701
|
Ekstrom AD. Why vision is important to how we navigate. Hippocampus 2015; 25:731-5. [PMID: 25800632 DOI: 10.1002/hipo.22449] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/17/2015] [Indexed: 11/11/2022]
Abstract
Place cells are a fundamental component of the rodent navigational system. One intriguing implication of place cells is that humans, by extension, have "map-like" (or GPS-like) knowledge that we use to represent space. Here, we review both behavioral and neural studies of human navigation, suggesting that how we process visual information forms a critical component of how we represent space. These include cellular and brain systems devoted to coding visual information during navigation in addition to a location coding system similar to that described in rodents. Together, these findings suggest that while it is highly useful to think of our navigation system involving internal "maps," we should not neglect the importance of high-resolution visual representations to how we navigate space.
Collapse
Affiliation(s)
- Arne D Ekstrom
- Center for Neuroscience, University of California, Davis, California.,Department of Psychology, University of California, Davis, California.,Neuroscience Graduate Group, University of California, Davis, California
| |
Collapse
|
702
|
Roth ED, Roth TL, Money KM, SenGupta S, Eason DE, Sweatt JD. DNA methylation regulates neurophysiological spatial representation in memory formation. ACTA ACUST UNITED AC 2015; 2:1-8. [PMID: 25960947 DOI: 10.1016/j.nepig.2015.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment) known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation.
Collapse
Affiliation(s)
- Eric D Roth
- Department of Psychological and Brian Sciences, University of Delaware, Newark, DE 19716 ; Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Tania L Roth
- Department of Psychological and Brian Sciences, University of Delaware, Newark, DE 19716 ; Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Kelli M Money
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Sonda SenGupta
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Dawn E Eason
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - J David Sweatt
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
| |
Collapse
|
703
|
Noninvasive functional and anatomical imaging of the human medial temporal lobe. Cold Spring Harb Perspect Biol 2015; 7:a021840. [PMID: 25780085 DOI: 10.1101/cshperspect.a021840] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability to remember life's events, and to leverage memory to guide behavior, defines who we are and is critical for everyday functioning. The neural mechanisms supporting such mnemonic experiences are multiprocess and multinetwork in nature, which creates challenges for studying them in humans and animals. Advances in noninvasive neuroimaging techniques have enabled the investigation of how specific neural structures and networks contribute to human memory at its many cognitive and mechanistic levels. In this review, we discuss how functional and anatomical imaging has provided novel insights into the types of information represented in, and the computations performed by, specific medial temporal lobe (MTL) regions, and we consider how interactions between the MTL and other cortical and subcortical structures influence what we learn and remember. By leveraging imaging, researchers have markedly advanced understanding of how the MTL subserves declarative memory and enables navigation of our physical and mental worlds.
Collapse
|
704
|
Friston K, Rigoli F, Ognibene D, Mathys C, Fitzgerald T, Pezzulo G. Active inference and epistemic value. Cogn Neurosci 2015; 6:187-214. [PMID: 25689102 DOI: 10.1080/17588928.2015.1020053] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We offer a formal treatment of choice behavior based on the premise that agents minimize the expected free energy of future outcomes. Crucially, the negative free energy or quality of a policy can be decomposed into extrinsic and epistemic (or intrinsic) value. Minimizing expected free energy is therefore equivalent to maximizing extrinsic value or expected utility (defined in terms of prior preferences or goals), while maximizing information gain or intrinsic value (or reducing uncertainty about the causes of valuable outcomes). The resulting scheme resolves the exploration-exploitation dilemma: Epistemic value is maximized until there is no further information gain, after which exploitation is assured through maximization of extrinsic value. This is formally consistent with the Infomax principle, generalizing formulations of active vision based upon salience (Bayesian surprise) and optimal decisions based on expected utility and risk-sensitive (Kullback-Leibler) control. Furthermore, as with previous active inference formulations of discrete (Markovian) problems, ad hoc softmax parameters become the expected (Bayes-optimal) precision of beliefs about, or confidence in, policies. This article focuses on the basic theory, illustrating the ideas with simulations. A key aspect of these simulations is the similarity between precision updates and dopaminergic discharges observed in conditioning paradigms.
Collapse
Affiliation(s)
- Karl Friston
- a The Wellcome Trust Centre for Neuroimaging , Institute of Neurology , London , UK
| | - Francesco Rigoli
- a The Wellcome Trust Centre for Neuroimaging , Institute of Neurology , London , UK
| | - Dimitri Ognibene
- b Centre for Robotics Research, Department of Informatics , King's College London , London , UK
| | - Christoph Mathys
- a The Wellcome Trust Centre for Neuroimaging , Institute of Neurology , London , UK.,c Translational Neuromodeling Unit (TNU) , Institute for Biomedical Engineering, University of Zürich and ETH Zürich , Zürich , Switzerland.,d Laboratory for Social and Neural Systems Research (SNS Lab), Department of Economics , University of Zürich , Zürich , Switzerland
| | - Thomas Fitzgerald
- a The Wellcome Trust Centre for Neuroimaging , Institute of Neurology , London , UK
| | - Giovanni Pezzulo
- e Institute of Cognitive Sciences and Technologies , National Research Council , Rome , Italy
| |
Collapse
|
705
|
Barrientos RM, Kitt MM, Watkins LR, Maier SF. Neuroinflammation in the normal aging hippocampus. Neuroscience 2015; 309:84-99. [PMID: 25772789 DOI: 10.1016/j.neuroscience.2015.03.007] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/25/2015] [Accepted: 03/04/2015] [Indexed: 02/01/2023]
Abstract
A consequence of normal aging is a greater susceptibility to memory impairments following an immune challenge such as infection, surgery, or traumatic brain injury. The neuroinflammatory response, produced by these challenges results in increased and prolonged production of pro-inflammatory cytokines in the otherwise healthy aged brain. Here we discuss the mechanisms by which long-lasting elevations in pro-inflammatory cytokines in the hippocampus produce memory impairments. Sensitized microglia are a primary source of this exaggerated neuroinflammatory response and appear to be a hallmark of the normal aging brain. We review the current understanding of the causes and effects of normal aging-induced microglial sensitization, including dysregulations of the neuroendocrine system, potentiation of neuroinflammatory responses following an immune challenge, and the impairment of memories. We end with a discussion of therapeutic approaches to prevent these deleterious effects.
Collapse
Affiliation(s)
- R M Barrientos
- Dept. of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - M M Kitt
- Dept. of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - L R Watkins
- Dept. of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - S F Maier
- Dept. of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
706
|
Peyrache A, Lacroix MM, Petersen PC, Buzsáki G. Internally organized mechanisms of the head direction sense. Nat Neurosci 2015; 18:569-75. [PMID: 25730672 PMCID: PMC4376557 DOI: 10.1038/nn.3968] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/01/2015] [Indexed: 11/12/2022]
Abstract
The head direction (HD) system functions as a compass with member neurons robustly increasing their firing rates when the animal’s head points in a specific direction. HD neurons may be driven by peripheral sensors or, as computational models postulate, internally-generated (‘attractor’) mechanisms. We addressed the contributions of stimulus-driven and internally-generated activity by recording ensembles of HD neurons in the antero-dorsal thalamic nucleus and the postsubiculum of mice by comparing their activity in various brain states. The temporal correlation structure of HD neurons is preserved during sleep, characterized by a 60°-wide correlated neuronal firing (‘activity packet’), both within as well as across these two brain structures. During REM, the spontaneous drift of the activity packet was similar to that observed during waking and accelerated tenfold during slow wave sleep. These findings demonstrate that peripheral inputs impinge upon an internally-organized network, which provides amplification and enhanced precision of the head-direction signal.
Collapse
Affiliation(s)
- Adrien Peyrache
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, New York, USA
| | - Marie M Lacroix
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, New York, USA
| | - Peter C Petersen
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, New York, USA
| | - György Buzsáki
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, New York, USA
| |
Collapse
|
707
|
Singh S, Singh D, Srivastava U. Seasonal dynamics within the neurons of the hippocampus in adult female Indian Ring neck Parrots (Psittacula krameri) and Asian Koels (Eudynamys scolopaceus). CAN J ZOOL 2015. [DOI: 10.1139/cjz-2014-0183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In birds, a narrow strip of tissue found on the dorsomedial surface of the telencephalon and separated from the rest of the hemisphere by a ventricle is termed the hippocampal complex. Two neurohistological techniques, namely the cresyl-violet method and the Golgi–Colonnier technique, have been employed in the present study to observe seasonal dynamics within the neuronal classes of hippocampus in female Indian Ring neck Parrots (Psittacula krameri (Scopoli, 1769)) and Asian Koels (Eudynamys scolopaceus (L., 1758)). Hippocampus is known to play a central role in a variety of behaviors such as homing, visual discrimination, learning, and sexual behavior. Therefore, changes in sexual behavior during the breeding period contribute to plasticity in the hippocampus in terms of fluctuations in neuronal characteristics thereby helping the bird cope with changing conditions. A significant increase in dendritic thickness, neuronal spacing, spine morphology, and spine density were identified within the hippocampal neurons during the breeding period of the studied birds. This study establishes an overall account of seasonal dynamics occurring within the neurons of all fields of the hippocampus of birds in terms of increased dendritic thickness, spine density, spine morphology, and neuronal spacing thereby favoring the view that morphological fluctuations in neuronal characteristics during the breeding period are likely to have consequences for hippocampal neuronal function.
Collapse
Affiliation(s)
- Sippy Singh
- Department of Zoology, University of Allahabad, Allahabad 211002, India
- Department of Zoology, University of Allahabad, Allahabad 211002, India
| | - Durgesh Singh
- Department of Zoology, University of Allahabad, Allahabad 211002, India
- Department of Zoology, University of Allahabad, Allahabad 211002, India
| | - U.C. Srivastava
- Department of Zoology, University of Allahabad, Allahabad 211002, India
- Department of Zoology, University of Allahabad, Allahabad 211002, India
| |
Collapse
|
708
|
Prenatal exposure to a novel antipsychotic quetiapine: Impact on neuro‐architecture, apoptotic neurodegeneration in fetal hippocampus and cognitive impairment in young rats. Int J Dev Neurosci 2015; 42:59-67. [DOI: 10.1016/j.ijdevneu.2015.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/31/2015] [Accepted: 02/21/2015] [Indexed: 01/28/2023] Open
|
709
|
Winter SS, Clark BJ, Taube JS. Spatial navigation. Disruption of the head direction cell network impairs the parahippocampal grid cell signal. Science 2015; 347:870-874. [PMID: 25700518 PMCID: PMC4476794 DOI: 10.1126/science.1259591] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Navigation depends on multiple neural systems that encode the moment-to-moment changes in an animal's direction and location in space. These include head direction (HD) cells representing the orientation of the head and grid cells that fire at multiple locations, forming a repeating hexagonal grid pattern. Computational models hypothesize that generation of the grid cell signal relies upon HD information that ascends to the hippocampal network via the anterior thalamic nuclei (ATN). We inactivated or lesioned the ATN and subsequently recorded single units in the entorhinal cortex and parasubiculum. ATN manipulation significantly disrupted grid and HD cell characteristics while sparing theta rhythmicity in these regions. These results indicate that the HD signal via the ATN is necessary for the generation and function of grid cell activity.
Collapse
Affiliation(s)
- Shawn S. Winter
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH 03755, USA
| | | | - Jeffrey S. Taube
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
710
|
Butler WN, Taube JS. The nucleus prepositus hypoglossi contributes to head direction cell stability in rats. J Neurosci 2015; 35:2547-58. [PMID: 25673848 PMCID: PMC4323533 DOI: 10.1523/jneurosci.3254-14.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/03/2014] [Accepted: 11/28/2014] [Indexed: 11/21/2022] Open
Abstract
Head direction (HD) cells in the rat limbic system fire according to the animal's orientation independently of the animal's environmental location or behavior. These HD cells receive strong inputs from the vestibular system, among other areas, as evidenced by disruption of their directional firing after lesions or inactivation of vestibular inputs. Two brainstem nuclei, the supragenual nucleus (SGN) and nucleus prepositus hypoglossi (NPH), are known to project to the HD network and are thought to be possible relays of vestibular information. Previous work has shown that lesioning the SGN leads to a loss of spatial tuning in downstream HD cells, but the NPH has historically been defined as an oculomotor nuclei and therefore its role in contributing to the HD signal is less clear. Here, we investigated this role by recording HD cells in the anterior thalamus after either neurotoxic or electrolytic lesions of the NPH. There was a total loss of direction-specific firing in anterodorsal thalamus cells in animals with complete NPH lesions. However, many cells were identified that fired in bursts unrelated to the animals' directional heading and were similar to cells seen in previous studies that damaged vestibular-associated areas. Some animals with significant but incomplete lesions of the NPH had HD cells that were stable under normal conditions, but were unstable under conditions designed to minimize the use of external cues. These results support the hypothesis that the NPH, beyond its traditional oculomotor function, plays a critical role in conveying vestibular-related information to the HD circuit.
Collapse
|
711
|
Abstract
The hippocampal system is critical for storage and retrieval of declarative memories, including memories for locations and events that take place at those locations. Spatial memories place high demands on capacity. Memories must be distinct to be recalled without interference and encoding must be fast. Recent studies have indicated that hippocampal networks allow for fast storage of large quantities of uncorrelated spatial information. The aim of the this article is to review and discuss some of this work, taking as a starting point the discovery of multiple functionally specialized cell types of the hippocampal-entorhinal circuit, such as place, grid, and border cells. We will show that grid cells provide the hippocampus with a metric, as well as a putative mechanism for decorrelation of representations, that the formation of environment-specific place maps depends on mechanisms for long-term plasticity in the hippocampus, and that long-term spatiotemporal memory storage may depend on offline consolidation processes related to sharp-wave ripple activity in the hippocampus. The multitude of representations generated through interactions between a variety of functionally specialized cell types in the entorhinal-hippocampal circuit may be at the heart of the mechanism for declarative memory formation.
Collapse
Affiliation(s)
- May-Britt Moser
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - David C Rowland
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Edvard I Moser
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| |
Collapse
|
712
|
Reas ET, Brewer JB. Mean signal and response time influences on multivoxel signals of contextual retrieval in the medial temporal lobe. Brain Behav 2015; 5:e00302. [PMID: 25646149 PMCID: PMC4312925 DOI: 10.1002/brb3.302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The medial temporal lobe supports integrating the "what," "where," and "when" of an experience into a unified memory. However, it remains unclear how representations of these contextual features are neurally encoded and distributed across medial temporal lobe subregions. METHODS This study conducted functional magnetic resonance imaging of the medial temporal lobe, while participants retrieved pair, spatial, and temporal source memories. Multivoxel classifiers were trained to distinguish between retrieval conditions before and after correction for mean signal and response times, to more thoroughly characterize the multivoxel signal associated with memory context. RESULTS Activity in perirhinal and parahippocampal cortex dissociated between memory for associated items and memory for their spatiotemporal context, and hippocampal activity was linked to memory for spatial context. However, perirhinal and hippocampal classifiers were, respectively, driven by effects of mean signal amplitude and task difficulty, whereas the parahippocampal classifier survived correction for these effects. CONCLUSION These findings demonstrate dissociable coding mechanisms for episodic memory context across the medial temporal lobe, and further highlight a critical distinction between multivoxel representations driven by spatially distributed activity patterns, and those driven by the regional signal.
Collapse
Affiliation(s)
- Emilie T Reas
- Department of Neurosciences, University of California, San Diego 9500 Gilman Dr., La Jolla, California, 92093-0949
| | - James B Brewer
- Department of Neurosciences, University of California, San Diego 9500 Gilman Dr., La Jolla, California, 92093-0949 ; Department of Radiology, University of California, San Diego 9500 Gilman Dr., La Jolla, California, 92093-0949
| |
Collapse
|
713
|
Hayhow B, Velakoulis D, Dewhurst R, Gaillard F. Neuropsychiatric presentation following acute hypoxic-ischaemic encephalopathy. Aust N Z J Psychiatry 2015; 49:188-9. [PMID: 25315793 DOI: 10.1177/0004867414555418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Brad Hayhow
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, Australia Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, Australia Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
| | - Rebecca Dewhurst
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
| | - Frank Gaillard
- Department of Radiology, Royal Melbourne Hospital, Parkville, Australia Department of Radiology, University of Melbourne, Parkville, Australia
| |
Collapse
|
714
|
Petrantonakis PC, Poirazi P. Dentate Gyrus circuitry features improve performance of sparse approximation algorithms. PLoS One 2015; 10:e0117023. [PMID: 25635776 PMCID: PMC4312091 DOI: 10.1371/journal.pone.0117023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/17/2014] [Indexed: 12/30/2022] Open
Abstract
Memory-related activity in the Dentate Gyrus (DG) is characterized by sparsity. Memory representations are seen as activated neuronal populations of granule cells, the main encoding cells in DG, which are estimated to engage 2–4% of the total population. This sparsity is assumed to enhance the ability of DG to perform pattern separation, one of the most valuable contributions of DG during memory formation. In this work, we investigate how features of the DG such as its excitatory and inhibitory connectivity diagram can be used to develop theoretical algorithms performing Sparse Approximation, a widely used strategy in the Signal Processing field. Sparse approximation stands for the algorithmic identification of few components from a dictionary that approximate a certain signal. The ability of DG to achieve pattern separation by sparsifing its representations is exploited here to improve the performance of the state of the art sparse approximation algorithm “Iterative Soft Thresholding” (IST) by adding new algorithmic features inspired by the DG circuitry. Lateral inhibition of granule cells, either direct or indirect, via mossy cells, is shown to enhance the performance of the IST. Apart from revealing the potential of DG-inspired theoretical algorithms, this work presents new insights regarding the function of particular cell types in the pattern separation task of the DG.
Collapse
Affiliation(s)
- Panagiotis C Petrantonakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| |
Collapse
|
715
|
Yoder RM, Peck JR, Taube JS. Visual landmark information gains control of the head direction signal at the lateral mammillary nuclei. J Neurosci 2015; 35:1354-67. [PMID: 25632114 PMCID: PMC4308588 DOI: 10.1523/jneurosci.1418-14.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 11/13/2014] [Accepted: 11/18/2014] [Indexed: 11/21/2022] Open
Abstract
The neural representation of directional heading is conveyed by head direction (HD) cells located in an ascending circuit that includes projections from the lateral mammillary nuclei (LMN) to the anterodorsal thalamus (ADN) to the postsubiculum (PoS). The PoS provides return projections to LMN and ADN and is responsible for the landmark control of HD cells in ADN. However, the functional role of the PoS projection to LMN has not been tested. The present study recorded HD cells from LMN after bilateral PoS lesions to determine whether the PoS provides landmark control to LMN HD cells. After the lesion and implantation of electrodes, HD cell activity was recorded while rats navigated within a cylindrical arena containing a single visual landmark or while they navigated between familiar and novel arenas of a dual-chamber apparatus. PoS lesions disrupted the landmark control of HD cells and also disrupted the stability of the preferred firing direction of the cells in darkness. Furthermore, PoS lesions impaired the stable HD cell representation maintained by path integration mechanisms when the rat walked between familiar and novel arenas. These results suggest that visual information first gains control of the HD cell signal in the LMN, presumably via the direct PoS → LMN projection. This visual landmark information then controls HD cells throughout the HD cell circuit.
Collapse
Affiliation(s)
- Ryan M Yoder
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire 03755
| | - James R Peck
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire 03755
| | - Jeffrey S Taube
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
716
|
Pooters T, Van der Jeugd A, Callaerts-Vegh Z, D'Hooge R. Telencephalic neurocircuitry and synaptic plasticity in rodent spatial learning and memory. Brain Res 2015; 1621:294-308. [PMID: 25619550 DOI: 10.1016/j.brainres.2015.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 01/14/2023]
Abstract
Spatial learning and memory in rodents represent close equivalents of human episodic declarative memory, which is especially sensitive to cerebral aging, neurodegeneration, and various neuropsychiatric disorders. Many tests and protocols are available for use in laboratory rodents, but Morris water maze and radial-arm maze remain the most widely used as well as the most valid and reliable spatial tests. Telencephalic neurocircuitry that plays functional roles in spatial learning and memory includes hippocampus, dorsal striatum and medial prefrontal cortex. Prefrontal-hippocampal circuitry comprises the major associative system in the rodent brain, and is critical for navigation in physical space, whereas interconnections between prefrontal cortex and dorsal striatum are probably more important for motivational or goal-directed aspects of spatial learning. Two major forms of synaptic plasticity, namely long-term potentiation, a lasting increase in synaptic strength between simultaneously activated neurons, and long-term depression, a decrease in synaptic strength, have been found to occur in hippocampus, dorsal striatum and medial prefrontal cortex. These and other phenomena of synaptic plasticity are probably crucial for the involvement of telencephalic neurocircuitry in spatial learning and memory. They also seem to play a role in the pathophysiology of two brain pathologies with episodic declarative memory impairments as core symptoms, namely Alzheimer's disease and schizophrenia. Further research emphasis on rodent telencephalic neurocircuitry could be relevant to more valid and reliable preclinical research on these most devastating brain disorders. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Tine Pooters
- Laboratory of Biological Psychology, University of Leuven, Leuven, 102 Tiensestraat, BE-3000 Leuven, Belgium
| | - Ann Van der Jeugd
- Laboratory of Biological Psychology, University of Leuven, Leuven, 102 Tiensestraat, BE-3000 Leuven, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Laboratory of Biological Psychology, University of Leuven, Leuven, 102 Tiensestraat, BE-3000 Leuven, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Leuven, 102 Tiensestraat, BE-3000 Leuven, Belgium.
| |
Collapse
|
717
|
Yoo Y, Vishwanath S. On resolving simultaneous congruences using belief propagation. Neural Comput 2015; 27:748-70. [PMID: 25602774 DOI: 10.1162/neco_a_00702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Graphical models and related algorithmic tools such as belief propagation have proven to be useful tools in (approximately) solving combinatorial optimization problems across many application domains. A particularly combinatorially challenging problem is that of determining solutions to a set of simultaneous congruences. Specifically, a continuous source is encoded into multiple residues with respect to distinct moduli, and the goal is to recover the source efficiently from noisy measurements of these residues. This problem is of interest in multiple disciplines, including neural codes, decentralized compression in sensor networks, and distributed consensus in information and social networks. This letter reformulates the recovery problem as an optimization over binary latent variables. Then we present a belief propagation algorithm, a layered variant of affinity propagation, to solve the problem. The underlying encoding structure of multiple congruences naturally results in a layered graphical model for the problem, over which the algorithms are deployed, resulting in a layered affinity propagation (LAP) solution. First, the convergence of LAP to an approximation of the maximum likelihood (ML) estimate is shown. Second, numerical simulations show that LAP converges within a few iterations and that the mean square error of LAP approaches that of the ML estimation at high signal-to-noise ratios.
Collapse
Affiliation(s)
- Yongseok Yoo
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712, U.S.A., and ETRI Honam Research Center, Buk-gu, Gwangju, 500-480, Korea.
| | | |
Collapse
|
718
|
Madl T, Chen K, Montaldi D, Trappl R. Computational cognitive models of spatial memory in navigation space: a review. Neural Netw 2015; 65:18-43. [PMID: 25659941 DOI: 10.1016/j.neunet.2015.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 12/15/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Spatial memory refers to the part of the memory system that encodes, stores, recognizes and recalls spatial information about the environment and the agent's orientation within it. Such information is required to be able to navigate to goal locations, and is vitally important for any embodied agent, or model thereof, for reaching goals in a spatially extended environment. In this paper, a number of computationally implemented cognitive models of spatial memory are reviewed and compared. Three categories of models are considered: symbolic models, neural network models, and models that are part of a systems-level cognitive architecture. Representative models from each category are described and compared in a number of dimensions along which simulation models can differ (level of modeling, types of representation, structural accuracy, generality and abstraction, environment complexity), including their possible mapping to the underlying neural substrate. Neural mappings are rarely explicated in the context of behaviorally validated models, but they could be useful to cognitive modeling research by providing a new approach for investigating a model's plausibility. Finally, suggested experimental neuroscience methods are described for verifying the biological plausibility of computational cognitive models of spatial memory, and open questions for the field of spatial memory modeling are outlined.
Collapse
Affiliation(s)
- Tamas Madl
- School of Computer Science, University of Manchester, Manchester M13 9PL, UK; Austrian Research Institute for Artificial Intelligence, Vienna A-1010, Austria.
| | - Ke Chen
- School of Computer Science, University of Manchester, Manchester M13 9PL, UK
| | - Daniela Montaldi
- School of Psychological Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Robert Trappl
- Austrian Research Institute for Artificial Intelligence, Vienna A-1010, Austria
| |
Collapse
|
719
|
He C, Luo F, Chen X, Chen F, Li C, Ren S, Qiao Q, Zhang J, de Lecea L, Gao D, Hu Z. Superficial Layer-Specific Histaminergic Modulation of Medial Entorhinal Cortex Required for Spatial Learning. Cereb Cortex 2015; 26:1590-1608. [PMID: 25595181 DOI: 10.1093/cercor/bhu322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The medial entorhinal cortex (MEC) plays a crucial role in spatial learning and memory. Whereas the MEC receives a dense histaminergic innervation from the tuberomamillary nucleus of the hypothalamus, the functions of histamine in this brain region remain unclear. Here, we show that histamine acts via H1Rs to directly depolarize the principal neurons in the superficial, but not deep, layers of the MEC when recording at somata. Moreover, histamine decreases the spontaneous GABA, but not glutamate, release onto principal neurons in the superficial layers by acting at presynaptic H3Rs without effect on synaptic release in the deep layers. Histamine-induced depolarization is mediated via inhibition of Kir channels and requires the activation of protein kinase C, whereas the inhibition of spontaneous GABA release by histamine depends on voltage-gated Ca(2+) channels and extracellular Ca(2+). Furthermore, microinjection of the H1R or H3R, but not H2R, antagonist respectively into the superficial, but not deep, layers of MEC impairs rat spatial learning as assessed by water maze tasks but does not affect the motor function and exploratory activity in an open field. Together, our study indicates that histamine plays an essential role in spatial learning by selectively regulating neuronal excitability and synaptic transmission in the superficial layers of the MEC.
Collapse
Affiliation(s)
- Chao He
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Fenlan Luo
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Xingshu Chen
- Department of Histology and Embryology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Fang Chen
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Chao Li
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Shuancheng Ren
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Qicheng Qiao
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Jun Zhang
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Gao
- Department of Sleep and Psychology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Zhian Hu
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| |
Collapse
|
720
|
Wilber AA, Clark BJ, Demecha AJ, Mesina L, Vos JM, McNaughton BL. Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of the rat. Front Neural Circuits 2015; 8:146. [PMID: 25601828 PMCID: PMC4283643 DOI: 10.3389/fncir.2014.00146] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/02/2014] [Indexed: 12/16/2022] Open
Abstract
A central feature of theories of spatial navigation involves the representation of spatial relationships between objects in complex environments. The parietal cortex has long been linked to the processing of spatial visual information and recent evidence from single unit recording in rodents suggests a role for this region in encoding egocentric and world-centered frames. The rat parietal cortex can be subdivided into four distinct rostral-caudal and medial-lateral regions, which includes a zone previously characterized as secondary visual cortex. At present, very little is known regarding the relative connectivity of these parietal subdivisions. Thus, we set out to map the connectivity of the entire anterior-posterior and medial-lateral span of this region. To do this we used anterograde and retrograde tracers in conjunction with open source neuronal segmentation and tracer detection tools to generate whole brain connectivity maps of parietal inputs and outputs. Our present results show that inputs to the parietal cortex varied significantly along the medial-lateral, but not the rostral-caudal axis. Specifically, retrosplenial connectivity is greater medially, but connectivity with visual cortex, though generally sparse, is more significant laterally. Finally, based on connection density, the connectivity between parietal cortex and hippocampus is indirect and likely achieved largely via dysgranular retrosplenial cortex. Thus, similar to primates, the parietal cortex of rats exhibits a difference in connectivity along the medial-lateral axis, which may represent functionally distinct areas.
Collapse
Affiliation(s)
- Aaron A. Wilber
- Canadian Centre for Behavioural Neuroscience, The University of LethbridgeLethbridge, AB, Canada
- Department of Neurobiology and Behavior, University of CaliforniaIrvine, CA, USA
| | - Benjamin J. Clark
- Canadian Centre for Behavioural Neuroscience, The University of LethbridgeLethbridge, AB, Canada
- Department of Psychology, The University of New MexicoAlbuquerque, NM, USA
| | - Alexis J. Demecha
- Canadian Centre for Behavioural Neuroscience, The University of LethbridgeLethbridge, AB, Canada
| | - Lilia Mesina
- Canadian Centre for Behavioural Neuroscience, The University of LethbridgeLethbridge, AB, Canada
| | - Jessica M. Vos
- Canadian Centre for Behavioural Neuroscience, The University of LethbridgeLethbridge, AB, Canada
| | - Bruce L. McNaughton
- Canadian Centre for Behavioural Neuroscience, The University of LethbridgeLethbridge, AB, Canada
- Department of Neurobiology and Behavior, University of CaliforniaIrvine, CA, USA
| |
Collapse
|
721
|
Gomez A, Rousset S, Bonniot C, Charnallet A, Moreaud O. Deficits in egocentric-updating and spatial context memory in a case of developmental amnesia. Neurocase 2015; 21:226-43. [PMID: 24579921 DOI: 10.1080/13554794.2014.890730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Patients with developmental amnesia usually suffer from both episodic and spatial memory deficits. DM, a developmental amnesic, was impaired in her ability to process self-motion (i.e., idiothetic) information while her ability to process external stable landmarks (i.e., allothetic) was preserved when no self-motion processing was required. On a naturalistic and incidental episodic task, DM was severely and predictably impaired on both free and cued recall tasks. Interestingly, when cued, she was more impaired at recalling spatial context than factual or temporal information. Theoretical implications of that co-occurrence of deficits and those dissociations are discussed and testable cerebral hypothesis are proposed.
Collapse
Affiliation(s)
- A Gomez
- a LPNC , CNRS, UMR 5105, Université Grenoble Alpes , Grenoble , France
| | | | | | | | | |
Collapse
|
722
|
Voltage Imaging in the Study of Hippocampal Circuit Function and Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:197-211. [DOI: 10.1007/978-3-319-17641-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
723
|
Deadwyler SA, Berger TW, Opris I, Song D, Hampson RE. Neurons and networks organizing and sequencing memories. Brain Res 2014; 1621:335-44. [PMID: 25553617 DOI: 10.1016/j.brainres.2014.12.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/23/2023]
Abstract
Hippocampal CA1 and CA3 neurons sampled randomly in large numbers in primate brain show conclusive examples of hierarchical encoding of task specific information. Hierarchical encoding allows multi-task utilization of the same hippocampal neural networks via distributed firing between neurons that respond to subsets, attributes or "categories" of stimulus features which can be applied in events in different contexts. In addition, such networks are uniquely adaptable to neural systems unrestricted by rigid synaptic architecture (i.e. columns, layers or "patches") which physically limits the number of possible task-specific interactions between neurons. Also hierarchical encoding is not random; it requires multiple exposures to the same types of relevant events to elevate synaptic connectivity between neurons for different stimulus features that occur in different task-dependent contexts. The large number of cells within associated hierarchical circuits in structures such as hippocampus provides efficient processing of information relevant to common memory-dependent behavioral decisions within different contextual circumstances. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Sam A Deadwyler
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA.
| | - Theodore W Berger
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way (DRB140), Los Angeles, CA 90089-1111, USA
| | - Ioan Opris
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA
| | - Dong Song
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way (DRB140), Los Angeles, CA 90089-1111, USA
| | - Robert E Hampson
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA
| |
Collapse
|
724
|
Body ownership affects visual perception of object size by rescaling the visual representation of external space. Atten Percept Psychophys 2014; 76:1414-28. [PMID: 24806404 PMCID: PMC4092244 DOI: 10.3758/s13414-014-0664-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Size perception is most often explained by a combination of cues derived from the visual system. However, this traditional cue approach neglects the role of the observer’s body beyond mere visual comparison. In a previous study, we used a full-body illusion to show that objects appear larger and farther away when participants experience a small artificial body as their own and that objects appear smaller and closer when they assume ownership of a large artificial body (“Barbie-doll illusion”; van der Hoort, Guterstam, & Ehrsson, PLoS ONE, 6(5), e20195, 2011). The first aim of the present study was to test the hypothesis that this own-body-size effect is distinct from the role of the seen body as a direct familiar-size cue. To this end, we developed a novel setup that allowed for occlusion of the artificial body during the presentation of test objects. Our results demonstrate that the feeling of ownership of an artificial body can alter the perceived sizes of objects without the need for a visible body. Second, we demonstrate that fixation shifts do not contribute to the own-body-size effect. Third, we show that the effect exists in both peri-personal space and distant extra-personal space. Finally, through a meta-analysis, we demonstrate that the own-body-size effect is independent of and adds to the classical visual familiar-size cue effect. Our results suggest that, by changing body size, the entire spatial layout rescales and new objects are now perceived according to this rescaling, without the need to see the body.
Collapse
|
725
|
Eichenbaum H, Cohen NJ. Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron 2014; 83:764-70. [PMID: 25144874 DOI: 10.1016/j.neuron.2014.07.032] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Some argue that hippocampus supports declarative memory, our capacity to recall facts and events, whereas others view the hippocampus as part of a system dedicated to calculating routes through space, and these two contrasting views are pursued largely independently in current research. Here we offer a perspective on where these views can and cannot be reconciled and update a bridging framework that will improve our understanding of hippocampal function.
Collapse
Affiliation(s)
- Howard Eichenbaum
- Boston University, Center for Memory and Brain, 2 Cummington Street, Boston, MA 02215, USA.
| | - Neal J Cohen
- University of Illinois at Urbana-Champaign, Beckman Institute, 405 North Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
726
|
Metabolic brain activity underlying behavioral performance and spatial strategy choice in sedentary and exercised Wistar rats. Neuroscience 2014; 281:110-23. [DOI: 10.1016/j.neuroscience.2014.09.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/05/2014] [Accepted: 09/25/2014] [Indexed: 02/02/2023]
|
727
|
Shah A, Gurney KN. Finding minimal action sequences with a simple evaluation of actions. Front Comput Neurosci 2014; 8:151. [PMID: 25506326 PMCID: PMC4247113 DOI: 10.3389/fncom.2014.00151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/03/2014] [Indexed: 11/13/2022] Open
Abstract
Animals are able to discover the minimal number of actions that achieves an outcome (the minimal action sequence). In most accounts of this, actions are associated with a measure of behavior that is higher for actions that lead to the outcome with a shorter action sequence, and learning mechanisms find the actions associated with the highest measure. In this sense, previous accounts focus on more than the simple binary signal of "was the outcome achieved?"; they focus on "how well was the outcome achieved?" However, such mechanisms may not govern all types of behavioral development. In particular, in the process of action discovery (Redgrave and Gurney, 2006), actions are reinforced if they simply lead to a salient outcome because biological reinforcement signals occur too quickly to evaluate the consequences of an action beyond an indication of the outcome's occurrence. Thus, action discovery mechanisms focus on the simple evaluation of "was the outcome achieved?" and not "how well was the outcome achieved?" Notwithstanding this impoverishment of information, can the process of action discovery find the minimal action sequence? We address this question by implementing computational mechanisms, referred to in this paper as no-cost learning rules, in which each action that leads to the outcome is associated with the same measure of behavior. No-cost rules focus on "was the outcome achieved?" and are consistent with action discovery. No-cost rules discover the minimal action sequence in simulated tasks and execute it for a substantial amount of time. Extensive training, however, results in extraneous actions, suggesting that a separate process (which has been proposed in action discovery) must attenuate learning if no-cost rules participate in behavioral development. We describe how no-cost rules develop behavior, what happens when attenuation is disrupted, and relate the new mechanisms to wider computational and biological context.
Collapse
Affiliation(s)
- Ashvin Shah
- Department of Psychology, The University of SheffieldSheffield, UK
| | | |
Collapse
|
728
|
Toledo-Suárez C, Duarte R, Morrison A. Liquid computing on and off the edge of chaos with a striatal microcircuit. Front Comput Neurosci 2014; 8:130. [PMID: 25484864 PMCID: PMC4240071 DOI: 10.3389/fncom.2014.00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/26/2014] [Indexed: 01/12/2023] Open
Abstract
In reinforcement learning theories of the basal ganglia, there is a need for the expected rewards corresponding to relevant environmental states to be maintained and modified during the learning process. However, the representation of these states that allows them to be associated with reward expectations remains unclear. Previous studies have tended to rely on pre-defined partitioning of states encoded by disjunct neuronal groups or sparse topological drives. A more likely scenario is that striatal neurons are involved in the encoding of multiple different states through their spike patterns, and that an appropriate partitioning of an environment is learned on the basis of task constraints, thus minimizing the number of states involved in solving a particular task. Here we show that striatal activity is sufficient to implement a liquid state, an important prerequisite for such a computation, whereby transient patterns of striatal activity are mapped onto the relevant states. We develop a simple small scale model of the striatum which can reproduce key features of the experimentally observed activity of the major cell types of the striatum. We then use the activity of this network as input for the supervised training of four simple linear readouts to learn three different functions on a plane, where the network is stimulated with the spike coded position of the agent. We discover that the network configuration that best reproduces striatal activity statistics lies on the edge of chaos and has good performance on all three tasks, but that in general, the edge of chaos is a poor predictor of network performance.
Collapse
Affiliation(s)
- Carlos Toledo-Suárez
- Bernstein Center Freiburg, Albert-Ludwig University of Freiburg Freiburg, Germany ; Faculty of Biology, Albert-Ludwig University of Freiburg Freiburg, Germany ; Department of Computational Biology, School of Computer Science and Communication Stockholm, Sweden
| | - Renato Duarte
- Bernstein Center Freiburg, Albert-Ludwig University of Freiburg Freiburg, Germany ; Faculty of Biology, Albert-Ludwig University of Freiburg Freiburg, Germany ; Institute for Advanced Simulation (IAS-6) and Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre and JARA Jülich, Germany ; Institute of Adaptive and Neural Computation, School of Informatics, University of Edinburgh Edinburgh, UK
| | - Abigail Morrison
- Bernstein Center Freiburg, Albert-Ludwig University of Freiburg Freiburg, Germany ; Faculty of Biology, Albert-Ludwig University of Freiburg Freiburg, Germany ; Institute for Advanced Simulation (IAS-6) and Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre and JARA Jülich, Germany ; Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
729
|
Yim MY, Hanuschkin A, Wolfart J. Intrinsic rescaling of granule cells restores pattern separation ability of a dentate gyrus network model during epileptic hyperexcitability. Hippocampus 2014; 25:297-308. [DOI: 10.1002/hipo.22373] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Man Yi Yim
- Department of Mathematics; University of Hong Kong; Hong Kong
| | - Alexander Hanuschkin
- Institute of Neuroinformatics, University of Zurich and ETH Zurich; Zurich Switzerland
| | - Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock; Rostock Germany
| |
Collapse
|
730
|
Jin N, Landgraf T, Klein S, Menzel R. Walking bumblebees memorize panorama and local cues in a laboratory test of navigation. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
731
|
Chowdhury TG, Barbarich-Marsteller NC, Chan TE, Aoki C. Activity-based anorexia has differential effects on apical dendritic branching in dorsal and ventral hippocampal CA1. Brain Struct Funct 2014; 219:1935-45. [PMID: 23959245 PMCID: PMC3930623 DOI: 10.1007/s00429-013-0612-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/15/2013] [Indexed: 12/21/2022]
Abstract
Anorexia nervosa (AN) is an eating disorder to which adolescent females are particularly vulnerable. Like AN, activity-based anorexia (ABA), a rodent model of AN, results in elevation of stress hormones and has genetic links to anxiety disorders. The hippocampus plays a key role in the regulation of anxiety and responds with structural changes to hormones and stress, suggesting that it may play a role in AN. The hippocampus of ABA animals exhibits increased brain-derived neurotrophic factor and increased GABA receptor expression, but the structural effects of ABA have not been studied. We used Golgi staining of neurons to determine whether ABA in female rats during adolescence results in structural changes to the apical dendrites in hippocampal CA1 and contrasted to the effects of food restriction (FR) and exercise (EX), the environmental factors used to induce ABA. In the dorsal hippocampus, which preferentially mediates spatial learning and cognition, cells of ABA animals had less total dendritic length and fewer dendritic branches in stratum radiatum (SR) than in control (CON). In the ventral hippocampus, which preferentially mediates anxiety, ABA evoked more branching in SR than CON. In both dorsal and ventral regions, the main effect of exercise was localized to the SR while the main effect of food restriction occurred in the stratum lacunosum-moleculare. Taken together with data on spine density, these results indicate that ABA elicits pathway-specific changes in the hippocampus that may underlie the increased anxiety and reduced behavioral flexibility observed in ABA.
Collapse
Affiliation(s)
| | - Nicole C. Barbarich-Marsteller
- Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Thomas E. Chan
- Center for Neural Science, New York University, New York, NY 10003
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, NY 10003
| |
Collapse
|
732
|
Abstract
The ability to determine one's location is fundamental to spatial navigation. Here, it is shown that localization is theoretically possible without the use of external cues, and without knowledge of initial position or orientation. With only error-prone self-motion estimates as input, a fully disoriented agent can, in principle, determine its location in familiar spaces with 1-fold rotational symmetry. Surprisingly, localization does not require the sensing of any external cue, including the boundary. The combination of self-motion estimates and an internal map of the arena provide enough information for localization. This stands in conflict with the supposition that 2D arenas are analogous to open fields. Using a rodent error model, it is shown that the localization performance which can be achieved is enough to initiate and maintain stable firing patterns like those of grid cells, starting from full disorientation. Successful localization was achieved when the rotational asymmetry was due to the external boundary, an interior barrier or a void space within an arena. Optimal localization performance was found to depend on arena shape, arena size, local and global rotational asymmetry, and the structure of the path taken during localization. Since allothetic cues including visual and boundary contact cues were not present, localization necessarily relied on the fusion of idiothetic self-motion cues and memory of the boundary. Implications for spatial navigation mechanisms are discussed, including possible relationships with place field overdispersion and hippocampal reverse replay. Based on these results, experiments are suggested to identify if and where information fusion occurs in the mammalian spatial memory system. Spatial navigation is one of the most important functions of animal brains. Multiple regions and cell types encode the current location in mammalian brains, but the underlying interactions between sensory and memory information remain unclear. Recent experimental and theoretical evidence have been found to suggest that the presence of a boundary fundamentally alters the task of navigation. In this paper, evidence is provided that it is possible to determine the location inside any familiar arena with 1-fold rotational symmetry, while completely ignoring sensory cues from the outside world. Surprisingly, the results show that the mere knowledge of the boundary's existence is enough, without requiring direct physical contact. Localization is robust despite the presence of noise modelled from the rodent head direction system, and even inaccuracies in the navigation system's memory of the boundary or internal models of noise. In circular arenas, rotational asymmetry can arise from interior structures such as barriers or voids, also without contact information. This theoretical evidence highlights the need to distinguish arena-based navigation common to most experimental studies, from open field navigation. These findings also point to novel ways to study information fusion in mammalian brains.
Collapse
|
733
|
McNamara CG, Tejero-Cantero Á, Trouche S, Campo-Urriza N, Dupret D. Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat Neurosci 2014; 17:1658-60. [PMID: 25326690 PMCID: PMC4241115 DOI: 10.1038/nn.3843] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022]
Abstract
Here we found that optogenetic burst stimulation of hippocampal dopaminergic fibers from midbrain neurons in mice exploring novel environments enhanced the reactivation of pyramidal cell assemblies during subsequent sleep/rest. When applied during spatial learning of new goal locations, dopaminergic photostimulation improved the later recall of neural representations of space and stabilized memory performance. These findings reveal that midbrain dopaminergic neurons promote hippocampal network dynamics associated with memory persistence.
Collapse
Affiliation(s)
- Colin G McNamara
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Álvaro Tejero-Cantero
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Stéphanie Trouche
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Natalia Campo-Urriza
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| | - David Dupret
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
734
|
Abstract
The vestibular system contributes to the performance of various spatial memory tasks, but few studies have attempted to disambiguate the roles of the semicircular canals and otolith organs in this performance. This study tested the otolithic contribution to spatial working and reference memory by evaluating the performance of otoconia-deficient tilted mice on a radial arm maze and a Barnes maze. One radial arm maze task provided both intramaze and extramaze cues, whereas the other task provided only extramaze cues. The Barnes maze task provided only extramaze cues. On the radial arm maze, tilted mice performed similar to control mice when intramaze cues were available, but committed more working and reference memory errors than control mice when only extramaze cues were available. On the Barnes maze task, control and tilted mice showed similar latency, distance, and errors during acquisition training. On the subsequent probe trial, both groups spent the greatest percentage of time in the goal quadrant, indicating they were able to use extramaze cues to guide their search. Overall, these results suggest signals originating in the otolith organs contribute to spatial memory, but are not necessary for all aspects of spatial performance.
Collapse
Affiliation(s)
- Ryan M Yoder
- Department of Psychology, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana
| | | |
Collapse
|
735
|
Muller T, Nobre AC. Perceiving the passage of time: neural possibilities. Ann N Y Acad Sci 2014; 1326:60-71. [PMID: 25257798 PMCID: PMC4336553 DOI: 10.1111/nyas.12545] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/26/2022]
Abstract
Although the study of time has been central to physics and philosophy for millennia, questions of how time is represented in the brain and how this representation is related to time perception have only recently started to be addressed. Emerging evidence subtly yet profoundly challenges our intuitive notions of time over short scales, offering insight into the nature of the brain's representation of time. Numerous different models, specified at the neural level, of how the brain may keep track of time have been proposed. These models differ in various ways, such as whether time is represented by a centralized or distributed neural system, or whether there are neural systems dedicated to the problem of timing. This paper reviews the insight offered by behavioral experiments and how these experiments refute and guide some of the various models of the brain's representation of time.
Collapse
Affiliation(s)
- Timothy Muller
- Department of Experimental Psychology, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
736
|
Barak B, Feldman N, Okun E. Cardiovascular Fitness and Cognitive Spatial Learning in Rodents and in Humans. J Gerontol A Biol Sci Med Sci 2014; 70:1059-66. [PMID: 25227128 PMCID: PMC4536905 DOI: 10.1093/gerona/glu162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The association between cardiovascular fitness and cognitive functions in both animals and humans is intensely studied. Research in rodents shows that a higher cardiovascular fitness has beneficial effects on hippocampus-dependent spatial abilities, and the underlying mechanisms were largely teased out. Research into the impact of cardiovascular fitness on spatial learning in humans, however, is more limited, and involves mostly behavioral and imaging studies. Herein, we point out the state of the art in the field of spatial learning and cardiovascular fitness. The differences between the methodologies utilized to study spatial learning in humans and rodents are emphasized along with the neuronal basis of these tasks. Critical gaps in the study of spatial learning in the context of cardiovascular fitness between the two species are discussed.
Collapse
Affiliation(s)
- Boaz Barak
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Noa Feldman
- The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Eitan Okun
- The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
737
|
Juxtacellular recording and morphological identification of single neurons in freely moving rats. Nat Protoc 2014; 9:2369-81. [PMID: 25211514 DOI: 10.1038/nprot.2014.161] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well established that neural circuits consist of a great diversity of cell types, but very little is known about how neuronal diversity contributes to cognition and behavior. One approach to addressing this problem is to directly link cellular diversity to neuronal activity recorded in vivo in behaving animals. Here we describe the technical procedures for obtaining juxtacellular recordings from single neurons in trained rats engaged in exploratory behavior. The recorded neurons can be labeled to allow subsequent anatomical identification. In its current format, the protocol can be used for resolving the cellular identity of spatially modulated neurons (i.e., head-direction cells and grid cells), which form the basis of the animal's internal representation of space, but this approach can easily be extended to other unrestrained behaviors. The procedures described here, from the beginning of animal training to the histological processing of brain sections, can be completed in ≈ 3-4 weeks.
Collapse
|
738
|
Effects of chronic administration of gabapentin and carbamazepine on the histomorphology of the hippocampus and striatum. Ann Neurosci 2014; 21:57-61. [PMID: 25206062 PMCID: PMC4117164 DOI: 10.5214/ans.0972.7531.210206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/12/2014] [Accepted: 04/17/2014] [Indexed: 01/18/2023] Open
Abstract
Background Antiepileptic drugs used to avert epileptic seizures necessitate prolonged duration for improved efficacy and could induce some side effects. Purpose The present study investigated the effect of chronic administration of two common antiepileptic drugs – gabapentin and carbamazepine, on the histomorphology of the hippocampus and striatum in adult rats. Methods 25 adult male Wistar rats were grouped randomly into 5 groups. 3 groups were administered either therapeutic doses of gabapentin (16 mg/kg) or carbamazepine (20 mg/kg) or sub-therapeutic dose of gabapentin plus carbamazepine (8 + 10 mg/kg). To confirm anticonvulsant effects, these animals were kindled for seizures at sub-maximal electroshock. Appropriate negative and positive controls were given normal saline. At the end of treatment, brain tissues were obtained and processed for histological procedures. Results The study confirm significant decrease (P<0.001) in convulsion parameters tonic flexion, tonic extension and clonic convulsion, between drug treated groups and electroshock control. Histological studies revealed significant increase (p<0.001) in neurons showing features of degeneration in the hippocampus, for drug treated groups as compared to normal and electroshock control. Also, drug treatment reduced nissl activity in both hippocampus and striatum. Conclusion Chronic administration of gabapentin and carbamazepine may cause increase in neurodegenerative changes in the adult brain.
Collapse
|
739
|
Evensmoen HR, Ladstein J, Hansen TI, Møller JA, Witter MP, Nadel L, Håberg AK. From details to large scale: the representation of environmental positions follows a granularity gradient along the human hippocampal and entorhinal anterior-posterior axis. Hippocampus 2014; 25:119-35. [PMID: 25155295 DOI: 10.1002/hipo.22357] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 11/12/2022]
Abstract
In rodents representations of environmental positions follow a granularity gradient along the hippocampal and entorhinal anterior-posterior axis; with fine-grained representations most posteriorly. To investigate if such a gradient exists in humans, functional magnetic resonance imaging data were acquired during virtual environmental learning of the objects' positions and the association between the objects and room geometry. The Objects-room geometry binding led to increased activation throughout the hippocampus and in the posterior entorhinal cortex. Within subject comparisons related specifically to the level of spatial granularity of the object position encoding showed that activation in the posterior and intermediate hippocampus was highest for fine-grained and medium-grained representations, respectively. In addition, the level of fine granularity in the objects' positions encoded between subjects correlated with posterior hippocampal activation. For the anterior hippocampus increased activation was observed for coarse-grained representations as compared to failed encoding. Activation in anterior hippocampus correlated with the number of environments in which the objects positions were remembered when permitting a coarse representation of positions. In the entorhinal cortex, activation in the posterior part correlated with level of fine granularity for the objects' positions encoded between subjects, and activation in the posterior and intermediate entorhinal cortex increased for medium-grained representations. This demonstrates directly that positional granularity is represented in a graded manner along the anterior-posterior axis of the human hippocampus, and to some extent entorhinal cortex, with most fine-grained positional representations posteriorly.
Collapse
Affiliation(s)
- Hallvard Røe Evensmoen
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | | | | | | | | |
Collapse
|
740
|
Kondo H, Witter MP. Topographic organization of orbitofrontal projections to the parahippocampal region in rats. J Comp Neurol 2014; 522:772-93. [PMID: 23897637 DOI: 10.1002/cne.23442] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 11/12/2022]
Abstract
The parahippocampal region, which comprises the perirhinal, postrhinal, and entorhinal cortices, as well as the pre- and parasubiculum, receives inputs from several association cortices and provides the major cortical input to the hippocampus. This study examined the topographic organization of projections from the orbitofrontal cortex (OFC) to the parahippocampal region in rats by injecting anterograde tracers, biotinylated dextran amine (BDA) and Phaseolus vulgaris-leucoagglutinin (PHA-L), into four subdivisions of OFC. The rostral portion of the perirhinal cortex receives strong projections from the medial (MO), ventral (VO), and ventrolateral (VLO) orbitofrontal areas and the caudal portion of lateral orbitofrontal area (LO). These projections terminate in the dorsal bank and fundus of the rhinal sulcus. In contrast, the postrhinal cortex receives a strong projection specifically from VO. All four subdivisions of OFC give rise to projections to the dorsolateral parts of the lateral entorhinal cortex (LEC), preferentially distributing to more caudal levels of LEC. The medial entorhinal cortex (MEC) receives moderate input from VO and weak projections from MO, VLO, and LO. The presubiculum receives strong projections from caudal VO but only weak projections from other OFC regions. As for the laminar distribution of projections, axons originating from OFC terminate more densely in upper layers (layers I-III) than in deep layers in the parahippocampal region. These results thus show a striking topographic organization of OFC-to-parahippocampal connectivity. Whereas LO, VLO, VO, and MO interact with perirhinal-LEC circuits, the interactions with postrhinal cortex, presubiculum, and MEC are mediated predominantly through the projections of VO.
Collapse
Affiliation(s)
- Hideki Kondo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, 7489, Trondheim, Norway
| | | |
Collapse
|
741
|
Abstract
The study of spatial cognition has provided considerable insight into how animals (including humans) navigate on the horizontal plane. However, the real world is three-dimensional, having a complex topography including both horizontal and vertical features, which presents additional challenges for representation and navigation. The present article reviews the emerging behavioral and neurobiological literature on spatial cognition in non-horizontal environments. We suggest that three-dimensional spaces are represented in a quasi-planar fashion, with space in the plane of locomotion being computed separately and represented differently from space in the orthogonal axis - a representational structure we have termed "bicoded." We argue that the mammalian spatial representation in surface-travelling animals comprises a mosaic of these locally planar fragments, rather than a fully integrated volumetric map. More generally, this may be true even for species that can move freely in all three dimensions, such as birds and fish. We outline the evidence supporting this view, together with the adaptive advantages of such a scheme.
Collapse
|
742
|
Aggleton JP, Nelson AJD. Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits? Neurosci Biobehav Rev 2014; 54:131-44. [PMID: 25195980 PMCID: PMC4462592 DOI: 10.1016/j.neubiorev.2014.08.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/07/2014] [Accepted: 08/27/2014] [Indexed: 12/30/2022]
Abstract
A dual hypothesis is introduced to explain the importance of these thalamic nuclei. ATN are vital for multiple spatial functions. ATN damage disrupts processing across distal limbic sites. Distal pathology caused by ATN damage disrupts plasticity and metabolic activity. ATN lesion effects reflect both their intrinsic importance and distal dysfunctions.
Lesions of the rodent anterior thalamic nuclei cause severe deficits to multiple spatial learning tasks. Possible explanations for these effects are examined, with particular reference to T-maze alternation. Anterior thalamic lesions not only impair allocentric place learning but also disrupt other spatial processes, including direction learning, path integration, and relative length discriminations, as well as aspects of nonspatial learning, e.g., temporal discriminations. Working memory tasks, such as T-maze alternation, appear particularly sensitive as they combine an array of these spatial and nonspatial demands. This sensitivity partly reflects the different functions supported by individual anterior thalamic nuclei, though it is argued that anterior thalamic lesion effects also arise from covert pathology in sites distal to the thalamus, most critically in the retrosplenial cortex and hippocampus. This two-level account, involving both local and distal lesion effects, explains the range and severity of the spatial deficits following anterior thalamic lesions. These findings highlight how the anterior thalamic nuclei form a key component in a series of interdependent systems that support multiple spatial functions.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, South Glamorganshire, Wales, UK
| | - Andrew J D Nelson
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, South Glamorganshire, Wales, UK.
| |
Collapse
|
743
|
Abstract
The dentate gyrus serves as a gateway to the hippocampus, filtering and processing sensory inputs as an animal explores its environment. The hilus occupies a strategic position within the dentate gyrus from which it can play a pivotal role in these functions. Inputs from dentate granule cells converge on the hilus, and excitatory hilar mossy cells redistribute these signals back to granule cells to transform a pattern of cortical input into a new pattern of output to the hippocampal CA3 region. Using voltage-sensitive dye to image electrical activity in rat hippocampal slices, we explored how long-term potentiation (LTP) of different excitatory synapses modifies the flow of information. Theta burst stimulation of the perforant path potentiated responses throughout the molecular layer, but left responses in the CA3 region unchanged. By contrast, theta burst stimulation of the granule cell layer potentiated responses throughout the molecular layer, as well as in the CA3 region. Theta burst stimulation of the granule cell layer potentiated CA3 responses not only to granule cell layer stimulation but also to perforant path stimulation. Potentiation of responses in the CA3 region reflected NMDA receptor-dependent LTP of upstream synapses between granule cells and mossy cells, with no detectable contribution from NMDA receptor-independent LTP of local CA3 mossy fiber synapses. Potentiation of transmission to the CA3 region required LTP in both granule cell→mossy cell and mossy cell→granule cell synapses. This bidirectional plasticity enables hilar circuitry to regulate the flow of information through the dentate gyrus and on to the hippocampus.
Collapse
|
744
|
Unichenko P, Yang JW, Luhmann HJ, Kirischuk S. Glutamatergic system controls synchronization of spontaneous neuronal activity in the murine neonatal entorhinal cortex. Pflugers Arch 2014; 467:1565-1575. [PMID: 25163767 DOI: 10.1007/s00424-014-1600-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/16/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
Synchronized spontaneous neuronal activity is a characteristic feature of the developing brain. Rhythmic network discharges in the neonatal medial entorhinal cortex (mEC) in vitro depend on activation of ionotropic glutamate receptors, but spontaneously active neurons are required for their initiation. Field potential recordings revealed synchronized neuronal activity in the mEC in vivo developmentally earlier than in vitro. We suggested that not only ionotropic receptors, but also other components of the glutamatergic system modulate neuronal activity in the mEC. Ca(2+) imaging was used to record neuronal activity in neonatal murine brain slices. Two types of spontaneous events were distinguished: global synchronous discharges (synchronous activity) and asynchronously (not synchronized with global discharges) active cells (asynchronous activity). AMPA receptor blockade strongly reduced the frequency of synchronous discharges, while NMDA receptor inhibition was less effective. AMPA and NMDA receptor blockade or activation of group 2/3 metabotropic glutamate receptors (mGluR2/3) completely suppressed synchronous discharges and increased the number of active cells. Blockade of glutamate transporters with DL-TBOA led to NMDA receptor-mediated hyper-synchronization of neuronal activity. Inhibition of NMDA receptors in the presence of DL-TBOA failed to restore synchronous discharges. The latter were partially reestablished only after blockade of mGluR2/3. We conclude that the glutamatergic system can influence neuronal activity via different receptors/mechanisms. As both NMDA and mGluR2/3 receptors have a high affinity for glutamate, changes in extracellular glutamate levels resulting for instance from glutamate transporter malfunction can balance neuronal activity in the mEC, affecting in turn synapse and network formation.
Collapse
Affiliation(s)
- Petr Unichenko
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Jeng-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| |
Collapse
|
745
|
Davis VA, Holbrook RI, Schumacher S, Guilford T, de Perera TB. Three-dimensional spatial cognition in a benthic fish, Corydoras aeneus. Behav Processes 2014; 109 Pt B:151-6. [PMID: 25158070 DOI: 10.1016/j.beproc.2014.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 08/07/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
Abstract
The way animals move through space is likely to affect the way they learn and remember spatial information. For example, a pelagic fish, Astyanax fasciatus, moves freely in vertical and horizontal space and encodes information from both dimensions with similar accuracy. Benthic fish can also move with six degrees of freedom, but spend much of their time travelling over the substrate; hence they might be expected to prioritise the horizontal dimension. To understand how benthic fish encode and deploy three-dimensional spatial information we used a fully rotational Y-maze to test whether Corydoras aeneus (i) encode space as an integrated three-dimensional unit or as separate elements, by testing whether they can decompose a three-dimensional trajectory into its vertical and horizontal components, and (ii) whether they prioritise vertical or horizontal information when the two conflict. In contradiction to the expectation generated by our hypothesis, our results suggest that C. aeneus are better at extracting vertical information than horizontal information from a three-dimensional trajectory, suggesting that the vertical axis is learned and remembered robustly. Our results also showed that C. aeneus prioritise vertical information when it conflicts with horizontal information. From these results, we infer that benthic fish attend preferentially to a cue unique to the vertical axis, and we suggest that this cue is hydrostatic pressure.
Collapse
Affiliation(s)
- V A Davis
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - R I Holbrook
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - S Schumacher
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - T Guilford
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - T Burt de Perera
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, United Kingdom.
| |
Collapse
|
746
|
Mattson MP. Superior pattern processing is the essence of the evolved human brain. Front Neurosci 2014; 8:265. [PMID: 25202234 PMCID: PMC4141622 DOI: 10.3389/fnins.2014.00265] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023] Open
Abstract
Humans have long pondered the nature of their mind/brain and, particularly why its capacities for reasoning, communication and abstract thought are far superior to other species, including closely related anthropoids. This article considers superior pattern processing (SPP) as the fundamental basis of most, if not all, unique features of the human brain including intelligence, language, imagination, invention, and the belief in imaginary entities such as ghosts and gods. SPP involves the electrochemical, neuronal network-based, encoding, integration, and transfer to other individuals of perceived or mentally-fabricated patterns. During human evolution, pattern processing capabilities became increasingly sophisticated as the result of expansion of the cerebral cortex, particularly the prefrontal cortex and regions involved in processing of images. Specific patterns, real or imagined, are reinforced by emotional experiences, indoctrination and even psychedelic drugs. Impaired or dysregulated SPP is fundamental to cognitive and psychiatric disorders. A broader understanding of SPP mechanisms, and their roles in normal and abnormal function of the human brain, may enable the development of interventions that reduce irrational decisions and destructive behaviors.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program Baltimore, MD, USA ; Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
747
|
Abstract
The role of the hippocampus in spatial cognition is incontrovertible yet controversial. Place cells, initially thought to be location-specifiers, turn out to respond promiscuously to a wide range of stimuli. Here we test the idea, which we have recently demonstrated in a computational model, that the hippocampal place cells may ultimately be interested in a space's topological qualities (its connectivity) more than its geometry (distances and angles); such higher-order functioning would be more consistent with other known hippocampal functions. We recorded place cell activity in rats exploring morphing linear tracks that allowed us to dissociate the geometry of the track from its topology. The resulting place fields preserved the relative sequence of places visited along the track but did not vary with the metrical features of the track or the direction of the rat's movement. These results suggest a reinterpretation of previous studies and new directions for future experiments.
Collapse
Affiliation(s)
- Yuri Dabaghian
- The Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States Baylor College of Medicine, Houston, United States
| | - Vicky L Brandt
- The Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States Baylor College of Medicine, Houston, United States
| | - Loren M Frank
- Sloan-Swartz Center for Theoretical Neurobiology, W.M. Keck Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States Department of Physiology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
748
|
Petrantonakis PC, Poirazi P. A compressed sensing perspective of hippocampal function. Front Syst Neurosci 2014; 8:141. [PMID: 25152718 PMCID: PMC4126371 DOI: 10.3389/fnsys.2014.00141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/22/2014] [Indexed: 01/05/2023] Open
Abstract
Hippocampus is one of the most important information processing units in the brain. Input from the cortex passes through convergent axon pathways to the downstream hippocampal subregions and, after being appropriately processed, is fanned out back to the cortex. Here, we review evidence of the hypothesis that information flow and processing in the hippocampus complies with the principles of Compressed Sensing (CS). The CS theory comprises a mathematical framework that describes how and under which conditions, restricted sampling of information (data set) can lead to condensed, yet concise, forms of the initial, subsampled information entity (i.e., of the original data set). In this work, hippocampus related regions and their respective circuitry are presented as a CS-based system whose different components collaborate to realize efficient memory encoding and decoding processes. This proposition introduces a unifying mathematical framework for hippocampal function and opens new avenues for exploring coding and decoding strategies in the brain.
Collapse
Affiliation(s)
| | - Panayiota Poirazi
- Computational Biology Lab, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-HellasHeraklion, Greece
| |
Collapse
|
749
|
Miller AMP, Vedder LC, Law LM, Smith DM. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition. Front Hum Neurosci 2014; 8:586. [PMID: 25140141 PMCID: PMC4122222 DOI: 10.3389/fnhum.2014.00586] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/15/2014] [Indexed: 11/13/2022] Open
Abstract
Spatial navigation requires memory representations of landmarks and other navigation cues. The retrosplenial cortex (RSC) is anatomically positioned between limbic areas important for memory formation, such as the hippocampus (HPC) and the anterior thalamus, and cortical regions along the dorsal stream known to contribute importantly to long-term spatial representation, such as the posterior parietal cortex. Damage to the RSC severely impairs allocentric representations of the environment, including the ability to derive navigational information from landmarks. The specific deficits seen in tests of human and rodent navigation suggest that the RSC supports allocentric representation by processing the stable features of the environment and the spatial relationships among them. In addition to spatial cognition, the RSC plays a key role in contextual and episodic memory. The RSC also contributes importantly to the acquisition and consolidation of long-term spatial and contextual memory through its interactions with the HPC. Within this framework, the RSC plays a dual role as part of the feedforward network providing sensory and mnemonic input to the HPC and as a target of the hippocampal-dependent systems consolidation of long-term memory.
Collapse
Affiliation(s)
- Adam M P Miller
- Department of Psychology, Cornell University Ithaca, NY, USA
| | | | - L Matthew Law
- Department of Psychology, Cornell University Ithaca, NY, USA
| | - David M Smith
- Department of Psychology, Cornell University Ithaca, NY, USA
| |
Collapse
|
750
|
Learning ability in bank voles selected for high aerobic metabolism, predatory behaviour and herbivorous capability. Physiol Behav 2014; 135:143-51. [DOI: 10.1016/j.physbeh.2014.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/19/2014] [Accepted: 06/10/2014] [Indexed: 11/21/2022]
|