751
|
Bauernfeind F, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:787-91. [PMID: 19570822 PMCID: PMC2824855 DOI: 10.4049/jimmunol.0901363] [Citation(s) in RCA: 2319] [Impact Index Per Article: 144.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The IL-1 family cytokines are regulated on transcriptional and posttranscriptional levels. Pattern recognition and cytokine receptors control pro-IL-1beta transcription whereas inflammasomes regulate the proteolytic processing of pro-IL-1beta. The NLRP3 inflammasome, however, assembles in response to extracellular ATP, pore-forming toxins, or crystals only in the presence of proinflammatory stimuli. How the activation of gene transcription by signaling receptors enables NLRP3 activation remains elusive and controversial. In this study, we show that cell priming through multiple signaling receptors induces NLRP3 expression, which we identified to be a critical checkpoint for NLRP3 activation. Signals provided by NF-kappaB activators are necessary but not sufficient for NLRP3 activation, and a second stimulus such as ATP or crystal-induced damage is required for NLRP3 activation.
Collapse
Affiliation(s)
- Franz Bauernfeind
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Clinical Chemistry and Pharmacology, University of Bonn, 53127 Bonn, Germany
| | - Gabor Horvath
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Andrea Stutz
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Emad S. Alnemri
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Kelly MacDonald
- Division of Infectious and Immunological Diseases, Department of Pediatrics, University of British Columbia and BC's Children's Hospital, Vancouver, BC, Canada
| | - David Speert
- Division of Infectious and Immunological Diseases, Department of Pediatrics, University of British Columbia and BC's Children's Hospital, Vancouver, BC, Canada
| | - Teresa Fernandes-Alnemri
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Jianghong Wu
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Brian G. Monks
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Katherine A. Fitzgerald
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Veit Hornung
- Department of Clinical Chemistry and Pharmacology, University of Bonn, 53127 Bonn, Germany
| | - Eicke Latz
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
752
|
The RD1 locus in the Mycobacterium tuberculosis genome contributes to activation of caspase-1 via induction of potassium ion efflux in infected macrophages. Infect Immun 2009; 77:3992-4001. [PMID: 19596775 DOI: 10.1128/iai.00015-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genomic locus called "region of difference 1" (RD1) in Mycobacterium tuberculosis has been shown to contribute to the generation of host protective immunity as well as to the virulence of the bacterium. To gain insight into the molecular mechanism, we investigated the difference in the cytokine-inducing ability between H37Rv and a mutant strain deficient for RD1 (DeltaRD1). We found that RD1 is implicated in the production of caspase-1-dependent cytokines, interleukin-18 (IL-18) and IL-1beta, from infected macrophages. The expression of these cytokines was similarly induced after infection with H37Rv and DeltaRD1. However, the activation of caspase-1 was observed only in H37Rv-infected macrophages. The cytokine production and caspase-1 activation were induced independently of type I interferon receptor signaling events. We also found that the activation of caspase-1 was markedly inhibited with increasing concentrations of extracellular KCl. Furthermore, the production of IL-18 and IL-1beta and caspase-1 activation were induced independently of a P2X7 purinergic receptor, and the inability of DeltaRD1 in caspase-1 activation was compensated for by nigericin, an agent inducing the potassium ion efflux. Based on these results, we concluded that RD1 participates in caspase-1-dependent cytokine production via induction of the potassium ion efflux in infected macrophages.
Collapse
|
753
|
Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MTH, Taxman DJ, Duncan JA, Ting JPY. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. THE JOURNAL OF IMMUNOLOGY 2009; 183:2008-15. [PMID: 19587006 DOI: 10.4049/jimmunol.0900138] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bacterial infection elicits a range of beneficial as well as detrimental host inflammatory responses. Key among these responses are macrophage/monocyte necrosis, release of the proinflammatory factor high-mobility group box 1 protein (HMGB1), and induction of the cytokine IL-1. Although the control of IL-1beta has been well studied, processes that control macrophage cell death and HMGB1 release in animals are poorly understood. This study uses Klebsiella pneumonia as a model organism because it elicits all three responses in vivo. The regulation of these responses is studied in the context of the inflammasome components NLRP3 and ASC, which are important for caspase-1 activation and IL-1beta release. Using a pulmonary infection model that reflects human infection, we show that K. pneumonia-induced mouse macrophage necrosis, HMGB1, and IL-1beta release are dependent on NLRP3 and ASC. K. pneumoniae infection of mice lacking Nlrp3 results in decreased lung inflammation and reduced survival relative to control, indicating the overall protective role of this gene. Macrophage/monocyte necrosis and HMGB1 release are controlled independently of caspase-1, suggesting that the former two responses are separable from inflammasome-associated functions. These results provide critical in vivo validation that the physiologic role of NLRP3 and ASC is not limited to inflammasome formation.
Collapse
Affiliation(s)
- Stephen B Willingham
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
754
|
Waite AL, Schaner P, Richards N, Balci-Peynircioglu B, Masters SL, Brydges SD, Fox M, Hong A, Yilmaz E, Kastner DL, Reinherz EL, Gumucio DL. Pyrin Modulates the Intracellular Distribution of PSTPIP1. PLoS One 2009; 4:e6147. [PMID: 19584923 PMCID: PMC2702820 DOI: 10.1371/journal.pone.0006147] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/03/2009] [Indexed: 01/23/2023] Open
Abstract
PSTPIP1 is a cytoskeleton-associated adaptor protein that links PEST-type phosphatases to their substrates. Mutations in PSTPIP1 cause PAPA syndrome (Pyogenic sterile Arthritis, Pyoderma gangrenosum, and Acne), an autoinflammatory disease. PSTPIP1 binds to pyrin and mutations in pyrin result in familial Mediterranean fever (FMF), a related autoinflammatory disorder. Since disease-associated mutations in PSTPIP1 enhance pyrin binding, PAPA syndrome and FMF are thought to share a common pathoetiology. The studies outlined here describe several new aspects of PSTPIP1 and pyrin biology. We document that PSTPIP1, which has homology to membrane-deforming BAR proteins, forms homodimers and generates membrane-associated filaments in native and transfected cells. An extended FCH (Fes-Cip4 homology) domain in PSTPIP1 is necessary and sufficient for its self-aggregation. We further show that the PSTPIP1 filament network is dependent upon an intact tubulin cytoskeleton and that the distribution of this network can be modulated by pyrin, indicating that this is a dynamic structure. Finally, we demonstrate that pyrin can recruit PSTPIP1 into aggregations (specks) of ASC, another pyrin binding protein. ASC specks are associated with inflammasome activity. PSTPIP1 molecules with PAPA-associated mutations are recruited by pyrin to ASC specks with particularly high efficiency, suggesting a unique mechanism underlying the robust inflammatory phenotype of PAPA syndrome.
Collapse
Affiliation(s)
- Andrea L. Waite
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Philip Schaner
- Division of Radiology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Neil Richards
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Seth L. Masters
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Susannah D. Brydges
- Genetics and Genomics Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Michelle Fox
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Arthur Hong
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Engin Yilmaz
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Daniel L. Kastner
- Genetics and Genomics Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Ellis L. Reinherz
- Harvard Medical School, Laboratory of Immunology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Deborah L. Gumucio
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
755
|
Abstract
Polymorphonuclear leukocytes (PMNs) are the most abundant white cell in humans and an essential component of the innate immune system. PMNs are typically the first type of leukocyte recruited to sites of infection or areas of inflammation. Ingestion of microorganisms triggers production of reactive oxygen species and fusion of cytoplasmic granules with forming phagosomes, leading to effective killing of ingested microbes. Phagocytosis of bacteria typically accelerates neutrophil apoptosis, which ultimately promotes the resolution of infection. However, some bacterial pathogens alter PMN apoptosis to survive and thereby cause disease. Herein, we review PMN apoptosis and the ability of microorganisms to alter this important process.
Collapse
Affiliation(s)
- Adam D Kennedy
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
756
|
Lucas ME, Crider KS, Powell DR, Kapoor-Vazirani P, Vertino PM. Methylation-sensitive regulation of TMS1/ASC by the Ets factor, GA-binding protein-alpha. J Biol Chem 2009; 284:14698-709. [PMID: 19324871 PMCID: PMC2685652 DOI: 10.1074/jbc.m901104200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/23/2009] [Indexed: 11/06/2022] Open
Abstract
Epigenetic silencing involving the aberrant DNA methylation of promoter-associated CpG islands is one mechanism leading to the inactivation of tumor suppressor genes in human cancers. However, the molecular mechanisms underlying this event remains poorly understood. TMS1/ASC is a novel proapoptotic signaling factor that is subject to epigenetic silencing in human breast and other cancers. The TMS1 promoter is embedded within a CpG island that is unmethylated in normal cells and is spanned by three DNase I-hypersensitive sites (HS). Silencing of TMS1 in cancer cells is accompanied by local alterations in histone modification, remodeling of the HS, and hypermethylation of DNA. In this study, we probed the functional significance of the CpG island-specific HS. We identified a methylation-sensitive complex that bound a 55-bp intronic element corresponding to HS2. Affinity chromatography and mass spectrometry identified a component of this complex to be the GA-binding protein (GABP) alpha. Supershift analysis indicated that the GABPalpha binding partner, GABPbeta1, was also present in the complex. The HS2 element conferred a 3-fold enhancement in TMS1 promoter activity, which was dependent on both intact tandem ets binding sites and the presence of GABPalpha/beta1 in trans. GABPalpha was selectively enriched at HS2 in human cells, and its occupancy was inversely correlated with CpG island methylation. Down-regulation of GABPalpha led to a concomitant decrease in TMS1 expression. These data indicate that the intronic HS2 element acts in cis to maintain transcriptional competency at the TMS1 locus and that this activity is mediated by the ets transcription factor, GABPalpha.
Collapse
Affiliation(s)
- Mary E Lucas
- Graduate Program in Genetics and Molecular Biology, the Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
757
|
Abstract
The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1beta and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
758
|
Abstract
PURPOSE OF REVIEW The gene responsible for familial Mediterranean Fever (FMF), MEditerranean FeVer (MEFV), was identified two decades ago; however, only recent studies have shed light on its pathogenesis. This review focuses on recent studies that have led us to more fully understand FMF pathogenesis. RECENT FINDINGS The vast majority of FMF-associated mutations are located in the B30.2 (SPRY) domain, which functions as a ligand binding or a signal transduction domain, at the carboxy terminus of the protein. As a result, B30.2 mutations may lead to postponed apoptosis and inflammation due to the reduced ability of pyrin to control interleukin-1beta (IL-1beta) activation. Development of AA amyloidosis is rare in FMF patients without amyloidogenic single nucleotide polymorphisms (SNPs) (713T allele) of the SAA1 gene. High macrophage inflammatory protein-1alpha levels during FMF attacks might be responsible for the enhancement of T-cell mediated immunity in FMF. IL-1beta-511 (C/T), IL-1beta+3953 (C/T) and IL-1Ra VNTR polymorphisms were not associated with the development of amyloid in FMF patients. SUMMARY Future studies should focus on defining the impact of MEFV and other mutations on the pathological course of FMF, and to understand the exact pathophysiology of those patients who are unresponsive to colchicine, which may help to develop novel therapeutic options for the management and improvement of prognosis.
Collapse
|
759
|
Case CL, Shin S, Roy CR. Asc and Ipaf Inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila. Infect Immun 2009; 77:1981-91. [PMID: 19237518 PMCID: PMC2681768 DOI: 10.1128/iai.01382-08] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/23/2008] [Accepted: 02/12/2009] [Indexed: 12/25/2022] Open
Abstract
Caspase-1 activation is a key feature of the innate immune response of macrophages elicited by pathogens and a variety of toxins. Here, we determined the requirement for different adapter proteins involved in regulating host processes mediated by caspase-1 after macrophage infection by Legionella pneumophila. The adapter protein Asc was found to be important for caspase-1 activation during L. pneumophila infection. Activation of caspase-1 through Asc did not require the flagellin-sensing pathway involving the host nucleotide-binding domain and leucine-rich repeat-containing protein Ipaf (NLRC4). Asc-dependent caspase-1 activation was inhibited by high extracellular potassium levels, whereas Ipaf-dependent activation was unaffected by potassium treatment. Activation of caspase-1 in macrophages occurred independently of Nalp3 and proteasome activity, suggesting that a previously uncharacterized mechanism for caspase-1 activation through Asc may be triggered by L. pneumophila. Rapid pore formation and pyroptosis induced by L. pneumophila required caspase-1, Ipaf, and bacterial flagellin but occurred independently of Asc. Equivalent levels of active interleukin-18 (IL-18) were detected in the lungs of mice infected with a flagellin-deficient strain of L. pneumophila and Asc-deficient mice infected with wild-type L. pneumophila. Active IL-18 was undetectable in the lungs of Asc-deficient mice infected with an L. pneumophila flagellin mutant, indicating independent roles for Ipaf and Asc in caspase-1-mediated processing and release of IL-18 in vivo. Ipaf-dependent activation of caspase-1 restricted bacterial replication in vivo, whereas Asc was dispensable for restriction of L. pneumophila replication in mice. Thus, L. pneumophila-mediated caspase-1 activation involves the coordinate activities of inflammasomes differentially regulated by Ipaf and Asc.
Collapse
Affiliation(s)
- Christopher L Case
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| | | | | |
Collapse
|
760
|
Qu Y, Ramachandra L, Mohr S, Franchi L, Harding CV, Nunez G, Dubyak GR. P2X7 receptor-stimulated secretion of MHC class II-containing exosomes requires the ASC/NLRP3 inflammasome but is independent of caspase-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5052-62. [PMID: 19342685 PMCID: PMC2768485 DOI: 10.4049/jimmunol.0802968] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We recently reported that P2X7 receptor (P2X7R)-induced activation of caspase-1 inflammasomes is accompanied by release of MHC class II (MHC-II) protein into extracellular compartments during brief stimulation of murine macrophages with ATP. Here we demonstrate that MHC-II containing membranes released from macrophages or dendritic cells (DCs) in response to P2X7R stimulation comprise two pools of vesicles with distinct biogenesis: one pool comprises 100- to 600-nm microvesicles derived from direct budding of the plasma membrane, while the second pool is composed of 50- to 80-nm exosomes released from multivesicular bodies. ATP-stimulated release of MHC-II in these membrane fractions is observed within 15 min and results in the export of approximately 15% of the total MHC-II pool within 90 min. ATP did not stimulate MHC-II release in macrophages from P2X7R knockout mice. The inflammasome regulatory proteins, ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain) and NLRP3 (NLR family, pyrin domain containing 3), which are essential for caspase-1 activation, were also required for the P2X7R-regulated release of the exosome but not the microvesicle MHC-II pool. Treatment of bone marrow-derived macrophages with YVAD-cmk, a peptide inhibitor of caspase-1, also abrogated P2X7R-dependent MHC-II secretion. Surprisingly, however, MHC-II release in response to ATP was intact in caspase-1(-/-) macrophages. The inhibitory actions of YVAD-cmk were mimicked by the pan-caspase inhibitor zVAD-fmk and the serine protease inhibitor TPCK, but not the caspase-3 inhibitor DEVD-cho. These data suggest that the ASC/NLRP3 inflammasome complexes assembled in response to P2X7R activation involve protease effector(s) in addition to caspase-1, and that these proteases may play important roles in regulating the membrane trafficking pathways that control biogenesis and release of MHC-II-containing exosomes.
Collapse
Affiliation(s)
- Yan Qu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH
| | - Lakshmi Ramachandra
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland OH
| | - Susanne Mohr
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland OH
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH
| | - Luigi Franchi
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Clifford V. Harding
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland OH
| | - Gabriel Nunez
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - George R. Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland OH
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland OH
| |
Collapse
|
761
|
Martinon F, Mayor A, Tschopp J. The Inflammasomes: Guardians of the Body. Annu Rev Immunol 2009. [DOI: 10.1146/annurev.immunol.021908.132715 and 1=2#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1β and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Annick Mayor
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Jürg Tschopp
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
762
|
Wagner RN, Proell M, Kufer TA, Schwarzenbacher R. Evaluation of Nod-like receptor (NLR) effector domain interactions. PLoS One 2009; 4:e4931. [PMID: 19337385 PMCID: PMC2660581 DOI: 10.1371/journal.pone.0004931] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 01/29/2009] [Indexed: 11/19/2022] Open
Abstract
Members of the Nod-like receptor (NLR) family recognize intracellular pathogens and recruit a variety of effector molecules, including pro-caspases and kinases, which in turn are implicated in cytokine processing and NF-κB activation. In order to elucidate the intricate network of NLR signaling, which is still fragmentary in molecular terms, we applied comprehensive yeast two-hybrid analysis for unbiased evaluation of physical interactions between NLRs and their adaptors (ASC, CARD8) as well as kinase RIPK2 and inflammatory caspases (C1, C2, C4, C5) under identical conditions. Our results confirmed the interaction of NOD1 and NOD2 with RIPK2, and between NLRP3 and ASC, but most importantly, our studies revealed hitherto unrecognized interactions of NOD2 with members of the NLRP subfamily. We found that NOD2 specifically and directly interacts with NLRP1, NLRP3 and NLRP12. Furthermore, we observed homodimerization of the RIPK2 CARD domains and identified residues in NOD2 critical for interaction with RIPK2. In conclusion, our work provides further evidence for the complex network of protein-protein interactions underlying NLR function.
Collapse
Affiliation(s)
- Roland N. Wagner
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Martina Proell
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Thomas A. Kufer
- Institute of Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | | |
Collapse
|
763
|
Martinon F, Mayor A, Tschopp J. The Inflammasomes: Guardians of the Body. Annu Rev Immunol 2009. [DOI: 10.1146/annurev.immunol.021908.132715 or(1=2)-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1β and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Annick Mayor
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Jürg Tschopp
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
764
|
Martinon F, Mayor A, Tschopp J. The Inflammasomes: Guardians of the Body. Annu Rev Immunol 2009. [DOI: 10.1146/annurev.immunol.021908.132715 and 1=2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1β and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Annick Mayor
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Jürg Tschopp
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
765
|
Martinon F, Mayor A, Tschopp J. The Inflammasomes: Guardians of the Body. Annu Rev Immunol 2009. [DOI: 10.1146/annurev.immunol.021908.132715 and 1=2-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1β and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Annick Mayor
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Jürg Tschopp
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
766
|
Fernandes-Alnemri T, Yu JW, Wu J, Datta P, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 2009; 458:509-13. [PMID: 19158676 PMCID: PMC2862225 DOI: 10.1038/nature07710] [Citation(s) in RCA: 1452] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 12/05/2008] [Indexed: 02/08/2023]
Abstract
Host- and pathogen-associated cytoplasmic double-stranded DNA triggers the activation of a NALP3 (also known as cryopyrin and NLRP3)-independent inflammasome, which activates caspase-1 leading to maturation of pro-interleukin-1beta and inflammation. The nature of the cytoplasmic-DNA-sensing inflammasome is currently unknown. Here we show that AIM2 (absent in melanoma 2), an interferon-inducible HIN-200 family member that contains an amino-terminal pyrin domain and a carboxy-terminal oligonucleotide/oligosaccharide-binding domain, senses cytoplasmic DNA by means of its oligonucleotide/oligosaccharide-binding domain and interacts with ASC (apoptosis-associated speck-like protein containing a CARD) through its pyrin domain to activate caspase-1. The interaction of AIM2 with ASC also leads to the formation of the ASC pyroptosome, which induces pyroptotic cell death in cells containing caspase-1. Knockdown of AIM2 by short interfering RNA reduced inflammasome/pyroptosome activation by cytoplasmic DNA in human and mouse macrophages, whereas stable expression of AIM2 in the non-responsive human embryonic kidney 293T cell line conferred responsiveness to cytoplasmic DNA. Our results show that cytoplasmic DNA triggers formation of the AIM2 inflammasome by inducing AIM2 oligomerization. This study identifies AIM2 as an important inflammasome component that senses potentially dangerous cytoplasmic DNA, leading to activation of the ASC pyroptosome and caspase-1.
Collapse
Affiliation(s)
| | | | - Jianghong Wu
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Pinaki Datta
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Emad S. Alnemri
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
767
|
Huang MTH, Taxman DJ, Holley-Guthrie EA, Moore CB, Willingham SB, Madden V, Parsons RK, Featherstone GL, Arnold RR, O'Connor BP, Ting JPY. Critical role of apoptotic speck protein containing a caspase recruitment domain (ASC) and NLRP3 in causing necrosis and ASC speck formation induced by Porphyromonas gingivalis in human cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:2395-404. [PMID: 19201894 DOI: 10.4049/jimmunol.0800909] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Periodontal disease is a chronic inflammatory disorder that leads to the destruction of tooth-supporting tissue and affects 10-20 million people in the U.S. alone. The oral pathogen Porphyromonas gingivalis causes inflammatory host response leading to periodontal and other secondary inflammatory diseases. To identify molecular components that control host response to P. gingivalis in humans, roles for the NLR (NBD-LRR) protein, NLRP3 (cryopyrin, NALP3), and its adaptor apoptotic speck protein containing a C-terminal caspase recruitment domain (ASC) were studied. P. gingivalis strain A7436 induces cell death in THP1 monocytic cells and in human primary peripheral blood macrophages. This process is ASC and NLRP3 dependent and can be replicated by P. gingivalis LPS and Escherichia coli. P. gingivalis-induced cell death is caspase and IL-1 independent and exhibits morphological features consistent with necrosis including loss of membrane integrity and release of cellular content. Intriguingly, P. gingivalis-induced cell death is accompanied by the formation of ASC aggregation specks, a process not previously described during microbial infection. ASC specks are observed in P. gingivalis-infected primary human mononuclear cells and are dependent on NLRP3. This work shows that P. gingivalis causes ASC- and NLRP3-dependent necrosis, accompanied by ASC speck formation.
Collapse
Affiliation(s)
- Max Tze-Han Huang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
768
|
Bryan NB, Dorfleutner A, Rojanasakul Y, Stehlik C. Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:3173-82. [PMID: 19234215 PMCID: PMC2652671 DOI: 10.4049/jimmunol.0802367] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of caspase 1 is essential for the maturation and release of IL-1beta and IL-18 and occurs in multiprotein complexes, referred to as inflammasomes. The apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is the essential adaptor protein for recruiting pro-caspase 1 into inflammasomes, and consistently gene ablation of ASC abolishes caspase 1 activation and secretion of IL-1beta and IL-18. However, distribution of endogenous ASC has not yet been examined in detail. In the present study, we demonstrated that ASC localized primarily to the nucleus in resting human monocytes/macrophages. Upon pathogen infection, ASC rapidly redistributed to the cytosol, followed by assembly of perinuclear aggregates, containing several inflammasome components, including caspase 1 and Nod-like receptors. Prevention of ASC cytosolic redistribution completely abolished pathogen-induced inflammasome activity, which affirmed that cytosolic localization of ASC is essential for inflammasome function. Thus, our study characterized a novel mechanism of inflammasome regulation in host defense.
Collapse
Affiliation(s)
- Nicole B. Bryan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Program in Cancer Cell Biology, Health Sciences Center, West Virginia University
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
769
|
Abstract
Caspases (cysteine-dependent aspartyl-specific protease) belong to a family of cysteine proteases that mediate proteolytic events indispensable for biological phenomena such as cell death and inflammation. The first caspase was identified as an executioner of apoptotic cell death in the worm Caenorhabditis elegans. Additionally, a large number of caspases have been identified in various animals from sponges to vertebrates. Caspases are thought to play a pivotal role in apoptosis as an evolutionarily conserved function; however, the number of caspases that can be identified is distinct for each species. This indicates that species-specific functions or diversification of physiological roles has been cultivated through caspase evolution. Furthermore, recent studies suggest that caspases are also involved in inflammation and cellular differentiation in mammals. This review highlights vertebrate caspases in their universal and divergent functions and provides insight into the physiological roles of these molecules in animals.
Collapse
Affiliation(s)
- K Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
770
|
Lev-Sagie A, Prus D, Linhares IM, Lavy Y, Ledger WJ, Witkin SS. Polymorphism in a gene coding for the inflammasome component NALP3 and recurrent vulvovaginal candidiasis in women with vulvar vestibulitis syndrome. Am J Obstet Gynecol 2009; 200:303.e1-6. [PMID: 19254587 DOI: 10.1016/j.ajog.2008.10.039] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 08/14/2008] [Accepted: 10/07/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Patients with vulvar vestibulitis syndrome (VVS) and control subjects were tested for a polymorphism in the gene coding for the NALP3 component of inflammasomes, cytoplasmic structures regulating interleukin (IL)-1beta production. STUDY DESIGN DNA from 143 women with VVS and 182 control women were tested for a length polymorphism in intron 4 of the gene (CIAS1) that codes for NALP3. Vestibular tissue was examined for NALP3 expression. Whole blood cultures were tested for Candida albicans-induced IL-1beta production. RESULTS The allele 12 frequency was higher in control subjects than in the patients with VVS (P = .02). Among patients with VVS and a self-reported history of recurrent vulvovaginal candidiasis (RVVC), the allele 7 frequency was 43.9% as compared with 30.8% in patients with no history of RVVC and 26.9% in control women (P = .035 vs other patients and .001 vs control subjects). NALP3 was identified in vestibular tissue. C albicans-induced IL-1beta production was reduced in samples from women with the 7,7 genotype (P = .030). CONCLUSION Polymorphism in the CIAS1 gene may play a central role in the triggering of VVS in a subset of patients.
Collapse
|
771
|
Kang SJ, Locksley RM. The inflammasome and alum-mediated adjuvanticity. F1000 BIOLOGY REPORTS 2009; 1:15. [PMID: 20948671 PMCID: PMC2920669 DOI: 10.3410/b1-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent reports have implicated the NLRP3-associated inflammasome in the adjuvanticity of alum. Here, we summarize the major findings and ask what this may mean for improving human vaccination.
Collapse
Affiliation(s)
- Suk-Jo Kang
- Howard Hughes Medical Institute, Departments of Medicine, and Microbiology & Immunology, University of California San Francisco 513 Parnassus Avenue, S-1032B, San Francisco, CA 94143-0795 USA
| | | |
Collapse
|
772
|
Abstract
We present a general strategy for identification of conformation-specific antibodies using phage display. Different covalent probes were used to trap caspase-1 into 2 alternative conformations, termed the on-form and the off-form. These conformation-trapped forms of the protease were used as antigens in alternating rounds of selection and antiselection for antibody antigen-binding fragments (Fabs) displayed on phage. After affinity maturation, 2 Fabs were isolated with K(D) values ranging from 2 to 5 nM, and each bound to their cognate conformer 20- to 500-fold more tightly than their noncognate conformer. Kinetic analysis of the Fabs indicated that binding was conformation dependent, and that the wild-type caspase-1 sits much closer to the off-form than the on-form. Bivalent IgG forms of the Fabs were used to localize the different states in cells and revealed the activated caspase-1 is concentrated in a central structure in the cytosol, similar to what has been described as the pyroptosome. These studies demonstrate a general strategy for producing conformation-selective antibodies and show their utility for probing the distribution of caspase-1 conformational states in vitro and in cells.
Collapse
|
773
|
Abstract
Eukaryotic cells can initiate several distinct programmes of self-destruction, and the nature of the cell death process (non-inflammatory or proinflammatory) instructs responses of neighbouring cells, which in turn dictates important systemic physiological outcomes. Pyroptosis, or caspase 1-dependent cell death, is inherently inflammatory, is triggered by various pathological stimuli, such as stroke, heart attack or cancer, and is crucial for controlling microbial infections. Pathogens have evolved mechanisms to inhibit pyroptosis, enhancing their ability to persist and cause disease. Ultimately, there is a competition between host and pathogen to regulate pyroptosis, and the outcome dictates life or death of the host.
Collapse
Affiliation(s)
- Tessa Bergsbaken
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
774
|
Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Inflammation in Alzheimer's disease: Amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol 2009; 87:181-94. [DOI: 10.1016/j.pneurobio.2009.01.001] [Citation(s) in RCA: 269] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
775
|
Lim S, Hung AC, Porter AG. Focused PCR Screen Reveals p53 Dependence of Nitric Oxide-Induced Apoptosis and Up-Regulation of Maspin and Plasminogen Activator Inhibitor-1 in Tumor Cells. Mol Cancer Res 2009; 7:55-66. [DOI: 10.1158/1541-7786.mcr-08-0331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
776
|
Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. ACTA ACUST UNITED AC 2009; 206:79-87. [PMID: 19139171 PMCID: PMC2626661 DOI: 10.1084/jem.20081667] [Citation(s) in RCA: 568] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Influenza virus infection is recognized by the innate immune system through Toll like receptor (TLR) 7 and retinoic acid inducible gene I. These two recognition pathways lead to the activation of type I interferons and resistance to infection. In addition, TLR signals are required for the CD4 T cell and IgG2a, but not cytotoxic T lymphocyte, responses to influenza virus infection. In contrast, the role of NOD-like receptors (NLRs) in viral recognition and induction of adaptive immunity to influenza virus is unknown. We demonstrate that respiratory infection with influenza virus results in the activation of NLR inflammasomes in the lung. Although NLRP3 was required for inflammasome activation in certain cell types, CD4 and CD8 T cell responses, as well as mucosal IgA secretion and systemic IgG responses, required ASC and caspase-1 but not NLRP3. Consequently, ASC, caspase-1, and IL-1R, but not NLRP3, were required for protective immunity against flu challenge. Furthermore, we show that caspase-1 inflammasome activation in the hematopoietic, but not stromal, compartment was required to induce protective antiviral immunity. These results demonstrate that in addition to the TLR pathways, ASC inflammasomes play a central role in adaptive immunity to influenza virus.
Collapse
Affiliation(s)
- Takeshi Ichinohe
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
777
|
Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G, Nomenclature Committee on Cell Death 2009. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 2009; 16:3-11. [PMID: 18846107 PMCID: PMC2744427 DOI: 10.1038/cdd.2008.150] [Citation(s) in RCA: 2072] [Impact Index Per Article: 129.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Different types of cell death are often defined by morphological criteria, without a clear reference to precise biochemical mechanisms. The Nomenclature Committee on Cell Death (NCCD) proposes unified criteria for the definition of cell death and of its different morphologies, while formulating several caveats against the misuse of words and concepts that slow down progress in the area of cell death research. Authors, reviewers and editors of scientific periodicals are invited to abandon expressions like 'percentage apoptosis' and to replace them with more accurate descriptions of the biochemical and cellular parameters that are actually measured. Moreover, at the present stage, it should be accepted that caspase-independent mechanisms can cooperate with (or substitute for) caspases in the execution of lethal signaling pathways and that 'autophagic cell death' is a type of cell death occurring together with (but not necessarily by) autophagic vacuolization. This study details the 2009 recommendations of the NCCD on the use of cell death-related terminology including 'entosis', 'mitotic catastrophe', 'necrosis', 'necroptosis' and 'pyroptosis'.
Collapse
Affiliation(s)
- G Kroemer
- INSERM, U848, Villejuif F-94805, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
778
|
Cancino-Rodezno A, Porta H, Soberón M, Bravo A. Defense and death responses to pore forming toxins. Biotechnol Genet Eng Rev 2009; 26:65-82. [DOI: 10.5661/bger-26-65] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
779
|
Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol 2009; 27:621-68. [PMID: 19302049 PMCID: PMC2996236 DOI: 10.1146/annurev.immunol.25.022106.141627] [Citation(s) in RCA: 789] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The autoinflammatory diseases are characterized by seemingly unprovoked episodes of inflammation, without high-titer autoantibodies or antigen-specific T cells. The concept was proposed ten years ago with the identification of the genes underlying hereditary periodic fever syndromes. This nosology has taken root because of the dramatic advances in our knowledge of the genetic basis of both mendelian and complex autoinflammatory diseases, and with the recognition that these illnesses derive from genetic variants of the innate immune system. Herein we propose an updated classification scheme based on the molecular insights garnered over the past decade, supplanting a clinical classification that has served well but is opaque to the genetic, immunologic, and therapeutic interrelationships now before us. We define six categories of autoinflammatory disease: IL-1beta activation disorders (inflammasomopathies), NF-kappaB activation syndromes, protein misfolding disorders, complement regulatory diseases, disturbances in cytokine signaling, and macrophage activation syndromes. A system based on molecular pathophysiology will bring greater clarity to our discourse while catalyzing new hypotheses both at the bench and at the bedside.
Collapse
Affiliation(s)
- Seth L. Masters
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Anna Simon
- Department of General Internal Medicine, Radboud University Nijmegen Medical Center, The Netherlands
| | - Ivona Aksentijevich
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel L. Kastner
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
780
|
Kim MJ, Yoo JY. Active caspase-1-mediated secretion of retinoic acid inducible gene-I. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7324-31. [PMID: 18981155 DOI: 10.4049/jimmunol.181.10.7324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Caspase-1 is an inflammatory caspase that controls the activation and secretion of the inflammatory cytokines, IL-1beta and IL-18. We observed that cellular levels of retinoic acid-inducible gene-I (RIG-I) were enhanced when the pan-caspase inhibitor Z-VAD-fmk or caspase-1-specific inhibitor Z-WEHD-fmk blocked caspase activity. Overexpression of caspase-1 reduced cellular levels of RIG-I and inhibited RIG-I-mediated signaling activity. Enzymatic activity of caspase-1 was necessary to control RIG-I, although it was not a substrate of proteolytic cleavage by caspase-1. Caspase-1 physically interacted with full length RIG-I, but not with mutant forms lacking either the amino- or carboxyl-terminal domains. RIG-I was present in the supernatant of cells transfected with active caspase-1 but not with caspase-4. Stimulating cells with LPS and ATP also induced secretion of endogenous RIG-I in macrophages. Our data suggest a novel mechanism that negatively regulates RIG-I-mediated signaling activity via caspase-1-dependent secretion of RIG-I protein.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | | |
Collapse
|
781
|
Ichinohe T, Iwasaki A, Hasegawa H. Innate sensors of influenza virus: clues to developing better intranasal vaccines. Expert Rev Vaccines 2008; 7:1435-45. [PMID: 18980544 PMCID: PMC2724183 DOI: 10.1586/14760584.7.9.1435] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mucosal immunity acquired by natural infection with influenza viruses at the respiratory tract is more effective and cross-protective against subsequent variant virus infection than systemic immunity induced by parenteral immunization with inactivated vaccines. To develop an effective influenza vaccine, it is beneficial to mimic the process of natural infection that bridges innate and adaptive immune systems. The innate immune system that recognizes influenza virus infection consists of several classes of pattern-recognition receptors, including the Toll-like receptors, the retinoic acid-inducible gene-I-like receptors and the NOD-like receptors. Here, we review our current understanding of the mechanism of innate recognition of influenza and how the signals emanating from the innate sensors control adaptive immunity. Further, we discuss the potential roles of these receptors in developing intranasal influenza vaccines.
Collapse
Affiliation(s)
- Takeshi Ichinohe
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA Tel.: +1 203 785 7662 Fax: +1 203 785 4972
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA Tel.: +1 203 785 2919 Fax: +1 203 785 4972
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan Tel.: +81 425 610 771 Fax: +81 425 616 572
| |
Collapse
|
782
|
Yu HB, Finlay BB. The caspase-1 inflammasome: a pilot of innate immune responses. Cell Host Microbe 2008; 4:198-208. [PMID: 18779046 DOI: 10.1016/j.chom.2008.08.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/19/2008] [Indexed: 02/06/2023]
Abstract
The inflammasome is a large multiprotein complex whose assembly leads to the activation of caspase-1, which promotes the maturation of proinflammatory cytokines interleukin-1beta (IL-1beta) and IL-18. Proteins encoded by the nucleotide-binding domain and leucine-rich repeat (NLR) containing gene family form the central components of inflammasomes and act as intracellular sensors to detect cytosolic microbial components and "danger" signals (such as ATP and toxins). The inflammasome not only plays a pivotal role in innate immune responses toward pathogens but also mediates the activity of aluminum adjuvants. Thus, the inflammasome and associated signaling pathways are attractive targets for new therapeutics and vaccines.
Collapse
Affiliation(s)
- Hong Bing Yu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | |
Collapse
|
783
|
Salminen A, Ojala J, Suuronen T, Kaarniranta K, Kauppinen A. Amyloid-beta oligomers set fire to inflammasomes and induce Alzheimer's pathology. J Cell Mol Med 2008; 12:2255-62. [PMID: 18793350 PMCID: PMC4514104 DOI: 10.1111/j.1582-4934.2008.00496.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Genetic and molecular studies have confirmed the central role of amyloid-β production and fibrillation in the pathogenesis of Alzheimer's disease (AD). However, the pathological pathways from amyloid-β peptide oligomerization to the major pathological hallmarks of AD, such as neurofibrillary tangles, inflammation and loss of cholinergic neurons, are largely unknown. The innate immunity defence system utilizes pattern recognition receptors to respond to a variety of danger- and pathogen-associated molecular structures. Amyloid-β oligomers and fibrils and their cellular effects can activate the innate immunity defence and induce inflammatory and apoptotic responses in human brain. Amyloid-β oligomers can interfere with many aspects of neuronal membrane functions and can evoke potassium (K+) efflux from neurons. A low K+ concentration is a potent activator for the NALP1 inflammasomes, which then stimulate caspase-1 to cleave the proforms of IL-1β and IL-18 cytokines. Interestingly, recent observations have demonstrated that amyloid-β fibrils can activate NALP3 inflammasomes Via the lysosomal damage in mouse microglia. We will review here the activation mechanisms of NALP inflammasomes in neurons and microglia and several downstream effects in brain demonstrating that toxic amyloid-β oligomers and fibrils can light afire in inflammasomes and induce Alzheimer's pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Kuopio, and Kuopio University Hospital, Kuopio, Finland.
| | | | | | | | | |
Collapse
|
784
|
Balci-Peynircioglu B, Waite AL, Schaner P, Taskiran ZE, Richards N, Orhan D, Gucer S, Ozen S, Gumucio D, Yilmaz E. Expression of ASC in renal tissues of familial mediterranean fever patients with amyloidosis: postulating a role for ASC in AA type amyloid deposition. Exp Biol Med (Maywood) 2008; 233:1324-33. [PMID: 18791131 DOI: 10.3181/0803-rm-106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Familial Mediterranean fever (FMF) is characterized by recurrent attacks of fever and serositis; in some cases, ensuing amyloidosis results in kidney damage. Treatment with colchicine reduces the frequency and severity of FMF attacks and prevents amyloidosis, although the mechanisms behind these effects are unknown. Pyrin, the protein product of the MEFV gene, interacts with ASC, a key molecule in apoptotic and inflammatory processes. ASC forms intracellular speck-like aggregates that presage cell death. Here we show that cell death after ASC speck formation is much slower in nonmyeloid cells than in myeloid cells. Additionally, we demonstrate that colchicine prevents speck formation and show that specks can survive in the extracellular space after cell death. Because we also found that ASC is expressed in renal glomeruli of patients with FMF but not in those of control patients, we posit that high local ASC expression may result in speck formation and that specks from dying cells may persist in the extracellular space where they have the potential (perhaps in association with pyrin) to nucleate amyloid. The fact that speck formation requires an intact microtubule network as shown here could potentially account for the ability of prophylactic colchicine to prevent or reverse amyloidosis in patients with FMF.
Collapse
Affiliation(s)
- Banu Balci-Peynircioglu
- Hacettepe University, Tip Fakultesi, Tibbi Biyoloji AD, Rektorluk Binasi, A Kapisi, 4. Kat, 06100 Sihhiye, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
785
|
Balci-Peynircioglu B, Waite AL, Hu C, Richards N, Staubach-Grosse A, Yilmaz E, Gumucio DL. Pyrin, product of the MEFV locus, interacts with the proapoptotic protein, Siva. J Cell Physiol 2008; 216:595-602. [PMID: 18330885 DOI: 10.1002/jcp.21435] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mutations in pyrin cause the autoinflammatory disorder familial Mediterranean fever (FMF), a syndrome characterized by sporadic and unpredictable attacks of fever and localized severe pain. Currently, it is not clear how attacks are triggered, nor why they spontaneously resolve after 2 or 3 days. In fact, the cellular function of the pyrin protein and the molecular underpinnings of its malfunction in FMF have so far eluded clear definition. The identification of pyrin-interacting proteins has the potential to increase our understanding of the cellular networks in which pyrin functions. Previous reports have established that pyrin interacts with the apoptotic protein ASC, the cytoskeletal adaptor protein PSTPIP1, the inflammatory caspase, Caspase-1 and certain forms of the cytosolic anchoring protein 14-3-3. Here, we report that pyrin also interacts with Siva, a pro-apoptotic protein first identified for its interaction with the cytosolic tail of CD27, a TNF family receptor. The interaction between pyrin and Siva involves the C-terminal B30.2/rfp/SRPY domain of pyrin and exon 1 of Siva. We show that Siva and pyrin are indeed co-expressed in human neutrophils, monocytes, and synovial cells. Furthermore, using a novel protein/protein interaction assay, we demonstrate that pyrin can recruit Siva to ASC specks, establishing a potential platform for intersection of ASC and Siva function. Finally, we show that pyrin modulates the apoptotic response to oxidative stress mediated by Siva. Thus, the Siva-pyrin interaction may be a potential target for future therapeutic strategies.
Collapse
|
786
|
Yeretssian G, Labbé K, Saleh M. Molecular regulation of inflammation and cell death. Cytokine 2008; 43:380-90. [PMID: 18703350 DOI: 10.1016/j.cyto.2008.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 06/19/2008] [Indexed: 01/01/2023]
Abstract
Cell death and innate immunity are ancient evolutionary conserved processes that utilize a dazzling number of related molecular effectors and parallel signal transduction mechanisms. The investigation of the molecular mechanisms linking the sensing of a danger signal (pathogens or tissue damage) to the induction of an inflammatory response has witnessed a renaissance in the last few years. This was initiated by the identification of pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) and more recently cytosolic Nod-like receptors (NLRs), that brought innate immunity to center stage and opened the field to the study of signal transduction pathways, adaptors and central effectors linked to PRRs. This led to the characterization of the inflammasome, a macromolecular complex, scaffolded by NLRs, that recruits and activates inflammatory caspases, which are essential effectors in inflammation and cell death responses. In this review, we describe the molecular pathways of cell death and innate immunity with a focus on recent advancements in both fields and an emphasis on the striking analogies between NLR innate immunity and mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Garabet Yeretssian
- Department of Medicine, Division of Critical Care, and Centre for the Study of Host Resistance, McGill University, Montreal, Que., Canada
| | | | | |
Collapse
|
787
|
Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 2008; 9:857-65. [PMID: 18604209 PMCID: PMC3101478 DOI: 10.1038/ni.1636] [Citation(s) in RCA: 1938] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 06/18/2008] [Indexed: 12/13/2022]
Abstract
The fibrillar peptide amyloid-beta (A beta) has a chief function in the pathogenesis of Alzheimer's disease. Interleukin 1 beta (IL-1 beta) is a key cytokine in the inflammatory response to A beta. Insoluble materials such as crystals activate the inflammasome formed by the cytoplasmic receptor NALP3, which results in the release of IL-1 beta. Here we identify the NALP3 inflammasome as a sensor of A beta in a process involving the phagocytosis of A beta and subsequent lysosomal damage and release of cathepsin B. Furthermore, the IL-1 beta pathway was essential for the microglial synthesis of proinflammatory and neurotoxic factors, and the inflammasome, caspase-1 and IL-1 beta were critical for the recruitment of microglia to exogenous A beta in the brain. Our findings suggest that activation of the NALP3 inflammasome is important for inflammation and tissue damage in Alzheimer's disease.
Collapse
Affiliation(s)
- Annett Halle
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
788
|
Intracellular DNA sensors in immunity. Curr Opin Immunol 2008; 20:383-8. [DOI: 10.1016/j.coi.2008.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 05/27/2008] [Indexed: 02/06/2023]
|
789
|
Master SS, Rampini SK, Davis AS, Keller C, Ehlers S, Springer B, Timmins GS, Sander P, Deretic V. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 2008; 3:224-32. [PMID: 18407066 DOI: 10.1016/j.chom.2008.03.003] [Citation(s) in RCA: 307] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 11/27/2007] [Accepted: 03/11/2008] [Indexed: 12/14/2022]
Abstract
Mycobacterium tuberculosis (Mtb) parasitizes host macrophages and subverts host innate and adaptive immunity. Several cytokines elicited by Mtb are mediators of mycobacterial clearance or are involved in tuberculosis pathology. Surprisingly, interleukin-1beta (IL-1beta), a major proinflammatory cytokine, has not been implicated in host-Mtb interactions. IL-1beta is activated by processing upon assembly of the inflammasome, a specialized inflammatory caspase-activating protein complex. Here, we show that Mtb prevents inflammasome activation and IL-1beta processing. An Mtb gene, zmp1, which encodes a putative Zn(2+) metalloprotease, is required for this process. Infection of macrophages with zmp1-deleted Mtb triggered activation of the inflammasome, resulting in increased IL-1beta secretion, enhanced maturation of Mtb containing phagosomes, improved mycobacterial clearance by macrophages, and lower bacterial burden in the lungs of aerosol-infected mice. Thus, we uncovered a previously masked role for IL-1beta in the control of Mtb and a mycobacterial system that prevents inflammasome and, therefore, IL-1beta activation.
Collapse
Affiliation(s)
- Sharon S Master
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
790
|
Ting JPY, Willingham SB, Bergstralh DT. NLRs at the intersection of cell death and immunity. Nat Rev Immunol 2008; 8:372-9. [PMID: 18362948 DOI: 10.1038/nri2296] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammation is a crucial element of the host response to cellular insult. Pathogen-induced inflammation includes a molecular pathway which proceeds through activation of the protease caspase-1 to the release of the inflammatory cytokines interleukin-1 (IL-1) and IL-18. Importantly, pathogens may also induce forms of cell death that have inherently pro-inflammatory features. Here, we review recent evidence demonstrating that NLR (nucleotide-binding domain, leucine-rich repeat containing) family proteins serve as a common component of both caspase-1-activated apoptotic pathways and caspase-independent necrotic pathways. Parallels are drawn between NLR protein function and the activity of structurally similar proteins involved in cell death: the apoptotic mediator APAF1 (apoptotic-protease-activating factor 1) and the plant disease resistance NBS-LRR (nucleotide-binding site leucine-rich repeats) proteins.
Collapse
Affiliation(s)
- Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA.
| | | | | |
Collapse
|
791
|
|
792
|
Hsu LC, Ali SR, McGillivray S, Tseng PH, Mariathasan S, Humke EW, Eckmann L, Powell JJ, Nizet V, Dixit VM, Karin M. A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci U S A 2008; 105:7803-8. [PMID: 18511561 PMCID: PMC2409384 DOI: 10.1073/pnas.0802726105] [Citation(s) in RCA: 301] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Indexed: 01/07/2023] Open
Abstract
NOD2, a NOD-like receptor (NLR), is an intracellular sensor of bacterial muramyl dipeptide (MDP) that was suggested to promote secretion of the proinflammatory cytokine IL-1beta. Yet, the molecular mechanism by which NOD2 can stimulate IL-1beta secretion, and its biological significance were heretofore unknown. We found that NOD2 through its N-terminal caspase recruitment domain directly binds and activates caspase-1 to trigger IL-1beta processing and secretion in MDP-stimulated macrophages, whereas the C-terminal leucine-rich repeats of NOD2 prevent caspase-1 activation in nonstimulated cells. MDP challenge induces the association of NOD2 with another NLR protein, NALP1, and gel filtration analysis revealed the formation of a complex consisting of NOD2, NALP1, and caspase-1. Importantly, Bacillus anthracis infection induces IL-1beta secretion in a manner that depended on caspase-1 and NOD2. In vitro, Anthrax lethal toxin strongly potentiated IL-1beta secretion, and that response was NOD2 and caspase-1-dependent. Thus, NOD2 plays a key role in the B. anthracis-induced inflammatory response by being a critical mediator of IL-1beta secretion.
Collapse
Affiliation(s)
- Li-Chung Hsu
- Departments of *Pharmacology and Pathology and
- Institute of Molecular Medicine, National Taiwan University, Taipei, 10617 Taiwan
| | - Syed R. Ali
- Departments of *Pharmacology and Pathology and
| | | | | | - Sanjeev Mariathasan
- Molecular Oncology Department, Genentech, Inc., South San Francisco, CA 94080
| | - Eric W. Humke
- Molecular Oncology Department, Genentech, Inc., South San Francisco, CA 94080
| | | | - Jonathan J. Powell
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge CB1 9NL, United Kingdom; and
| | - Victor Nizet
- Pediatric and Medicine, and
- **Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093
| | - Vishva M. Dixit
- Molecular Oncology Department, Genentech, Inc., South San Francisco, CA 94080
| | | |
Collapse
|
793
|
Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008; 320:674-7. [PMID: 18403674 PMCID: PMC2396588 DOI: 10.1126/science.1156995] [Citation(s) in RCA: 2078] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inhalation of airborne pollutants, such as asbestos or silica, is linked to inflammation of the lung, fibrosis, and lung cancer. How the presence of pathogenic dust is recognized and how chronic inflammatory diseases are triggered are poorly understood. Here, we show that asbestos and silica are sensed by the Nalp3 inflammasome, whose subsequent activation leads to interleukin-1beta secretion. Inflammasome activation is triggered by reactive oxygen species, which are generated by a NADPH oxidase upon particle phagocytosis. (NADPH is the reduced form of nicotinamide adenine dinucleotide phosphate.) In a model of asbestos inhalation, Nalp3-/- mice showed diminished recruitment of inflammatory cells to the lungs, paralleled by lower cytokine production. Our findings implicate the Nalp3 inflammasome in particulate matter-related pulmonary diseases and support its role as a major proinflammatory "danger" receptor.
Collapse
Affiliation(s)
- Catherine Dostert
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Virginie Pétrilli
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Robin Van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Chad Steele
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Brooke T Mossman
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Jürg Tschopp
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| |
Collapse
|
794
|
Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proc Natl Acad Sci U S A 2008; 105:4312-7. [PMID: 18337499 DOI: 10.1073/pnas.0707370105] [Citation(s) in RCA: 327] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Caspase-1 cleaves the inactive IL-1beta and IL-18 precursors into active inflammatory cytokines. In Salmonella-infected macrophages, caspase-1 also mediates a pathway of proinflammatory programmed cell death termed "pyroptosis." We demonstrate active caspase-1 diffusely distributed in the cytoplasm and localized in discrete foci within macrophages responding to either Salmonella infection or intoxication by Bacillus anthracis lethal toxin (LT). Both stimuli triggered caspase-1-dependent lysis in macrophages and dendritic cells. Activation of caspase-1 by LT required binding, uptake, and endosome acidification to mediate translocation of lethal factor (LF) into the host cell cytosol. Catalytically active LF cleaved cytosolic substrates and activated caspase-1 by a mechanism involving proteasome activity and potassium efflux. LT activation of caspase-1 is known to require the inflammasome adapter Nalp1. In contrast, Salmonella infection activated caspase-1 through an independent pathway requiring the inflammasome adapter Ipaf. These distinct mechanisms of caspase-1 activation converged on a common pathway of caspase-1-dependent cell death featuring DNA cleavage, cytokine activation, and, ultimately, cell lysis resulting from the formation of membrane pores between 1.1 and 2.4 nm in diameter and pathological ion fluxes that can be blocked by glycine. These findings demonstrate that distinct activation pathways elicit the conserved cell death effector mechanism of caspase-1-mediated pyroptosis and support the notion that this pathway of proinflammatory programmed cell death is broadly relevant to cell death and inflammation invoked by diverse stimuli.
Collapse
|
795
|
Abstract
Iimmune regulatory proteins such as CIITA, NAIP, IPAF, NOD1, NOD2, NALP1, cryopyrin/NALP3 are members of a family characterized by the presence of a nucleotide-binding domain (NBD) and leucine-rich repeats (LRR). Members of this gene family encode a protein structure similar to the NB-LRR subgroup of disease-resistance genes in plants and are involved in the sensing of pathogenic products and the regulation of cell signaling and apoptosis. Several members of this family have been associated with immunologic disorders. NOD2 for instance is associated with both Crohn's disease and Blau syndrome. A variety of different names are currently used to describe this gene family, its subfamilies and individual genes, including CATERPILLER (CLR), NOD-LRR, NACHT-LRR, CARD, NALP, NOD, PAN and PYPAF, and this lack of consistency has led to a pressing need to unify the nomenclature. Consequently, we collectively propose the family designation NLR (nucleotide-binding domain and leucine-rich repeat containing) and provide unique and standardized gene designations for all family members.
Collapse
Affiliation(s)
- Jenny P.-Y. Ting
- Lineberger Comprehensive Cancer Center Department of Microbiology-Immunology University of North Carolina Chapel Hill, NC, 27599, USA
| |
Collapse
|
796
|
Muruve DA, Pétrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 2008; 452:103-7. [PMID: 18288107 DOI: 10.1038/nature06664] [Citation(s) in RCA: 729] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Accepted: 01/04/2008] [Indexed: 02/08/2023]
Abstract
The innate immune system recognizes nucleic acids during infection and tissue damage. Whereas viral RNA is detected by endosomal toll-like receptors (TLR3, TLR7, TLR8) and cytoplasmic RIG-I and MDA5, endosomal TLR9 and cytoplasmic DAI bind DNA, resulting in the activation of nuclear factor-kappaB and interferon regulatory factor transcription factors. However, viruses also trigger pro-inflammatory responses, which remain poorly defined. Here we show that internalized adenoviral DNA induces maturation of pro-interleukin-1beta in macrophages, which is dependent on NALP3 and ASC, components of the innate cytosolic molecular complex termed the inflammasome. Correspondingly, NALP3- and ASC-deficient mice display reduced innate inflammatory responses to adenovirus particles. Inflammasome activation also occurs as a result of transfected cytosolic bacterial, viral and mammalian (host) DNA, but in this case sensing is dependent on ASC but not NALP3. The DNA-sensing pro-inflammatory pathway functions independently of TLRs and interferon regulatory factors. Thus, in addition to viral and bacterial components or danger signals in general, inflammasomes sense potentially dangerous cytoplasmic DNA, strengthening their central role in innate immunity.
Collapse
Affiliation(s)
- Daniel A Muruve
- Department of Medicine, University of Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
797
|
NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr Opin Immunol 2008; 20:3-9. [PMID: 18280719 DOI: 10.1016/j.coi.2008.01.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/15/2008] [Accepted: 01/16/2008] [Indexed: 12/20/2022]
Abstract
The NLR (nucleotide-binding domain leucine-rich repeat containing) family is found in plants and animals, and serves as crucial regulators of inflammatory and innate immune response, though its functions are likely to extend greatly beyond innate immunity, and even beyond the immune system. This review discusses recent findings regarding the function of NLR proteins in the control of IL-1, NF-kappaB, and host response to pathogens including distinct forms of cell death. The review also covers recent advances regarding the biochemical nature of NLRs, its regulation by intracellular nucleotides and extracellular ATP, by the chaperone protein HSP90, and the ubiquitin ligase-associated protein SGT1. Its role in inflammation is linked to the formation of biochemical complexes such as the inflammasome, and its roles in cell death might be linked to the proposed formation of pyroptosome and necrosome.
Collapse
|
798
|
Yang XF, Yin Y, Wang H. VASCULAR INFLAMMATION AND ATHEROGENESIS ARE ACTIVATED VIA RECEPTORS FOR PAMPs AND SUPPRESSED BY REGULATORY T CELLS. DRUG DISCOVERY TODAY. THERAPEUTIC STRATEGIES 2008; 5:125-142. [PMID: 19578482 PMCID: PMC2632857 DOI: 10.1016/j.ddstr.2008.11.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite significant advances in identifying the risk factors and elucidating atherosclerotic pathology, atherosclerosis remains the leading cause of morbidity and mortality in industrialized society. These risk factors independently or synergistically lead to chronic vascular inflammation, which is an essential requirement for the progression of atherosclerosis in patients. However, the mechanisms underlying the pathogenic link between the risk factors and atherosclerotic inflammation remain poorly defined. Significant progress has been made in two major areas, which are determination of the roles of the receptors for pathogen-associated molecular patterns (PAMPs) in initiation of vascular inflammation and atherosclerosis, and characterization of the roles of regulatory T cells in suppression of vascular inflammation and atherosclerosis. In this review, we focus on three related issues: (1) examining the recent progress in endothelial cell pathology, inflammation and their roles in atherosclerosis; (2) analyzing the roles of the receptors for pathogen-associated molecular patterns (PAMPs) in initiation of vascular inflammation and atherosclerosis; and (3) analyzing the advances in our understanding of suppression of vascular inflammation and atherosclerosis by regulatory T cells. Continuous improvement of our understanding of the risk factors involved in initiation and promotion of artherogenesis, will lead to the development of novel therapeutics for ischemic stroke and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiao-Feng Yang
- Department of Pharmacology and Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140
| | - Ying Yin
- Department of Pharmacology and Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140
| | - Hong Wang
- Department of Pharmacology and Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140
| |
Collapse
|
799
|
|
800
|
Aspenström P. Roles of F-BAR/PCH proteins in the regulation of membrane dynamics and actin reorganization. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:1-31. [PMID: 19121815 DOI: 10.1016/s1937-6448(08)01601-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Pombe Cdc15 Homology (PCH) proteins have emerged in many species as important coordinators of signaling pathways that regulate actomyosin assembly and membrane dynamics. The hallmark of the PCH proteins is the presence of a Fes/CIP4 homology-Bin/Amphiphysin/Rvsp (F-BAR) domain; therefore they are commonly referred to as F-BAR proteins. The prototype F-BAR protein, Cdc15p of Schizosaccharomyces pombe, has a role in the formation of the contractile actomyosin ring during cytokinesis. Vertebrate F-BAR proteins have an established role in binding phospholipids and they participate in membrane deformations, for instance, during the internalization of transmembrane receptors. This way the F-BAR proteins will function as linkers between the actin polymerization apparatus and the machinery regulating membrane dynamics. Interestingly, some members of the F-BAR proteins are implicated in inflammatory or neurodegenerative disorders and the observations can be expected to have clinical implications for the treatment of the diseases.
Collapse
Affiliation(s)
- Pontus Aspenström
- Ludwig Institute for Cancer Research, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|