Black men, no change in cTnT was associated with increased ΔBDNF (β = 0.25; 95% CI 0.05-0.45; P = 0.02). In the Black men, constant cTnT levels were inversely associated with executive cognitive function (β = -0.33; 95% CI -0.53 to -0.12; P = 0.003). Three-year increases in BDNF increased the likelihood for chronic lower cTnT levels at a pre-established cut-point of <4.2 ng/L [OR = 2.35 (1.12-4.94), P = 0.02]. The above associations were not found in the White sex groups. CONCLUSIONS Central neural control mechanisms may have upregulated BDNF in Black men as a way to protect against myocardial stress progression and to possibly improve processes related to cognitive interference control. High-sensitive cTnT levels may act as an early predictor of disturbed neural control mechanisms.
Collapse
Affiliation(s)
- Esmé Jansen van Vuren
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Leoné Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Roland von Känel
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.,Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, Switzerland
| | - Martin Magnusson
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Malmö, Sweden
| | - Leandi Lammertyn
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.,MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Nicolaas T Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| |
Collapse
|
714
|
Moreno-Rius J. The cerebellum under stress. Front Neuroendocrinol 2019; 54:100774. [PMID: 31348932 DOI: 10.1016/j.yfrne.2019.100774] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/22/2022]
Abstract
Stress-related psychiatric conditions are one of the main causes of disability in developed countries. They account for a large portion of resource investment in stress-related disorders, become chronic, and remain difficult to treat. Research on the neurobehavioral effects of stress reveals how changes in certain brain areas, mediated by a number of neurochemical messengers, markedly alter behavior. The cerebellum is connected with stress-related brain areas and expresses the machinery required to process stress-related neurochemical mediators. Surprisingly, it is not regarded as a substrate of stress-related behavioral alterations, despite numerous studies that show cerebellar responsivity to stress. Therefore, this review compiles those studies and proposes a hypothesis for cerebellar function in stressful conditions, relating it to stress-induced psychopathologies. It aims to provide a clearer picture of stress-related neural circuitry and stimulate cerebellum-stress research. Consequently, it might contribute to the development of improved treatment strategies for stress-related disorders.
Collapse
|
715
|
Szymkowicz SM, Woods AJ, Dotson VM, Porges EC, Nissim NR, O’Shea A, Cohen RA, Ebner NC. Associations between subclinical depressive symptoms and reduced brain volume in middle-aged to older adults. Aging Ment Health 2019; 23:819-830. [PMID: 29381390 PMCID: PMC6066456 DOI: 10.1080/13607863.2018.1432030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The associations between subclinical depressive symptoms, as well specific symptom subscales, on brain structure in aging are not completely elucidated. This study investigated the extent to which depressive symptoms were related to brain volumes in fronto-limbic structures in a sample of middle-aged to older adults. METHOD Eighty participants underwent structural neuroimaging and completed the Beck Depression Inventory, 2nd Edition (BDI-II), which comprises separate affective, cognitive, and somatic subscales. Gray matter volumes were extracted from the caudal and rostral anterior cingulate, posterior cingulate, hippocampus, and amygdala. Hierarchical regression models examined the relationship between brain volumes and (i) total depressive symptoms and (ii) BDI-II subscales were conducted. RESULTS After adjusting for total intracranial volume, race, and age, higher total depressive symptoms were associated with smaller hippocampal volume (p = 0.005). For the symptom subscales, after controlling for the abovementioned covariates and the influence of the other symptom subscales, more somatic symptoms were related to smaller posterior cingulate (p = 0.025) and hippocampal (p < 0.001) volumes. In contrast, the affective and cognitive subscales were not associated with brain volumes in any regions of interest. CONCLUSION Our data showed that greater symptomatology was associated with smaller volume in limbic brain regions. These findings provide evidence for preclinical biological markers of major depression and specifically advance knowledge of the relationship between subclinical depressive symptoms and brain volume. Importantly, we observed variations by specific depressive symptom subscales, suggesting a symptom-differential relationship between subclinical depression and brain volume alterations in middle-aged and older individuals.
Collapse
Affiliation(s)
- Sarah M. Szymkowicz
- Sarah M. Szymkowicz, M.S., 1Department of Clinical & Health Psychology, University of Florida, P.O. Box 100165, Gainesville, FL, 32610-0165. Phone: +1 (352) 273-6058.
| | - Adam J. Woods
- Adam J. Woods, Ph.D., 1Department of Clinical & Health Psychology, University of Florida, 2Center for Cognitive Aging & Memory, McKnight Brain Institute, University of Florida, P.O. Box 100015, Gainesville, FL, 32610-0015, 3Department of Neuroscience, University of Florida, P.O. Box 100244, Gainesville, FL, 32610-0244. Phone: +1 (352) 294-5842.
| | - Vonetta M. Dotson
- Vonetta M. Dotson, Ph.D., 4Department of Psychology, Georgia State University, P.O. Box 5010, Atlanta, GA, 30302-5010. Phone: +1 (404) 413-6207.
| | - Eric C. Porges
- Eric C. Porges, Ph.D., 1Department of Clinical & Health Psychology, University of Florida, 2Center for Cognitive Aging & Memory, McKnight Brain Institute, University of Florida. Phone: +1 (352) 294-5838.
| | - Nicole R. Nissim
- Nicole R. Nissim, M.S., 2Center for Cognitive Aging & Memory, McKnight Brain Institute, University of Florida, 3Department of Neuroscience, University of Florida. Phone: +1 (352) 294-5742.
| | - Andrew O’Shea
- Andrew O’Shea, M.S., 1Department of Clinical & Health Psychology, University of Florida, 2Center for Cognitive Aging & Memory, McKnight Brain Institute, University of Florida. Phone: +1 (352) 294-5827.
| | - Ronald A. Cohen
- Ronald A. Cohen, Ph.D., 1Department of Clinical & Health Psychology, University of Florida, 2Center for Cognitive Aging & Memory, McKnight Brain Institute, University of Florida. Phone: +1 (352) 294-5840.
| | - Natalie C. Ebner
- Natalie C. Ebner, Ph.D., 2Center for Cognitive Aging & Memory, McKnight Brain Institute, University of Florida, 5Department of Psychology, University of Florida, P.O. Box 112250, Gainesville, FL, 32611, 6Department of Aging & Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL, 32611. Phone: +1 (203) 691-0371.
| |
Collapse
|
716
|
Beauchaine TP, Hinshaw SP, Bridge JA. Nonsuicidal Self-Injury and Suicidal Behaviors in Girls: The Case for Targeted Prevention in Preadolescence. Clin Psychol Sci 2019; 7:643-667. [PMID: 31485384 PMCID: PMC6726409 DOI: 10.1177/2167702618818474] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Non-suicidal self-injury (NSSI) affects 15-20% of adolescents-disproportionately girls-and is a strong predictor of eventual suicide attempts and suicide. Many girls now initiate NSSI before age 10. These early-starters exhibit greater frequency of NSSI, use more diverse methods, and are hospitalized more often, yet there are no empirically supported prevention programs for preadolescents. Obstacles to prevention include ascertaining who is sufficiently vulnerable and specifying mechanistic intervention targets. Recent research indicates that (1) preadolescent girls with ADHD who are also maltreated are at alarming risk for NSSI and suicide attempts by adolescence, and (2) the conjoint effects of these vulnerabilities are sufficiently potent for targeted prevention. Research also indicates that existing interventions are effective in altering child- and family-level mechanisms of NSSI. These interventions alter neurobiological markers of vulnerability, which can be used as proximal efficacy signals of prevention response, without waiting for NSSI and suicide attempts to emerge.
Collapse
Affiliation(s)
| | - Stephen P Hinshaw
- Departments of Psychology and Psychiatry, The University of California, Berkeley; University of California, San Francisco
| | - Jeffrey A Bridge
- Center for Suicide Prevention and Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
717
|
Cortisol Excess-Mediated Mitochondrial Damage Induced Hippocampal Neuronal Apoptosis in Mice Following Cold Exposure. Cells 2019; 8:cells8060612. [PMID: 31216749 PMCID: PMC6627841 DOI: 10.3390/cells8060612] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/31/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
Cold stress can induce neuronal apoptosis in the hippocampus, but the internal mechanism involving neuronal loss induced by cold stress is not clear. In vivo, male and female C57BL/6 mice were exposed to 4 °C, 3 h per day for 1 week. In vitro, HT22 cells were treated with different concentrations of cortisol (CORT) for 3 h. In vivo, CORT levels in the hippocampus were measured using ELISA, western blotting, and immunohistochemistry to assess the neuronal population and oxidation of the hippocampus. In vitro, western blotting, immunofluorescence, flow cytometry, transmission electron microscopy, and other methods were used to characterize the mechanism of mitochondrial damage induced by CORT. The phenomena of excessive CORT-mediated oxidation stress and neuronal apoptosis were shown in mouse hippocampus tissue following cold exposure, involving mitochondrial oxidative stress and endogenous apoptotic pathway activation. These processes were mediated by acetylation of lysine 9 of histone 3, resulting in upregulation involving Adenosine 5'-monophosphate (AMP)-activated protein kinase (APMK) phosphorylation and translocation of Nrf2 to the nucleus. In addition, oxidation in male mice was more severe. These findings provide a new understanding of the underlying mechanisms of the cold stress response and explain the apoptosis process induced by CORT, which may influence the selection of animal models in future stress-related studies.
Collapse
|
718
|
Zhou X, Xiao Q, Xie L, Yang F, Wang L, Tu J. Astrocyte, a Promising Target for Mood Disorder Interventions. Front Mol Neurosci 2019; 12:136. [PMID: 31231189 PMCID: PMC6560156 DOI: 10.3389/fnmol.2019.00136] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/09/2019] [Indexed: 01/03/2023] Open
Abstract
Mood disorders have multiple phenotypes and complex underlying biological mechanisms and, as such, there are no effective therapeutic strategies. A review of recent work on the role of astrocytes in mood disorders is thus warranted, which we embark on here. We argue that there is tremendous potential for novel strategies for therapeutic interventions based on the role of astrocytes. Astrocytes are traditionally considered to have supporting roles within the brain, yet emerging evidence has shown that astrocytes have more direct roles in influencing brain function. Notably, evidence from postmortem human brain tissues has highlighted changes in glial cell morphology, density and astrocyte-related biomarkers and genes following mood disorders, indicating astrocyte involvement in mood disorders. Findings from animal models strongly imply that astrocytes not only change astrocyte morphology and physiological characteristics but also influence neural circuits via synapse structure and formation. This review pays particular attention to interactions between astrocytes and neurons and argues that astrocyte dysfunction affects the monoaminergic system, excitatory–inhibitory balance and neurotrophic states of local networks. Together, these studies provide a foundation of knowledge about the exact role of astrocytes in mood disorders. Importantly, we then change the focus from neurons to glial cells and the interactions between the two, so that we can understand newly proposed mechanisms underlying mood disorders, and to identify more diagnostic indicators or effective targets for treatment of these diseases.
Collapse
Affiliation(s)
- Xinyi Zhou
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Xiao
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Xie
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Fan Yang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Jie Tu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
719
|
Moradi-Kor N, Ghanbari A, Rashidipour H, Yousefi B, Bandegi AR, Rashidy-Pour A. Beneficial effects of Spirulina platensis, voluntary exercise and environmental enrichment against adolescent stress induced deficits in cognitive functions, hippocampal BDNF and morphological remolding in adult female rats. Horm Behav 2019; 112:20-31. [PMID: 30917909 DOI: 10.1016/j.yhbeh.2019.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/16/2019] [Accepted: 03/22/2019] [Indexed: 11/21/2022]
Abstract
Chronic exposure to stress during adolescent period has been demonstrated to impair cognitive functions and the dendritic morphology of pyramidal neurons in the rat hippocampal CA3 area. The present study investigated the combined protective effects of Spirulina platensis (SP), a supplement made from blue-green algae with neuroprotective properties, voluntary exercise (EX) and environmental enrichment (EE) against cognitive deficits, alternations in hippocampal BDNF levels, and abnormal neuronal remodeling in adult female rats (PND 60) induced by exposure to chronic restraint stress during adolescent period (PND 30-40). Rats were exposed to restraint stress (2 h/day for 10 days, PND 30-40). Then, the animals were subjected to treatment with SP (200 mg/kg/day), EX, EE and the combined treatments (SP + EX, and SP + EE) between PND 41 and 55 of age. Following the interventions, spatial learning and memory, passive avoidance performance, hippocampal dendritic morphology and BDNF levels were assessed. Results showed that plasma corticosterone levels increased at PND 40 and remained elevated at PND 55 and 70 in the stressed rats. Stressed rats showed deficits in spatial learning and memory and passive avoidance performance, decreased BDNF levels in the hippocampus, and reduced apical dendritic length and branch points of the CA3 pyramidal neurons. These deficits were alleviated by the SP, EX and EE, and the combined treatments, which accompanied with a decline in serum corticosterone in stressed animals. Some treatments even enhanced cognitive functions, and BDNF levels and neuroanatomical remodeling in the hippocampus of non-stressed animals. Our findings provide important evidences that physical activity, exposure to EE, and the SP treatment during adolescent period can protect against adolescent stress induced behavioral, biochemical and neuroanatomical impairments in adulthood.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Avoidance Learning/drug effects
- Avoidance Learning/physiology
- Brain-Derived Neurotrophic Factor/metabolism
- Cell Extracts/pharmacology
- Cognition/drug effects
- Cognition/physiology
- Cognition Disorders/etiology
- Cognition Disorders/pathology
- Cognition Disorders/physiopathology
- Cognition Disorders/prevention & control
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Female
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/pathology
- Hippocampus/physiopathology
- Memory/drug effects
- Memory/physiology
- Neuronal Plasticity/drug effects
- Physical Conditioning, Animal/physiology
- Rats
- Rats, Wistar
- Restraint, Physical/physiology
- Restraint, Physical/psychology
- Sexual Maturation/drug effects
- Sexual Maturation/physiology
- Social Environment
- Spatial Learning/drug effects
- Spirulina/chemistry
- Stress, Psychological/complications
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Nasroallah Moradi-Kor
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran; Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Hadi Rashidipour
- School of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Garmsar, Iran
| | - Behpour Yousefi
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ahmad Reza Bandegi
- Laboratory of Endocrine Research, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
720
|
Dopfel D, Perez PD, Verbitsky A, Bravo-Rivera H, Ma Y, Quirk GJ, Zhang N. Individual variability in behavior and functional networks predicts vulnerability using an animal model of PTSD. Nat Commun 2019; 10:2372. [PMID: 31147546 PMCID: PMC6543038 DOI: 10.1038/s41467-019-09926-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/08/2019] [Indexed: 12/31/2022] Open
Abstract
Only a minority of individuals experiencing trauma subsequently develop post-traumatic stress disorder (PTSD). However, whether differences in vulnerability to PTSD result from a predisposition or trauma exposure remains unclear. A major challenge in differentiating these possibilities is that clinical studies focus on individuals already exposed to trauma without pre-trauma conditions. Here, using the predator scent model of PTSD in rats and a longitudinal design, we measure pre-trauma brain-wide neural circuit functional connectivity, behavioral and corticosterone responses to trauma exposure, and post-trauma anxiety. Freezing during predator scent exposure correlates with functional connectivity in a set of neural circuits, indicating pre-existing circuit function can predispose animals to differential fearful responses to threats. Counterintuitively, rats with lower freezing show more avoidance of the predator scent, a prolonged corticosterone response, and higher anxiety long after exposure. This study provides a framework of pre-existing circuit function that determines threat responses, which might directly relate to PTSD-like behaviors.
Collapse
Affiliation(s)
- David Dopfel
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Pablo D Perez
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexander Verbitsky
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hector Bravo-Rivera
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, 00936, Puerto Rico
| | - Yuncong Ma
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Gregory J Quirk
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, 00936, Puerto Rico
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, 00936, Puerto Rico
| | - Nanyin Zhang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
721
|
Mango D, Caruso A, Saidi A, Nisticò R, Scaccianoce S. The positive allosteric modulator at mGlu2 receptors, LY487379, reverses the effects of chronic stress‐induced behavioral maladaptation and synaptic dysfunction in the adulthood. Synapse 2019; 73:e22101. [DOI: 10.1002/syn.22101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Dalila Mango
- Laboratory of NeuropharmacologyEBRI Rita Levi‐Montalcini Foundation Rome Italy
| | - Alessandra Caruso
- Department of Physiology and PharmacologySapienza University of Rome Rome Italy
| | - Amira Saidi
- Laboratory of NeuropharmacologyEBRI Rita Levi‐Montalcini Foundation Rome Italy
| | - Robert Nisticò
- Laboratory of NeuropharmacologyEBRI Rita Levi‐Montalcini Foundation Rome Italy
- School of Pharmacy, Department of BiologyUniversity of Rome Tor Vergata Rome Italy
| | - Sergio Scaccianoce
- Department of Physiology and PharmacologySapienza University of Rome Rome Italy
| |
Collapse
|
722
|
Cortisol levels and seizures in adults with epilepsy: A systematic review. Neurosci Biobehav Rev 2019; 103:216-229. [PMID: 31129236 DOI: 10.1016/j.neubiorev.2019.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Stress has been suggested as a trigger factor for seizures in epilepsy patients, but little is known about cortisol levels, as indicators of stress, in adults with epilepsy. This systematic review summarizes the evidence on this topic. Following PRISMA guidelines, 38 articles were selected: 14 analyzing basal cortisol levels, eight examining antiepileptic drugs (AEDs) effects, 13 focused on seizure effects, and three examining stress. Higher basal cortisol levels were found in patients than in healthy people in studies with the most homogeneous samples (45% of 38 total studies). Despite heterogeneous results associated with AEDs, seizures were related to increases in cortisol levels in 77% of 38 total studies. The only study with acute stress administration found higher cortisol reactivity in epilepsy than in healthy controls. In studies using self-reported stress, high seizure frequency was related to increased cortisol levels and lower functional brain connectivity. Findings suggest that epilepsy could be considered a chronic stress model. The potential sensitizing role of accumulative seizures and issues for future research are discussed.
Collapse
|
723
|
Davis EP, Hankin BL, Glynn LM, Head K, Kim DJ, Sandman CA. Prenatal Maternal Stress, Child Cortical Thickness, and Adolescent Depressive Symptoms. Child Dev 2019; 91:e432-e450. [PMID: 31073997 DOI: 10.1111/cdev.13252] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prenatal maternal stress predicts subsequent elevations in youth depressive symptoms, but the neural processes associated with these links are unclear. This study evaluated whether prenatal maternal stress is associated with child brain development, and adolescent depressive symptoms using a prospective design with 74 mother child pairs (40 boys). Maternal stress was assessed during pregnancy, child cortical thickness at age 7, and depressive symptoms at age 12. Prenatal maternal stress was associated with less cortical thickness primarily in frontal and temporal regions and with elevated depressive symptoms; child cortical thickness additionally correlated with adolescent depressive symptoms. The observed associations are consistent with the possibility that cortical thickness in superior frontal regions links associations between prenatal maternal stress and adolescent depressive symptoms.
Collapse
|
724
|
Reich B, Zhou Y, Goldstein E, Srivats SS, Contoreggi NH, Kogan JF, McEwen BS, Kreek MJ, Milner TA, Gray JD. Chronic immobilization stress primes the hippocampal opioid system for oxycodone-associated learning in female but not male rats. Synapse 2019; 73:e22088. [PMID: 30632204 PMCID: PMC11548942 DOI: 10.1002/syn.22088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/27/2018] [Accepted: 01/06/2019] [Indexed: 12/21/2022]
Abstract
In adult female, but not male, Sprague Dawley rats, chronic immobilization stress (CIS) increases mossy fiber (MF) Leu-Enkephalin levels and redistributes delta- and mu-opioid receptors (DORs and MORs) in hippocampal CA3 pyramidal cells and GABAergic interneurons to promote excitation and learning processes following subsequent opioid exposure. Here, we demonstrate that CIS females, but not males, acquire conditioned place preference (CPP) to oxycodone and that CIS "primes" the hippocampal opioid system in females for oxycodone-associated learning. In CA3b, oxycodone-injected (Oxy) CIS females relative to saline-injected (Sal) CIS females exhibited an increase in the cytoplasmic and total densities of DORs in pyramidal cell dendrites so that they were similar to Sal- and Oxy-CIS males. Consistent with our earlier studies, Sal- and Oxy-CIS females but not CIS males had elevated DOR densities in MF-CA3 dendritic spines, which we have previously shown are important for opioid-mediated long-term potentiation. In the dentate gyrus, Oxy-CIS females had more DOR-labeled interneurons than Sal-CIS females. Moreover, Sal- and Oxy-CIS females compared to both groups of CIS males had elevated levels of DORs and MORs in GABAergic interneuron dendrites, suggesting capacity for greater synthesis or storage of these receptors in circuits important for opioid-mediated disinhibition. However, more plasmalemmal MORs were on large parvalbumin-containing dendrites of Oxy-CIS males compared to Sal-CIS males, suggesting a limited ability for increased granule cell disinhibition. These results suggest that low levels of DORs in MF-CA3 synapses and hilar GABAergic interneurons may contribute to the attenuation of oxycodone CPP in males exposed to CIS.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- CA3 Region, Hippocampal/cytology
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/metabolism
- Conditioning, Classical
- Dendrites/metabolism
- Dentate Gyrus/cytology
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Female
- Interneurons/metabolism
- Male
- Oxycodone/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/metabolism
- Repetition Priming
- Restraint, Physical
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Batsheva Reich
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Ellen Goldstein
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Sudarshan S. Srivats
- Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, P.O. Box 24144 - Doha, Qatar
| | - Natalina H. Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Joshua F. Kogan
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Jason D. Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| |
Collapse
|
725
|
Monteiro C, Cardoso-Cruz H, Galhardo V. Animal models of congenital hypoalgesia: Untapped potential for assessing pain-related plasticity. Neurosci Lett 2019; 702:51-60. [DOI: 10.1016/j.neulet.2018.11.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
726
|
Vogel S, Schwabe L. Stress, aggression, and the balance of approach and avoidance. Psychoneuroendocrinology 2019; 103:137-146. [PMID: 30685681 DOI: 10.1016/j.psyneuen.2019.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 11/17/2022]
Abstract
Stress is a well-established risk factor for many mental disorders including anxiety disorders or substance abuse. A hallmark of these disorders is an imbalance between behavioral approach and avoidance in situations with approach-avoidance conflicts and unclear outcomes. However, if and how stress affects human behavior in approach-avoidance conflicts is largely unknown. To investigate the effects of stress on approach-avoidance behavior, 80 participants underwent a stress or control manipulation before performing an approach-avoidance conflict task. Stress markedly increased behavioral inhibition when threats were distant and accelerated responses when threats were close; suggesting that stress amplifies the importance of threat distance. However, participants high in trait aggression showed increased approach behavior, particularly when stressed. These findings indicate that stress generally leads to enhanced avoidance, but induces approach in individuals prone to aggression, with important implications for stress-related psychopathologies.
Collapse
Affiliation(s)
- Susanne Vogel
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Von-Melle-Park 5, 20146, Hamburg, Germany.
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Von-Melle-Park 5, 20146, Hamburg, Germany.
| |
Collapse
|
727
|
Nikkar E, Ghoshooni H, Hadipour MM, Sahraei H. Effect of Nitric Oxide on Basolateral Amygdala on Persistence of Anxiety and Depression in Stressed Male Rats. Basic Clin Neurosci 2019; 10:13-22. [PMID: 31031890 PMCID: PMC6484182 DOI: 10.32598/bcn.9.10.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/10/2018] [Accepted: 07/17/2018] [Indexed: 01/22/2023] Open
Abstract
Introduction: The current study aimed at investigating the role of Nitric Oxide (NO) in the maintenance of anxiety and depression induced by stress in male Wistar rats using intra-Basolateral Amygdala (BLA) injection of NO precursor, L-arginine, Nitric Oxide Synthase (NOS) inhibitor, and L-NAME. Methods: Two 23-gauge stainless steel cannulas were placed in the BLA, stereotaxically. Seven days later, animals experienced electro foot shock stress based on the following protocol: animals experienced four sessions of stress for 60 minutes in four consecutive days. Five minutes before each stress session, the animals received different doses of L-arginine or L-NAME (1, 5 and, 10 μg/rat) or saline (0.5 μL/rat) intra-BLA. Six days after the stress termination, animals were tested for maintenance of anxiety-like behavior (elevated plus maze; EPM) and eight days after the stress they were examined for depression (forced swimming test; FST). Results: Stress reduced the time and number of open arms and decreased motor activity on EPM. Stress-induced anxiety was inhibited by L-arginine and L-NAME (1, 5, and 10 μg/rat). L-Arginine and L-NAME induced anxiety in non-stressed rats. Stress also increased the immobility time in animals in FST paradigm. Interestingly, both L-arginine and L-NAME, in all doses reduced the stress effect. Conclusion: BLA nitric oxide may play a pivotal role in anxiety and depression induced by stress in rats. Since the effects of both L-arginine and L-NAME were similar, NO might have a modulatory role in the BLA.
Collapse
Affiliation(s)
- Esmaeil Nikkar
- Department of Physiology and Biophysics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hassan Ghoshooni
- Department of Physiology and Biophysics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
728
|
Interventions after acute stress prevent its delayed effects on the amygdala. Neurobiol Stress 2019; 10:100168. [PMID: 31193585 PMCID: PMC6535648 DOI: 10.1016/j.ynstr.2019.100168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 11/23/2022] Open
Abstract
Stress is known to elicit contrasting patterns of plasticity in the amygdala and hippocampus. While chronic stress leads to neuronal atrophy in the rodent hippocampus, it has the opposite effect in the basolateral amygdala (BLA). Further, even a single episode of acute stress is known to elicit delayed effects in the amygdala. For example, 2 h of immobilisation stress has been shown to cause a delayed increase in dendritic spine density on BLA principal neurons 10 days later in young rats. This is paralleled by higher anxiety-like behaviour at the same delayed time point. This temporal build-up of morphological and behavioural effects 10 days later, in turn, provides a stress-free time window of intervention after exposure to acute stress. Here, we explore this possibility by specifically testing the efficacy of an anxiolytic drug in reversing the delayed effects of acute immobilisation stress. Oral gavage of diazepam 1 h after immobilisation stress prevented the increase in anxiety-like behaviour on the elevated plus-maze 10 days later. The same post-stress intervention also prevented delayed spinogenesis in the BLA 10 days after acute stress. Surprisingly, gavage of only the vehicle also had a protective effect on both the behavioural and synaptic effects of stress 10 days later. Vehicle gavage was found to trigger a significant rise in corticosterone levels that was comparable to that elicited by acute stress. This suggests that a surge in corticosterone levels, caused by the vehicle gavage 1 h after acute stress, was capable of reversing the delayed enhancing effects of stress on anxiety-like behaviour and BLA synaptic connectivity. These findings are consistent with clinical reports on the protective effects of glucocorticoids against the development of symptoms of post-traumatic stress disorder. Taken together, these results reveal strategies, targeted 1 h after stress, which can prevent the delayed effects of a brief exposure to a severe physical stressor. Acute immobilisation stress increases anxiety and BLA spinogenesis 10 days later. Oral gavage of diazepam 1 h after stress prevents both these delayed effects. Oral gavage of vehicle also has a similar protective effect on anxiety and spines. Vehicle-gavage administration leads to an increase in levels of corticosterone. This post-stress corticosterone surge may have prevented stress-effects 10 days later.
Collapse
|
729
|
Raber J, Arzy S, Bertolus JB, Depue B, Haas HE, Hofmann SG, Kangas M, Kensinger E, Lowry CA, Marusak HA, Minnier J, Mouly AM, Mühlberger A, Norrholm SD, Peltonen K, Pinna G, Rabinak C, Shiban Y, Soreq H, van der Kooij MA, Lowe L, Weingast LT, Yamashita P, Boutros SW. Current understanding of fear learning and memory in humans and animal models and the value of a linguistic approach for analyzing fear learning and memory in humans. Neurosci Biobehav Rev 2019; 105:136-177. [PMID: 30970272 DOI: 10.1016/j.neubiorev.2019.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Fear is an emotion that serves as a driving factor in how organisms move through the world. In this review, we discuss the current understandings of the subjective experience of fear and the related biological processes involved in fear learning and memory. We first provide an overview of fear learning and memory in humans and animal models, encompassing the neurocircuitry and molecular mechanisms, the influence of genetic and environmental factors, and how fear learning paradigms have contributed to treatments for fear-related disorders, such as posttraumatic stress disorder. Current treatments as well as novel strategies, such as targeting the perisynaptic environment and use of virtual reality, are addressed. We review research on the subjective experience of fear and the role of autobiographical memory in fear-related disorders. We also discuss the gaps in our understanding of fear learning and memory, and the degree of consensus in the field. Lastly, the development of linguistic tools for assessments and treatment of fear learning and memory disorders is discussed.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA; Departments of Neurology and Radiation Medicine, and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA.
| | - Shahar Arzy
- Department of Medical Neurobiology, Hebrew University, Jerusalem 91904, Israel
| | | | - Brendan Depue
- Departments of Psychological and Brain Sciences and Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Haley E Haas
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan G Hofmann
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Maria Kangas
- Department of Psychology, Macquarie University, Sydney, Australia
| | | | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Hilary A Marusak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Jessica Minnier
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS-UMR 5292, INSERM U1028, Université Lyon, Lyon, France
| | - Andreas Mühlberger
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirsi Peltonen
- Faculty of Social Sciences/Psychology, Tampere University, Tampere, Finland
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Christine Rabinak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Youssef Shiban
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Hermona Soreq
- Department of Biological Chemistry, Edmond and Lily Safra Center of Brain Science and The Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - Michael A van der Kooij
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Universitatsmedizin der Johannes Guttenberg University Medical Center, Mainz, Germany
| | | | - Leah T Weingast
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Paula Yamashita
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Sydney Weber Boutros
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
730
|
Duman RS, Sanacora G, Krystal JH. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron 2019; 102:75-90. [PMID: 30946828 PMCID: PMC6450409 DOI: 10.1016/j.neuron.2019.03.013] [Citation(s) in RCA: 602] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
The mechanisms underlying the pathophysiology and treatment of depression and stress-related disorders remain unclear, but studies in depressed patients and rodent models are beginning to yield promising insights. These studies demonstrate that depression and chronic stress exposure cause atrophy of neurons in cortical and limbic brain regions implicated in depression, and brain imaging studies demonstrate altered connectivity and network function in the brains of depressed patients. Studies of the neurobiological basis of the these alterations have focused on both the principle, excitatory glutamate neurons, as well as inhibitory GABA interneurons. They demonstrate structural, functional, and neurochemical deficits in both major neuronal types that could lead to degradation of signal integrity in cortical and hippocampal regions. The molecular mechanisms underlying these changes have not been identified but are thought to be related to stress induced excitotoxic effects in combination with elevated adrenal glucocorticoids and inflammatory cytokines as well as other environmental factors. Transcriptomic studies are beginning to demonstrate important sex differences and, together with genomic studies, are starting to reveal mechanistic domains of overlap and uniqueness with regards to risk and pathophysiological mechanisms with schizophrenia and bipolar disorder. These studies also implicate GABA and glutamate dysfunction as well as immunologic mechanisms. While current antidepressants have significant time lag and efficacy limitations, new rapid-acting agents that target the glutamate and GABA systems address these issues and offer superior therapeutic interventions for this widespread and debilitating disorder.
Collapse
Affiliation(s)
- Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA.
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA
| |
Collapse
|
731
|
Mampay M, Sheridan GK. REST: An epigenetic regulator of neuronal stress responses in the young and ageing brain. Front Neuroendocrinol 2019; 53:100744. [PMID: 31004616 DOI: 10.1016/j.yfrne.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
The transcriptional repressor REST (Repressor Element-1 Silencing Transcription factor) is a key modulator of the neuronal epigenome and targets genes involved in neuronal differentiation, axonal growth, vesicular transport, ion channel conductance and synaptic plasticity. Whilst its gene expression-modifying properties have been examined extensively in neuronal development, REST's response towards stress-induced neuronal insults has only recently been explored. Overall, REST appears to be an ideal candidate to fine-tune neuronal gene expression following different forms of cellular, neuropathological, psychological and physical stressors. Upregulation of REST is reportedly protective against premature neural stem cell depletion, neuronal hyperexcitability, oxidative stress, neuroendocrine system dysfunction and neuropathology. In contrast, neuronal REST activation has also been linked to neuronal dysfunction and neurodegeneration. Here, we highlight key findings and discrepancies surrounding our current understanding of REST's function in neuronal adaptation to stress and explore its potential role in neuronal stress resilience in the young and ageing brain.
Collapse
Affiliation(s)
- Myrthe Mampay
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Graham K Sheridan
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
732
|
Begdache L, Kianmehr H, Sabounchi N, Marszalek A, Dolma N. Principal component regression of academic performance, substance use and sleep quality in relation to risk of anxiety and depression in young adults. Trends Neurosci Educ 2019; 15:29-37. [PMID: 31176469 DOI: 10.1016/j.tine.2019.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 03/08/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Adverse lifestyle factors increase risk of anxiety and depression in young adults. Consequently, neurochemical and neuroanatomical alterations ensue, and may initiate a vicious cycle of mental distress, poor lifestyle choices and academic performance. A total of 558 students from different US colleges completed an anonymous survey on academic performance, daytime sleepiness, substance use and mental distress. Low mental distress in college students positively associated with good academic efforts and limited daytime sleepiness. Mild mental distress correlated with borderline work neglect and with a marginal negative association with Grade-point average (GPA). Severe mental distress correlated with excessive daytime sleepiness and poor academic performance. A System Dynamic model was developed to reflect the integration of these variables with mental distress and academic performance. Our results demonstrate that manageable lifestyle factors contribute to mental health in college students, which become potentially cyclic events that may impact academic performance.
Collapse
Affiliation(s)
- Lina Begdache
- Binghamton University, Department of Health and Wellness Studies, USA.
| | - Hamed Kianmehr
- Binghamton University Thomas J. Watson School of Engineering and Applied Science, USA
| | - Nasim Sabounchi
- Binghamton University Thomas J. Watson School of Engineering and Applied Science, USA
| | - Anna Marszalek
- Binghamton University, Department of Biological Sciences, USA
| | - Ngawang Dolma
- Binghamton University, Department of Biological Sciences, USA
| |
Collapse
|
733
|
Ullmann E, Perry SW, Licinio J, Wong ML, Dremencov E, Zavjalov EL, Shevelev OB, Khotskin NV, Koncevaya GV, Khotshkina AS, Moshkin MP, Lapshin MS, Komelkova MV, Feklicheva IV, Tseilikman OB, Cherkasova OP, Bhui KS, Jones E, Kirschbaum C, Bornstein SR, Tseilikman V. From Allostatic Load to Allostatic State-An Endogenous Sympathetic Strategy to Deal With Chronic Anxiety and Stress? Front Behav Neurosci 2019; 13:47. [PMID: 30967764 PMCID: PMC6442703 DOI: 10.3389/fnbeh.2019.00047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/22/2019] [Indexed: 01/10/2023] Open
Abstract
The concepts of allostatic load and overload, i. e., a dramatic increase in the allostatic load that predisposes to disease, have been extensively described in the literature. Here, we show that rats engaging in active offensive response (AOR) behavioral strategies to chronic predator scent stress (PSS) display less anxiety behavior and lower plasma cortisol levels vs. rats engaging in passive defensive response (PDR) behavioral strategies to chronic PSS. In the same chronic PSS paradigm, AOR rats also have higher lactate and lower glutamate levels in amygdala but not in control-region hippocampus vs. PDR rats. The implications of these findings for regulation of allostatic and stress responses, and post-traumatic stress disorder (PTSD) are discussed.
Collapse
Affiliation(s)
- Enrico Ullmann
- Department of Medicine, Carl Gustav Carus, Technical University of Dresden, Dresden, Germany.,Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University of Leipzig, Leipzig, Germany.,School of Medical Biology, South Ural State University, Chelyabinsk, Russia
| | - Seth W Perry
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Julio Licinio
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Ma-Li Wong
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Eliyahu Dremencov
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia.,Institute of Molecular Physiology and Genetics, Centre for Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.,Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Evgenii L Zavjalov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science (RAS), Novosibirsk, Russia
| | - Oleg B Shevelev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science (RAS), Novosibirsk, Russia
| | - Nikita V Khotskin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science (RAS), Novosibirsk, Russia
| | - Galina V Koncevaya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science (RAS), Novosibirsk, Russia
| | - Anna S Khotshkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science (RAS), Novosibirsk, Russia
| | - Mikhail P Moshkin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science (RAS), Novosibirsk, Russia
| | - Maxim S Lapshin
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
| | - Maria V Komelkova
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
| | - Inna V Feklicheva
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
| | - Olga B Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
| | - Olga P Cherkasova
- Biophysics Laboratory, Institute of Laser Physics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| | - Kamaldeep S Bhui
- Centre for Psychiatry, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
| | - Edgar Jones
- Institute of Psychiatry Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Clemens Kirschbaum
- Department of Psychology, Biopsychology, Technical University of Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Medicine, Carl Gustav Carus, Technical University of Dresden, Dresden, Germany.,Faculty of Life Sciences & Medicine, Endocrinology and Diabetes, Kings College London, London, United Kingdom
| | - Vadim Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
| |
Collapse
|
734
|
Kharabian Masouleh S, Eickhoff SB, Hoffstaedter F, Genon S. Empirical examination of the replicability of associations between brain structure and psychological variables. eLife 2019; 8:e43464. [PMID: 30864950 PMCID: PMC6483597 DOI: 10.7554/elife.43464] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/08/2019] [Indexed: 02/01/2023] Open
Abstract
Linking interindividual differences in psychological phenotype to variations in brain structure is an old dream for psychology and a crucial question for cognitive neurosciences. Yet, replicability of the previously-reported 'structural brain behavior' (SBB)-associations has been questioned, recently. Here, we conducted an empirical investigation, assessing replicability of SBB among heathy adults. For a wide range of psychological measures, the replicability of associations with gray matter volume was assessed. Our results revealed that among healthy individuals 1) finding an association between performance at standard psychological tests and brain morphology is relatively unlikely 2) significant associations, found using an exploratory approach, have overestimated effect sizes and 3) can hardly be replicated in an independent sample. After considering factors such as sample size and comparing our findings with more replicable SBB-associations in a clinical cohort and replicable associations between brain structure and non-psychological phenotype, we discuss the potential causes and consequences of these findings.
Collapse
Affiliation(s)
- Shahrzad Kharabian Masouleh
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour)Research Centre JülichJülichGermany
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour)Research Centre JülichJülichGermany
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour)Research Centre JülichJülichGermany
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Sarah Genon
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Alzheimer's Disease Neuroimaging Initiative
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour)Research Centre JülichJülichGermany
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
735
|
Rincón-Cortés M, Herman JP, Lupien S, Maguire J, Shansky RM. Stress: Influence of sex, reproductive status and gender. Neurobiol Stress 2019; 10:100155. [PMID: 30949564 PMCID: PMC6430637 DOI: 10.1016/j.ynstr.2019.100155] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 11/17/2022] Open
Abstract
Emerging evidence from the preclinical and human research suggests sex differences in response to different types of stress exposure, and that developmental timing, reproductive status, and biological sex are important factors influencing the degree of HPA activation/function. Here we review data regarding: i) sex differences in behavioral and neural responses to uncontrollable and controllable stressors; ii) distinct trajectories of behavioral development and HPA-axis function in male and female rats following adolescent stress exposure; iii) normative changes in behavior and dopamine function in early postpartum rats; iv) aberrant HPA-axis function and its link to abnormal behaviors in two independent, preclinical mouse models of postpartum depression; and, v) data indicating that gender, in addition to sex, is an important determinant of stress reactivity in humans. Based on these findings, we conclude it will be important for future studies to investigate the short and long-term effects of a wide variety of stressors, how these effects may differ according to developmental timing and in relation to gonadal function, the relationship between aberrant HPA-axis activity during the postpartum and mood disorders, and influences of both sex and gender on stress reactivity in humans.
Collapse
Affiliation(s)
- Millie Rincón-Cortés
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Corresponding author. Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - James P. Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Sonia Lupien
- Department of Psychiatry, Université de Montréal, Montréal, Québec, Canada
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
736
|
Harris BN, Hohman ZP, Campbell CM, King KS, Tucker CA. FAAH genotype, CRFR1 genotype, and cortisol interact to predict anxiety in an aging, rural Hispanic population: A Project FRONTIER study. Neurobiol Stress 2019; 10:100154. [PMID: 30949563 PMCID: PMC6430712 DOI: 10.1016/j.ynstr.2019.100154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/21/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022] Open
Abstract
The neurophysiological underpinnings involved in susceptibility to and maintenance of anxiety are not entirely known. However, two stress-responsive systems, the hypothalamic-pituitary-adrenal axis and the endocannabinoid system, may interact in anxiety. Here, we examine the relationship between FAAH genotype, CRFR1 genotype, baseline cortisol, and state anxiety in a rural adult population using data from Project FRONTIER. We predicted that FAAH A (AA and AC vs CC; rs324420) and three CRFR1 SNP minor alleles (rs7209436 C→ T [minor allele]; rs110402, G → A [minor]; and rs242924 G→ T [minor]), would interact to predict low baseline cortisol and low state anxiety scores. We found partial support for our prediction. In CRFR1 minor carriers, the FAAH AA or AC (vs. CC) genotype was associated with higher cortisol and with lower anxiety. In CRFR1 non-minors, those with FAAH AA or AC (vs. CC) showed decreased cortisol and higher anxiety. These results suggest that FAAH CC genotype only conveys risk for anxiety in individuals who are also carriers of the CRFR1 minor combination. FAAH genotype was significantly associated with baseline cortisol but was not independently associated with anxiety. Contrary to our predictions, baseline cortisol was negatively associated with anxiety. Lastly, we did not find any independent relationships between any of our SNPs and baseline cortisol or anxiety. These data suggest FAAH and cortisol interact to predict state anxiety, but that the relationship depends on CRFR1 genotype. The Project FRONTIER dataset is supported by Texas Tech University Health Sciences Center Garrison Institute on Aging.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Zachary P Hohman
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Callie M Campbell
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Kaleb S King
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Cody A Tucker
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | |
Collapse
|
737
|
Ewing-Cobbs L, DeMaster D, Watson CG, Prasad MR, Cox CS, Kramer LA, Fischer JT, Duque G, Swank PR. Post-Traumatic Stress Symptoms after Pediatric Injury: Relation to Pre-Frontal Limbic Circuitry. J Neurotrauma 2019; 36:1738-1751. [PMID: 30672379 DOI: 10.1089/neu.2018.6071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pre-frontal limbic circuitry is vulnerable to effects of stress and injury. We examined microstructure of pre-frontal limbic circuitry after traumatic brain injury (TBI) or extracranial injury (EI) and its relation to post-traumatic stress symptoms (PTSS). Participants aged 8 to 15 years who sustained mild to severe TBI (n = 53) or EI (n = 26) in motor vehicle incidents were compared with healthy children (n = 38) in a prospective longitudinal study. At the seven-week follow-up, diffusion tensor imaging was obtained in all groups; injured children completed PTSS ratings using a validated scale. Using probabilistic diffusion tensor tractography, pathways were seeded from bilateral amygdalae and hippocampi to estimate the trajectory of white matter connecting them to each other and to targeted pre-frontal cortical (PFC) regions. Microstructure was estimated using fractional anisotropy (FA) in white matter and mean diffusivity (MD) in gray matter. Pre-frontal limbic microstructure was similar across groups, except for reduced FA in the right hippocampus to orbital PFC pathway in the injured versus healthy group. We examined microstructure of components of pre-frontal limbic circuitry with concurrently obtained PTSS cluster scores in the injured children. Neither microstructure nor PTSS scores differed significantly in the TBI and EI groups. Across PTSS factors, specific symptom clusters were related positively to higher FA and MD. Higher hyperarousal, avoidance, and re-experiencing symptoms were associated with higher FA in amygdala to pre-frontal and hippocampus to amygdala pathways. Higher hippocampal MD had a central role in hyperarousal and emotional numbing symptoms. Age moderated the relation of white and gray matter microstructure with hyperarousal scores. Our findings are consistent with models of traumatic stress that implicate disrupted top-down PFC and hippocampal moderation of overreactive subcortical threat arousal systems. Alterations in limbic pre-frontal circuitry and PTSS place children with either brain or body injuries at elevated risk for both current and future psychological health problems.
Collapse
Affiliation(s)
- Linda Ewing-Cobbs
- 1 Children's Learning Institute and Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Dana DeMaster
- 1 Children's Learning Institute and Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Christopher G Watson
- 1 Children's Learning Institute and Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Mary R Prasad
- 1 Children's Learning Institute and Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Charles S Cox
- 2 Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Larry A Kramer
- 4 Department of Interventional Radiology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jesse T Fischer
- 5 Department of Psychology, University of Houston, Houston, Texas
| | - Gerardo Duque
- 1 Children's Learning Institute and Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Paul R Swank
- 3 School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
738
|
Neonatal Dexamethasone Treatment Suppresses Hippocampal Estrogen Receptor α Expression in Adolescent Female Rats. Mol Neurobiol 2019; 56:2224-2233. [DOI: 10.1007/s12035-018-1214-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/27/2018] [Indexed: 11/24/2022]
|
739
|
Riem MME, van IJzendoorn MH, Bakermans-Kranenburg MJ. Hippocampal volume modulates salivary oxytocin level increases after intranasal oxytocin administration. Psychoneuroendocrinology 2019; 101:182-185. [PMID: 30469085 DOI: 10.1016/j.psyneuen.2018.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/10/2018] [Accepted: 11/09/2018] [Indexed: 11/26/2022]
Abstract
Adverse childhood experiences have been shown to affect sensitivity to intranasal oxytocin administration, but the neural mechanisms underlying this altered sensitivity are unclear. The aim of the current study was to examine whether hippocampal abnormalities underlie the effects of adversity on the response to oxytocin administration. In a sample of healthy women (N = 54, age M = 19.63), we examined 1) the association between hippocampal volume and experiences of emotional maltreatment and 2) whether hippocampal volume reductions influence the effect of intranasal oxytocin administration on salivary oxytocin levels. There was no association between hippocampal volume and experiences of emotional maltreatment in the current study. However, we found that larger hippocampal volume was related to a stronger increase in salivary oxytocin level after intranasal oxytocin administration. The hippocampus may be a neural substrate underlying individual differences in sensitivity to oxytocin administration.
Collapse
Affiliation(s)
- Madelon M E Riem
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands.
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University, Rotterdam, the Netherlands; Primary Care Unit School of Clinical Medicine, University of Cambridge, UK
| | - Marian J Bakermans-Kranenburg
- Primary Care Unit School of Clinical Medicine, University of Cambridge, UK; Clinical Child and Family Studies, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
740
|
The Role of Stressful Parenting and Mineralocorticoid Receptor Haplotypes on Social Development During Adolescence and Young Adulthood. J Youth Adolesc 2019; 48:1082-1099. [PMID: 30805852 PMCID: PMC6525128 DOI: 10.1007/s10964-019-00988-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/31/2019] [Indexed: 12/04/2022]
Abstract
The development of social behavior could be affected by stressful parenting. The mineralocorticoid receptor, one of the two main receptors for the stress hormone cortisol, plays a vital role in adequate responses to stress. Therefore, the effects of stressful parenting on social development (i.e., empathic concern, perspective taking and prosocial behavior) may be moderated by functional genetic variation in mineralocorticoid receptor haplotypes (a combination of alleles). A group of 343 adolescents (44.3% females) was followed from the age of 13 until 24 years. Growth curve analyses showed lower levels of prosocial behaviors and a slower increase in empathic concern and perspective taking in adolescents who reported more stressful parenting. In contrast, relatively higher levels of prosocial behavior, empathic concern and perspective taking were present in combination with stress resilient mineralocorticoid receptor haplotypes. Despite sex differences in social development with earlier social development for girls, no consistent sex differences were found with regard to mineralocorticoid receptor haplotypes. The current study showed that genetic variation in mineralocorticoid receptor impacts the social development during adolescence and young adulthood.
Collapse
|
741
|
Bolton JL, Short AK, Simeone KA, Daglian J, Baram TZ. Programming of Stress-Sensitive Neurons and Circuits by Early-Life Experiences. Front Behav Neurosci 2019; 13:30. [PMID: 30833892 PMCID: PMC6387907 DOI: 10.3389/fnbeh.2019.00030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Early-life experiences influence brain structure and function long-term, contributing to resilience or vulnerability to stress and stress-related disorders. Therefore, understanding the mechanisms by which early-life experiences program specific brain cells and circuits to shape life-long cognitive and emotional functions is crucial. We identify the population of corticotropin-releasing hormone (CRH)-expressing neurons in the hypothalamic paraventricular nucleus (PVN) as a key, early target of early-life experiences. Adverse experiences increase excitatory neurotransmission onto PVN CRH cells, whereas optimal experiences, such as augmented and predictable maternal care, reduce the number and function of glutamatergic inputs onto this cell population. Altered synaptic neurotransmission is sufficient to initiate large-scale, enduring epigenetic re-programming within CRH-expressing neurons, associated with stress resilience and additional cognitive and emotional outcomes. Thus, the mechanisms by which early-life experiences influence the brain provide tractable targets for intervention.
Collapse
Affiliation(s)
- Jessica L Bolton
- Departments of Pediatrics, Anatomy/Neurobiology, Neurology, University of California, Irvine, Irvine, CA, United States
| | - Annabel Katherine Short
- Departments of Pediatrics, Anatomy/Neurobiology, Neurology, University of California, Irvine, Irvine, CA, United States
| | - Kristina A Simeone
- Departments of Pediatrics, Anatomy/Neurobiology, Neurology, University of California, Irvine, Irvine, CA, United States
| | - Jennifer Daglian
- Departments of Pediatrics, Anatomy/Neurobiology, Neurology, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z Baram
- Departments of Pediatrics, Anatomy/Neurobiology, Neurology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
742
|
Exploring the involvement of Tac2 in the mouse hippocampal stress response through gene networking. Gene 2019; 696:176-185. [PMID: 30769143 DOI: 10.1016/j.gene.2019.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/05/2019] [Accepted: 02/01/2019] [Indexed: 01/15/2023]
Abstract
Tachykinin 2 (Tac2) is expressed in a number of areas throughout the brain, including the hippocampus. However, knowledge about its function has been only well explored in the hypothalamus in the context of reproductive health. In this study, we identified and validated increased hippocampal Tac2 mRNA expression in response to chronic mild stress in mice. Expression quantitative trait locus (eQTL) analysis showed Tac2 is cis-regulated in the hippocampus. Using a systems genetics approach, we constructed a Tac2 co-expression network to better understand the relationship between Tac2 and the hippocampal stress response. Our network identified 69 total genes associated with Tac2, several of which encode major neuropeptides involved in hippocampal stress signaling as well as critical genes for producing neural plasticity, indicating that Tac2 is involved in these processes. Pathway analysis for the member of Tac2 gene network revealed a strong connection between Tac2 and neuroactive ligand-receptor interaction, calcium signaling pathway, as well as cardiac muscle contraction. In addition, we also identified 46 stress-related phenotypes, specifically fear conditioning response, that were significantly correlated with Tac2 expression. Our results provide evidence for Tac2 as a strong candidate gene who likely plays a role in hippocampal stress processing and neural plasticity.
Collapse
|
743
|
Kalvas LB. The Life Course Health Development Model: A theoretical research framework for paediatric delirium. J Clin Nurs 2019; 28:2351-2360. [PMID: 30653772 DOI: 10.1111/jocn.14776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/05/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
AIMS AND OBJECTIVES To create a framework for future research through application and critique of the Life Course Health Development Model to the phenomenon of paediatric delirium. BACKGROUND Delirium in the paediatric intensive care unit is associated with increased duration of mechanical ventilation, length of stay and mortality. Nurses are uniquely positioned at the bedside to identify, prevent and treat delirium. An understanding of the potential long-term consequences of paediatric delirium is necessary to provide impetus for nursing research and practice change. The Life Course Health Development Model is a valuable tool when considering the multiple mechanisms and processes through which the experience of delirium could affect a child's life trajectory. DESIGN Critical review of the literature through application and critique of the Life Course Health Development Model in the context of paediatric delirium. Gaps in the current understanding of paediatric delirium, as well as future directions for research and practice, are discussed. METHODS The seven core principles of the model are considered in the context of paediatric delirium. Each of the principles has the potential to further understanding of paediatric delirium and identify areas for future inquiry. This discussion leads to a critique of the ability of the model to lead future research and practice change. CONCLUSIONS The Life Course Health Development Model depicts a process in which the acute and severe stress of critical illness leads to maladaptive neurologic changes that contribute to the development of delirium and impair a child's life trajectory. RELEVANCE TO CLINICAL PRACTICE By emphasising the potential lifelong consequences for critically ill children who experience delirium, this application of the Life Course Health Development Model will stimulate discussion, research and practice change among paediatric clinicians and researchers.
Collapse
|
744
|
Zhang JY, Liu TH, He Y, Pan HQ, Zhang WH, Yin XP, Tian XL, Li BM, Wang XD, Holmes A, Yuan TF, Pan BX. Chronic Stress Remodels Synapses in an Amygdala Circuit-Specific Manner. Biol Psychiatry 2019; 85:189-201. [PMID: 30060908 PMCID: PMC6747699 DOI: 10.1016/j.biopsych.2018.06.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chronic stress exposure increases the risk of developing various neuropsychiatric illnesses. The behavioral sequelae of stress correlate with dendritic hypertrophy and glutamate-related synaptic remodeling at basolateral amygdala projection neurons (BLA PNs). Yet, though BLA PNs are functionally heterogeneous with diverse corticolimbic targets, it remains unclear whether stress differentially impacts specific output circuits. METHODS Confocal imaging was used to reconstruct the morphology of mouse BLA PNs with the aid of retrograde tracing and biocytin staining. The synaptic activity in these neurons was measured with in vitro electrophysiology, and anxiety-like behavior of the mice was assessed with the elevated plus maze and open field test. RESULTS Chronic restraint stress (CRS) produced dendritic hypertrophy across mouse BLA PNs, regardless of whether they did (BLA→dorsomedial prefrontal cortex [dmPFC]) or did not (BLA↛dmPFC) target dmPFC. However, CRS increased the size of dendritic spine heads and the number of mature, mushroom-shaped spines only in BLA↛dmPFC PNs, sparing neighboring BLA→dmPFC PNs. Moreover, the excitatory glutamatergic transmission was also selectively increased in BLA↛dmPFC PNs, and this effect correlated with CRS-induced increases in anxiety-like behavior. Segregating BLA↛dmPFC PNs based on their targeting of ventral hippocampus (BLA→ventral hippocampus) or nucleus accumbens (BLA→nucleus accumbens) revealed that CRS increased spine density and glutamatergic signaling in BLA→ventral hippocampus PNs in a manner that correlated with anxiety-like behavior. CONCLUSIONS Chronic stress caused BLA PN neuronal remodeling with a previously unrecognized degree of circuit specificity, offering new insight into the pathophysiological basis of depression, anxiety disorders, and other stress-related conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, China; Department of Neurology, the 2nd Affiliated Hospital, Nanchang University, Nanchang, China; Human Aging Research Institute, School of Life Science, Nanchang University, Nanchang, China.
| |
Collapse
|
745
|
Xu B, Lian S, Guo JR, Wang JF, Zhang LP, Li SZ, Yang HM. Activation of the MAPK signaling pathway induces upregulation of pro-apoptotic proteins in the hippocampi of cold stressed adolescent mice. Neurosci Lett 2019; 699:97-102. [PMID: 30711527 DOI: 10.1016/j.neulet.2018.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 11/30/2022]
Abstract
Stress induces many non-specific responses in the hippocampus, especially during adolescence. Low environmental temperature is known to induce stress, but its influence on the hippocampus, especially in adolescent mice is not clear. We compared apoptotic-related protein levels and MAPK signaling pathway activation in hippocampal neurons of adolescent mice under low temperature conditions (4 °C for 12 h) with western blotting and immunohistochemistry. Western bolt results demonstrated that the levels of phospho-JNK, phospho-p38, and cleaved-caspase 3 significantly increased, while the ratio of Bcl-XL/Bax decreased, in the cold stress group. The results of immunohistochemistry (IHC) and Nissl staining demonstrated that the protein optical density of caspase 3 increased and Nissl bodies decreased in the cold stress group compared with controls. Thus, we conclude that cold exposure initiates activation of the MAPK signaling pathway and subsequently induces the upregulation of pro-apoptotic proteins in the hippocampi of adolescent mice. Overall our study reveals the relationship between cold stress and apoptosis in adolescent mice.
Collapse
Affiliation(s)
- Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Jing-Ru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Jian-Fa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Li-Ping Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shi-Ze Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| | - Huan-Min Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| |
Collapse
|
746
|
Beneficial Effects of Physical Activity and Crocin Against Adolescent Stress Induced Anxiety or Depressive-Like Symptoms and Dendritic Morphology Remodeling in Prefrontal Cortex in Adult Male Rats. Neurochem Res 2019; 44:917-929. [DOI: 10.1007/s11064-019-02727-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/09/2019] [Indexed: 01/16/2023]
|
747
|
Childhood trauma and insulin resistance in patients suffering from depressive disorders. Exp Neurol 2019; 315:15-20. [PMID: 30639184 DOI: 10.1016/j.expneurol.2019.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Insulin resistance (IR) is a metabolic dysfunction often co-morbid with major depressive disorder (MDD). The paths to development of MDD remain largely unspecified, highlighting a need for identification of risk factors. Here, we tested whether specific subscales of childhood trauma as well as family history of type-2 diabetes (Fam-Hx-Dm2) are risk factors for development of metabolic dysfunction and severity of depressive symptoms. RESEARCH DESIGN AND METHODS We used a sample of 45 adults suffering from MDD that was well-characterized for insulin resistance and sensitivity as assessed by measures of fasting plasma glucose (FPG) plasma insulin (FPI) levels, body mass index (BMI), weight, homeostasis model assessment of insulin sensitivity (HOMA), Matsuda index as well as both glucose and insulin responses to oral glucose challenges. Severity of depressive symptoms was assessed with the Hamilton Depression Rating Scale (HDRS-21). Physical, sexual and emotional abuse as well as physical and emotional neglect were assessed with the Childhood Trauma Questionnaire. First- or second-degree relatives with type-2 diabetes defined fam-Hx-DM2. RESULTS Individuals reporting higher rates of emotional abuse were more likely to have greater IR as showed by elevated FPI levels and HOMA. No association was found with any of the other subscales of childhood trauma (e.g., physical abuse). Similarly, Fam-Hx-DM2 was associated with greater degree of IR as shown by elevated FPI, HOMA, but also FPG, weight and BMI. Moreover, we report a relationship and interaction between Fam-Hx-DM2 and emotional abuse on severity of depressive symptoms. Specifically, emotional abuse and Fam-HX-DM2 predicted severity of depressive symptoms at HDRS-21. Also, severity of depressive symptoms was greater with higher reported rates of emotional abuse but only in patients with negative Fam-Hx-Dm2. Individuals reporting higher emotional abuse and negative Fam-Hx-Dm2 also showed higher FPG levels. Conversely, individuals reporting higher emotional abuse and positive Fam-Hx-Dm2 showed higher FPI levels. This data suggest that Fam-Hx-Dm2 may define two different metabolic endophenotypes. CONCLUSIONS Our findings suggest that Fam-HX-DM2 and emotional abuse represent separate risk factors for developing metabolic dysfunction (i.e.: IR) in patients suffering from MDD, and that the effects of emotional abuse on psychiatric illness may depend upon the personal characteristics, including Fam-Hx-DM2.
Collapse
|
748
|
Watson CG, DeMaster D, Ewing-Cobbs L. Graph theory analysis of DTI tractography in children with traumatic injury. Neuroimage Clin 2019; 21:101673. [PMID: 30660661 PMCID: PMC6412099 DOI: 10.1016/j.nicl.2019.101673] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/13/2018] [Accepted: 01/07/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To evaluate brai structural connectivity in children with traumatic injury (TI) following a motor vehicle accident using graph theory analysis of DTI tractography data. METHODS DTI scans were acquired on a 3 T Philips scanner from children aged 8-15 years approximately 2 months post-injury. The TI group consisted of children with traumatic brain injury (TBI; n = 44) or extracranial injury (EI; n = 23). Healthy control children (n = 36) were included as an age-matched comparison group. A graph theory approach was applied to DTI tractography data to investigate injury-related differences in connectivity network characteristics. Group differences in structural connectivity evidenced by graph metrics including efficiency, strength, and modularity were assessed using the multi-threshold permutation correction (MTPC) and network-based statistic (NBS) methods. RESULTS At the global network level, global efficiency and mean network strength were lower, and modularity was higher, in the TBI than in the control group. Similarly, strength was lower and modularity higher when comparing the EI to the control group. At the vertex level, nodal efficiency, vertex strength, and average shortest path length were different between all pairwise comparisons of the three groups. Both nodal efficiency and vertex strength were higher in the control than in the EI group, which in turn were higher than in the TBI group. The opposite between-group relationships were seen with path length. These between-group differences were distributed throughout the brain, in both hemispheres. NBS analysis resulted in a cluster of 22 regions and 21 edges with significantly lower connectivity in the TBI group compared to controls. This cluster predominantly involves the frontal lobe and subcortical gray matter structures in both hemispheres. CONCLUSIONS Graph theory analysis of DTI tractography showed diffuse differences in structural brain network connectivity in children 2 months post-TI. Network differences were consistent with lower network integration and higher segregation in the injured groups compared to healthy controls. Findings suggest that inclusion of trauma-exposed comparison groups in studies of TBI outcome is warranted to better characterize the indirect effect of stress on brain networks.
Collapse
Affiliation(s)
- Christopher G Watson
- Dept. of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston, United States.
| | - Dana DeMaster
- Dept. of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston, United States
| | - Linda Ewing-Cobbs
- Dept. of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston, United States
| |
Collapse
|
749
|
Abstract
For decades, symptoms of depression have been treated primarily with medications that directly target the monoaminergic brain systems, which typically take weeks to exert measurable effects and months to exert remission of symptoms. Low, subanesthetic doses of ( R,S)-ketamine (ketamine) result in the rapid improvement of core depressive symptoms, including mood, anhedonia, and suicidal ideation, occurring within hours following a single administration, with relief from symptoms typically lasting up to a week. The discovery of these actions of ketamine has resulted in a reconceptualization of how depression could be more effectively treated in the future. In this review, we discuss clinical data pertaining to ketamine and other rapid-acting antidepressant drugs, as well as the current state of pharmacological knowledge regarding their mechanism of action. Additionally, we discuss the neurobiological circuits that are engaged by this drug class and that may be targeted by a future generation of medications, for example, hydroxynorketamine; metabotropic glutamate receptor 2/3 antagonists; and N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and γ-aminobutyric acid receptor modulators.
Collapse
Affiliation(s)
- Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
- Departments of Pharmacology and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
750
|
Sex differences and the neurobiology of affective disorders. Neuropsychopharmacology 2019; 44:111-128. [PMID: 30061743 PMCID: PMC6235863 DOI: 10.1038/s41386-018-0148-z] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/14/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
Observations of the disproportionate incidence of depression in women compared with men have long preceded the recent explosion of interest in sex differences. Nonetheless, the source and implications of this epidemiologic sex difference remain unclear, as does the practical significance of the multitude of sex differences that have been reported in brain structure and function. In this article, we attempt to provide a framework for thinking about how sex and reproductive hormones (particularly estradiol as an example) might contribute to affective illness. After briefly reviewing some observed sex differences in depression, we discuss how sex might alter brain function through hormonal effects (both organizational (programmed) and activational (acute)), sex chromosome effects, and the interaction of sex with the environment. We next review sex differences in the brain at the structural, cellular, and network levels. We then focus on how sex and reproductive hormones regulate systems implicated in the pathophysiology of depression, including neuroplasticity, genetic and neural networks, the stress axis, and immune function. Finally, we suggest several models that might explain a sex-dependent differential regulation of affect and susceptibility to affective illness. As a disclaimer, the studies cited in this review are not intended to be comprehensive but rather serve as examples of the multitude of levels at which sex and reproductive hormones regulate brain structure and function. As such and despite our current ignorance regarding both the ontogeny of affective illness and the impact of sex on that ontogeny, sex differences may provide a lens through which we may better view the mechanisms underlying affective regulation and dysfunction.
Collapse
|