701
|
Wilber AA, Clark BJ, Demecha AJ, Mesina L, Vos JM, McNaughton BL. Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of the rat. Front Neural Circuits 2015; 8:146. [PMID: 25601828 PMCID: PMC4283643 DOI: 10.3389/fncir.2014.00146] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/02/2014] [Indexed: 12/16/2022] Open
Abstract
A central feature of theories of spatial navigation involves the representation of spatial relationships between objects in complex environments. The parietal cortex has long been linked to the processing of spatial visual information and recent evidence from single unit recording in rodents suggests a role for this region in encoding egocentric and world-centered frames. The rat parietal cortex can be subdivided into four distinct rostral-caudal and medial-lateral regions, which includes a zone previously characterized as secondary visual cortex. At present, very little is known regarding the relative connectivity of these parietal subdivisions. Thus, we set out to map the connectivity of the entire anterior-posterior and medial-lateral span of this region. To do this we used anterograde and retrograde tracers in conjunction with open source neuronal segmentation and tracer detection tools to generate whole brain connectivity maps of parietal inputs and outputs. Our present results show that inputs to the parietal cortex varied significantly along the medial-lateral, but not the rostral-caudal axis. Specifically, retrosplenial connectivity is greater medially, but connectivity with visual cortex, though generally sparse, is more significant laterally. Finally, based on connection density, the connectivity between parietal cortex and hippocampus is indirect and likely achieved largely via dysgranular retrosplenial cortex. Thus, similar to primates, the parietal cortex of rats exhibits a difference in connectivity along the medial-lateral axis, which may represent functionally distinct areas.
Collapse
Affiliation(s)
- Aaron A. Wilber
- Canadian Centre for Behavioural Neuroscience, The University of LethbridgeLethbridge, AB, Canada
- Department of Neurobiology and Behavior, University of CaliforniaIrvine, CA, USA
| | - Benjamin J. Clark
- Canadian Centre for Behavioural Neuroscience, The University of LethbridgeLethbridge, AB, Canada
- Department of Psychology, The University of New MexicoAlbuquerque, NM, USA
| | - Alexis J. Demecha
- Canadian Centre for Behavioural Neuroscience, The University of LethbridgeLethbridge, AB, Canada
| | - Lilia Mesina
- Canadian Centre for Behavioural Neuroscience, The University of LethbridgeLethbridge, AB, Canada
| | - Jessica M. Vos
- Canadian Centre for Behavioural Neuroscience, The University of LethbridgeLethbridge, AB, Canada
| | - Bruce L. McNaughton
- Canadian Centre for Behavioural Neuroscience, The University of LethbridgeLethbridge, AB, Canada
- Department of Neurobiology and Behavior, University of CaliforniaIrvine, CA, USA
| |
Collapse
|
702
|
Gomez A, Rousset S, Bonniot C, Charnallet A, Moreaud O. Deficits in egocentric-updating and spatial context memory in a case of developmental amnesia. Neurocase 2015; 21:226-43. [PMID: 24579921 DOI: 10.1080/13554794.2014.890730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Patients with developmental amnesia usually suffer from both episodic and spatial memory deficits. DM, a developmental amnesic, was impaired in her ability to process self-motion (i.e., idiothetic) information while her ability to process external stable landmarks (i.e., allothetic) was preserved when no self-motion processing was required. On a naturalistic and incidental episodic task, DM was severely and predictably impaired on both free and cued recall tasks. Interestingly, when cued, she was more impaired at recalling spatial context than factual or temporal information. Theoretical implications of that co-occurrence of deficits and those dissociations are discussed and testable cerebral hypothesis are proposed.
Collapse
Affiliation(s)
- A Gomez
- a LPNC , CNRS, UMR 5105, Université Grenoble Alpes , Grenoble , France
| | | | | | | | | |
Collapse
|
703
|
Voltage Imaging in the Study of Hippocampal Circuit Function and Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:197-211. [DOI: 10.1007/978-3-319-17641-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
704
|
Deadwyler SA, Berger TW, Opris I, Song D, Hampson RE. Neurons and networks organizing and sequencing memories. Brain Res 2014; 1621:335-44. [PMID: 25553617 DOI: 10.1016/j.brainres.2014.12.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/23/2023]
Abstract
Hippocampal CA1 and CA3 neurons sampled randomly in large numbers in primate brain show conclusive examples of hierarchical encoding of task specific information. Hierarchical encoding allows multi-task utilization of the same hippocampal neural networks via distributed firing between neurons that respond to subsets, attributes or "categories" of stimulus features which can be applied in events in different contexts. In addition, such networks are uniquely adaptable to neural systems unrestricted by rigid synaptic architecture (i.e. columns, layers or "patches") which physically limits the number of possible task-specific interactions between neurons. Also hierarchical encoding is not random; it requires multiple exposures to the same types of relevant events to elevate synaptic connectivity between neurons for different stimulus features that occur in different task-dependent contexts. The large number of cells within associated hierarchical circuits in structures such as hippocampus provides efficient processing of information relevant to common memory-dependent behavioral decisions within different contextual circumstances. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Sam A Deadwyler
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA.
| | - Theodore W Berger
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way (DRB140), Los Angeles, CA 90089-1111, USA
| | - Ioan Opris
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA
| | - Dong Song
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way (DRB140), Los Angeles, CA 90089-1111, USA
| | - Robert E Hampson
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA
| |
Collapse
|
705
|
Eichenbaum H, Cohen NJ. Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron 2014; 83:764-70. [PMID: 25144874 DOI: 10.1016/j.neuron.2014.07.032] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Some argue that hippocampus supports declarative memory, our capacity to recall facts and events, whereas others view the hippocampus as part of a system dedicated to calculating routes through space, and these two contrasting views are pursued largely independently in current research. Here we offer a perspective on where these views can and cannot be reconciled and update a bridging framework that will improve our understanding of hippocampal function.
Collapse
Affiliation(s)
- Howard Eichenbaum
- Boston University, Center for Memory and Brain, 2 Cummington Street, Boston, MA 02215, USA.
| | - Neal J Cohen
- University of Illinois at Urbana-Champaign, Beckman Institute, 405 North Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
706
|
Body ownership affects visual perception of object size by rescaling the visual representation of external space. Atten Percept Psychophys 2014; 76:1414-28. [PMID: 24806404 PMCID: PMC4092244 DOI: 10.3758/s13414-014-0664-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Size perception is most often explained by a combination of cues derived from the visual system. However, this traditional cue approach neglects the role of the observer’s body beyond mere visual comparison. In a previous study, we used a full-body illusion to show that objects appear larger and farther away when participants experience a small artificial body as their own and that objects appear smaller and closer when they assume ownership of a large artificial body (“Barbie-doll illusion”; van der Hoort, Guterstam, & Ehrsson, PLoS ONE, 6(5), e20195, 2011). The first aim of the present study was to test the hypothesis that this own-body-size effect is distinct from the role of the seen body as a direct familiar-size cue. To this end, we developed a novel setup that allowed for occlusion of the artificial body during the presentation of test objects. Our results demonstrate that the feeling of ownership of an artificial body can alter the perceived sizes of objects without the need for a visible body. Second, we demonstrate that fixation shifts do not contribute to the own-body-size effect. Third, we show that the effect exists in both peri-personal space and distant extra-personal space. Finally, through a meta-analysis, we demonstrate that the own-body-size effect is independent of and adds to the classical visual familiar-size cue effect. Our results suggest that, by changing body size, the entire spatial layout rescales and new objects are now perceived according to this rescaling, without the need to see the body.
Collapse
|
707
|
Metabolic brain activity underlying behavioral performance and spatial strategy choice in sedentary and exercised Wistar rats. Neuroscience 2014; 281:110-23. [DOI: 10.1016/j.neuroscience.2014.09.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/05/2014] [Accepted: 09/25/2014] [Indexed: 02/02/2023]
|
708
|
Shah A, Gurney KN. Finding minimal action sequences with a simple evaluation of actions. Front Comput Neurosci 2014; 8:151. [PMID: 25506326 PMCID: PMC4247113 DOI: 10.3389/fncom.2014.00151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/03/2014] [Indexed: 11/13/2022] Open
Abstract
Animals are able to discover the minimal number of actions that achieves an outcome (the minimal action sequence). In most accounts of this, actions are associated with a measure of behavior that is higher for actions that lead to the outcome with a shorter action sequence, and learning mechanisms find the actions associated with the highest measure. In this sense, previous accounts focus on more than the simple binary signal of "was the outcome achieved?"; they focus on "how well was the outcome achieved?" However, such mechanisms may not govern all types of behavioral development. In particular, in the process of action discovery (Redgrave and Gurney, 2006), actions are reinforced if they simply lead to a salient outcome because biological reinforcement signals occur too quickly to evaluate the consequences of an action beyond an indication of the outcome's occurrence. Thus, action discovery mechanisms focus on the simple evaluation of "was the outcome achieved?" and not "how well was the outcome achieved?" Notwithstanding this impoverishment of information, can the process of action discovery find the minimal action sequence? We address this question by implementing computational mechanisms, referred to in this paper as no-cost learning rules, in which each action that leads to the outcome is associated with the same measure of behavior. No-cost rules focus on "was the outcome achieved?" and are consistent with action discovery. No-cost rules discover the minimal action sequence in simulated tasks and execute it for a substantial amount of time. Extensive training, however, results in extraneous actions, suggesting that a separate process (which has been proposed in action discovery) must attenuate learning if no-cost rules participate in behavioral development. We describe how no-cost rules develop behavior, what happens when attenuation is disrupted, and relate the new mechanisms to wider computational and biological context.
Collapse
Affiliation(s)
- Ashvin Shah
- Department of Psychology, The University of SheffieldSheffield, UK
| | | |
Collapse
|
709
|
Toledo-Suárez C, Duarte R, Morrison A. Liquid computing on and off the edge of chaos with a striatal microcircuit. Front Comput Neurosci 2014; 8:130. [PMID: 25484864 PMCID: PMC4240071 DOI: 10.3389/fncom.2014.00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/26/2014] [Indexed: 01/12/2023] Open
Abstract
In reinforcement learning theories of the basal ganglia, there is a need for the expected rewards corresponding to relevant environmental states to be maintained and modified during the learning process. However, the representation of these states that allows them to be associated with reward expectations remains unclear. Previous studies have tended to rely on pre-defined partitioning of states encoded by disjunct neuronal groups or sparse topological drives. A more likely scenario is that striatal neurons are involved in the encoding of multiple different states through their spike patterns, and that an appropriate partitioning of an environment is learned on the basis of task constraints, thus minimizing the number of states involved in solving a particular task. Here we show that striatal activity is sufficient to implement a liquid state, an important prerequisite for such a computation, whereby transient patterns of striatal activity are mapped onto the relevant states. We develop a simple small scale model of the striatum which can reproduce key features of the experimentally observed activity of the major cell types of the striatum. We then use the activity of this network as input for the supervised training of four simple linear readouts to learn three different functions on a plane, where the network is stimulated with the spike coded position of the agent. We discover that the network configuration that best reproduces striatal activity statistics lies on the edge of chaos and has good performance on all three tasks, but that in general, the edge of chaos is a poor predictor of network performance.
Collapse
Affiliation(s)
- Carlos Toledo-Suárez
- Bernstein Center Freiburg, Albert-Ludwig University of Freiburg Freiburg, Germany ; Faculty of Biology, Albert-Ludwig University of Freiburg Freiburg, Germany ; Department of Computational Biology, School of Computer Science and Communication Stockholm, Sweden
| | - Renato Duarte
- Bernstein Center Freiburg, Albert-Ludwig University of Freiburg Freiburg, Germany ; Faculty of Biology, Albert-Ludwig University of Freiburg Freiburg, Germany ; Institute for Advanced Simulation (IAS-6) and Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre and JARA Jülich, Germany ; Institute of Adaptive and Neural Computation, School of Informatics, University of Edinburgh Edinburgh, UK
| | - Abigail Morrison
- Bernstein Center Freiburg, Albert-Ludwig University of Freiburg Freiburg, Germany ; Faculty of Biology, Albert-Ludwig University of Freiburg Freiburg, Germany ; Institute for Advanced Simulation (IAS-6) and Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre and JARA Jülich, Germany ; Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
710
|
Yim MY, Hanuschkin A, Wolfart J. Intrinsic rescaling of granule cells restores pattern separation ability of a dentate gyrus network model during epileptic hyperexcitability. Hippocampus 2014; 25:297-308. [DOI: 10.1002/hipo.22373] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Man Yi Yim
- Department of Mathematics; University of Hong Kong; Hong Kong
| | - Alexander Hanuschkin
- Institute of Neuroinformatics, University of Zurich and ETH Zurich; Zurich Switzerland
| | - Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock; Rostock Germany
| |
Collapse
|
711
|
Jin N, Landgraf T, Klein S, Menzel R. Walking bumblebees memorize panorama and local cues in a laboratory test of navigation. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
712
|
Chowdhury TG, Barbarich-Marsteller NC, Chan TE, Aoki C. Activity-based anorexia has differential effects on apical dendritic branching in dorsal and ventral hippocampal CA1. Brain Struct Funct 2014; 219:1935-45. [PMID: 23959245 PMCID: PMC3930623 DOI: 10.1007/s00429-013-0612-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/15/2013] [Indexed: 12/21/2022]
Abstract
Anorexia nervosa (AN) is an eating disorder to which adolescent females are particularly vulnerable. Like AN, activity-based anorexia (ABA), a rodent model of AN, results in elevation of stress hormones and has genetic links to anxiety disorders. The hippocampus plays a key role in the regulation of anxiety and responds with structural changes to hormones and stress, suggesting that it may play a role in AN. The hippocampus of ABA animals exhibits increased brain-derived neurotrophic factor and increased GABA receptor expression, but the structural effects of ABA have not been studied. We used Golgi staining of neurons to determine whether ABA in female rats during adolescence results in structural changes to the apical dendrites in hippocampal CA1 and contrasted to the effects of food restriction (FR) and exercise (EX), the environmental factors used to induce ABA. In the dorsal hippocampus, which preferentially mediates spatial learning and cognition, cells of ABA animals had less total dendritic length and fewer dendritic branches in stratum radiatum (SR) than in control (CON). In the ventral hippocampus, which preferentially mediates anxiety, ABA evoked more branching in SR than CON. In both dorsal and ventral regions, the main effect of exercise was localized to the SR while the main effect of food restriction occurred in the stratum lacunosum-moleculare. Taken together with data on spine density, these results indicate that ABA elicits pathway-specific changes in the hippocampus that may underlie the increased anxiety and reduced behavioral flexibility observed in ABA.
Collapse
Affiliation(s)
| | - Nicole C. Barbarich-Marsteller
- Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Thomas E. Chan
- Center for Neural Science, New York University, New York, NY 10003
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, NY 10003
| |
Collapse
|
713
|
Abstract
The ability to determine one's location is fundamental to spatial navigation. Here, it is shown that localization is theoretically possible without the use of external cues, and without knowledge of initial position or orientation. With only error-prone self-motion estimates as input, a fully disoriented agent can, in principle, determine its location in familiar spaces with 1-fold rotational symmetry. Surprisingly, localization does not require the sensing of any external cue, including the boundary. The combination of self-motion estimates and an internal map of the arena provide enough information for localization. This stands in conflict with the supposition that 2D arenas are analogous to open fields. Using a rodent error model, it is shown that the localization performance which can be achieved is enough to initiate and maintain stable firing patterns like those of grid cells, starting from full disorientation. Successful localization was achieved when the rotational asymmetry was due to the external boundary, an interior barrier or a void space within an arena. Optimal localization performance was found to depend on arena shape, arena size, local and global rotational asymmetry, and the structure of the path taken during localization. Since allothetic cues including visual and boundary contact cues were not present, localization necessarily relied on the fusion of idiothetic self-motion cues and memory of the boundary. Implications for spatial navigation mechanisms are discussed, including possible relationships with place field overdispersion and hippocampal reverse replay. Based on these results, experiments are suggested to identify if and where information fusion occurs in the mammalian spatial memory system. Spatial navigation is one of the most important functions of animal brains. Multiple regions and cell types encode the current location in mammalian brains, but the underlying interactions between sensory and memory information remain unclear. Recent experimental and theoretical evidence have been found to suggest that the presence of a boundary fundamentally alters the task of navigation. In this paper, evidence is provided that it is possible to determine the location inside any familiar arena with 1-fold rotational symmetry, while completely ignoring sensory cues from the outside world. Surprisingly, the results show that the mere knowledge of the boundary's existence is enough, without requiring direct physical contact. Localization is robust despite the presence of noise modelled from the rodent head direction system, and even inaccuracies in the navigation system's memory of the boundary or internal models of noise. In circular arenas, rotational asymmetry can arise from interior structures such as barriers or voids, also without contact information. This theoretical evidence highlights the need to distinguish arena-based navigation common to most experimental studies, from open field navigation. These findings also point to novel ways to study information fusion in mammalian brains.
Collapse
|
714
|
McNamara CG, Tejero-Cantero Á, Trouche S, Campo-Urriza N, Dupret D. Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat Neurosci 2014; 17:1658-60. [PMID: 25326690 PMCID: PMC4241115 DOI: 10.1038/nn.3843] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022]
Abstract
Here we found that optogenetic burst stimulation of hippocampal dopaminergic fibers from midbrain neurons in mice exploring novel environments enhanced the reactivation of pyramidal cell assemblies during subsequent sleep/rest. When applied during spatial learning of new goal locations, dopaminergic photostimulation improved the later recall of neural representations of space and stabilized memory performance. These findings reveal that midbrain dopaminergic neurons promote hippocampal network dynamics associated with memory persistence.
Collapse
Affiliation(s)
- Colin G McNamara
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Álvaro Tejero-Cantero
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Stéphanie Trouche
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Natalia Campo-Urriza
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| | - David Dupret
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
715
|
Abstract
The vestibular system contributes to the performance of various spatial memory tasks, but few studies have attempted to disambiguate the roles of the semicircular canals and otolith organs in this performance. This study tested the otolithic contribution to spatial working and reference memory by evaluating the performance of otoconia-deficient tilted mice on a radial arm maze and a Barnes maze. One radial arm maze task provided both intramaze and extramaze cues, whereas the other task provided only extramaze cues. The Barnes maze task provided only extramaze cues. On the radial arm maze, tilted mice performed similar to control mice when intramaze cues were available, but committed more working and reference memory errors than control mice when only extramaze cues were available. On the Barnes maze task, control and tilted mice showed similar latency, distance, and errors during acquisition training. On the subsequent probe trial, both groups spent the greatest percentage of time in the goal quadrant, indicating they were able to use extramaze cues to guide their search. Overall, these results suggest signals originating in the otolith organs contribute to spatial memory, but are not necessary for all aspects of spatial performance.
Collapse
Affiliation(s)
- Ryan M Yoder
- Department of Psychology, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana
| | | |
Collapse
|
716
|
Muller T, Nobre AC. Perceiving the passage of time: neural possibilities. Ann N Y Acad Sci 2014; 1326:60-71. [PMID: 25257798 PMCID: PMC4336553 DOI: 10.1111/nyas.12545] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/26/2022]
Abstract
Although the study of time has been central to physics and philosophy for millennia, questions of how time is represented in the brain and how this representation is related to time perception have only recently started to be addressed. Emerging evidence subtly yet profoundly challenges our intuitive notions of time over short scales, offering insight into the nature of the brain's representation of time. Numerous different models, specified at the neural level, of how the brain may keep track of time have been proposed. These models differ in various ways, such as whether time is represented by a centralized or distributed neural system, or whether there are neural systems dedicated to the problem of timing. This paper reviews the insight offered by behavioral experiments and how these experiments refute and guide some of the various models of the brain's representation of time.
Collapse
Affiliation(s)
- Timothy Muller
- Department of Experimental Psychology, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
717
|
Barak B, Feldman N, Okun E. Cardiovascular Fitness and Cognitive Spatial Learning in Rodents and in Humans. J Gerontol A Biol Sci Med Sci 2014; 70:1059-66. [PMID: 25227128 PMCID: PMC4536905 DOI: 10.1093/gerona/glu162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The association between cardiovascular fitness and cognitive functions in both animals and humans is intensely studied. Research in rodents shows that a higher cardiovascular fitness has beneficial effects on hippocampus-dependent spatial abilities, and the underlying mechanisms were largely teased out. Research into the impact of cardiovascular fitness on spatial learning in humans, however, is more limited, and involves mostly behavioral and imaging studies. Herein, we point out the state of the art in the field of spatial learning and cardiovascular fitness. The differences between the methodologies utilized to study spatial learning in humans and rodents are emphasized along with the neuronal basis of these tasks. Critical gaps in the study of spatial learning in the context of cardiovascular fitness between the two species are discussed.
Collapse
Affiliation(s)
- Boaz Barak
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Noa Feldman
- The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Eitan Okun
- The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
718
|
Juxtacellular recording and morphological identification of single neurons in freely moving rats. Nat Protoc 2014; 9:2369-81. [PMID: 25211514 DOI: 10.1038/nprot.2014.161] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well established that neural circuits consist of a great diversity of cell types, but very little is known about how neuronal diversity contributes to cognition and behavior. One approach to addressing this problem is to directly link cellular diversity to neuronal activity recorded in vivo in behaving animals. Here we describe the technical procedures for obtaining juxtacellular recordings from single neurons in trained rats engaged in exploratory behavior. The recorded neurons can be labeled to allow subsequent anatomical identification. In its current format, the protocol can be used for resolving the cellular identity of spatially modulated neurons (i.e., head-direction cells and grid cells), which form the basis of the animal's internal representation of space, but this approach can easily be extended to other unrestrained behaviors. The procedures described here, from the beginning of animal training to the histological processing of brain sections, can be completed in ≈ 3-4 weeks.
Collapse
|
719
|
Effects of chronic administration of gabapentin and carbamazepine on the histomorphology of the hippocampus and striatum. Ann Neurosci 2014; 21:57-61. [PMID: 25206062 PMCID: PMC4117164 DOI: 10.5214/ans.0972.7531.210206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/12/2014] [Accepted: 04/17/2014] [Indexed: 01/18/2023] Open
Abstract
Background Antiepileptic drugs used to avert epileptic seizures necessitate prolonged duration for improved efficacy and could induce some side effects. Purpose The present study investigated the effect of chronic administration of two common antiepileptic drugs – gabapentin and carbamazepine, on the histomorphology of the hippocampus and striatum in adult rats. Methods 25 adult male Wistar rats were grouped randomly into 5 groups. 3 groups were administered either therapeutic doses of gabapentin (16 mg/kg) or carbamazepine (20 mg/kg) or sub-therapeutic dose of gabapentin plus carbamazepine (8 + 10 mg/kg). To confirm anticonvulsant effects, these animals were kindled for seizures at sub-maximal electroshock. Appropriate negative and positive controls were given normal saline. At the end of treatment, brain tissues were obtained and processed for histological procedures. Results The study confirm significant decrease (P<0.001) in convulsion parameters tonic flexion, tonic extension and clonic convulsion, between drug treated groups and electroshock control. Histological studies revealed significant increase (p<0.001) in neurons showing features of degeneration in the hippocampus, for drug treated groups as compared to normal and electroshock control. Also, drug treatment reduced nissl activity in both hippocampus and striatum. Conclusion Chronic administration of gabapentin and carbamazepine may cause increase in neurodegenerative changes in the adult brain.
Collapse
|
720
|
Evensmoen HR, Ladstein J, Hansen TI, Møller JA, Witter MP, Nadel L, Håberg AK. From details to large scale: the representation of environmental positions follows a granularity gradient along the human hippocampal and entorhinal anterior-posterior axis. Hippocampus 2014; 25:119-35. [PMID: 25155295 DOI: 10.1002/hipo.22357] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 11/12/2022]
Abstract
In rodents representations of environmental positions follow a granularity gradient along the hippocampal and entorhinal anterior-posterior axis; with fine-grained representations most posteriorly. To investigate if such a gradient exists in humans, functional magnetic resonance imaging data were acquired during virtual environmental learning of the objects' positions and the association between the objects and room geometry. The Objects-room geometry binding led to increased activation throughout the hippocampus and in the posterior entorhinal cortex. Within subject comparisons related specifically to the level of spatial granularity of the object position encoding showed that activation in the posterior and intermediate hippocampus was highest for fine-grained and medium-grained representations, respectively. In addition, the level of fine granularity in the objects' positions encoded between subjects correlated with posterior hippocampal activation. For the anterior hippocampus increased activation was observed for coarse-grained representations as compared to failed encoding. Activation in anterior hippocampus correlated with the number of environments in which the objects positions were remembered when permitting a coarse representation of positions. In the entorhinal cortex, activation in the posterior part correlated with level of fine granularity for the objects' positions encoded between subjects, and activation in the posterior and intermediate entorhinal cortex increased for medium-grained representations. This demonstrates directly that positional granularity is represented in a graded manner along the anterior-posterior axis of the human hippocampus, and to some extent entorhinal cortex, with most fine-grained positional representations posteriorly.
Collapse
Affiliation(s)
- Hallvard Røe Evensmoen
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | | | | | | | | |
Collapse
|
721
|
Kondo H, Witter MP. Topographic organization of orbitofrontal projections to the parahippocampal region in rats. J Comp Neurol 2014; 522:772-93. [PMID: 23897637 DOI: 10.1002/cne.23442] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 11/12/2022]
Abstract
The parahippocampal region, which comprises the perirhinal, postrhinal, and entorhinal cortices, as well as the pre- and parasubiculum, receives inputs from several association cortices and provides the major cortical input to the hippocampus. This study examined the topographic organization of projections from the orbitofrontal cortex (OFC) to the parahippocampal region in rats by injecting anterograde tracers, biotinylated dextran amine (BDA) and Phaseolus vulgaris-leucoagglutinin (PHA-L), into four subdivisions of OFC. The rostral portion of the perirhinal cortex receives strong projections from the medial (MO), ventral (VO), and ventrolateral (VLO) orbitofrontal areas and the caudal portion of lateral orbitofrontal area (LO). These projections terminate in the dorsal bank and fundus of the rhinal sulcus. In contrast, the postrhinal cortex receives a strong projection specifically from VO. All four subdivisions of OFC give rise to projections to the dorsolateral parts of the lateral entorhinal cortex (LEC), preferentially distributing to more caudal levels of LEC. The medial entorhinal cortex (MEC) receives moderate input from VO and weak projections from MO, VLO, and LO. The presubiculum receives strong projections from caudal VO but only weak projections from other OFC regions. As for the laminar distribution of projections, axons originating from OFC terminate more densely in upper layers (layers I-III) than in deep layers in the parahippocampal region. These results thus show a striking topographic organization of OFC-to-parahippocampal connectivity. Whereas LO, VLO, VO, and MO interact with perirhinal-LEC circuits, the interactions with postrhinal cortex, presubiculum, and MEC are mediated predominantly through the projections of VO.
Collapse
Affiliation(s)
- Hideki Kondo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, 7489, Trondheim, Norway
| | | |
Collapse
|
722
|
Abstract
The study of spatial cognition has provided considerable insight into how animals (including humans) navigate on the horizontal plane. However, the real world is three-dimensional, having a complex topography including both horizontal and vertical features, which presents additional challenges for representation and navigation. The present article reviews the emerging behavioral and neurobiological literature on spatial cognition in non-horizontal environments. We suggest that three-dimensional spaces are represented in a quasi-planar fashion, with space in the plane of locomotion being computed separately and represented differently from space in the orthogonal axis - a representational structure we have termed "bicoded." We argue that the mammalian spatial representation in surface-travelling animals comprises a mosaic of these locally planar fragments, rather than a fully integrated volumetric map. More generally, this may be true even for species that can move freely in all three dimensions, such as birds and fish. We outline the evidence supporting this view, together with the adaptive advantages of such a scheme.
Collapse
|
723
|
Aggleton JP, Nelson AJD. Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits? Neurosci Biobehav Rev 2014; 54:131-44. [PMID: 25195980 PMCID: PMC4462592 DOI: 10.1016/j.neubiorev.2014.08.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/07/2014] [Accepted: 08/27/2014] [Indexed: 12/30/2022]
Abstract
A dual hypothesis is introduced to explain the importance of these thalamic nuclei. ATN are vital for multiple spatial functions. ATN damage disrupts processing across distal limbic sites. Distal pathology caused by ATN damage disrupts plasticity and metabolic activity. ATN lesion effects reflect both their intrinsic importance and distal dysfunctions.
Lesions of the rodent anterior thalamic nuclei cause severe deficits to multiple spatial learning tasks. Possible explanations for these effects are examined, with particular reference to T-maze alternation. Anterior thalamic lesions not only impair allocentric place learning but also disrupt other spatial processes, including direction learning, path integration, and relative length discriminations, as well as aspects of nonspatial learning, e.g., temporal discriminations. Working memory tasks, such as T-maze alternation, appear particularly sensitive as they combine an array of these spatial and nonspatial demands. This sensitivity partly reflects the different functions supported by individual anterior thalamic nuclei, though it is argued that anterior thalamic lesion effects also arise from covert pathology in sites distal to the thalamus, most critically in the retrosplenial cortex and hippocampus. This two-level account, involving both local and distal lesion effects, explains the range and severity of the spatial deficits following anterior thalamic lesions. These findings highlight how the anterior thalamic nuclei form a key component in a series of interdependent systems that support multiple spatial functions.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, South Glamorganshire, Wales, UK
| | - Andrew J D Nelson
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, South Glamorganshire, Wales, UK.
| |
Collapse
|
724
|
Abstract
The dentate gyrus serves as a gateway to the hippocampus, filtering and processing sensory inputs as an animal explores its environment. The hilus occupies a strategic position within the dentate gyrus from which it can play a pivotal role in these functions. Inputs from dentate granule cells converge on the hilus, and excitatory hilar mossy cells redistribute these signals back to granule cells to transform a pattern of cortical input into a new pattern of output to the hippocampal CA3 region. Using voltage-sensitive dye to image electrical activity in rat hippocampal slices, we explored how long-term potentiation (LTP) of different excitatory synapses modifies the flow of information. Theta burst stimulation of the perforant path potentiated responses throughout the molecular layer, but left responses in the CA3 region unchanged. By contrast, theta burst stimulation of the granule cell layer potentiated responses throughout the molecular layer, as well as in the CA3 region. Theta burst stimulation of the granule cell layer potentiated CA3 responses not only to granule cell layer stimulation but also to perforant path stimulation. Potentiation of responses in the CA3 region reflected NMDA receptor-dependent LTP of upstream synapses between granule cells and mossy cells, with no detectable contribution from NMDA receptor-independent LTP of local CA3 mossy fiber synapses. Potentiation of transmission to the CA3 region required LTP in both granule cell→mossy cell and mossy cell→granule cell synapses. This bidirectional plasticity enables hilar circuitry to regulate the flow of information through the dentate gyrus and on to the hippocampus.
Collapse
|
725
|
Unichenko P, Yang JW, Luhmann HJ, Kirischuk S. Glutamatergic system controls synchronization of spontaneous neuronal activity in the murine neonatal entorhinal cortex. Pflugers Arch 2014; 467:1565-1575. [PMID: 25163767 DOI: 10.1007/s00424-014-1600-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/16/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
Synchronized spontaneous neuronal activity is a characteristic feature of the developing brain. Rhythmic network discharges in the neonatal medial entorhinal cortex (mEC) in vitro depend on activation of ionotropic glutamate receptors, but spontaneously active neurons are required for their initiation. Field potential recordings revealed synchronized neuronal activity in the mEC in vivo developmentally earlier than in vitro. We suggested that not only ionotropic receptors, but also other components of the glutamatergic system modulate neuronal activity in the mEC. Ca(2+) imaging was used to record neuronal activity in neonatal murine brain slices. Two types of spontaneous events were distinguished: global synchronous discharges (synchronous activity) and asynchronously (not synchronized with global discharges) active cells (asynchronous activity). AMPA receptor blockade strongly reduced the frequency of synchronous discharges, while NMDA receptor inhibition was less effective. AMPA and NMDA receptor blockade or activation of group 2/3 metabotropic glutamate receptors (mGluR2/3) completely suppressed synchronous discharges and increased the number of active cells. Blockade of glutamate transporters with DL-TBOA led to NMDA receptor-mediated hyper-synchronization of neuronal activity. Inhibition of NMDA receptors in the presence of DL-TBOA failed to restore synchronous discharges. The latter were partially reestablished only after blockade of mGluR2/3. We conclude that the glutamatergic system can influence neuronal activity via different receptors/mechanisms. As both NMDA and mGluR2/3 receptors have a high affinity for glutamate, changes in extracellular glutamate levels resulting for instance from glutamate transporter malfunction can balance neuronal activity in the mEC, affecting in turn synapse and network formation.
Collapse
Affiliation(s)
- Petr Unichenko
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Jeng-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| |
Collapse
|
726
|
Davis VA, Holbrook RI, Schumacher S, Guilford T, de Perera TB. Three-dimensional spatial cognition in a benthic fish, Corydoras aeneus. Behav Processes 2014; 109 Pt B:151-6. [PMID: 25158070 DOI: 10.1016/j.beproc.2014.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 08/07/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
Abstract
The way animals move through space is likely to affect the way they learn and remember spatial information. For example, a pelagic fish, Astyanax fasciatus, moves freely in vertical and horizontal space and encodes information from both dimensions with similar accuracy. Benthic fish can also move with six degrees of freedom, but spend much of their time travelling over the substrate; hence they might be expected to prioritise the horizontal dimension. To understand how benthic fish encode and deploy three-dimensional spatial information we used a fully rotational Y-maze to test whether Corydoras aeneus (i) encode space as an integrated three-dimensional unit or as separate elements, by testing whether they can decompose a three-dimensional trajectory into its vertical and horizontal components, and (ii) whether they prioritise vertical or horizontal information when the two conflict. In contradiction to the expectation generated by our hypothesis, our results suggest that C. aeneus are better at extracting vertical information than horizontal information from a three-dimensional trajectory, suggesting that the vertical axis is learned and remembered robustly. Our results also showed that C. aeneus prioritise vertical information when it conflicts with horizontal information. From these results, we infer that benthic fish attend preferentially to a cue unique to the vertical axis, and we suggest that this cue is hydrostatic pressure.
Collapse
Affiliation(s)
- V A Davis
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - R I Holbrook
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - S Schumacher
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - T Guilford
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - T Burt de Perera
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, United Kingdom.
| |
Collapse
|
727
|
Mattson MP. Superior pattern processing is the essence of the evolved human brain. Front Neurosci 2014; 8:265. [PMID: 25202234 PMCID: PMC4141622 DOI: 10.3389/fnins.2014.00265] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023] Open
Abstract
Humans have long pondered the nature of their mind/brain and, particularly why its capacities for reasoning, communication and abstract thought are far superior to other species, including closely related anthropoids. This article considers superior pattern processing (SPP) as the fundamental basis of most, if not all, unique features of the human brain including intelligence, language, imagination, invention, and the belief in imaginary entities such as ghosts and gods. SPP involves the electrochemical, neuronal network-based, encoding, integration, and transfer to other individuals of perceived or mentally-fabricated patterns. During human evolution, pattern processing capabilities became increasingly sophisticated as the result of expansion of the cerebral cortex, particularly the prefrontal cortex and regions involved in processing of images. Specific patterns, real or imagined, are reinforced by emotional experiences, indoctrination and even psychedelic drugs. Impaired or dysregulated SPP is fundamental to cognitive and psychiatric disorders. A broader understanding of SPP mechanisms, and their roles in normal and abnormal function of the human brain, may enable the development of interventions that reduce irrational decisions and destructive behaviors.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program Baltimore, MD, USA ; Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
728
|
Abstract
The role of the hippocampus in spatial cognition is incontrovertible yet controversial. Place cells, initially thought to be location-specifiers, turn out to respond promiscuously to a wide range of stimuli. Here we test the idea, which we have recently demonstrated in a computational model, that the hippocampal place cells may ultimately be interested in a space's topological qualities (its connectivity) more than its geometry (distances and angles); such higher-order functioning would be more consistent with other known hippocampal functions. We recorded place cell activity in rats exploring morphing linear tracks that allowed us to dissociate the geometry of the track from its topology. The resulting place fields preserved the relative sequence of places visited along the track but did not vary with the metrical features of the track or the direction of the rat's movement. These results suggest a reinterpretation of previous studies and new directions for future experiments.
Collapse
Affiliation(s)
- Yuri Dabaghian
- The Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States Baylor College of Medicine, Houston, United States
| | - Vicky L Brandt
- The Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States Baylor College of Medicine, Houston, United States
| | - Loren M Frank
- Sloan-Swartz Center for Theoretical Neurobiology, W.M. Keck Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States Department of Physiology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
729
|
Petrantonakis PC, Poirazi P. A compressed sensing perspective of hippocampal function. Front Syst Neurosci 2014; 8:141. [PMID: 25152718 PMCID: PMC4126371 DOI: 10.3389/fnsys.2014.00141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/22/2014] [Indexed: 01/05/2023] Open
Abstract
Hippocampus is one of the most important information processing units in the brain. Input from the cortex passes through convergent axon pathways to the downstream hippocampal subregions and, after being appropriately processed, is fanned out back to the cortex. Here, we review evidence of the hypothesis that information flow and processing in the hippocampus complies with the principles of Compressed Sensing (CS). The CS theory comprises a mathematical framework that describes how and under which conditions, restricted sampling of information (data set) can lead to condensed, yet concise, forms of the initial, subsampled information entity (i.e., of the original data set). In this work, hippocampus related regions and their respective circuitry are presented as a CS-based system whose different components collaborate to realize efficient memory encoding and decoding processes. This proposition introduces a unifying mathematical framework for hippocampal function and opens new avenues for exploring coding and decoding strategies in the brain.
Collapse
Affiliation(s)
| | - Panayiota Poirazi
- Computational Biology Lab, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-HellasHeraklion, Greece
| |
Collapse
|
730
|
Miller AMP, Vedder LC, Law LM, Smith DM. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition. Front Hum Neurosci 2014; 8:586. [PMID: 25140141 PMCID: PMC4122222 DOI: 10.3389/fnhum.2014.00586] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/15/2014] [Indexed: 11/13/2022] Open
Abstract
Spatial navigation requires memory representations of landmarks and other navigation cues. The retrosplenial cortex (RSC) is anatomically positioned between limbic areas important for memory formation, such as the hippocampus (HPC) and the anterior thalamus, and cortical regions along the dorsal stream known to contribute importantly to long-term spatial representation, such as the posterior parietal cortex. Damage to the RSC severely impairs allocentric representations of the environment, including the ability to derive navigational information from landmarks. The specific deficits seen in tests of human and rodent navigation suggest that the RSC supports allocentric representation by processing the stable features of the environment and the spatial relationships among them. In addition to spatial cognition, the RSC plays a key role in contextual and episodic memory. The RSC also contributes importantly to the acquisition and consolidation of long-term spatial and contextual memory through its interactions with the HPC. Within this framework, the RSC plays a dual role as part of the feedforward network providing sensory and mnemonic input to the HPC and as a target of the hippocampal-dependent systems consolidation of long-term memory.
Collapse
Affiliation(s)
- Adam M P Miller
- Department of Psychology, Cornell University Ithaca, NY, USA
| | | | - L Matthew Law
- Department of Psychology, Cornell University Ithaca, NY, USA
| | - David M Smith
- Department of Psychology, Cornell University Ithaca, NY, USA
| |
Collapse
|
731
|
Learning ability in bank voles selected for high aerobic metabolism, predatory behaviour and herbivorous capability. Physiol Behav 2014; 135:143-51. [DOI: 10.1016/j.physbeh.2014.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/19/2014] [Accepted: 06/10/2014] [Indexed: 11/21/2022]
|
732
|
Mice use start point orientation to solve spatial problems in a water T-maze. Anim Cogn 2014; 18:195-203. [PMID: 25060577 DOI: 10.1007/s10071-014-0789-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
Behavioral work has demonstrated that rats solve many spatial problems using a conditional strategy based on orientation at the start point. The present study assessed whether mice use a similar strategy and whether the strategy would be affected by the poorer directional sensitivity of mice. In Experiment 1, mice were trained on a response, a direction or one of two place problems to locate a hidden platform in a water T-maze located in two positions. In the response task, mice made a right (or left) turn from two different start points located 180° apart. In the direction task, the maze was shifted (to the left or right) and the start points rotated by 180° across trials, but the platform was in a constant direction relative to room cues. In the translation place task, the mice were trained to locate the platform in a fixed location relative to extra-maze cues when the maze was shifted across trials, but the orientation of the start arm did not change. In the rotation place task, the mice were trained to locate the platform in a fixed location when the maze was shifted and the start points rotated by 90° across trials. As previously reported with rats, mice had difficulty solving the translation place problem compared with the other three problems. Unlike rats, mice learned the direction problem in significantly fewer trials than the rotation problem. This difference between acquisition of the direction and rotation problems was replicated in Experiment 2. The difficulty mice have in discriminating start point orientations that are 90° apart as opposed to 180° apart can be attributed to the broader firing ranges of HD cells in mice compared with rats.
Collapse
|
733
|
Hitier M, Besnard S, Smith PF. Vestibular pathways involved in cognition. Front Integr Neurosci 2014; 8:59. [PMID: 25100954 PMCID: PMC4107830 DOI: 10.3389/fnint.2014.00059] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/30/2014] [Indexed: 01/30/2023] Open
Abstract
Recent discoveries have emphasized the role of the vestibular system in cognitive processes such as memory, spatial navigation and bodily self-consciousness. A precise understanding of the vestibular pathways involved is essential to understand the consequences of vestibular diseases for cognition, as well as develop therapeutic strategies to facilitate recovery. The knowledge of the “vestibular cortical projection areas”, defined as the cortical areas activated by vestibular stimulation, has dramatically increased over the last several years from both anatomical and functional points of view. Four major pathways have been hypothesized to transmit vestibular information to the vestibular cortex: (1) the vestibulo-thalamo-cortical pathway, which probably transmits spatial information about the environment via the parietal, entorhinal and perirhinal cortices to the hippocampus and is associated with spatial representation and self-versus object motion distinctions; (2) the pathway from the dorsal tegmental nucleus via the lateral mammillary nucleus, the anterodorsal nucleus of the thalamus to the entorhinal cortex, which transmits information for estimations of head direction; (3) the pathway via the nucleus reticularis pontis oralis, the supramammillary nucleus and the medial septum to the hippocampus, which transmits information supporting hippocampal theta rhythm and memory; and (4) a possible pathway via the cerebellum, and the ventral lateral nucleus of the thalamus (perhaps to the parietal cortex), which transmits information for spatial learning. Finally a new pathway is hypothesized via the basal ganglia, potentially involved in spatial learning and spatial memory. From these pathways, progressively emerges the anatomical network of vestibular cognition.
Collapse
Affiliation(s)
- Martin Hitier
- Inserm, U 1075 COMETE Caen, France ; Department of Pharmacology and Toxicology, Brain Health Research Center, University of Otago Dunedin, New Zealand ; Department of Anatomy, UNICAEN Caen, France ; Department of Otolaryngology Head and Neck Surgery, CHU de Caen Caen, France
| | | | - Paul F Smith
- Department of Pharmacology and Toxicology, Brain Health Research Center, University of Otago Dunedin, New Zealand
| |
Collapse
|
734
|
Abstract
Hippocampal place neurons not only represent current location, but fire in sequences that appear to simulate past and future spatial trajectories. A recent study has found that the firing sequences match the structure of a complex maze, suggesting that the structure of the environment is encoded by the place system, perhaps to aid navigational planning.
Collapse
Affiliation(s)
- Kate Jeffery
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London WC1H 0AP, UK.
| | - Giulio Casali
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London WC1H 0AP, UK
| |
Collapse
|
735
|
Hassanpoor H, Fallah A, Raza M. Mechanisms of hippocampal astrocytes mediation of spatial memory and theta rhythm by gliotransmitters and growth factors. Cell Biol Int 2014; 38:1355-66. [PMID: 24947407 DOI: 10.1002/cbin.10326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/20/2014] [Indexed: 11/10/2022]
Abstract
Our knowledge about encoding and maintenance of spatial memory emphasizes the integrated functional role of the grid cells and the place cells of the hippocampus in the generation of theta rhythm in spatial memory formation. However, the role of astrocytes in these processes is often underestimated in their contribution to the required structural and functional characteristics of hippocampal neural network operative in spatial memory. We show that hippocampal astrocytes, by the secretion of gliotransmitters, such as glutamate, d-serine, and ATP and growth factors such as BDNF and by the expression of receptors and channels such as those of TNFα and aquaporin, have several diverse fuctions in spatial memory. We specifically focus on the role of astrocytes on five phases of spatial memory: (1) theta rhythm generation, (2) theta phase precession, (3) formation of spatial memory by mapping data of entorhinal grid cells into the place cells, (4) storage of spatial information, and (5) maintenance of spatial memory. Finally, by reviewing the literature, we propose specific mechanisms mentioned in the form of a hypothesis suggesting that astrocytes are important in spatial memory formation.
Collapse
Affiliation(s)
- Hossein Hassanpoor
- Department of Bioelectrics, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, IR, Iran
| | | | | |
Collapse
|
736
|
|
737
|
Abstract
One of the grand challenges in neuroscience is to comprehend neural computation in the association cortices, the parts of the cortex that have shown the largest expansion and differentiation during mammalian evolution and that are thought to contribute profoundly to the emergence of advanced cognition in humans. In this Review, we use grid cells in the medial entorhinal cortex as a gateway to understand network computation at a stage of cortical processing in which firing patterns are shaped not primarily by incoming sensory signals but to a large extent by the intrinsic properties of the local circuit.
Collapse
|
738
|
Redila V, Kinzel C, Jo YS, Puryear CB, Mizumori SJY. A role for the lateral dorsal tegmentum in memory and decision neural circuitry. Neurobiol Learn Mem 2014; 117:93-108. [PMID: 24910282 DOI: 10.1016/j.nlm.2014.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 05/24/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
Abstract
A role for the hippocampus in memory is clear, although the mechanism for its contribution remains a matter of debate. Converging evidence suggests that hippocampus evaluates the extent to which context-defining features of events occur as expected. The consequence of mismatches, or prediction error, signals from hippocampus is discussed in terms of its impact on neural circuitry that evaluates the significance of prediction errors: Ventral tegmental area (VTA) dopamine cells burst fire to rewards or cues that predict rewards (Schultz, Dayan, & Montague, 1997). Although the lateral dorsal tegmentum (LDTg) importantly controls dopamine cell burst firing (Lodge & Grace, 2006) the behavioral significance of the LDTg control is not known. Therefore, we evaluated LDTg functional activity as rats performed a spatial memory task that generates task-dependent reward codes in VTA (Jo, Lee, & Mizumori, 2013; Puryear, Kim, & Mizumori, 2010) and another VTA afferent, the pedunculopontine nucleus (PPTg, Norton, Jo, Clark, Taylor, & Mizumori, 2011). Reversible inactivation of the LDTg significantly impaired choice accuracy. LDTg neurons coded primarily egocentric information in the form of movement velocity, turning behaviors, and behaviors leading up to expected reward locations. A subset of the velocity-tuned LDTg cells also showed high frequency bursts shortly before or after reward encounters, after which they showed tonic elevated firing during consumption of small, but not large, rewards. Cells that fired before reward encounters showed stronger correlations with velocity as rats moved toward, rather than away from, rewarded sites. LDTg neural activity was more strongly regulated by egocentric behaviors than that observed for PPTg or VTA cells that were recorded by Puryear et al. and Norton et al. While PPTg activity was uniquely sensitive to ongoing sensory input, all three regions encoded reward magnitude (although in different ways), reward expectation, and reward encounters. Only VTA encoded reward prediction errors. LDTg may inform VTA about learned goal-directed movement that reflects the current motivational state, and this in turn may guide VTA determination of expected subjective goal values. When combined it is clear the LDTg and PPTg provide only a portion of the information that dopamine cells need to assess the value of prediction errors, a process that is essential to future adaptive decisions and switches of cognitive (i.e. memorial) strategies and behavioral responses.
Collapse
Affiliation(s)
- Van Redila
- Department of Psychology, Box 351525, University of Washington, Seattle, WA 98195, USA
| | - Chantelle Kinzel
- Department of Psychology, Box 351525, University of Washington, Seattle, WA 98195, USA
| | - Yong Sang Jo
- Department of Psychology, Box 351525, University of Washington, Seattle, WA 98195, USA
| | - Corey B Puryear
- Department of Psychology, Box 351525, University of Washington, Seattle, WA 98195, USA
| | - Sheri J Y Mizumori
- Department of Psychology, Box 351525, University of Washington, Seattle, WA 98195, USA; Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
739
|
Zhao R, Fowler SW, Chiang ACA, Ji D, Jankowsky JL. Impairments in experience-dependent scaling and stability of hippocampal place fields limit spatial learning in a mouse model of Alzheimer's disease. Hippocampus 2014; 24:963-78. [PMID: 24752989 DOI: 10.1002/hipo.22283] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 01/17/2023]
Abstract
Impaired spatial memory characterizes many mouse models for Alzheimer's disease, but we understand little about how this trait arises. Here, we use a transgenic model of amyloidosis to examine the relationship between behavioral performance in tests of spatial navigation and the function of hippocampal place cells. We find that amyloid precursor protein (APP) mice require considerably more training than controls to reach the same level of performance in a water maze task, and recall the trained location less well 24 h later. At a single cell level, place fields from control mice become more stable and spatially restricted with repeated exposure to a new environment, while those in APP mice improve less over time, ultimately producing a spatial code of lower resolution, accuracy, and reliability than controls. The limited refinement of place fields in APP mice likely contributes to their delayed water maze acquisition, and provides evidence for circuit dysfunction underlying cognitive impairment.
Collapse
Affiliation(s)
- Rong Zhao
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | | | | | | |
Collapse
|
740
|
Arnold AEGF, Burles F, Bray S, Levy RM, Iaria G. Differential neural network configuration during human path integration. Front Hum Neurosci 2014; 8:263. [PMID: 24808849 PMCID: PMC4010772 DOI: 10.3389/fnhum.2014.00263] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 04/09/2014] [Indexed: 11/25/2022] Open
Abstract
Path integration is a fundamental skill for navigation in both humans and animals. Despite recent advances in unraveling the neural basis of path integration in animal models, relatively little is known about how path integration operates at a neural level in humans. Previous attempts to characterize the neural mechanisms used by humans to visually path integrate have suggested a central role of the hippocampus in allowing accurate performance, broadly resembling results from animal data. However, in recent years both the central role of the hippocampus and the perspective that animals and humans share similar neural mechanisms for path integration has come into question. The present study uses a data driven analysis to investigate the neural systems engaged during visual path integration in humans, allowing for an unbiased estimate of neural activity across the entire brain. Our results suggest that humans employ common task control, attention and spatial working memory systems across a frontoparietal network during path integration. However, individuals differed in how these systems are configured into functional networks. High performing individuals were found to more broadly express spatial working memory systems in prefrontal cortex, while low performing individuals engaged an allocentric memory system based primarily in the medial occipito-temporal region. These findings suggest that visual path integration in humans over short distances can operate through a spatial working memory system engaging primarily the prefrontal cortex and that the differential configuration of memory systems recruited by task control networks may help explain individual biases in spatial learning strategies.
Collapse
Affiliation(s)
- Aiden E G F Arnold
- NeuroLab, Department of Psychology, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Ford Burles
- NeuroLab, Department of Psychology, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Signe Bray
- Departments of Radiology and Psychiatry, University of Calgary Calgary, AB, Canada ; Alberta Children's Hospital Research Institute, University of Calgary Calgary, AB, Canada
| | - Richard M Levy
- Faculty of Environmental Design, University of Calgary Calgary, AB, Canada
| | - Giuseppe Iaria
- NeuroLab, Department of Psychology, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Alberta Children's Hospital Research Institute, University of Calgary Calgary, AB, Canada ; Department of Clinical Neurosciences, University of Calgary Calgary, AB, Canada
| |
Collapse
|
741
|
Groen MR, Paulsen O, Pérez-Garci E, Nevian T, Wortel J, Dekker MP, Mansvelder HD, van Ooyen A, Meredith RM. Development of dendritic tonic GABAergic inhibition regulates excitability and plasticity in CA1 pyramidal neurons. J Neurophysiol 2014; 112:287-99. [PMID: 24760781 DOI: 10.1152/jn.00066.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Synaptic plasticity rules change during development: while hippocampal synapses can be potentiated by a single action potential pairing protocol in young neurons, mature neurons require burst firing to induce synaptic potentiation. An essential component for spike timing-dependent plasticity is the backpropagating action potential (BAP). BAP along the dendrites can be modulated by morphology and ion channel composition, both of which change during late postnatal development. However, it is unclear whether these dendritic changes can explain the developmental changes in synaptic plasticity induction rules. Here, we show that tonic GABAergic inhibition regulates dendritic action potential backpropagation in adolescent, but not preadolescent, CA1 pyramidal neurons. These developmental changes in tonic inhibition also altered the induction threshold for spike timing-dependent plasticity in adolescent neurons. This GABAergic regulatory effect on backpropagation is restricted to distal regions of apical dendrites (>200 μm) and mediated by α5-containing GABA(A) receptors. Direct dendritic recordings demonstrate α5-mediated tonic GABA(A) currents in adolescent neurons which can modulate BAPs. These developmental modulations in dendritic excitability could not be explained by concurrent changes in dendritic morphology. To explain our data, model simulations propose a distally increasing or localized distal expression of dendritic α5 tonic inhibition in mature neurons. Overall, our results demonstrate that dendritic integration and plasticity in more mature dendrites are significantly altered by tonic α5 inhibition in a dendritic region-specific and developmentally regulated manner.
Collapse
Affiliation(s)
- Martine R Groen
- Center for Neurogenomics & Cognitive Research, Department of Integrative Neurophysiology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | - Thomas Nevian
- Department of Physiology, University of Berne, Berne, Switzerland; and
| | - J Wortel
- Center for Neurogenomics & Cognitive Research, Department of Functional Genomics, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marinus P Dekker
- Center for Neurogenomics & Cognitive Research, Department of Functional Genomics, VU University Amsterdam, Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Center for Neurogenomics & Cognitive Research, Department of Integrative Neurophysiology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Arjen van Ooyen
- Center for Neurogenomics & Cognitive Research, Department of Integrative Neurophysiology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rhiannon M Meredith
- Center for Neurogenomics & Cognitive Research, Department of Integrative Neurophysiology, VU University Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
742
|
Yoder RM, Taube JS. The vestibular contribution to the head direction signal and navigation. Front Integr Neurosci 2014; 8:32. [PMID: 24795578 PMCID: PMC4001061 DOI: 10.3389/fnint.2014.00032] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/24/2014] [Indexed: 12/13/2022] Open
Abstract
Spatial learning and navigation depend on neural representations of location and direction within the environment. These representations, encoded by place cells and head direction (HD) cells, respectively, are dominantly controlled by visual cues, but require input from the vestibular system. Vestibular signals play an important role in forming spatial representations in both visual and non-visual environments, but the details of this vestibular contribution are not fully understood. Here, we review the role of the vestibular system in generating various spatial signals in rodents, focusing primarily on HD cells. We also examine the vestibular system's role in navigation and the possible pathways by which vestibular information is conveyed to higher navigation centers.
Collapse
Affiliation(s)
- Ryan M. Yoder
- Department of Psychology, Indiana University – Purdue University Fort WayneFort Wayne, IN, USA
| | - Jeffrey S. Taube
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth CollegeHanover, NH, USA
| |
Collapse
|
743
|
Brown TI, Hasselmo ME, Stern CE. A high-resolution study of hippocampal and medial temporal lobe correlates of spatial context and prospective overlapping route memory. Hippocampus 2014; 24:819-39. [PMID: 24659134 DOI: 10.1002/hipo.22273] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 03/06/2014] [Accepted: 03/20/2014] [Indexed: 11/05/2022]
Abstract
When navigating our world we often first plan or retrieve an ideal route to our goal, avoiding alternative paths that lead to other destinations. The medial temporal lobe (MTL) has been implicated in processing contextual information, sequence memory, and uniquely retrieving routes that overlap or "cross paths." However, the identity of subregions of the hippocampus and neighboring cortex that support these functions in humans remains unclear. The present study used high-resolution functional magnetic resonance imaging (hr-fMRI) in humans to test whether the CA3/DG hippocampal subfield and parahippocampal cortex are important for processing spatial context and route retrieval, and whether the CA1 subfield facilitates prospective planning of mazes that must be distinguished from alternative overlapping routes. During hr-fMRI scanning, participants navigated virtual mazes that were well-learned from prior training while also learning new mazes. Some routes learned during scanning shared hallways with those learned during pre-scan training, requiring participants to select between alternative paths. Critically, each maze began with a distinct spatial contextual Cue period. Our analysis targeted activity from the Cue period, during which participants identified the current navigational episode, facilitating retrieval of upcoming route components and distinguishing mazes that overlap. Results demonstrated that multiple MTL regions were predominantly active for the contextual Cue period of the task, with specific regions of CA3/DG, parahippocampal cortex, and perirhinal cortex being consistently recruited across trials for Cue periods of both novel and familiar mazes. During early trials of the task, both CA3/DG and CA1 were more active for overlapping than non-overlapping Cue periods. Trial-by-trial Cue period responses in CA1 tracked subsequent overlapping maze performance across runs. Together, our findings provide novel insight into the contributions of MTL subfields to processing spatial context and route retrieval, and support a prominent role for CA1 in distinguishing overlapping episodes during navigational "look-ahead" periods.
Collapse
Affiliation(s)
- Thackery I Brown
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts; Center for Memory and Brain, Boston University, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | | | | |
Collapse
|
744
|
Zhao C, Jou J, Wolff LJ, Sun H, Gage FH. Spine morphogenesis in newborn granule cells is differentially regulated in the outer and middle molecular layers. J Comp Neurol 2014; 522:2756-66. [PMID: 24610721 DOI: 10.1002/cne.23581] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 05/04/2013] [Accepted: 10/08/2013] [Indexed: 12/29/2022]
Abstract
New neurons are continuously added to the hippocampus of adult mammals. Their survival and integration into the circuitry are highly dependent on experience. Here we show that mushroom spine formation in newborn granule cells was modulated by experience and that dendritic segments in different areas of the molecular layer were differentially regulated. Specifically, spines of new neurons in the outer molecular layer of the dentate gyrus were more readily influenced by nonspatial features in the living environment. Those in the middle molecular layer were more likely to be influenced by the size of the living environment. Therefore, the activity of cortical inputs into newborn granule cells may be reflected in the formation of mushroom spines in different dendritic segments in the molecular layer.
Collapse
Affiliation(s)
- Chunmei Zhao
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037
| | | | | | | | | |
Collapse
|
745
|
Gruart A, Sánchez-Campusano R, Fernández-Guizán A, Delgado-García JM. A Differential and Timed Contribution of Identified Hippocampal Synapses to Associative Learning in Mice. Cereb Cortex 2014; 25:2542-55. [PMID: 24654258 DOI: 10.1093/cercor/bhu054] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although it is generally assumed that the hippocampus is involved in associative learning, the specific contribution of the different synapses present in its intrinsic circuit or comprising its afferents and efferents is poorly defined. We studied here activity-dependent changes in synaptic strength of 9 hippocampal synapses (corresponding to the intrinsic hippocampal circuitry and to its main inputs and outputs) during the acquisition of a trace eyeblink conditioning in behaving mice. The timing and intensity of synaptic changes across the acquisition process was determined. The evolution of these timed changes in synaptic strength indicated that their functional organization did not coincide with their sequential distribution according to anatomical criteria and connectivity. Furthermore, we explored the functional relevance of the extrinsic and intrinsic afferents to CA3 and CA1 pyramidal neurons, and evaluated the distinct input patterns to the intrinsic hippocampal circuit. Results confirm that the acquisition of a classical eyeblink conditioning is a multisynaptic process in which the contribution of each synaptic contact is different in strength, and takes place at different moments across learning. Thus, the precise and timed activation of multiple hippocampal synaptic contacts during classical eyeblink conditioning evokes a specific, dynamic map of functional synaptic states in that circuit.
Collapse
Affiliation(s)
- Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain
| | | | | | | |
Collapse
|
746
|
Takehara-Nishiuchi K. Entorhinal cortex and consolidated memory. Neurosci Res 2014; 84:27-33. [PMID: 24642278 DOI: 10.1016/j.neures.2014.02.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/19/2014] [Accepted: 02/27/2014] [Indexed: 11/15/2022]
Abstract
The entorhinal cortex is thought to support rapid encoding of new associations by serving as an interface between the hippocampus and neocortical regions. Although the entorhinal-hippocampal interaction is undoubtedly essential for initial memory acquisition, the entorhinal cortex contributes to memory retrieval even after the hippocampus is no longer necessary. This suggests that during memory consolidation additional synaptic reinforcement may take place within the cortical network, which may change the connectivity of entorhinal cortex with cortical regions other than the hippocampus. Here, I outline behavioral and physiological findings which collectively suggest that memory consolidation involves the gradual strengthening of connection between the entorhinal cortex and the medial prefrontal/anterior cingulate cortex (mPFC/ACC), a region that may permanently store the learned association. This newly formed connection allows for close interaction between the entorhinal cortex and the mPFC/ACC, through which the mPFC/ACC gains access to neocortical regions that store the content of memory. Thus, the entorhinal cortex may serve as a gatekeeper of cortical memory network by selectively interacting either with the hippocampus or mPFC/ACC depending on the age of memory. This model provides a new framework for a modification of cortical memory network during systems consolidation, thereby adding a fresh dimension to future studies on its biological mechanism.
Collapse
Affiliation(s)
- Kaori Takehara-Nishiuchi
- Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada; Neuroscience Program, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
747
|
Abstract
Most theories of navigation rely on the concept of a mental map and compass. Hippocampal place cells are neurons thought to be important for representing the mental map; these neurons become active when the animal traverses a specific location in the environment (the "place field"). Head-direction cells are found outside the hippocampus, and encode the animal's head orientation, thus implementing a neural compass. The prevailing view is that the activity of head-direction cells is not tuned to a single place, while place cells do not encode head direction. However, little work has been done to investigate in detail the possible head-directional tuning of hippocampal place cells across species. Here we addressed this by recording the activity of single neurons in the hippocampus of two evolutionarily distant bat species, Egyptian fruit bat and big brown bat, which crawled randomly in three different open-field arenas. We found that a large fraction of hippocampal neurons, in both bat species, showed conjunctive sensitivity to the animal's spatial position (place field) and to its head direction. We introduced analytical methods to demonstrate that the head-direction tuning was significant even after controlling for the behavioral coupling between position and head direction. Surprisingly, some hippocampal neurons preserved their head direction tuning even outside the neuron's place field, suggesting that "spontaneous" extra-field spikes are not noise, but in fact carry head-direction information. Overall, these findings suggest that bat hippocampal neurons can convey both map information and compass information.
Collapse
|
748
|
Rapid dynamic changes of dendritic inhibition in the dentate gyrus by presynaptic activity patterns. J Neurosci 2014; 34:1344-57. [PMID: 24453325 DOI: 10.1523/jneurosci.2566-13.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dentate gyrus (DG) serves as a primary gate to control information transfer from the cortex to the hippocampus. Activation of incoming cortical inputs results in rapid synaptic excitation followed by slow GABA-mediated (GABAergic) synaptic inhibition onto DG granule cells (GCs). GABAergic inhibitory interneurons (INs) in the DG comprise fast-spiking (FS) and non-fast-spiking (non-FS) cells. Anatomical analyses of DG INs reveal that FS cells are soma-targeting INs, whereas non-FS cells are dendrite-targeting INs. These two IN classes are differentially recruited by excitatory inputs and in turn provide exquisite spatiotemporal control over GC activity. Yet, little is known how FS and non-FS cells transform their presynaptic dynamics into varying postsynaptic response amplitudes. Using paired recordings in rat hippocampal slices, we show that inhibition in the DG is dominated by somatic GABAergic inputs during periods of sparse presynaptic activity, whereas dendritic GABAergic inputs are rapidly shifted to powerful and sustained inhibition during periods of intense presynaptic activity. The variant dynamics of dendritic inhibition is dependent on presynaptic IN subtypes and their activity patterns and is attributed to Ca(2+)-dependent increases in the probability of release and the size of the readily releasable pool. Furthermore, the degree of dynamic GABA release can be reduced by blocking voltage-gated K(+) channels, which increases the efficacy of dendrite-targeting IN output synapses during sparse firing. Such rapid dynamic modulation of dendritic inhibition may act as a frequency-dependent filter to prevent overexcitation of GC dendrites and thus set the excitatory-inhibitory synaptic balance in the DG circuits.
Collapse
|
749
|
Comprehending body language and mimics: an ERP and neuroimaging study on Italian actors and viewers. PLoS One 2014; 9:e91294. [PMID: 24608244 PMCID: PMC3948367 DOI: 10.1371/journal.pone.0091294] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/11/2014] [Indexed: 02/08/2023] Open
Abstract
In this study, the neural mechanism subserving the ability to understand people’s emotional and mental states by observing their body language (facial expression, body posture and mimics) was investigated in healthy volunteers. ERPs were recorded in 30 Italian University students while they evaluated 280 pictures of highly ecological displays of emotional body language that were acted out by 8 male and female Italian actors. Pictures were briefly flashed and preceded by short verbal descriptions (e.g., “What a bore!”) that were incongruent half of the time (e.g., a picture of a very attentive and concentrated person shown after the previous example verbal description). ERP data and source reconstruction indicated that the first recognition of incongruent body language occurred 300 ms post-stimulus. swLORETA performed on the N400 identified the strongest generators of this effect in the right rectal gyrus (BA11) of the ventromedial orbitofrontal cortex, the bilateral uncus (limbic system) and the cingulate cortex, the cortical areas devoted to face and body processing (STS, FFA EBA) and the premotor cortex (BA6), which is involved in action understanding. These results indicate that face and body mimics undergo a prioritized processing that is mostly represented in the affective brain and is rapidly compared with verbal information. This process is likely able to regulate social interactions by providing on-line information about the sincerity and trustfulness of others.
Collapse
|
750
|
Abstract
Multivariate decoding analyses are widely applied to functional magnetic resonance imaging (fMRI) data, but there is controversy over their interpretation. Orientation decoding in primary visual cortex (V1) reflects coarse-scale biases, including an over-representation of radial orientations. But fMRI responses to clockwise and counter-clockwise spirals can also be decoded. Because these stimuli are matched for radial orientation, while differing in local orientation, it has been argued that fine-scale columnar selectivity for orientation contributes to orientation decoding. We measured fMRI responses in human V1 to both oriented gratings and spirals. Responses to oriented gratings exhibited a complex topography, including a radial bias that was most pronounced in the peripheral representation, and a near-vertical bias that was most pronounced near the foveal representation. Responses to clockwise and counter-clockwise spirals also exhibited coarse-scale organization, at the scale of entire visual quadrants. The preference of each voxel for clockwise or counter-clockwise spirals was predicted from the preferences of that voxel for orientation and spatial position (i.e., within the retinotopic map). Our results demonstrate a bias for local stimulus orientation that has a coarse spatial scale, is robust across stimulus classes (spirals and gratings), and suffices to explain decoding from fMRI responses in V1.
Collapse
|