751
|
Fujita Y, Yamaguchi A, Hata K, Endo M, Yamaguchi N, Yamashita T. Zyxin is a novel interacting partner for SIRT1. BMC Cell Biol 2009; 10:6. [PMID: 19173742 PMCID: PMC2642761 DOI: 10.1186/1471-2121-10-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 01/27/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SIRT1 is a mammalian homologue of NAD+-dependent deacetylase sirtuin family. It regulates longevity in several model organisms and is involved with cell survival, differentiation, metabolism among other processes in mammalian cells. SIRT1 modulates functions of various key targets via deacetylation. Recent studies have revealed SIRT1 protects neurons from axonal degeneration or neurodegeneration. Further, SIRT1 null mice exhibit growth retardation and developmental defects, suggesting its critical roles in neurons and development. RESULTS To identify novel binding partners for SIRT1 in the central nervous system, we performed yeast two-hybrid screening on human fetal brain cDNA library and found that zyxin is a possible binding partner. SIRT1 and zyxin transcript were both preferentially expressed in developmental mouse brain. Zyxin accumulates in the nucleus where it is co-localized with SIRT1 after treatment with leptomycin B in COS-7 cells. Furthermore, SIRT1 deacetylates zyxin, suggesting SIRT1 could interact with nuclear-accumulated zyxin and modulate its function through deacetylation. CONCLUSION Zyxin could be a novel interacting partner of SIRT1. Zyxin is an adaptor protein at focal adhesion plaque, regulating cytoskeletal dynamics and signal transduction to convey signal from the ECM (extracellular matrix) to the nucleus. Our results raise the possibility that SIRT1 regulates signal transmission from ECM to the nucleus by modulating the functions of zyxin via deacetylation.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Neurobiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
752
|
Deng CX. SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci 2009; 5:147-52. [PMID: 19173036 PMCID: PMC2631220 DOI: 10.7150/ijbs.5.147] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 01/20/2009] [Indexed: 12/13/2022] Open
Abstract
SIRT1 has been considered as a tumor promoter because of its increased expression in some types of cancers and its role in inactivating proteins that are involved in tumor suppression and DNA damage repair. However, recent studies demonstrated that SIRT1 levels are reduced in some other types of cancers, and that SIRT1 deficiency results in genetic instability and tumorigenesis, while overexpression of SIRT1 attenuates cancer formation in mice heterozygous for tumor suppressor p53 or APC. Here, I review these recent findings and discuss the possibility that activation of SIRT1 both extends lifespan and inhibits cancer formation.
Collapse
Affiliation(s)
- Chu-Xia Deng
- Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, MD 20892, USA.
| |
Collapse
|
753
|
Jergil M, Kultima K, Gustafson AL, Dencker L, Stigson M. Valproic acid-induced deregulation in vitro of genes associated in vivo with neural tube defects. Toxicol Sci 2009; 108:132-48. [PMID: 19136453 DOI: 10.1093/toxsci/kfp002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The utility of an in vitro system to search for molecular targets and markers of developmental toxicity was explored, using microarrays to detect genes susceptible to deregulation by the teratogen valproic acid (VPA) in the pluripotent mouse embryonal carcinoma cell line P19. Total RNA extracted from P19 cells cultured in the absence or presence of 1, 2.5, or 10mM VPA for 1.5, 6, or 24 h was subjected to replicated microarray analysis, using CodeLink UniSet I Mouse 20K Expression Bioarrays. A moderated F-test revealed a significant VPA response for 2972 (p < 10(-3)) array probes (19.4% of the filtered gene list), 421 of which were significant across all time points. In a core subset of VPA target genes whose expression was downregulated (68 genes) or upregulated (125 genes) with high probability (p < 10(-7)) after both 1.5 and 6 h of VPA exposure, there was a significant enrichment of the biological process Gene Ontology term transcriptional regulation among downregulated genes, and apoptosis among upregulated, and two of the downregulated genes (Folr1 and Gtf2i) have a knockout phenotype comprising exencephaly, the major malformation induced by VPA in mice. The VPA-induced gene expression response in P19 cells indicated that approximately 30% of the approximately 200 genes known from genetic mouse models to be associated with neural tube defects may be potential VPA targets, suggestive of a combined deregulation of multiple genes as a possible mechanism of VPA teratogenicity. Gene expression responses related to other known effects of VPA (histone deacetylase inhibition, G(1)-phase cell cycle arrest, induction of apoptosis) were also identified. This study indicates that toxicogenomic responses to a teratogenic compound in vitro may correlate with known in vitro and in vivo effects, and that short-time (< or =6 h) exposures in such an in vitro system could provide a useful component in mechanistic studies and screening tests in developmental toxicology.
Collapse
Affiliation(s)
- Måns Jergil
- Department of Pharmaceutical Biosciences, Division of Toxicology, Uppsala University, BMC, Box 594, SE-75124 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
754
|
|
755
|
Jiang YY, Wang HJ, Wang J, Tashiro SI, Onodera S, Ikejima T. The Protective Effect of Silibinin Against Mitomycin C–Induced Intrinsic Apoptosis in Human Melanoma A375-S2 Cells. J Pharmacol Sci 2009; 111:137-46. [DOI: 10.1254/jphs.09171fp] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
756
|
Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci 2008; 28:11500-10. [PMID: 18987186 DOI: 10.1523/jneurosci.3203-08.2008] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Memory loss is the signature feature of Alzheimer's disease, and therapies that prevent or delay its onset are urgently needed. Effective preventive strategies likely offer the greatest and most widespread benefits. Histone deacetylase (HDAC) inhibitors increase histone acetylation and enhance memory and synaptic plasticity. We evaluated the efficacy of nicotinamide, a competitive inhibitor of the sirtuins or class III NAD(+)-dependent HDACs in 3xTg-AD mice, and found that it restored cognitive deficits associated with pathology. Nicotinamide selectively reduces a specific phospho-species of tau (Thr231) that is associated with microtubule depolymerization, in a manner similar to inhibition of SirT1. Nicotinamide also dramatically increased acetylated alpha-tubulin, a primary substrate of SirT2, and MAP2c, both of which are linked to increased microtubule stability. Reduced phosphoThr231-tau was related to a reduction of monoubiquitin-conjugated tau, suggesting that this posttranslationally modified form of tau may be rapidly degraded. Overexpression of a Thr231-phospho-mimic tau in vitro increased clearance and decreased accumulation of tau compared with wild-type tau. These preclinical findings suggest that oral nicotinamide may represent a safe treatment for AD and other tauopathies, and that phosphorylation of tau at Thr231 may regulate tau stability.
Collapse
|
757
|
Sasaki T, Maier B, Koclega KD, Chruszcz M, Gluba W, Stukenberg PT, Minor W, Scrable H. Phosphorylation regulates SIRT1 function. PLoS One 2008; 3:e4020. [PMID: 19107194 PMCID: PMC2602979 DOI: 10.1371/journal.pone.0004020] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 11/21/2008] [Indexed: 11/30/2022] Open
Abstract
Background SIR2 is an NAD+-dependent deacetylase [1]–[3] implicated in the regulation of lifespan in species as diverse as yeast [4], worms [5], and flies [6]. We previously reported that the level of SIRT1, the mammalian homologue of SIR2 [7], [8], is coupled to the level of mitotic activity in cells both in vitro and in vivo[9]. Cells from long-lived mice maintained SIRT1 levels of young mice in tissues that undergo continuous cell replacement by proliferating stem cells. Changes in SIRT1 protein level were not associated with changes in mRNA level, suggesting that SIRT1 could be regulated post-transcriptionally. However, other than a recent report on sumoylation [10] and identification of SIRT1 as a nuclear phospho-protein by mass spectrometry [11], post-translational modifications of this important protein have not been reported. Methodology/Principal Findings We identified 13 residues in SIRT1 that are phosphorylated in vivo using mass spectrometry. Dephosphorylation by phosphatases in vitro resulted in decreased NAD+-dependent deacetylase activity. We identified cyclinB/Cdk1 as a cell cycle-dependent kinase that forms a complex with and phosphorylates SIRT1. Mutation of two residues phosphorylated by Cyclin B/Cdk1 (threonine 530 and serine 540) disturbs normal cell cycle progression and fails to rescue proliferation defects in SIRT1-deficient cells [12], [13]. Conclusions/Significance Pharmacological manipulation of SIRT1 activity is currently being tested as a means of extending lifespan in mammals. Treatment of obese mice with resveratrol, a pharmacological activator of SIRT1, modestly but significantly improved longevity and, perhaps more importantly, offered some protection against the development of type 2 diabetes mellitus and metabolic syndrome [14]–[16]. Understanding the endogenous mechanisms that regulate the level and activity of SIRT1, therefore, has obvious relevance to human health and disease. Our results identify phosphorylation by cell cycle dependent kinases as a major mechanism controlling the level and function of this sirtuin and complement recent reports of factors that inhibit [17], [18] and activate [19] SIRT1 by protein-protein interactions.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Bernhard Maier
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Katarzyna D. Koclega
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Maksymilian Chruszcz
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Wendy Gluba
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - P. Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Wladek Minor
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Heidi Scrable
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
758
|
SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 2008; 135:907-18. [PMID: 19041753 DOI: 10.1016/j.cell.2008.10.025] [Citation(s) in RCA: 630] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 08/19/2008] [Accepted: 10/10/2008] [Indexed: 11/22/2022]
Abstract
Genomic instability and alterations in gene expression are hallmarks of eukaryotic aging. The yeast histone deacetylase Sir2 silences transcription and stabilizes repetitive DNA, but during aging or in response to a DNA break, the Sir complex relocalizes to sites of genomic instability, resulting in the desilencing of genes that cause sterility, a characteristic of yeast aging. Using embryonic stem cells, we show that mammalian Sir2, SIRT1, represses repetitive DNA and a functionally diverse set of genes across the mouse genome. In response to DNA damage, SIRT1 dissociates from these loci and relocalizes to DNA breaks to promote repair, resulting in transcriptional changes that parallel those in the aging mouse brain. Increased SIRT1 expression promotes survival in a mouse model of genomic instability and suppresses age-dependent transcriptional changes. Thus, DNA damage-induced redistribution of SIRT1 and other chromatin-modifying proteins may be a conserved mechanism of aging in eukaryotes.
Collapse
|
759
|
Jung-Hynes B, Nihal M, Zhong W, Ahmad N. Role of sirtuin histone deacetylase SIRT1 in prostate cancer. A target for prostate cancer management via its inhibition? Cell Cycle 2008; 8:1478-83. [PMID: 19075016 DOI: 10.4161/cc.8.10.8408] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prostate cancer (PCa) is a major age-related malignancy, and according to estimates from the American Cancer Society, a man's chance of developing this cancer significantly increases with increasing age, from 1 in 10,149 by age 39 to 1 in 38 by age 59 to 1 in 7 by age 70. Therefore, it is important to identify the causal connection between mechanisms of aging and PCa. Employing in vitro and in vivo approaches, in this study, we tested the hypothesis that SIRT1, which belongs to the Sir2 (silent information regulator 2) family of sirtuin class III histone deacetylases, is overexpressed in PCa, and its inhibition will have antiproliferative effects in human PCa cells. Our data demonstrated that SIRT1 was significantly overexpressed in human PCa cells (DU145, LNCaP, 22Rnu1, and PC3) compared with normal prostate epithelial cells (PrEC) at protein, mRNA, and enzymatic activity levels. SIRT1 was also found to be overexpressed in human PCa tissues compared with adjacent normal prostate tissue. Interestingly, our data demonstrated that SIRT1 inhibition via nicotinamide and sirtinol (at the activity level) as well as via short hairpin RNA-mediated RNA interference (at the genetic level) resulted in a significant inhibition in the growth and viability of human PCa cells while having no effect on normal prostate epithelial cells. Further, we found that inhibition of SIRT1 caused an increase in FOXO1 acetylation and transcriptional activation in PCa cells. Our data suggested that SIRT1, via inhibiting FOXO1 activation, could contribute to the development of PCa. We suggest that SIRT1 could serve as a target toward developing novel strategies for PCa management.
Collapse
Affiliation(s)
- Brittney Jung-Hynes
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
760
|
Greiss S, Hall J, Ahmed S, Gartner A. C. elegans SIR-2.1 translocation is linked to a proapoptotic pathway parallel to cep-1/p53 during DNA damage-induced apoptosis. Genes Dev 2008; 22:2831-42. [PMID: 18923081 DOI: 10.1101/gad.482608] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Caenorhabditis elegans SIR-2.1, a member of the sirtuin family related to Saccharomyces cerevisiae Sir2p, has previously been implicated in aging. The mammalian homolog SIRT1 plays important roles in multiple cellular processes including transcriptional repression and stress response. We show that sir-2.1 is essential for the execution of apoptosis in response to DNA damage, and that sir-2.1 genetically acts in parallel to the worm p53-like gene cep-1. This novel cep-1-independent proapoptotic pathway does not require the daf-16 FOXO transcription factor. Cytological analysis of SIR-2.1 suggests a novel mechanism of apoptosis induction. During apoptosis SIR-2.1 changes its subcellular localization from the nucleus to the cytoplasm and transiently colocalizes with the C. elegans Apaf-1 homolog CED-4 at the nuclear periphery. SIR-2.1 translocation is an early event in germ cell apoptosis and is independent of apoptosis execution and cep-1, raising the possibility that SIR-2.1 translocation is linked to the induction of DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Sebastian Greiss
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | |
Collapse
|
761
|
Abstract
Loss of endogenous tumor suppression is a critical step on the road to cancer. In a recent paper in Molecular Cell, Wang and colleagues provide evidence that inactivation of the pivotal BRCA1 tumor suppressor disrupts a safeguard gene network that opposes cell proliferation and cell survival.
Collapse
Affiliation(s)
- Jianyuan Luo
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
762
|
Lavu S, Boss O, Elliott PJ, Lambert PD. Sirtuins--novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discov 2008; 7:841-53. [PMID: 18827827 DOI: 10.1038/nrd2665] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sirtuins post-translationally modulate the function of many cellular proteins that undergo reversible acetylation-deacetylation cycles, affecting physiological responses that have implications for treating diseases of ageing. Potent small-molecule modulators of sirtuins have shown efficacy in preclinical models of metabolic, neurodegenerative and inflammatory diseases, and so hold promise for drug discovery efforts in multiple therapeutic areas. Here, we discuss current knowledge and data that strengthens sirtuins as a druggable set of enzymes for the treatment of age-associated diseases, including activation of SIRT1 in type 2 diabetes.
Collapse
Affiliation(s)
- Siva Lavu
- Sirtris Pharmaceuticals, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
763
|
Abstract
SIRT1 is a nicotinamide adenosine dinucleotide-dependent deacetylase that orchestrates key metabolic adaptations to nutrient deprivation in peripheral tissues. SIRT1 is induced also in the brain by reduced energy intake. However, very little is known about SIRT1 distribution and the biochemical phenotypes of SIRT1-expressing cells in the neuraxis. Unknown are also the brain sites in which SIRT1 is regulated by energy availability and whether these regulations are altered in a genetic model of obesity. To address these issues, we performed in situ hybridization histochemistry analyses and found that Sirt1 mRNA is highly expressed in metabolically relevant sites. These include, but are not limited to, the hypothalamic arcuate, ventromedial, dorsomedial, and paraventricular nuclei and the area postrema and the nucleus of the solitary tract in the hindbrain. Of note, our single-cell reverse transcription-PCR analyses revealed that Sirt1 mRNA is expressed in pro-opiomelanocortin neurons that are critical for normal body weight and glucose homeostasis. We also found that SIRT1 protein levels are restrictedly increased in the hypothalamus in the fasted brain. Of note, we found that this hypothalamic-specific, fasting-induced SIRT1 regulation is altered in leptin-deficient, obese mice. Collectively, our findings establish the distribution of Sirt1 mRNA throughout the neuraxis and suggest a previously unrecognized role of brain SIRT1 in regulating energy homeostasis.
Collapse
|
764
|
Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C, Kim S, Xu X, Zheng Y, Chilton B, Jia R, Zheng ZM, Appella E, Wang XW, Ried T, Deng CX. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 2008; 14:312-23. [PMID: 18835033 PMCID: PMC2643030 DOI: 10.1016/j.ccr.2008.09.001] [Citation(s) in RCA: 617] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 06/13/2008] [Accepted: 09/04/2008] [Indexed: 01/05/2023]
Abstract
In lower eukaryotes, Sir2 serves as a histone deacetylase and is implicated in chromatin silencing, longevity, and genome stability. Here we mutated the Sirt1 gene, a homolog of yeast Sir2, in mice to study its function. We show that a majority of SIRT1 null embryos die between E9.5 and E14.5, displaying altered histone modification, impaired DNA damage response, and reduced ability to repair DNA damage. We demonstrate that Sirt1(+/-);p53(+/-) mice develop tumors in multiple tissues, whereas activation of SIRT1 by resveratrol treatment reduces tumorigenesis. Finally, we show that many human cancers exhibit reduced levels of SIRT1 compared to normal controls. Thus, SIRT1 may act as a tumor suppressor through its role in DNA damage response and genome integrity.
Collapse
MESH Headings
- Animals
- Anticarcinogenic Agents/pharmacology
- Cell Cycle/genetics
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/radiation effects
- Cells, Cultured
- Chromosomal Instability
- DNA Damage
- DNA Repair
- Down-Regulation
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/pathology
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Genomic Instability
- Gestational Age
- Heterochromatin/metabolism
- Histones/metabolism
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitosis/genetics
- Mutation
- Neoplasms/enzymology
- Neoplasms/genetics
- Neoplasms/prevention & control
- Resveratrol
- Sirtuin 1
- Sirtuins/analysis
- Sirtuins/deficiency
- Sirtuins/genetics
- Sirtuins/metabolism
- Stilbenes/pharmacology
- Time Factors
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Rui-Hong Wang
- Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
765
|
A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 2008; 456:269-73. [PMID: 18849969 PMCID: PMC2597669 DOI: 10.1038/nature07349] [Citation(s) in RCA: 407] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 08/20/2008] [Indexed: 12/30/2022]
Abstract
During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory fuel for glucose-dependent tissues. Glucagon stimulates the gluconeogenic program by triggering the dephosphorylation and nuclear translocation of the CREB regulated transcription coactivator 2 (CRTC2; also known as TORC2), while parallel decreases in insulin signalling augment gluconeogenic gene expression through the dephosphorylation and nuclear shuttling of forkhead box O1 (FOXO1). Here we show that a fasting-inducible switch, consisting of the histone acetyltransferase p300 and the nutrient-sensing deacetylase sirtuin 1 (SIRT1), maintains energy balance in mice through the sequential induction of CRTC2 and FOXO1. After glucagon induction, CRTC2 stimulated gluconeogenic gene expression by an association with p300, which we show here is also activated by dephosphorylation at Ser 89 during fasting. In turn, p300 increased hepatic CRTC2 activity by acetylating it at Lys 628, a site that also targets CRTC2 for degradation after its ubiquitination by the E3 ligase constitutive photomorphogenic protein (COP1). Glucagon effects were attenuated during late fasting, when CRTC2 was downregulated owing to SIRT1-mediated deacetylation and when FOXO1 supported expression of the gluconeogenic program. Disrupting SIRT1 activity, by liver-specific knockout of the Sirt1 gene or by administration of a SIRT1 antagonist, increased CRTC2 activity and glucose output, whereas exposure to SIRT1 agonists reduced them. In view of the reciprocal activation of FOXO1 and its coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha, encoded by Ppargc1a) by SIRT1 activators, our results illustrate how the exchange of two gluconeogenic regulators during fasting maintains energy balance.
Collapse
|
766
|
Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci U S A 2008; 105:15599-604. [PMID: 18829436 DOI: 10.1073/pnas.0800612105] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neural precursor cells (NPCs) differentiate into neurons, astrocytes, and oligodendrocytes in response to intrinsic and extrinsic changes. Notch signals maintain undifferentiated NPCs, but the mechanisms underlying the neuronal differentiation are largely unknown. We show that SIRT1, an NAD(+)-dependent histone deacetylase, modulates neuronal differentiation. SIRT1 was found in the cytoplasm of embryonic and adult NPCs and was transiently localized in the nucleus in response to differentiation stimulus. SIRT1 started to translocate into the nucleus within 10 min after the transfer of NPCs into differentiation conditions, stayed in the nucleus, and then gradually retranslocated to the cytoplasm after several hours. The number of neurospheres that generated Tuj1(+) neurons was significantly decreased by pharmacological inhibitors of SIRT1, dominant-negative SIRT1 and SIRT1-siRNA, whereas overexpression of SIRT1, but not that of cytoplasm-localized mutant SIRT1, enhanced neuronal differentiation and decreased Hes1 expression. Expression of SIRT1-siRNA impaired neuronal differentiation and migration of NPCs into the cortical plate in the embryonic brain. Nuclear receptor corepressor (N-CoR), which has been reported to bind SIRT1, promoted neuronal differentiation and synergistically increased the number of Tuj1(+) neurons with SIRT1, and both bound the Hes1 promoter region in differentiating NPCs. Hes1 transactivation by Notch1 was inhibited by SIRT1 and/or N-CoR. Our study indicated that SIRT1 is a player of repressing Notch1-Hes1 signaling pathway, and its transient translocation into the nucleus may have a role in the differentiation of NPCs.
Collapse
|
767
|
Gao Z, Ye J. Inhibition of transcriptional activity of c-JUN by SIRT1. Biochem Biophys Res Commun 2008; 376:793-6. [PMID: 18823944 DOI: 10.1016/j.bbrc.2008.09.079] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 12/20/2022]
Abstract
c-JUN is a major component of heterodimer transcription factor AP-1 (Activator Protein-1) that activates gene transcription in cell proliferation, inflammation and stress responses. SIRT1 (Sirtuin 1) is a histone deacetylase that controls gene transcription through modification of chromatin structure. However, it is not clear if SIRT1 regulates c-JUN activity in the control of gene transcription. Here, we show that SIRT1 associated with c-JUN in co-immunoprecipitation of whole cell lysate, and inhibited the transcriptional activity of c-JUN in the mammalian two hybridization system. SIRT1 was found in the AP-1 response element in the matrix metalloproteinase-9 (MMP9) promoter DNA leading to inhibition of histone 3 acetylation as shown in a ChIP assay. The SIRT1 signal was reduced by the AP-1 activator PMA, and induced by the SIRT1 activator Resveratrol in the promoter DNA. SIRT1-mediaetd inhibition of AP-1 was demonstrated in the MMP9 gene expression at the gene promoter, mRNA and protein levels. In mouse embryonic fibroblast (MEF) with SIRT1 deficiency (SIRT1(-/-)), mRNA and protein of MMP9 were increased in the basal condition, and the inhibitory activity of Resveratrol was significantly attenuated. Glucose-induced MMP9 expression was also inhibited by SIRT1 in response to Resveratrol. These data consistently suggest that SIRT1 directly inhibits the transcriptional activity of AP-1 by targeting c-JUN.
Collapse
Affiliation(s)
- Zhanguo Gao
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | |
Collapse
|
768
|
Necdin regulates p53 acetylation via Sirtuin1 to modulate DNA damage response in cortical neurons. J Neurosci 2008; 28:8772-84. [PMID: 18753379 DOI: 10.1523/jneurosci.3052-08.2008] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sirtuin1 (Sirt1), a mammalian homolog of yeast Sir2, deacetylates the tumor suppressor protein p53 and attenuates p53-mediated cell death. Necdin, a p53-interacting protein expressed predominantly in postmitotic neurons, is a melanoma antigen family protein that promotes neuronal differentiation and survival. In mammals, the necdin gene (Ndn) is maternally imprinted, and mutant mice carrying mutated paternal Ndn show abnormalities of neuronal development. Here we report that necdin regulates the acetylation status of p53 via Sirt1 to suppress p53-dependent apoptosis in postmitotic neurons. Double-immunostaining analysis demonstrated that necdin colocalizes with Sirt1 in postmitotic neurons of mouse embryonic forebrain in vivo. Coimmunoprecipitation and in vitro binding analyses revealed that necdin interacts with both p53 and Sirt1 to potentiate Sirt1-mediated p53 deacetylation by facilitating their association. Primary cortical neurons prepared from paternal Ndn-deficient mice have high p53 acetylation levels and are sensitive to the DNA-damaging compounds camptothecin and hydrogen peroxide. Moreover, DNA transfection per se increases p53 acetylation and apoptosis in paternal Ndn-deficient neurons, whereas small interfering RNA-mediated p53 knockdown completely blocks these changes. However, Sirt1 knockdown increases both acetylated p53 level and apoptosis in wild-type neurons but fails to affect them in paternal Ndn-deficient neurons. In organotypic forebrain slice cultures treated with hydrogen peroxide, p53 is accumulated and colocalized with necdin and Sirt1 in cortical neurons. These results suggest that necdin downregulates p53 acetylation levels by forming a stable complex with p53 and Sirt1 to protect neurons from DNA damage-induced apoptosis.
Collapse
|
769
|
Kwon HS, Ott M. The ups and downs of SIRT1. Trends Biochem Sci 2008; 33:517-25. [PMID: 18805010 DOI: 10.1016/j.tibs.2008.08.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
Abstract
Reversible acetylation has emerged as a key post-translational modification of proteins. Although the number of acetylated proteins is rapidly growing, the ways in which protein acetyltransferases and deacetylases connect with extracellular stimuli remain unclear. Recently, a regulatory network has emerged that controls the expression and activity of SIRT1, a mammalian class-III protein deacetylase. SIRT1 is an important regulator of metabolism, senescence, cancer and, possibly, longevity and is connected with crucial stress-responsive signal-transduction pathways. These connections provide important clues about how protein acetylation and deacetylation mediate cellular adaptations to extrinsic stress.
Collapse
Affiliation(s)
- Hye-Sook Kwon
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
770
|
Yang XJ, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 2008; 31:449-461. [PMID: 18722172 DOI: 10.1016/j.molcel.2008.07.002] [Citation(s) in RCA: 777] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Indexed: 12/23/2022]
Abstract
Lysine acetylation has emerged as a major posttranslational modification for histones. Crossregulation between this and other modifications is crucial in modulating chromatin-based transcriptional control and shaping inheritable epigenetic programs. In addition to histones, many other nuclear proteins and various cytoplasmic regulators are subject to lysine acetylation. This review focuses on recent findings pertinent to acetylation of nonhistone proteins and emphasizes how this modification might crosstalk with phosphorylation, methylation, ubiquitination, sumoylation, and others to form code-like multisite modification programs for dynamic control of cellular signaling under diverse conditions.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- Molecular Oncology Group, Department of Medicine, McGill University Health Centre, Montréal, QC H3A 1A1, Canada; McGill Cancer Centre, Montréal, QC H3A 1A1, Canada.
| | - Edward Seto
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
771
|
Abstract
MicroRNA 34a (miR-34a) is a tumor suppressor gene, but how it regulates cell proliferation is not completely understood. We now show that the microRNA miR-34a regulates silent information regulator 1 (SIRT1) expression. MiR-34a inhibits SIRT1 expression through a miR-34a-binding site within the 3' UTR of SIRT1. MiR-34 inhibition of SIRT1 leads to an increase in acetylated p53 and expression of p21 and PUMA, transcriptional targets of p53 that regulate the cell cycle and apoptosis, respectively. Furthermore, miR-34 suppression of SIRT1 ultimately leads to apoptosis in WT human colon cancer cells but not in human colon cancer cells lacking p53. Finally, miR-34a itself is a transcriptional target of p53, suggesting a positive feedback loop between p53 and miR-34a. Thus, miR-34a functions as a tumor suppressor, in part, through a SIRT1-p53 pathway.
Collapse
|
772
|
Tikoo K, Singh K, Kabra D, Sharma V, Gaikwad A. Change in histone H3 phosphorylation, MAP kinase p38, SIR 2 and p53 expression by resveratrol in preventing streptozotocin induced type I diabetic nephropathy. Free Radic Res 2008; 42:397-404. [PMID: 18404539 DOI: 10.1080/10715760801998646] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Resveratrol has been reported to have a wide variety of biological effects. However, little is known regarding its role on phosphorylation of histone H3, MAP kinase p38, SIR2 and p53 in type I diabetic nephropathy (DN). Hence, the present study was undertaken to examine changes in the above said parameters by resveratrol treatment. Male Sprague-Dawley rats were rendered diabetic using a single dose of streptozotocin (55 mg/kg, i.p.). DN was assessed by measurements of blood urea nitrogen and creatinine levels. Phosphorylation of histone H3, SIR2, p53 and MAP kinase p38 expression were examined by western blotting. This study reports that treatment of resveratrol prevents the decrease in the expression of SIR2 in diabetic kidney. It also prevents increase in p38, p53 expression and dephosphorylation of histone H3 in diabetic kidney. This is the first report which suggests that protection against development of diabetic nephropathy by resveratrol treatment involves change in phosphorylation of histone H3, expression of Sir-2, p53 and p38 in diabetic kidney.
Collapse
Affiliation(s)
- Kulbhushan Tikoo
- Laboratory of Chromatin Biology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India.
| | | | | | | | | |
Collapse
|
773
|
Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008; 134:329-40. [PMID: 18662547 PMCID: PMC3526943 DOI: 10.1016/j.cell.2008.07.002] [Citation(s) in RCA: 1053] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 04/27/2008] [Accepted: 07/08/2008] [Indexed: 12/20/2022]
Abstract
Circadian rhythms govern a large array of metabolic and physiological functions. The central clock protein CLOCK has HAT properties. It directs acetylation of histone H3 and of its dimerization partner BMAL1 at Lys537, an event essential for circadian function. We show that the HDAC activity of the NAD(+)-dependent SIRT1 enzyme is regulated in a circadian manner, correlating with rhythmic acetylation of BMAL1 and H3 Lys9/Lys14 at circadian promoters. SIRT1 associates with CLOCK and is recruited to the CLOCK:BMAL1 chromatin complex at circadian promoters. Genetic ablation of the Sirt1 gene or pharmacological inhibition of SIRT1 activity lead to disturbances in the circadian cycle and in the acetylation of H3 and BMAL1. Finally, using liver-specific SIRT1 mutant mice we show that SIRT1 contributes to circadian control in vivo. We propose that SIRT1 functions as an enzymatic rheostat of circadian function, transducing signals originated by cellular metabolites to the circadian clock.
Collapse
Affiliation(s)
- Yasukazu Nakahata
- Department of Pharmacology, University of California, Irvine, CA 92697, USA
| | - Milota Kaluzova
- Department of Pharmacology, University of California, Irvine, CA 92697, USA
| | - Benedetto Grimaldi
- Department of Pharmacology, University of California, Irvine, CA 92697, USA
| | - Saurabh Sahar
- Department of Pharmacology, University of California, Irvine, CA 92697, USA
| | - Jun Hirayama
- Department of Pharmacology, University of California, Irvine, CA 92697, USA
| | - Danica Chen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leonard P. Guarente
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
774
|
Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008; 134:317-28. [PMID: 18662546 DOI: 10.1016/j.cell.2008.06.050] [Citation(s) in RCA: 1013] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 03/17/2008] [Accepted: 06/23/2008] [Indexed: 12/21/2022]
Abstract
The mammalian circadian timing system is composed of a central pacemaker in the suprachiasmatic nucleus of the brain that synchronizes countless subsidiary oscillators in peripheral tissues. The rhythm-generating mechanism is thought to rely on a feedback loop involving positively and negatively acting transcription factors. BMAL1 and CLOCK activate the expression of Period (Per) and Cryptochrome (Cry) genes, and once PER and CRY proteins accumulate to a critical level they form complexes with BMAL1-CLOCK heterodimers and thereby repress the transcription of their own genes. Here, we show that SIRT1, an NAD(+)-dependent protein deacetylase, is required for high-magnitude circadian transcription of several core clock genes, including Bmal1, Rorgamma, Per2, and Cry1. SIRT1 binds CLOCK-BMAL1 in a circadian manner and promotes the deacetylation and degradation of PER2. Given the NAD(+) dependence of SIRT1 deacetylase activity, it is likely that SIRT1 connects cellular metabolism to the circadian core clockwork circuitry.
Collapse
Affiliation(s)
- Gad Asher
- Department of Molecular Biology, Sciences III, University of Geneva, 30, Quai Ernest Ansermet, CH-1211 Geneva-4, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
775
|
Sequeira J, Boily G, Bazinet S, Saliba S, He X, Jardine K, Kennedy C, Staines W, Rousseaux C, Mueller R, McBurney MW. sirt1-null mice develop an autoimmune-like condition. Exp Cell Res 2008; 314:3069-74. [PMID: 18687325 DOI: 10.1016/j.yexcr.2008.07.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 01/23/2023]
Abstract
The sirt1 gene encodes a protein deacetylase with a broad spectrum of reported substrates. Mice carrying null alleles for sirt1 are viable on outbred genetic backgrounds so we have examined them in detail to identify the biological processes that are dependent on SIRT1. Sera from adult sirt1-null mice contain antibodies that react with nuclear antigens and immune complexes become deposited in the livers and kidneys of these animals. Some of the sirt1-null animals develop a disease resembling diabetes insipidus when they approach 2 years of age although the relationship to the autoimmunity remains unclear. We interpret these observations as consistent with a role for SIRT1 in sustaining normal immune function and in this way delaying the onset of autoimmune disease.
Collapse
Affiliation(s)
- Jedon Sequeira
- Center for Cancer Therapeutics, Ottawa Health Research Institute, Box 926, 3rd Floor, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
776
|
Abstract
The identification of new pharmacological approaches to effectively prevent, treat, and cure the metabolic syndrome is of crucial importance. Excessive exposure to dietary lipids causes inflammatory responses, deranges the homeostasis of cellular metabolism, and is believed to constitute a key initiator of the metabolic syndrome. Mammalian Sirt1 is a protein deacetylase that has been involved in resveratrol-mediated protection from high-fat diet-induced metabolic damage, but direct proof for the implication of Sirt1 has remained elusive. Here, we report that mice with moderate overexpression of Sirt1 under the control of its natural promoter exhibit fat mass gain similar to wild-type controls when exposed to a high-fat diet. Higher energy expenditure appears to be compensated by a parallel increase in food intake. Interestingly, transgenic Sirt1 mice under a high-fat diet show lower lipid-induced inflammation along with better glucose tolerance, and are almost entirely protected from hepatic steatosis. We present data indicating that such beneficial effects of Sirt1 are due to at least two mechanisms: induction of antioxidant proteins MnSOD and Nrf1, possibly via stimulation of PGC1alpha, and lower activation of proinflammatory cytokines, such as TNFalpha and IL-6, via down-modulation of NFkappaB activity. Together, these results provide direct proof of the protective potential of Sirt1 against the metabolic consequences of chronic exposure to a high-fat diet.
Collapse
|
777
|
Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2008; 2:241-51. [PMID: 18371449 DOI: 10.1016/j.stem.2008.01.002] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 10/25/2007] [Accepted: 01/02/2008] [Indexed: 12/12/2022]
Abstract
Nuclear tumor suppressor p53 transactivates proapoptotic genes or antioxidant genes depending on stress severity, while cytoplasmic p53 induces mitochondrial-dependent apoptosis without gene transactivation. Although SIRT1, a p53 deacetylase, inhibits p53-mediated transactivation, how SIRT1 regulates these p53 multifunctions is unclear. Here we show that SIRT1 blocks nuclear translocation of cytoplasmic p53 in response to endogenous reactive oxygen species (ROS) and triggers mitochondrial-dependent apoptosis in mouse embryonic stem (mES) cells. ROS generated by antioxidant-free culture caused p53 translocation into mitochondria in wild-type mES cells but induced p53 translocation into the nucleus in SIRT1(-/-) mES cells. Endogenous ROS triggered apoptosis of wild-type mES through mitochondrial translocation of p53 and BAX but inhibited Nanog expression of SIRT1(-/-) mES, indicating that SIRT1 makes mES cells sensitive to ROS and inhibits p53-mediated suppression of Nanog expression. Our results suggest that endogenous ROS control is important for mES cell maintenance in culture.
Collapse
Affiliation(s)
- Myung-Kwan Han
- Department of Microbiology and Immunology, Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.
| | | | | | | | | | | |
Collapse
|
778
|
Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL, Alt FW, Guarente L. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev 2008. [PMID: 18550784 DOI: 10.1101/gad.1650608.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Calorie restriction (CR) has been reported to increase SIRT1 protein levels in mice, rats, and humans, and elevated activity of SIRT1 orthologs extends life span in yeast, worms, and flies. In this study, we challenge the paradigm that CR induces SIRT1 activity in all tissues by showing that activity of this sirtuin in the liver is, in fact, reduced by CR and activated by a high-caloric diet. We demonstrate this change both by assaying levels of SIRT1 and its small molecule regulators, NAD and NADH, as well as assessing phenotypes of a liver-specific SIRT1 knockout mouse on various diets. Our findings suggest that designing CR mimetics that target SIRT1 to provide uniform systemic benefits may be more complex than currently imagined.
Collapse
Affiliation(s)
- Danica Chen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
779
|
Kahyo T, Mostoslavsky R, Goto M, Setou M. Sirtuin-mediated deacetylation pathway stabilizes Werner syndrome protein. FEBS Lett 2008; 582:2479-83. [DOI: 10.1016/j.febslet.2008.06.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
|
780
|
Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL, Alt FW, Guarente L. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev 2008; 22:1753-7. [PMID: 18550784 DOI: 10.1101/gad.1650608] [Citation(s) in RCA: 445] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Calorie restriction (CR) has been reported to increase SIRT1 protein levels in mice, rats, and humans, and elevated activity of SIRT1 orthologs extends life span in yeast, worms, and flies. In this study, we challenge the paradigm that CR induces SIRT1 activity in all tissues by showing that activity of this sirtuin in the liver is, in fact, reduced by CR and activated by a high-caloric diet. We demonstrate this change both by assaying levels of SIRT1 and its small molecule regulators, NAD and NADH, as well as assessing phenotypes of a liver-specific SIRT1 knockout mouse on various diets. Our findings suggest that designing CR mimetics that target SIRT1 to provide uniform systemic benefits may be more complex than currently imagined.
Collapse
Affiliation(s)
- Danica Chen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
781
|
Kanfi Y, Peshti V, Gozlan YM, Rathaus M, Gil R, Cohen HY. Regulation of SIRT1 protein levels by nutrient availability. FEBS Lett 2008; 582:2417-23. [PMID: 18544345 DOI: 10.1016/j.febslet.2008.06.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/22/2008] [Accepted: 06/03/2008] [Indexed: 11/27/2022]
Abstract
The mammalian NAD+ dependent deacetylase, SIRT1, was shown to be a key protein in regulating glucose homeostasis, and was implicated in the response to calorie restriction. We show here that levels of SIRT1 increased in response to nutrient deprivation in cultured cells, and in multiple tissues of mice after fasting. The increase in SIRT1 levels was due to stabilization of SIRT1 protein, and not an increase in SIRT1 mRNA. In addition, p53 negatively regulated SIRT1 levels under normal growth conditions and is also required for the elevation of SIRT1 under limited nutrient conditions. These results have important implications on the relationship between sirtuins, nutrient availability and aging.
Collapse
Affiliation(s)
- Yariv Kanfi
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
782
|
Abstract
SIRT1 is the mammalian homologue of yeast silent information regulator (Sir)-2, a member of the sirtuin family of protein deacetylases which have gained much attention as mediators of lifespan extension in several model organisms. Induction of SIRT1 expression also attenuates neuronal degeneration and death in animal models of Alzheimer's disease and Huntington's disease. SIRT1 induction, either by sirtuin activators such as resveratrol, or metabolic conditioning associated with caloric restriction (CR), could be neuroprotective in several ways. It could promote the non-amyloidogenic cleavage of the amyloid precursor protein, enhance clearance of amyloid beta-peptides, and reduced neuronal damage through potential inhibition of neuroinflammatory signaling pathways. In addition, increased SIRT1 activity could alter neuronal transcription profiles to enhance anti-stress and anti-apoptotic gene activities, and has been proposed to underlie the inhibition of axonal degeneration in the Wallerian degeneration slow (Wld(s)) phenotype. As neuronal degeneration is a major pathophysiological aspect of human aging, understanding the mechanism of SIRT1 neuroprotection promises novel strategies in clinical intervention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.
| | | |
Collapse
|
783
|
Transcriptional targets of sirtuins in the coordination of mammalian physiology. Curr Opin Cell Biol 2008; 20:303-9. [PMID: 18468877 DOI: 10.1016/j.ceb.2008.03.012] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 03/20/2008] [Indexed: 01/01/2023]
Abstract
Sirtuins (Sirts) compose a family of NAD(+)-dependent deacetylases and/or ADP-ribosyltransferases, which have been implicated in aging, metabolism, and tolerance to oxidative stress. Many of the biological processes regulated by Sirts result from the adaptation of complex gene-expression programs to the energetic state of the cell, sensed through NAD(+) levels. To that respect, Sirts, and particularly the founding member of the family Sirt1, have emerged as important regulators of transcription, which they modulate both positively and negatively by targeting histones and transcriptional complex regulatory proteins. This review will focus on recent advances that have started deciphering how mammalian Sirts regulate transcriptional networks and thereby control physiology.
Collapse
|
784
|
Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M, McCarthy A, Appleyard V, Murray KE, Baker L, Thompson A, Mathers J, Holland SJ, Stark MJR, Pass G, Woods J, Lane DP, Westwood NJ. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 2008; 13:454-63. [PMID: 18455128 PMCID: PMC2742717 DOI: 10.1016/j.ccr.2008.03.004] [Citation(s) in RCA: 382] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 12/05/2007] [Accepted: 03/06/2008] [Indexed: 12/20/2022]
Abstract
We have carried out a cell-based screen aimed at discovering small molecules that activate p53 and have the potential to decrease tumor growth. Here, we describe one of our hit compounds, tenovin-1, along with a more water-soluble analog, tenovin-6. Via a yeast genetic screen, biochemical assays, and target validation studies in mammalian cells, we show that tenovins act through inhibition of the protein-deacetylating activities of SirT1 and SirT2, two important members of the sirtuin family. Tenovins are active on mammalian cells at one-digit micromolar concentrations and decrease tumor growth in vivo as single agents. This underscores the utility of these compounds as biological tools for the study of sirtuin function as well as their potential therapeutic interest.
Collapse
Affiliation(s)
- Sonia Lain
- Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
785
|
Dai Y, Faller DV. Transcription Regulation by Class III Histone Deacetylases (HDACs)-Sirtuins. TRANSLATIONAL ONCOGENOMICS 2008; 3:53-65. [PMID: 21566744 PMCID: PMC3022360 DOI: 10.4137/tog.s483] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sirtuins are NAD(+)-dependent histone deacetylases (Class III HDACs). Recently, Sirtuins have been shown to play important roles, both direct and indirect, in transcriptional regulation. This transcriptional control, through incorporation of Sirtuins into transcription complexes and deacetylation of histones locally at gene promoters, or direct interaction with specific transcription factors, is central to the participation of Sirtuins in multiple diverse processes, including aging, apoptosis, hormone responses, stress tolerance, differentiation, metabolism and development. Here we review the contribution of the Sirtuin family, at multiple molecular levels, to transcriptional regulation.
Collapse
Affiliation(s)
- Yan Dai
- Cancer Research Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, U.S.A
| | | |
Collapse
|
786
|
Forkhead class O transcription factor 3a activation and Sirtuin1 overexpression in the hypertrophied myocardium of the diabetic Goto-Kakizaki rat. J Hypertens 2008; 26:334-44. [PMID: 18192848 DOI: 10.1097/hjh.0b013e3282f293c8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Ventricular remodeling in type 2 diabetes predisposes to fatal coronary heart disease. The proapoptotic forkhead class O transcription factor 3a (FOXO3a) and its modulator, the cardioprotective longevity factor and class III histone deacetylase Sirtuin1 (Sirt1), have been implicated in the regulation of the cardiomyocyte lifespan and hypertrophy. OBJECTIVE To examine whether FOXO3a-Sirt1 activation is involved in diabetes-induced cardiomyocyte apoptosis and ventricular hypertrophy. METHODS The blood pressure, cardiac functions, cardiomyocyte size, neurohumoral markers, cardiomyocyte apoptosis, nuclear binding of FOXO3a, and Sirt1 expression were determined for 12-week-old spontaneously diabetic Goto-Kakizaki rats and the nondiabetic Wistar control rats. RESULTS Goto-Kakizaki rats showed a modest increase in blood pressure, pronounced cardiac hypertrophy, impaired systolic function, and increased plasma brain natriuretic peptide level without changes in plasma renin activity, serum aldosterone or urinary noradrenaline excretion. The cardiomyocyte cross-sectional area was increased by 22%. Phosphorylation of FOXO3a was decreased with a concomitant increase in its nuclear translocation. The myocardial expression of the antiapoptotic FOXO3a modulator Sirt1 was increased two-fold. Acetylation of p53 at the Sirt1-specific lysine 373/382 site was markedly decreased. Myocardial caspase-3 and Bax expression were increased, indicating increased apoptotic signaling; however, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling staining did not reveal any significant increase in cardiomyocyte apoptosis. CONCLUSIONS Diabetes-induced cardiac remodeling in Goto-Kakizaki rats is associated with cardiac hypertrophy, systolic dysfunction, increased apoptotic signaling and activation of the FOXO3a pathway. The present study also suggests that antiapoptotic Sirt1 protects against cardiomyocyte apoptosis and acts as a novel regulator of cardiomyocyte growth.
Collapse
|
787
|
Berry JM, Cao DJ, Rothermel BA, Hill JA. Histone deacetylase inhibition in the treatment of heart disease. Expert Opin Drug Saf 2008; 7:53-67. [PMID: 18171314 DOI: 10.1517/14740338.7.1.53] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent work has demonstrated the importance of chromatin remodeling, especially histone acetylation, in the control of gene expression in the heart. Studies in preclinical models suggest that inhibition of histone deacetylase (HDAC) activity - using compounds that show promise in ongoing oncology trials - blunts pathologic growth of cardiac myocytes. Indeed, small-molecule inhibitors of HDACs are members of an evolving class of pharmacologic agents in development for the treatment of several diseases. If proved effective in the treatment of heart disease, HDAC inhibitors could have a significant impact on public health, as cardiovascular disease remains the leading cause of death in the US. This paper reviews understanding of the mechanisms of action of HDAC inhibitors in the heart and summarizes emerging data regarding their effects on disease-related cardiac remodeling and function.
Collapse
Affiliation(s)
- Jeff M Berry
- University of Texas Southwestern Medical Center, Donald W Reynolds Cardiovascular Clinical Research Center, Dallas, Texas, USA
| | | | | | | |
Collapse
|
788
|
Abstract
There is an ever-increasing scientific interest for the interplay between cell's environment and the aging process. Although it is known that calorie restriction affects longevity, the exact molecular mechanisms through which nutrients influence various cell signalling/modulators of lifespan remain a largely unresolved issue. Among nutrients, glucose constitutes an evolutionarily stable, precious metabolic fuel, which is catabolized through glycolytic pathway providing energy in the form of ATP and consuming NAD. Accumulating evidence shows that among the important regulators of aging process are autophagy, sirtuin activity and oxidative stress. In light of recent work indicating that glucose availability decreases lifespan whilst impaired glucose metabolism extends life expectancy, the present article deals with the potential role of glucose in the aging process by regulating – directly through its metabolism or indirectly through insulin secretion – autophagy, sirtuins as well as other modulators of aging like oxidative stress and advanced glycation end-products (AGEs).
Collapse
Affiliation(s)
- Eva Kassi
- Department of Biological Chemistry, Medical School, University of Athens, Athens, Greece
| | | |
Collapse
|
789
|
Jin YH, Kim YJ, Kim DW, Baek KH, Kang BY, Yeo CY, Lee KY. Sirt2 interacts with 14-3-3 β/γ and down-regulates the activity of p53. Biochem Biophys Res Commun 2008; 368:690-5. [DOI: 10.1016/j.bbrc.2008.01.114] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 01/27/2008] [Indexed: 11/27/2022]
|
790
|
Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T, Bober E. Sirt7 Increases Stress Resistance of Cardiomyocytes and Prevents Apoptosis and Inflammatory Cardiomyopathy in Mice. Circ Res 2008; 102:703-10. [DOI: 10.1161/circresaha.107.164558] [Citation(s) in RCA: 474] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sirt7 is a member of the mammalian sirtuin family consisting of 7 genes, Sirt1 to Sirt7, which all share a homology to the founding family member, the yeast Sir2 gene. Most sirtuins are supposed to act as histone/protein deacetylases, which use oxidized NAD in a sirtuin-specific, 2-step deacetylation reaction. To begin to decipher the biological role of Sirt7, we inactivated the Sirt7 gene in mice. Sirt7-deficient animals undergo a reduction in mean and maximum lifespans and develop heart hypertrophy and inflammatory cardiomyopathy. Sirt7 mutant hearts are also characterized by an extensive fibrosis, which leads to a 3-fold increase in collagen III accumulation. We found that Sirt7 interacts with p53 and efficiently deacetylates p53 in vitro, which corresponds to hyperacetylation of p53 in vivo and an increased rate of apoptosis in the myocardium of mutant mice. Sirt7-deficient primary cardiomyocytes show a ≈200% increase in basal apoptosis and a significantly diminished resistance to oxidative and genotoxic stress suggesting a critical role of Sirt7 in the regulation of stress responses and cell death in the heart. We propose that enhanced activation of p53 by lack of Sirt7-mediated deacetylation contributes to the heart phenotype of Sirt7 mutant mice.
Collapse
Affiliation(s)
- Olesya Vakhrusheva
- From the Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Christian Smolka
- From the Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Praveen Gajawada
- From the Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Sawa Kostin
- From the Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Thomas Boettger
- From the Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Thomas Kubin
- From the Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Thomas Braun
- From the Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Eva Bober
- From the Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| |
Collapse
|
791
|
Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 2008; 10:385-94. [PMID: 18344989 DOI: 10.1038/ncb1700] [Citation(s) in RCA: 357] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 02/14/2008] [Indexed: 01/28/2023]
Abstract
Repair processes that are activated in response to neuronal injury, be it inflammatory, ischaemic, metabolic, traumatic or other cause, are characterized by a failure to replenish neurons and by astrogliosis. The underlying molecular pathways, however, are poorly understood. Here, we show that subtle alterations of the redox state, found in different brain pathologies, regulate the fate of mouse neural progenitor cells (NPCs) through the histone deacetylase (HDAC) Sirt1. Mild oxidation or direct activation of Sirt1 suppressed proliferation of NPCs and directed their differentiation towards the astroglial lineage at the expense of the neuronal lineage, whereas reducing conditions had the opposite effect. Under oxidative conditions in vitro and in vivo, Sirt1 was upregulated in NPCs, bound to the transcription factor Hes1 and subsequently inhibited pro-neuronal Mash1. In utero shRNA-mediated knockdown of Sirt1 in NPCs prevented oxidation-mediated suppression of neurogenesis and caused upregulation of Mash1 in vivo. Our results provide evidence for an as yet unknown metabolic master switch that determines the fate of neural progenitors.
Collapse
|
792
|
SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 2008; 3:e1759. [PMID: 18335035 PMCID: PMC2258149 DOI: 10.1371/journal.pone.0001759] [Citation(s) in RCA: 339] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 02/06/2008] [Indexed: 11/19/2022] Open
Abstract
The yeast sir2 gene and its orthologues in Drosophila and C. elegans have well-established roles in lifespan determination and response to caloric restriction. We have studied mice carrying two null alleles for SirT1, the mammalian orthologue of sir2, and found that these animals inefficiently utilize ingested food. These mice are hypermetabolic, contain inefficient liver mitochondria, and have elevated rates of lipid oxidation. When challenged with a 40% reduction in caloric intake, normal mice maintained their metabolic rate and increased their physical activity while the metabolic rate of SirT1-null mice dropped and their activity did not increase. Moreover, CR did not extend lifespan of SirT1-null mice. Thus, SirT1 is an important regulator of energy metabolism and, like its orthologues from simpler eukaryotes, the SirT1 protein appears to be required for a normal response to caloric restriction.
Collapse
|
793
|
Outeiro TF, Marques O, Kazantsev A. Therapeutic role of sirtuins in neurodegenerative disease. Biochim Biophys Acta Mol Basis Dis 2008; 1782:363-9. [PMID: 18373985 DOI: 10.1016/j.bbadis.2008.02.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 12/17/2022]
Abstract
The sirtuins are a family of enzymes which control diverse and vital cellular functions, including metabolism and aging. Manipulations of sirtuin activities cause activation of anti-apoptotic, anti-inflammatory, anti-stress responses, and the modulation of an aggregation of proteins involved in neurodegenerative disorders. Recently, sirtuins were found to be disease-modifiers in various models of neurodegeneration. However, almost in all instances, the exact mechanisms of neuroprotection remain elusive. Nevertheless, the manipulation of sirtuin activities is appealing as a novel therapeutic strategy for the treatment of currently fatal human disorders such as Alzheimer's and Parkinson's diseases. Here, we review current data which support the putative therapeutic roles of sirtuin in aging and in neurodegenerative diseases and the feasibility of the development of sirtuin-based therapies.
Collapse
Affiliation(s)
- Tiago Fleming Outeiro
- Cellular and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Instituto de Fisiologia, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | |
Collapse
|
794
|
Zhao W, Kruse JP, Tang Y, Jung SY, Qin J, Gu W. Negative regulation of the deacetylase SIRT1 by DBC1. Nature 2008; 451:587-90. [PMID: 18235502 DOI: 10.1038/nature06515] [Citation(s) in RCA: 387] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 11/27/2007] [Indexed: 11/09/2022]
Abstract
SIRT1 is an NAD-dependent deacetylase critically involved in stress responses, cellular metabolism and, possibly, ageing. The tumour suppressor p53 represents the first non-histone substrate functionally regulated by acetylation and deacetylation; we and others previously found that SIRT1 promotes cell survival by deacetylating p53 (refs 4-6). These results were further supported by the fact that p53 hyperacetylation and increased radiation-induced apoptosis were observed in Sirt1-deficient mice. Nevertheless, SIRT1-mediated deacetylase function is also implicated in p53-independent pathways under different cellular contexts, and its effects on transcriptional factors such as members of the FOXO family and PGC-1alpha directly modulate metabolic responses. These studies validate the importance of the deacetylase activity of SIRT1, but how SIRT1 activity is regulated in vivo is not well understood. Here we show that DBC1 (deleted in breast cancer 1) acts as a native inhibitor of SIRT1 in human cells. DBC1-mediated repression of SIRT1 leads to increasing levels of p53 acetylation and upregulation of p53-mediated function. In contrast, depletion of endogenous DBC1 by RNA interference (RNAi) stimulates SIRT1-mediated deacetylation of p53 and inhibits p53-dependent apoptosis. Notably, these effects can be reversed in cells by concomitant knockdown of endogenous SIRT1. Our study demonstrates that DBC1 promotes p53-mediated apoptosis through specific inhibition of SIRT1.
Collapse
Affiliation(s)
- Wenhui Zhao
- Institute for Cancer Genetics, and Department of Pathology College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Avenue, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
795
|
Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 2008; 105:3374-9. [PMID: 18296641 PMCID: PMC2265142 DOI: 10.1073/pnas.0712145105] [Citation(s) in RCA: 1145] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Indexed: 02/07/2023] Open
Abstract
We demonstrate a role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. In particular, transient increased expression of Sirt1 is sufficient to stimulate basal rates of autophagy. In addition, we show that Sirt1(-/-) mouse embryonic fibroblasts do not fully activate autophagy under starved conditions. Reconstitution with wild-type but not a deacetylase-inactive mutant of Sirt1 restores autophagy in these cells. We further demonstrate that Sirt1 can form a molecular complex with several essential components of the autophagy machinery, including autophagy genes (Atg)5, Atg7, and Atg8. In vitro, Sirt1 can, in an NAD-dependent fashion, directly deacetylate these components. The absence of Sirt1 leads to markedly elevated acetylation of proteins known to be required for autophagy in both cultured cells and in embryonic and neonatal tissues. Finally, we show that Sirt1(-/-) mice partially resemble Atg5(-/-) mice, including the accumulation of damaged organelles, disruption of energy homeostasis, and early perinatal mortality. Furthermore, the in utero delivery of the metabolic substrate pyruvate extends the survival of Sirt1(-/-) pups. These results suggest that the Sirt1 deacetylase is an important in vivo regulator of autophagy and provide a link between sirtuin function and the overall cellular response to limited nutrients.
Collapse
Affiliation(s)
- In Hye Lee
- *Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Liu Cao
- *Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Raul Mostoslavsky
- Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, Harvard University Medical School, Boston, MA 02115
- Center for Cancer Research, Massachusetts General Hospital, Harvard University Medical School, Boston, MA 02114
| | - David B. Lombard
- Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, Harvard University Medical School, Boston, MA 02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115; and
| | - Jie Liu
- *Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nicholas E. Bruns
- *Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Maria Tsokos
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Frederick W. Alt
- Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, Harvard University Medical School, Boston, MA 02115
| | - Toren Finkel
- *Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
796
|
Hsu CP, Odewale I, Alcendor RR, Sadoshima J. Sirt1 protects the heart from aging and stress. Biol Chem 2008; 389:221-31. [DOI: 10.1515/bc.2008.032] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
The prevalence of heart diseases, such as coronary artery disease and congestive heart failure, increases with age. Optimal therapeutic interventions that antagonize aging may reduce the occurrence and mortality of adult heart diseases. We discuss here how molecular mechanisms mediating life span extension affect aging of the heart and its resistance to pathological insults. In particular, we review our recent findings obtained from transgenic mice with cardiac-specific overexpression of Sirt1, which demonstrated delayed aging and protection against oxidative stress in the heart. We propose that activation of known longevity mechanisms in the heart may represent a novel cardioprotection strategy against aging and certain types of cardiac stress, such as oxidative stress.
Collapse
|
797
|
Li K, Casta A, Wang R, Lozada E, Fan W, Kane S, Ge Q, Gu W, Orren D, Luo J. Regulation of WRN Protein Cellular Localization and Enzymatic Activities by SIRT1-mediated Deacetylation. J Biol Chem 2008; 283:7590-8. [DOI: 10.1074/jbc.m709707200] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
798
|
Coussens M, Maresh JG, Yanagimachi R, Maeda G, Allsopp R. Sirt1 deficiency attenuates spermatogenesis and germ cell function. PLoS One 2008; 3:e1571. [PMID: 18270565 PMCID: PMC2216432 DOI: 10.1371/journal.pone.0001571] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 01/11/2008] [Indexed: 11/19/2022] Open
Abstract
In mammals, Sirt1, a member of the sirtuin family of proteins, functions as a nicotinamide adenine dinucleotide-dependent protein deactylase, and has important physiological roles, including the regulation of glucose metabolism, cell survival, and mitochondrial respiration. The initial investigations of Sirt1 deficient mice have revealed a phenotype that includes a reduced lifespan, small size, and an increased frequency of abnormal sperm. We have now performed a detailed analysis of the molecular and functional effects of Sirt1 deficiency in the germ line of Sirt1 knock-out (-/-) mice. We find that Sirt1 deficiency markedly attenuates spermatogenesis, but not oogenesis. Numbers of mature sperm and spermatogenic precursors, as early as d15.5 of development, are significantly reduced ( approximately 2-10-fold less; P</=0.004) in numbers in Sirt1-/- mice, whereas Sirt1 deficiency did not effect the efficiency oocyte production following superovulation of female mice. Furthermore, the proportion of mature sperm with elevated DNA damage ( approximately 7.5% of total epididymal sperm; P = 0.02) was significantly increased in adult Sirt1-/- males. Analysis of global gene expression by microarray analysis in Sirt1 deficient testis revealed dysregulated expression of 85 genes, which were enriched (P<0.05) for genes involved in spermatogenesis and protein sumoylation. To assess the function of Sirt1 deficient germ cells, we compared the efficiency of generating embryos and viable offspring in in vitro fertilization (IVF) experiments using gametes from Sirt1-/- and sibling Sirt1+/- mice. While viable animals were derived in both Sirt1-/- X wild type and Sirt1-/- X Sirt1-/- crosses, the efficiency of producing both 2-cell zygotes and viable offspring was diminished when IVF was performed with Sirt1-/- sperm and/or oocytes. Together, these data support an important role for Sirt1 in spermatogenesis, including spermatogenic stem cells, as well as germ cell function.
Collapse
Affiliation(s)
- Matthew Coussens
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
- Institute for Biogenesis Research, University of Hawaii, Honolulu, Hawaii
| | - John G. Maresh
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Ryuzo Yanagimachi
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Gregg Maeda
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Richard Allsopp
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
- Institute for Biogenesis Research, University of Hawaii, Honolulu, Hawaii
- *E-mail:
| |
Collapse
|
799
|
Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 2008; 28:91-106. [PMID: 17936707 DOI: 10.1016/j.molcel.2007.07.032] [Citation(s) in RCA: 473] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 05/15/2007] [Accepted: 07/30/2007] [Indexed: 12/12/2022]
Abstract
The NAD(+)-dependent deacetylase Sir2 regulates life span in lower eukaryotes. The mammalian ortholog SIRT1 regulates physiological processes including apoptosis, fat metabolism, glucose homeostasis, and neurodegeneration. Here we show that SIRT1 is a positive regulator of liver X receptor (LXR) proteins, nuclear receptors that function as cholesterol sensors and regulate whole-body cholesterol and lipid homeostasis. LXR acetylation is evident at a single conserved lysine (K432 in LXRalpha and K433 in LXRbeta) adjacent to the ligand-regulated activation domain AF2. SIRT1 interacts with LXR and promotes deacetylation and subsequent ubiquitination. Mutations of K432 eliminate activation of LXRalpha by this sirtuin. Loss of SIRT1 in vivo reduces expression of a variety of LXR targets involved in lipid metabolism, including ABCA1, an ATP-binding cassette (ABC) transporter that mediates an early step of HDL biogenesis. Our findings suggest that deacetylation of LXRs by SIRT1 may be a mechanism that affects atherosclerosis and other aging-associated diseases.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
800
|
Abstract
Ageing, or increased mortality with time, coupled with physiologic decline, is a nearly universal yet poorly understood biological phenomenon. Studies in model organisms suggest that two conserved pathways modulate longevity: DNA damage repair and Insulin/Igf1-like signalling. In addition, homologs of yeast Sir2--the sirtuins--regulate lifespan in diverse organisms. Here, we focus on one particular sirtuin, SIRT6. Mice lacking SIRT6 develop a degenerative disorder that in some respects mimics models of accelerated ageing [Cell (2006) 124:315]. We discuss how sirtuins in general and SIRT6 specifically relate to other evolutionarily conserved pathways affecting ageing, and how SIRT6 might function to ensure organismal homeostasis and normal lifespan.
Collapse
Affiliation(s)
- D B Lombard
- Howard Hughes Medical Institute, The Children's Hospital, CBR Institute for Biomedical Research, Boston, MA, USA
| | | | | | | |
Collapse
|