751
|
Metzler B, Li C, Hu Y, Sturm G, Ghaffari-Tabrizi N, Xu Q. LDL stimulates mitogen-activated protein kinase phosphatase-1 expression, independent of LDL receptors, in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999; 19:1862-71. [PMID: 10446064 DOI: 10.1161/01.atv.19.8.1862] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Low density lipoprotein (LDL) is a well-established risk factor for atherosclerosis, stimulating vascular smooth muscle cell (SMC) differentiation and proliferation, but the signal transduction pathways between LDL stimulation and cell proliferation are poorly understood. Because mitogen-activated protein kinases (MAPKs) play a crucial role in mediating cell growth, we studied the effect of LDL on the induction of MAPK phosphatase-1 (MKP-1) in human SMCs and found that LDL stimulated induction of MKP-1 mRNA and proteins in a time- and dose-dependent manner. Heparin, inhibiting LDL-receptor binding, did not influence LDL-stimulated MKP-1 mRNA expression, and human LDL also induced MKP-1 expression in rat SMCs and fibroblasts derived from LDL receptor-deficient mice, indicating an LDL receptor-independent process. Pretreatment of SMCs with pertussis toxin markedly inhibited LDL-induced MKP-1 expression. Depletion of protein kinase C (PKC) by phorbol 12-myristate 13 acetate or inhibition of PKC by calphostin C blocked MKP-1 induction, but the phospholipase C inhibitor U73122 had no effect. Pretreatment of SMCs with genistein or herbimycin A abrogated LDL-stimulated MKP-1 induction. The MAPK kinase inhibitor PD98059 abolished LDL-stimulated activation of extracellular signal-regulated protein kinases (ERKs) but not MKP-1 induction. Furthermore, constitutive expression of MKP-1 in vivo reduced LDL-induced expression of Elk-1-dependent reporter genes, and SMC lines overexpressing recombinant MKP-1 exhibited decreased ERK activities and retarded proliferation in response to LDL. Our findings demonstrate that LDL induces MKP-1 expression in SMCs via activation of PKC and tyrosine kinases, independent of LDL receptors and ERK-MAPKs, and that MKP-1 plays an important role in the regulation of LDL-initiated signal transductions leading to SMC proliferation.
Collapse
Affiliation(s)
- B Metzler
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Division of Cardiology, University Hospital of Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
752
|
Meldrum DR, Donnahoo KK. Role of TNF in mediating renal insufficiency following cardiac surgery: evidence of a postbypass cardiorenal syndrome. J Surg Res 1999; 85:185-99. [PMID: 10423318 DOI: 10.1006/jsre.1999.5660] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent evidence has implicated proinflammatory mediators such as TNF-alpha in the pathophysiology of ischemia-reperfusion (I/R) injury. Clinically, serum levels of TNF-alpha are increased after myocardial infarction and after cardiopulmonary bypass. Both cardiopulmonary bypass and renal ischemia-reperfusion injury induce a cascade of events leading to cellular damage and organ dysfunction. Tumor necrosis factor (TNF), a potent proinflammatory cytokine, is released from both the heart and the kidney in response to ischemia and reperfusion. TNF released during cardiopulmonary bypass induces glomerular fibrin deposition, cellular infiltration, and vasoconstriction, leading to a reduction in glomerular filtration rate (GFR). The signaling cascade through which renal ischemia-reperfusion induces TNF production is beginning to be elucidated. Oxidants released following reperfusion activate p38 mitogen-activated protein kinase (p38 MAP kinase) and the TNF transcription factor, NFkappaB, leading to subsequent TNF synthesis. In a positive feedback, proinflammatory fashion, binding of TNF to specific TNF membrane receptors can reactivate NFkappaB. This provides a mechanism by which TNF can upregulate its own expression as well as facilitate the expression of other genes pivotal to the inflammatory response. Following its production and release, TNF results in both renal and myocardial apoptosis and dysfunction. An understanding of these mechanisms may allow the adjuvant use of anti-TNF therapeutic strategies in the treatment of renal injury. The purposes of this review are: (1) to evaluate the evidence which indicates that TNF is produced by the heart following cardiopulmonary bypass; (2) to examine the effect of TNF on myocardial performance; (3) to outline the mechanisms by which the kidney produces significant TNF in response to ischemia and reperfusion; (5) to investigate the role of TNF in renal ischemia-reperfusion injury, (6) to describe the mechanisms of TNF-induced renal cell apoptosis, and (7) to suggest potential anti-TNF strategies designed to reduce renal insufficiency following cardiac surgery.
Collapse
Affiliation(s)
- D R Meldrum
- Department of Surgery, University of Colorado Health Sciences Center, Denver, Colorado, 80262, USA.
| | | |
Collapse
|
753
|
Lee SL, Wang WW, Finlay GA, Fanburg BL. Serotonin stimulates mitogen-activated protein kinase activity through the formation of superoxide anion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L282-91. [PMID: 10444522 DOI: 10.1152/ajplung.1999.277.2.l282] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous studies have shown that, through an active transport process, serotonin (5-HT) rapidly elevates O(-)(2). formation, stimulates protein phosphorylation, and enhances proliferation of bovine pulmonary artery smooth muscle cells (SMCs). We presently show that 1 microM 5-HT also rapidly elevates phosphorylation and activation of the mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase (ERK) 1 and ERK2 of SMCs, and the enhanced phosphorylation is blocked by the antioxidants Tiron, N-acetyl-L-cysteine (NAC), and Ginkgo biloba extract. Inhibition of MAP kinase with PD-98059 failed to block enhanced O(-)(2). formation by 5-HT. Chinese hamster lung fibroblasts (CCL-39 cells), which demonstrate both 5-HT transporter and receptor activity, showed a similar response to 5-HT (i.e., enhanced mitogenesis, O(-)(2). formation, and ERK1 and ERK2 phosphorylation and activation). Unlike SMCs, they also responded to 5-HT receptor agonists. We conclude that downstream signaling of MAP kinase is a generalized cellular response to 5-HT that occurs secondary to O(-)(2). formation and may be initiated by either the 5-HT transporter or receptor depending on the cell type.
Collapse
Affiliation(s)
- S L Lee
- Pulmonary and Critical Care Division, Department of Medicine, Tupper Research Institute, and New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
754
|
Abstract
Reactive oxygen species (ROS) activate Ras and the extracellular signal-regulated kinase (ERK) cascade. Because JAK2 is a critical mediator for Ras/Raf/ERK activation by several hormones, we examined the role of JAK2 in ROS signal events. H(2)O(2) stimulated JAK2 activity in fibroblasts with peak at 2-5 min. To determine the specific role of Src and Fyn as mediators of JAK2 activation and its downstream events, we used fibroblasts derived from transgenic mice deficient in Src (Src-/-) or Fyn (Fyn-/-). H(2)O(2)-stimulated JAK2 activity was completely inhibited in Fyn-/- cells. Shc tyrosine phosphorylation and Ras activation by H(2)O(2) were also significantly reduced in Fyn-/- cells, but not altered in Src-/- cells. Activation of JAK2 was restored when Fyn-/- cells were transfected with B-Fyn but not with Src. Inhibiting JAK2 activity with the specific inhibitor AG-490 prevented H(2)O(2) stimulated Shc and Ras activation. H(2)O(2)-mediated ERK1/2 activation in Fyn-/- cells and AG-490 treated cells was completely inhibited at an early time (5 min), but not at late times (20-40 min) after stimulation. These results define a new redox-sensitive pathway for Ras activation and rapid ERK1/2 activation, which is mediated by Fyn and JAK2.
Collapse
Affiliation(s)
- J Abe
- Center for Cardiovascular Research, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
755
|
O'Flaherty CM, Beorlegui NB, Beconi MT. Reactive oxygen species requirements for bovine sperm capacitation and acrosome reaction. Theriogenology 1999; 52:289-301. [PMID: 10734395 DOI: 10.1016/s0093-691x(99)00129-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sperm capacitation is necessary for the fertilization of oocytes. During capacitation intracellular and membrane changes occur, that culminate with an exocytotic event called the acrosome reaction. The aim of this work was to study the participation of the superoxide anion (O2-.) and of hydrogen peroxide (H2O2) in the capacitation process and acrosome reaction in spermatozoa from cryopreserved bovine semen. Samples were capacitated with heparin or treated with the xanthine-xanthine oxidase-catalase system (X-XO-C) for the production of O2-. The percentage of capacitated spermatozoa was determined using the chlortetracycline (CTC) technique, by means of epifluorescence microscopy. Addition of X-XO-C to the incubation medium significantly induced capacitation (P < 0.05), but there were no differences with samples incubated with heparin. When the medium contained heparin or the X-XO-C, addition of superoxide dismutase (SOD, 0.5 mg/mL) significantly inhibited capacitation (P < 0.05). In samples treated with heparin and with diverse concentrations of H2O2 (10, 25, 50 and 250 microM) in the incubation medium, the percentage of capacitated spermatozoa was significantly reduced (P < 0.05); however, acrosome reaction was produced at concentrations of 10 and 25 microM H2O2. At concentrations greater than 25 microM H2O2 a deleterious effect was observed on sperm motility. From these results it may be inferred that O2-. is required in the capacitation process and that H2O2 may participate as an inductor of the acrosome reaction in spermatozoa from cryopreserved bovine semen.
Collapse
Affiliation(s)
- C M O'Flaherty
- School of Veterinary Sciences, University of Buenos Aires, Argentina
| | | | | |
Collapse
|
756
|
Donnahoo KK, Shames BD, Harken AH, Meldrum DR. Review article: the role of tumor necrosis factor in renal ischemia-reperfusion injury. J Urol 1999; 162:196-203. [PMID: 10379787 DOI: 10.1097/00005392-199907000-00068] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Renal ischemia-reperfusion injury induces a cascade of events leading to cellular damage and organ dysfunction. Tumor necrosis factor-alpha (TNF), a potent proinflammatory cytokine, is released from the kidney in response to, and has been implicated in the pathogenesis of, renal ischemia-reperfusion injury. TNF induces glomerular fibrin deposition, cellular infiltration and vasoconstriction, leading to a reduction in glomerular filtration rate (GFR). The signaling cascade through which renal ischemia-reperfusion induces TNF production is beginning to be elucidated. Oxidants released following reperfusion activate p38 mitogen activated protein kinase (p38 MAP kinase) and the TNF transcription factor, NFkappaB, leading to subsequent TNF synthesis. In a positive feedback, proinflammatory fashion, binding of TNF to specific TNF membrane receptors can reactivate NFkappaB. This provides a mechanism by which TNF can upregulate its own expression as well as facilitate the expression of other genes pivotal to the inflammatory response. TNF receptor binding can also induce renal cell apoptosis, the major form of cell death associated with renal ischemia-reperfusion injury. Anti-TNF strategies targeting p38 MAP kinase, NFkappaB, and TNF itself are being investigated as methods of attenuating renal ischemic injury. The control of TNF production and activity represents a realistic goal for clinical medicine.
Collapse
Affiliation(s)
- K K Donnahoo
- Department of Urology, Indiana University Medical Center, Indianapolis, USA
| | | | | | | |
Collapse
|
757
|
Vepa S, Scribner WM, Parinandi NL, English D, Garcia JG, Natarajan V. Hydrogen peroxide stimulates tyrosine phosphorylation of focal adhesion kinase in vascular endothelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L150-8. [PMID: 10409242 DOI: 10.1152/ajplung.1999.277.1.l150] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) are implicated in the pathophysiology of several vascular disorders including atherosclerosis. Although the mechanism(s) of ROS-induced vascular damage remains unclear, there is increasing evidence for ROS-mediated modulation of signal transduction pathways. Exposure of bovine pulmonary artery endothelial cells to hydrogen peroxide (H(2)O(2)) enhanced tyrosine phosphorylation of 60- to 80- and 110- to 130-kDa cellular proteins, which were determined by immunoprecipitation with specific antibodies focal adhesion kinase (p125(FAK)) and paxillin (p68). Brief exposure of cells to a relatively high concentration of H(2)O(2) (1 mM) resulted in a time- and dose-dependent tyrosine phosphorylation of FAK, which reached maximum levels within 10 min (290% of basal levels). Cytoskeletal reorganization as evidenced by the appearance of actin stress fibers preceded H(2)O(2)-induced tyrosine phosphorylation of FAK, and the microfilament disruptor cytochalasin D also attenuated the tyrosine phosphorylation of FAK. Treatment of BPAECs with 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid-AM attenuated H(2)O(2)-induced increases in intracellular Ca(2+) but did not show any consistent effect on H(2)O(2)-induced tyrosine phosphorylation of FAK. Several tyrosine kinase inhibitors, including genistein, herbimycin, and tyrphostin, had no detectable effect on tyrosine phosphorylation of FAK but attenuated the H(2)O(2)-induction of mitogen-activated protein kinase activity. We conclude that H(2)O(2)-induced increases in FAK tyrosine phosphorylation may be important in H(2)O(2)-mediated endothelial cell activation.
Collapse
Affiliation(s)
- S Vepa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | |
Collapse
|
758
|
Todd JL, Tanner KG, Denu JM. Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway. J Biol Chem 1999; 274:13271-80. [PMID: 10224087 DOI: 10.1074/jbc.274.19.13271] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian dual-specificity protein-tyrosine phosphatase VHR (for VH1-related) has been identified as a novel regulator of extracellular regulated kinases (ERKs). To identify potential cellular substrates of VHR, covalently immobilized mutant VHR protein was employed as an affinity trap. A tyrosine-phosphorylated protein(s) of approximately 42 kDa was specifically adsorbed by the affinity column and identified as ERK1 and ERK2. Subsequent kinetic analyses and transfection studies demonstrated that VHR specifically dephosphorylates and inactivates ERK1 and ERK2 in vitro and in vivo. Only the native structure of phosphorylated ERK was recognized by VHR and was inactivated with a second-order rate constant of 40,000 M-1 s-1. VHR was found to dephosphorylate endogenous ERK, but not p38 and JNK. Immunodepletion of endogenous VHR eliminated the dephosphorylation of cellular ERK. Transfection studies in COS-1 cells demonstrated that in vivo phosphorylation of epidermal growth factor-stimulated ERK depended on VHR protein levels. Overexpression above endogenous levels of VHR led to accelerated ERK inactivation, but did not alter the normal activation of ERK. Unique among reported mitogen activated protein kinase phosphatases, VHR is constitutively expressed, localized to the nucleus, and tyrosine-specific. This study is the first to report the identification of authentic substrates of dual-specificity phosphatases utilizing affinity absorbents and is the first to identify a nuclear, constitutively expressed, and tyrosine-specific ERK phosphatase. The data strongly suggest that VHR is responsible for the rapid inactivation of ERK following stimulation and for its repression in quiescent cells.
Collapse
Affiliation(s)
- J L Todd
- Oregon Health Sciences University, Department of Biochemistry and Molecular Biology L224, Portland, Oregon 97201-3098, USA
| | | | | |
Collapse
|
759
|
Zhang L, Jope RS. Oxidative stress differentially modulates phosphorylation of ERK, p38 and CREB induced by NGF or EGF in PC12 cells. Neurobiol Aging 1999; 20:271-8. [PMID: 10588574 DOI: 10.1016/s0197-4580(99)00049-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This study assessed if oxidative stress induced by treatment of PC12 cells with H2O2 modulated signaling cascades induced by nerve growth factor (NGF) or epidermal growth factor (EGF) because oxidative stress and impaired growth factor function are associated with aging and aging-associated diseases such as Alzheimer's disease. Phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) and of p38 kinase was rapidly increased after treatment with NGF, EGF, or H2O2, with NGF causing more prolonged increases than the other agents. Pretreatment with H2O2 did not alter phosphorylation of ERK1/2 induced by either growth factor, but increased the phosphorylation of p38 kinase induced by treatment with NGF or EGF alone. CREB phosphorylation at SER 133 was rapidly increased by treatment with either NGF or EGF. Pretreatment with H2O2 reduced CREB phosphorylation induced by either growth factor. This seemed to be a direct effect because H2O2 also inhibited CREB phosphorylation induced by the adenylyl cyclase stimulator forskolin. These results demonstrate that oxidative stress can differentially modulate growth factor-initiated signaling cascades. Furthermore, because CREB is an evolutionarily preserved protein involved in the formation of long term memory, these results indicate a new target of oxidative stress that may be important in disorders involving impaired memory, such as Alzheimer's disease.
Collapse
Affiliation(s)
- L Zhang
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham 35294-0017, USA
| | | |
Collapse
|
760
|
Marley R, Holt S, Fernando B, Harry D, Anand R, Goodier D, Davies S, Moore K. Lipoic acid prevents development of the hyperdynamic circulation in anesthetized rats with biliary cirrhosis. Hepatology 1999; 29:1358-63. [PMID: 10216116 DOI: 10.1002/hep.510290519] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic bile duct ligation is associated with the development of oxidant injury, biliary cirrhosis, portal hypertension, and a hyperdynamic circulation. We have previously demonstrated that the hyperdynamic circulation in the partial portal vein-ligated rat can be prevented by the administration of N-acetylcysteine. To extend these findings, we have examined the effect of lipoic acid, a thiol-containing antioxidant, on hemodynamics, oxidative stress, and nitric oxide (NO) production in bile duct-ligated (BDL) cirrhotic rats. Lipoic acid was given continuously in drinking water to normal and BDL rats; control rats received ordinary drinking water, and animals were studied at 24 days following surgery. Lipoic acid prevented the development of the hyperdynamic circulation (cardiac index [CI]: 15.7 +/- 2.0 vs. 29.5 +/- 2.1 mL x min-1 x 100 g-1; P <. 05) and significantly attenuated the rise in portal pressure (PP) (12.7 +/- 0.8 vs. 15.2 +/- 0.5 mm Hg; P <.05). Hepatic nitric oxide synthase (NOS) activity and plasma nitrite/nitrate concentration increased significantly following bile duct ligation, and both of these were prevented by lipoic acid. Lipoic acid had no effect on the biochemical or histological parameters of liver function in the cirrhotic group. We conclude that lipoic acid prevents the development of the hyperdynamic circulation in the rat model of biliary cirrhosis, and that this is associated with decreased synthesis of NO.
Collapse
Affiliation(s)
- R Marley
- Department of Medicine, The Royal Free and University College Medical School, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
761
|
Peus D, Vasa RA, Beyerle A, Meves A, Krautmacher C, Pittelkow MR. UVB activates ERK1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes. J Invest Dermatol 1999; 112:751-6. [PMID: 10233767 DOI: 10.1046/j.1523-1747.1999.00584.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have previously shown that hydrogen peroxide is an important mediator of ultraviolet B induced phosphorylation of the epidermal growth factor receptor in human keratinocytes. Here we demonstrate that physiologic doses of ultraviolet B and hydrogen peroxide stimulate activation of two related but distinct mitogen-activated protein kinase pathways: extracellular regulated kinase 1 and 2 (ERK1/2), as well as p38, the mammalian homolog of HOG1 in yeast which is a major kinase for a recently identified stress-induced signaling pathway. The time-dependent activation of ERK1/2 and p38 are distinct, and ultraviolet B-induced ERK1/2 activation is downregulated more rapidly than p38. Using dihydrorhodamine or Amplex as specific fluorescent dye probes, we show that ultraviolet B-induced peroxides can be inhibited by ascorbic acid. Ascorbic acid strongly blocks ERK1/2 and p38 activation by ultraviolet B and hydrogen peroxide whereas pyrrolidine dithiocarbamate and butyl hydroxyanisole are less effective. Pyrrolidine dithiocarbamate was unable to inhibit ultraviolet B-induced p38 activation. Cell death was increased after ultraviolet B when ERK1/2 activation was attenuated by the specific inhibitor PD098059. The distinct time courses and extents of activation and inhibition of ERK1/2 and p38 indicate that these pathways are separate and regulated independently in keratinocytes. Specific types of reactive oxygen species induced by ultraviolet B as well as selective activation or inhibition of specific phosphatases may mediate these responses in keratinocytes. These findings demonstrate that reactive oxygen species are important multifunctional mediators of ultraviolet B-induced ERK1/2 and p38 signaling transduction pathways and suggest that ERK1/2 may play an important part in protecting keratinocytes from cell death following oxidative stress.
Collapse
Affiliation(s)
- D Peus
- Department of Dermatology, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
762
|
Hossain MZ, Jagdale AB, Ao P, Boynton AL. Mitogen-activated protein kinase and phosphorylation of connexin43 are not sufficient for the disruption of gap junctional communication by platelet-derived growth factor and tetradecanoylphorbol acetate. J Cell Physiol 1999; 179:87-96. [PMID: 10082136 DOI: 10.1002/(sici)1097-4652(199904)179:1<87::aid-jcp11>3.0.co;2-k] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disruption of gap junctional communication (GJC) by various compounds, including growth factors and tumor promoters, is believed to be modulated by the phosphorylation of a gap junctional protein, connexin43 (Cx43). We have previously demonstrated a platelet-derived growth factor (PDGF)-induced blockade of GJC and phosphorylation of Cx43 in T51B rat liver epithelial cells expressing wild-type PDGF receptor beta (PDGFr beta). Both of these actions of PDGF required participation of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK). Similar requirements of MAPK were suggested in the modulation of GJC by other agents, including epidermal growth factor (EGF) and lysophosphatidic acid (LPA). Since many of these agents activate additional protein kinases, our present study examined whether activation of MAPK was sufficient for Cx43 phosphorylation and GJC blockade. By utilizing a variety of MAPK activators, we now show that activation of MAPK is not always associated with either Cx43 phosphorylation or disruption of GJC, which suggests a requirement for additional factors. Furthermore, pretreatment with hydrogen peroxide (H2O2), a potent MAPK activator but inefficient GJC/Cx43 modulator, abrogated PDGF- or TPA-induced disruption of GJC. While a 5 min H2O2 pretreatment abolished both PDGF- and TPA-induced Cx43 phosphorylation and GJC blockade, a simultaneous H2O2 treatment interfered only with GJC closure but not with the phosphorylation of Cx43 induced by PDGF and TPA. This finding indicates that, in addition to the Cx43 phosphorylation step, inhibition of GJC requires interaction with other components. H2O2-mediated abrogation of PDGF/TPA signaling can be neutralized by the antioxidant N-acetylcysteine (NAC) or by the tyrosine kinase inhibitor genistein. Taken together, our results suggest that disruption of GJC is not solely mediated by either activated MAPK or Cx43 phosphorylation but requires the participation of additional kinases and regulatory components. This complex mode of regulation is perhaps essential for the proposed functional role of GJC.
Collapse
Affiliation(s)
- M Z Hossain
- Molecular Medicine, Northwest Hospital, Seattle, Washington 98125, USA.
| | | | | | | |
Collapse
|
763
|
Kitamura M. The antioxidant N-acetylcysteine induces mesangial cells to create three-dimensional cytoarchitecture that underlies cellular differentiation. J Am Soc Nephrol 1999; 10:746-51. [PMID: 10203358 DOI: 10.1681/asn.v104746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Prolonged culture of mesangial cells produces multifocal nodular structures, i.e., "hillocks," consisting of cells and extracellular matrix. Hillock formation is associated with induction of a differentiated phenotype of mesangial cells, with suppressed mitogenesis and downregulation of alpha-smooth muscle actin (alpha-SMA). Currently, little is understood regarding physiologically relevant factors that facilitate this cytodifferentiation. This study explores whether and how the cellular redox state modulates hillock formation. Exposure of confluent rat mesangial cells to the antioxidant N-acetylcysteine (NAC), an inducer of glutathione, dramatically facilitated hillock formation. This effect was mimicked by external addition of the reduced form of glutathione ethyl ester. In contrast, the oxidizing agents diamide and menadione inhibited the development of hillocks triggered by either NAC, glutathione, or prolonged culture. The induction of hillocks by NAC was correlated with downregulation of alpha-SMA as well as attenuated activity of the CArG box element (the cis-element relevant to the expression of the alpha-SMA gene and growth-associated genes). These results indicate that, by a redox-sensitive mechanism, NAC induces mesangial cells to create three-dimensional cytoarchitecture that underlies cellular differentiation.
Collapse
Affiliation(s)
- M Kitamura
- Department of Medicine, University College London Medical School, The Rayne Institute, United Kingdom.
| |
Collapse
|
764
|
Klann E, Thiels E. Modulation of protein kinases and protein phosphatases by reactive oxygen species: implications for hippocampal synaptic plasticity. Prog Neuropsychopharmacol Biol Psychiatry 1999; 23:359-76. [PMID: 10378223 DOI: 10.1016/s0278-5846(99)00002-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. Reactive oxygen species are known for their role in neurotoxicity. However, recent studies indicate that reactive oxygen species also play a role in cell function under physiological conditions. 2. Both superoxide and hydrogen peroxide alter the activity of various protein kinases and protein phosphatases, some of which are involved in hippocampal synaptic plasticity. Specifically, the activity of protein kinase C, extracellular-regulated kinase 2, and a protein tyrosine kinase(s) is increased in the presence of these reactive oxygen species, whereas the activity of protein phosphatases 2A and 2B, and a protein tyrosine phosphatase(s) is decreased. 3. Protein kinase C, extracellular-regulated kinase 2, and protein tyrosine kinases critically participate in the induction and/or early expression of long-term potentiation at glutamatergic synapses in hippocampus. Protein phosphatases 2A and 2B participate in the induction and/or early expression of long-term depression at these synapses. 4. Treatment of hippocampal slices with scavengers of either superoxide or hydrogen peroxide prevents the full expression of long-term potentiation. Long-term potentiation in hippocampus also is attenuated in transgenic mice that overexpress Cu/Zn superoxide dismutase. 5. The link between reactive oxygen species and long-term potentiation may be the activating effect on protein kinases. The inhibiting effect of reactive oxygen species on protein phosphatases may also contribute to long-term potentiation. 6. The authors hypothesize that reactive oxygen species play a critical role in hippocampal long-term potentiation by favoring the activation of a protein kinase over a protein phosphatase signaling cascade.
Collapse
Affiliation(s)
- E Klann
- Department of Neuroscience, University of Pittsburgh, PA, USA.
| | | |
Collapse
|
765
|
Häussinger D, Schliess F, Dombrowski F, Vom Dahl S. Involvement of p38MAPK in the regulation of proteolysis by liver cell hydration. Gastroenterology 1999; 116:921-35. [PMID: 10092315 DOI: 10.1016/s0016-5085(99)70076-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Liver cell hydration is a major determinant of proteolysis control; however, the underlying mechanisms are unknown. METHODS The role of mitogen-activated protein kinases for proteolysis control was studied in perfused rat liver. RESULTS Hyposmolarity led to a rapid activation of Erk-2 and p38(MAPK), but not of c-Jun-N-terminal kinase 1. Likewise, isosmotic cell swelling induced by insulin, ethanol, or glutamine/glycine activated p38(MAPK). Inhibition of hyposmotic Erk activation by pertussis or cholera toxin, erbstatin, or genistein had no effect on the swelling-induced inhibition of proteolysis. Likewise, wortmannin, rapamycin, and okadaic acid were ineffective, but proteolysis recovery from hyposmotic inhibition was okadaic acid sensitive. SB203580, an inhibitor of p38(MAPK), abolished both the antiproteolytic effect of hyposmotic cell swelling and the hyposmolarity-induced inhibition of autophagic vacuole formation. Also, the antiproteolytic effect of isotonic cell swelling induced by ethanol, glutamine/glycine, or insulin was abolished by SB203580, but not the swelling potency of these agents. SB203580 had no effect on the cell hydration-independent control of proteolysis exerted by NH4Cl, asparagine, or phenylalanine. CONCLUSIONS The data suggest an important role of p38(MAPK) in the regulation of autophagic proteolysis by cell volume in liver.
Collapse
Affiliation(s)
- D Häussinger
- Medizinische Universitätsklinik, Heinrich Heine Universität, Düsseldorf, Germany
| | | | | | | |
Collapse
|
766
|
Robinson KA, Stewart CA, Pye QN, Nguyen X, Kenney L, Salzman S, Floyd RA, Hensley K. Redox-sensitive protein phosphatase activity regulates the phosphorylation state of p38 protein kinase in primary astrocyte culture. J Neurosci Res 1999; 55:724-32. [PMID: 10220113 DOI: 10.1002/(sici)1097-4547(19990315)55:6<724::aid-jnr7>3.0.co;2-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) have been implicated as second messengers that activate protein kinase cascades, although the means by which ROS regulate signal transduction remains unclear. In the present study, we show that interleukin 1beta (IL1beta), H2O2, and sorbitol-induced hyperosmolarity mediate a 5- to 10-fold increase in phosphorylation (activation) of the p38 protein kinase in rat primary glial cells as measured by analyses of Western blots using an antibody directed against the dually phosphorylated (active) p38. Additionally, IL1beta was found to elicit H2O2 synthesis in these cells. Concurrent with p38 phosphorylation, all three stimulation paradigms caused an inhibition of protein phosphatase activity. Phenyl-tert-butyl nitrone (PBN), a nitrone-based free radical trap and N-acetyl-cysteine (NAC), a thiol reducing agent, were examined for their effects on the phosphorylation of p38 as well as phosphatase activity. Pretreatment of cells with either PBN or NAC at 1.0 mM suppressed IL1beta H2O2, and sorbitol-mediated activation of p38 and significantly increased phosphatase activity. These data suggest that ROS, particularly H2O2, are used as second messenger substances that activate p38 in part via the transient inactivation of regulatory protein phosphatases.
Collapse
Affiliation(s)
- K A Robinson
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | | | | | | | | | | | | | | |
Collapse
|
767
|
Brito C, Naviliat M, Tiscornia AC, Vuillier F, Gualco G, Dighiero G, Radi R, Cayota AM. Peroxynitrite Inhibits T Lymphocyte Activation and Proliferation by Promoting Impairment of Tyrosine Phosphorylation and Peroxynitrite-Driven Apoptotic Death. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.6.3356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Peroxynitrite (ONOO−) is a potent oxidizing and nitrating agent produced by the reaction of nitric oxide with superoxide. It readily nitrates phenolic compounds such as tyrosine residues in proteins, and it has been demonstrated that nitration of tyrosine residues in proteins inhibits their phosphorylation. During immune responses, tyrosine phosphorylation of key substrates by protein tyrosine kinases is the earliest of the intracellular signaling pathways following activation through the TCR complex. This work was aimed to evaluate the effects of ONOO− on lymphocyte tyrosine phosphorylation, proliferation, and survival. Additionally, we studied the generation of nitrating species in vivo and in vitro during immune activation. Our results demonstrate that ONOO−, through nitration of tyrosine residues, is able to inhibit activation-induced protein tyrosine phosphorylation in purified lymphocytes and prime them to undergo apoptotic cell death after PHA- or CD3-mediated activation but not upon phorbol ester-mediated stimulation. We also provide evidence indicating that peroxynitrite is produced during in vitro immune activation, mainly by cells of the monocyte/macrophage lineage. Furthermore, immunohistochemical studies demonstrate the in vivo generation of nitrating species in human lymph nodes undergoing mild to strong immune activation. Our results point to a physiological role for ONOO− as a down-modulator of immune responses and also as key mediator in cellular and tissue injury associated with chronic activation of the immune system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alfonso M. Cayota
- §Medicine, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; and Unit of Immunohematology and Immunopathology, Pasteur Institute, Paris, France
| |
Collapse
|
768
|
Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, Pincus MR, Sardana M, Henderson CJ, Wolf CR, Davis RJ, Ronai Z. Regulation of JNK signaling by GSTp. EMBO J 1999; 18:1321-34. [PMID: 10064598 PMCID: PMC1171222 DOI: 10.1093/emboj/18.5.1321] [Citation(s) in RCA: 850] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Studies of low basal Jun N-terminal kinase (JNK) activity in non-stressed cells led us to identify a JNK inhibitor that was purified and identified as glutathione S-transferase Pi (GSTp) and was characterized as a JNK-associated protein. UV irradiation or H2O2 treatment caused GSTp oligomerization and dissociation of the GSTp-JNK complex, indicating that it is the monomeric form of GSTp that elicits JNK inhibition. Addition of purified GSTp to the Jun-JNK complex caused a dose-dependent inhibition of JNK activity. Conversely, immunodepleting GSTp from protein extracts attenuated JNK inhibition. Furthermore, JNK activity was increased in the presence of specific GSTp inhibitors and a GSTp-derived peptide. Forced expression of GSTp decreased MKK4 and JNK phosphorylation which coincided with decreased JNK activity, increased c-Jun ubiquitination and decreased c-Jun-mediated transcription. Co-transfection of MEKK1 and GSTp restored MKK4 phosphorylation but did not affect GSTp inhibition of JNK activity, suggesting that the effect of GSTp on JNK is independent of the MEKK1-MKK4 module. Mouse embryo fibroblasts from GSTp-null mice exhibited a high basal level of JNK activity that could be reduced by forced expression of GSTp cDNA. In demonstrating the relationships between GSTp expression and its association with JNK, our findings provide new insight into the regulation of stress kinases.
Collapse
Affiliation(s)
- V Adler
- The Ruttenberg Cancer Center, Mount Sinai School of Medicine, One Gustave L.Levy Place, Box 1130, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
769
|
Cho S, Hazama M, Urata Y, Goto S, Horiuchi S, Sumikawa K, Kondo T. Protective role of glutathione synthesis in response to oxidized low density lipoprotein in human vascular endothelial cells. Free Radic Biol Med 1999; 26:589-602. [PMID: 10218647 DOI: 10.1016/s0891-5849(98)00232-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Impairment of endothelial cells by oxidized low density lipoprotein (OxLDL) is believed to be the first step in atherogenesis. It is also believed that oxidative stress/antioxidant imbalance is involved in the cell damage by OxLDL. However, little is known about the interaction between OxLDL and antioxidants. In this study, we show that treatment of human vascular endothelial cells with OxLDL caused a gradual increase of glutathione (gamma-glutamylcysteinyl glycine, GSH) levels in 24 h. OxLDL increased the intracellular levels of reactive oxygen species (ROS) and stimulated the expression of gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting enzyme for the GSH synthesis, the mitogen-activated protein kinase (MAPK) activity, and the AP-1-DNA binding activity. The luciferase activity of gamma-GCS promoter containing AP-1 site was activated by OxLDL. Collectively, OxLDL induces gamma-GCS expression mediated by AP-1 resulting in an increase of GSH levels. The MAPK activity stimulated by ROS may be involved in the activation of AP-1. The increase in GSH by OxLDL may afford cellular protection against OxLDL-induced oxidative stress.
Collapse
Affiliation(s)
- S Cho
- Department of Anesthesiology, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
770
|
Rao GN, Katki KA, Madamanchi NR, Wu Y, Birrer MJ. JunB forms the majority of the AP-1 complex and is a target for redox regulation by receptor tyrosine kinase and G protein-coupled receptor agonists in smooth muscle cells. J Biol Chem 1999; 274:6003-10. [PMID: 10026227 DOI: 10.1074/jbc.274.9.6003] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the role of redox-sensitive mechanisms in vascular smooth muscle cell (VSMC) growth, we have studied the effect of N-acetylcysteine (NAC), a thiol antioxidant, and diphenyleneiodonium (DPI), a potent NADH/NADPH oxidase inhibitor, on serum-, platelet-derived growth factor BB-, and thrombin-induced ERK2, JNK1, and p38 mitogen-activated protein (MAP) kinase activation; c-Fos, c-Jun, and JunB expression; and DNA synthesis. Both NAC and DPI completely inhibited agonist-induced AP-1 activity and DNA synthesis in VSMC. On the contrary, these compounds had differential effects on agonist-induced ERK2, JNK1, and p38 MAP kinase activation and c-Fos, c-Jun, and JunB expression. NAC inhibited agonist-induced ERK2, JNK1, and p38 MAP kinase activation and c-Fos, c-Jun, and JunB expression except for platelet-derived growth factor BB-induced ERK2 activation. In contrast, DPI only inhibited agonist-induced p38 MAP kinase activation and c-Fos and JunB expression. Antibody supershift assays indicated the presence of c-Fos and JunB in the AP-1 complex formed in response to all three agonists. In addition, cotransfection of VSMC with expression plasmids for c-Fos and members of the Jun family along with the AP-1-dependent reporter gene revealed that AP-1 with c-Fos and JunB composition exhibited a higher transactivating activity than AP-1 with other compositions tested. All three agonists significantly stimulated reactive oxygen species production, and this effect was inhibited by both NAC and DPI. Together, these results strongly suggest a role for redox-sensitive mechanisms in agonist-induced ERK2, JNK1, and p38 MAP kinase activation; c-Fos, c-Jun, and JunB expression; AP-1 activity; and DNA synthesis in VSMC. These results also suggest a role for NADH/NADPH oxidase activity in some subset of early signaling events such as p38 MAP kinase activation and c-Fos and JunB induction, which appear to be important in agonist-induced AP-1 activity and DNA synthesis in VSMC.
Collapse
Affiliation(s)
- G N Rao
- Division of Cardiology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | | | | | | | |
Collapse
|
771
|
Arai M, Imai H, Koumura T, Yoshida M, Emoto K, Umeda M, Chiba N, Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells. J Biol Chem 1999; 274:4924-33. [PMID: 9988735 DOI: 10.1074/jbc.274.8.4924] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is synthesized as a long form (L-form; 23 kDa) and a short form (S-form; 20 kDa). The L-form contains a leader sequence that is required for transport to mitochondria, whereas the S-form lacks the leader sequence. A construct encoding the leader sequence of PHGPx tagged with green fluorescent protein was used to transfect RBL-2H3 cells, and the fusion protein was transported to mitochondria. The L-form of PHGPx was identified as the mitochondrial form of PHGPx and the S-form as the non-mitochondrial form of PHGPx since preferential enrichment of mitochondria for PHGPx was detected in M15 cells that overexpressed the L-form of PHGPx, whereas no similar enrichment was detected in L9 cells that overexpressed the S-form. Cell death caused by mitochondrial injury due to potassium cyanide (KCN) or rotenone (chemical hypoxia) was considerably suppressed in the M15 cells, whereas the L9 cells and control RBL-2H3 cells (S1 cells, transfected with the vector alone) succumbed to the cytotoxic effects of KCN. Flow cytometric analysis showed that mitochondrial PHGPx suppressed the generation of hydroperoxide, the loss of mitochondrial membrane potential, and the loss of plasma membrane integrity that are induced by KCN. Mitochondrial PHGPx might prevent changes in mitochondrial functions and cell death by reducing intracellular hydroperoxides. Mitochondrial PHGPx failed to protect M15 cells from mitochondrial injury by carbonyl cyanide m-chlorophenylhydrazone, which directly reduces membrane potential without the generation of hydroperoxides. M15 cells were more resistant than L9 cells to cell death caused by direct damage to mitochondria and to extracellular oxidative stress. L9 cells were more resistant to tert-butylhydroperoxide than S1 cells, whereas resistance to t-butylhydroperoxide was even more pronounced in M15 cells than in L9 cells. These results suggest that mitochondria might be a target for intracellular and extracellular oxidative stress and that mitochondrial PHGPx, as distinct form non-mitochondrial PHGPx, might play a primary role in protecting cells from oxidative stress.
Collapse
Affiliation(s)
- M Arai
- School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108, Japan
| | | | | | | | | | | | | | | |
Collapse
|
772
|
Shahrestanifar M, Fan X, Manning DR. Lysophosphatidic acid activates NF-kappaB in fibroblasts. A requirement for multiple inputs. J Biol Chem 1999; 274:3828-33. [PMID: 9920937 DOI: 10.1074/jbc.274.6.3828] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a growth factor that exerts a number of well characterized biological actions on fibroblasts and other cells. In the present study, we investigated the possibility that LPA activates the transcription factor NF-kappaB. NF-kappaB is a target of cytokines, but its activation by other classes of agonists has raised considerable interest in the control of processes such as inflammation and wound healing through varied mechanisms. We find that LPA causes a marked activation of NF-kappaB in Swiss 3T3 fibroblasts as determined by the degradation of IkappaB-alpha in the cytosol and the emergence of kappaB binding activity in nuclear extracts. The EC50 for activation of NF-kappaB is 1-5 microM, a range similar to that reported for reinitiation of DNA synthesis and activation of the serum response element. Activation of NF-kappaB is attenuated by pertussis toxin and inhibitors of protein kinase C, and it is completely blocked by the Ca2+ chelator BAPTA-AM. The combination of phorbol ester and thapsigargin promotes an activation comparable with that of LPA. Activation by LPA is additionally inhibited by tyrphostin A25 but not genistein or AG1478, indicating a selective utilization of protein-tyrosine kinases, and by certain antioxidants, implying a role for reactive oxygen species. The activation is also inhibited by tricyclodecan-9-yl-xanthogenate (D609), implying a requirement for hydrolysis of phosphatidylcholine. The data demonstrate the utilization of multiple pathways in the activation of NF-kappaB by LPA, not inconsistent with the relevance of several families of GTP-binding regulatory proteins.
Collapse
Affiliation(s)
- M Shahrestanifar
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA
| | | | | |
Collapse
|
773
|
Uchida K, Shiraishi M, Naito Y, Torii Y, Nakamura Y, Osawa T. Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem 1999; 274:2234-42. [PMID: 9890986 DOI: 10.1074/jbc.274.4.2234] [Citation(s) in RCA: 430] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the present study, we studied the signal transduction mechanism that is involved in the expression of c-Jun protein evident after exposure of rat liver epithelial RL34 cells to the major end product of oxidized fatty acid metabolism, 4-hydroxy-2-nonenal (HNE). HNE treatment of the cells resulted in depletion of intracellular glutathione (GSH) and in the formation of protein-bound HNE in plasma membrane. In addition, HNE strongly induced intracellular peroxide production, suggesting that HNE exerted oxidative stress on the cells. Potent expression of c-Jun occurred within 30 min of HNE treatment, which was accompanied by a time-dependent increase in activator protein-1 (AP-1) DNA binding activity. We found that HNE caused an immediate increase in tyrosine phosphorylation in RL34 cells. In addition, HNE strongly induced phosphorylation of c-Jun N-terminal kinases (JNK) and p38 mitogen-activated protein kinases and also moderately induced phosphorylation of extracellular signal-regulated kinases. The phosphorylation of JNK was accompanied by a rapid and transient increase in JNK and p38 activities, whereas changes in the activity of extracellular signal-regulated kinase were scarcely observed. GSH depletion by L-buthionine-S, R-sulfoximine, a specific inhibitor of GSH biosynthesis, only slightly enhanced peroxide production and JNK activation, suggesting that HNE exerted these effects independent of GSH depletion. This and the findings that (i) HNE strongly induced intracellular peroxide production, (ii) HNE-induced JNK activation was inhibited by pretreatment of the cells with a thiol antioxidant, N-acetylcysteine, and (iii) H2O2 significantly activated JNK support the hypothesis that pro-oxidants play a crucial role in the HNE-induced activation of stress signaling pathways. In addition, we found that, among the inhibitors of tyrosine kinases, cyclooxygenase, and Ca2+ influx, only quercetin exerted a significant inhibitory effect on HNE-induced JNK activation. In light of the JNK-dependent induction of c-jun transcription and the AP-1-induced transcription of xenobiotic-metabolizing enzymes, these data may show a potential critical role for JNK in the induction of a cellular defense program against toxic products generated from lipid peroxidation.
Collapse
Affiliation(s)
- K Uchida
- Laboratory of Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya 464-8601, Japan.
| | | | | | | | | | | |
Collapse
|
774
|
Bhat NR, Zhang P. Hydrogen peroxide activation of multiple mitogen-activated protein kinases in an oligodendrocyte cell line: role of extracellular signal-regulated kinase in hydrogen peroxide-induced cell death. J Neurochem 1999; 72:112-9. [PMID: 9886061 DOI: 10.1046/j.1471-4159.1999.0720112.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress is known to induce cell death in a wide variety of cell types, apparently by modulating intracellular signaling pathways. In this study, we have examined the activation of mitogen-activated protein kinase (MAPK) cascades in relation to oxidant-induced cell death in an oligodendrocyte cell line, central glia-4 (CG4). Exposure of CG4 cells to hydrogen peroxide (H2O2) resulted in an increased tyrosine phosphorylation of several protein species, including the abundantly expressed platelet-derived growth factor (PDGF) receptor and the activation of the three MAPK subgroups, i.e., extracellular signal-regulated kinase (ERK), p38 MAPK, and c-Jun N-terminal kinase (JNK). Dose-response studies showed differential sensitivities of PDGF receptor phosphorylation (>1 mM) and ERK/p38 MAPK (>0.5 mM) and JNK (>0.1 mM) activation by H2O2. The activation of ERK was inhibited by PD98059, a specific inhibitor of the upstream kinase, MAPK or ERK kinase (MEK). H2O2 also activated MAPK-activated protein kinase-2, and this activation was blocked by SB203580, a specific inhibitor of p38 MAPK. The oxidant-induced cell death was indicated by morphological changes, decreased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction, and DNA fragmentation. These effects were suppressed dose-dependently by the MEK inhibitor PD98059. The results demonstrate that H2O2 induces the activation of multiple MAPKs in oligodendrocyte progenitors and that the activation of ERK is associated with oxidant-mediated cytotoxicity.
Collapse
Affiliation(s)
- N R Bhat
- Department of Neurology, Medical University of South Carolina, Charleston 29425, USA
| | | |
Collapse
|
775
|
Abstract
Extracellular stimuli elicit a variety of responses, such as cell proliferation and differentiation, through the cellular signalling system. Binding of growth factors to the respective receptor leads to the activation of receptor tyrosine kinases, which in turn stimulate downstream signalling systems such as mitogen-activated protein (MAP) kinases, phospholipase Cgamma (PLCgamma) and phosphatidylinositol 3-kinase. These biochemical reactions finally reach the nucleus, resulting in gene expression mediated by the activation of several transcription factors. Recent studies have revealed that cellular signalling pathways are regulated by the intracellular redox state. Generation of reactive oxygen species (ROS), such as H2O2, leads to the activation of protein tyrosine kinases followed by the stimulation of downstream signalling systems including MAP kinase and PLCgamma. The activation of PLCgamma by oxidative radical stress elevates the cellular Ca2+ levels by flux from the intracellular Ca2+ pool and from the extracellular space. Such reactions in the upstream signalling cascade, in concert, result in the activation of several transcription factors. On the other hand, reductants generally suppress the upstream signalling cascade resulting in the suppression of transcription factors. However, it is well known that cysteine residues in a reduced state are essential for the activity of many transcription factors. In fact, in vitro, oxidation of NFkappaB results in its activation, whereas reductants promote its activity. Thus, cellular signalling pathways are generally subjected to dual redox regulation in which redox has opposite effects on upstream signalling systems and downstream transcription factors. Not only are the cellular signalling pathways subjected to redox regulation, but also the signalling systems regulate the cellular redox state. When cells are activated by extracellular stimuli, the cells produce ROS, which in turn stimulate other cellular signalling pathways, indicating that ROS act as second messengers. It is thus evident that there is cross talk between the cellular signalling system and the cellular redox state. Cell death and life also are subjected to such dual redox regulation and cross talk. Death signals induce apoptosis through the activation of caspases in the cells. Oxidative radical stress induces the activation of caspases, whereas the oxidation of caspases results in their inactivation. Furthermore, some cell-death signals induce the production of ROS in the cells, and the ROS produced in turn stimulate the cell-death machinery. All this evidence shows that the cell's fate is determined by cross talk between the cellular signalling pathways and the cellular redox state through a complicated regulation mechanism.
Collapse
Affiliation(s)
- H Kamata
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Hyogo, Japan.
| | | |
Collapse
|
776
|
Bijur GN, Briggs B, Hitchcock CL, Williams MV. Ascorbic acid-dehydroascorbate induces cell cycle arrest at G2/M DNA damage checkpoint during oxidative stress. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1999; 33:144-152. [PMID: 10217068 DOI: 10.1002/(sici)1098-2280(1999)33:2<144::aid-em6>3.0.co;2-v] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Reactive oxygen species induce cellular damage and have been implicated as mediators for cellular signaling pathways. However, a linkage between the cellular redox status and cell cycle progression has not been demonstrated. We previously demonstrated, using the Chinese hamster ovary cell line AS52, that the cytotoxic and mutagenic effects of oxidative stress is prevented by ascorbic acid (AA), but only when cells are treated with AA prior to treatment with the stressor. To elucidate the mechanism(s) responsible for this effect, we determined the effect of AA on cell cycle progression during oxidative stress. Flow cytometric analyses demonstrated that treatment of AS52 cells with AA (50 microM), prior to treatment with a radical generating system (RGS), enhanced cell cycle arrest at the G2/M DNA damage checkpoint when compared to cells treated with RGS. AA had no effect on cell cycle progression in the absence of oxidative stress. Furthermore, under conditions that prevent the reduction of dehydroascorbate (DHA), the oxidized form of AA, cell cycle arrest was also induced at the G2/M DNA damage checkpoint. These observations demonstrate that during periods of oxidative stress, AA functions as an antioxidant and DHA enhances transient arrest at the G2/M checkpoint by delaying the activation of cyclin B-cdc2. These results suggest the presence of a unique redox mechanism for the regulation of cell cycle progression and also demonstrate a novel mechanism by which AA protects cells from damage due to oxidative stress.
Collapse
Affiliation(s)
- G N Bijur
- Department of Medical Microbiology, The Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
777
|
Smith MA, Hirai K, Nunomura A, Perry G. Mitochondrial abnormalities: A primary basis for oxidative damage in Alzheimer's disease. Drug Dev Res 1999. [DOI: 10.1002/(sici)1098-2299(199901)46:1<26::aid-ddr5>3.0.co;2-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
778
|
Trosko JE, Chang CC, Upham B, Wilson M. Epigenetic toxicology as toxicant-induced changes in intracellular signalling leading to altered gap junctional intercellular communication. Toxicol Lett 1998; 102-103:71-8. [PMID: 10022235 DOI: 10.1016/s0378-4274(98)00288-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Communication mechanisms [extra-, intra-, and gap junctional inter-cellular communication (GJIC)] control, from the fertilized egg, through embryogenesis to maturity and aging, whether a cell proliferates, differentiates, dies by apoptosis, or if differentiated, adaptively responds to endogenous and exogenous signals. From the egg to the 100 trillion cells in the human body, health is maintained when these communication processes between stem, progenitor and terminally differentiated cells are integrated. Each cell choice involves 'epigenetic' mechanisms to alter the expression of genes at the transcriptional, translational or post-translational levels. Disruption of the communication mechanisms can be either adaptive or maladaptive. Modulation of extra-cellular communication, either by genetic imbalances of growth factors, hormones or neurotransmitters or by environmental, exogenous chemicals can trigger signal transducing intra-cellular mechanisms. These intra-cellular signals can modulate gene expression at the transcriptional, translational or post-translational levels while also modulating GJIC. Untimely or chronic disruption of GJIC during embryonic or fetal development could lead to embryonic lethality or teratogenesis. By modulation of GJIC, homeostatic control of cell growth, differentiation or apoptosis could lead to specific diseases, such as neurological, cardiovascular, reproductive or endocrinological dysfunction. Chemical modulation or oncogene down-regulation of GJIC in initiated tissues has been shown to lead to tumor promotion. Genetic syndromes carrying a mutated gap junction gene, together with some transgenic and knock-out gap junction gene mice, provide evidence for the importance of this organelle found only in metazoans. Implications for 'thresholds' to toxicants and for risk assessment are evident.
Collapse
Affiliation(s)
- J E Trosko
- Department of Pediatrics and Human Development, Institute for Environmental Toxicology, College of Human Medicine, Michigan State University, East Lansing 48824, USA.
| | | | | | | |
Collapse
|
779
|
Chan-Hui PY, Weaver R. Human mitogen-activated protein kinase kinase kinase mediates the stress-induced activation of mitogen-activated protein kinase cascades. Biochem J 1998; 336 ( Pt 3):599-609. [PMID: 9841871 PMCID: PMC1219910 DOI: 10.1042/bj3360599] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascades represent one of the important signalling mechanisms in response to environmental stimuli. We report the identification of a human MAPK kinase kinase, MAPKKK4, via sequence similarity with other MAPKKKs. When truncated MAPKKK4 (DeltaMAPKKK4) was overexpressed in HEK293 cells, it was constitutively active and induced the activation of endogenous p38alpha, c-Jun N-terminal kinase (JNK)1/2 and extracellular signal-regulated kinase (ERK)2 in vivo. Kinase-inactive DeltaMAPKKK4 partly inhibited the activation of p38alpha, JNK1/2 and ERK2 induced by stress, tumour necrosis factor alpha or epidermal growth factor, suggesting that MAPKKK4 might be physiologically involved in all three MAPK cascades. Co-expressed MAP kinase kinase (MKK)-1, MKK-4, MKK-3 and MKK-6 were activated in vivo by DeltaMAPKKK4. All of the above MKKs purified from Escherichia coli were phosphorylated and activated by DeltaMAPKKK4 immunoprecipitates in vitro. When expressed by lower plasmid doses, DeltaMAPKKK4 preferentially activated MKK-3 and p38alpha in vivo. Overexpression of DeltaMAPKKK4 did not activate the NF-kappaB pathway. Immunoprecipitation of endogenous MAPKKK4 by specific antibodies showed that MAPKKK4 was activated after the treatment of K562 cells with various stress conditions. As a broadly distributed kinase, MAPKKK4 might serve as a stress responder. MAPKKK4 is 91% identical with the recently described murine MEKK-4beta and might be its human homologue. It is also identical with the recently cloned human MAP three kinase 1 except for the lack of an internal sequence homologous to the murine MEKK-4alpha isoform. Differences in the reported functional activities of the three kinases are discussed.
Collapse
Affiliation(s)
- P Y Chan-Hui
- Amgen, Department of Inflammation Research, 3200 Walnut Street, Boulder, CO 80301, USA.
| | | |
Collapse
|
780
|
Metzler B, Hu Y, Sturm G, Wick G, Xu Q. Induction of mitogen-activated protein kinase phosphatase-1 by arachidonic acid in vascular smooth muscle cells. J Biol Chem 1998; 273:33320-6. [PMID: 9837905 DOI: 10.1074/jbc.273.50.33320] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arachidonic acid (AA) and its metabolites play important roles in a variety of biological processes, such as signal transduction, contraction, chemotaxis, and cell proliferation and differentiation. It was demonstrated recently that AA can activate mitogen-activated protein kinases (MAPKs), which are crucial for transducing signals initiating cell growth and apoptosis. Here we studied the effect of AA on the induction of MAPK phosphatase-1 (MKP-1) in vascular smooth muscle cells (VSMCs) and found that AA stimulated induction of MKP-1 mRNA and proteins in VSMCs in a time- and dose-dependent manner. Specific inhibitors of cyclooxygenase-, lipoxygenase-, and cytochrome P450-dependent metabolism did not affect AA-induced MKP-1 expression, indicating that eicosanoid biosynthesis was not involved in this process. The glutathione precursor N-acetylcysteine, an antioxidant, abolished AA-stimulated MKP-1 gene expression, whereas inhibition of protein kinase C by calphostin C had no influence on MKP-1 induction. VSMC pretreatment with genistein, a tyrosine kinase inhibitor, completely blocked AA-stimulated MKP-1 induction. MAPK kinase inhibitor PD 98059 did abolish AA-stimulated activation of extracellular signal-regulated kinases but not MKP-1 induction. Furthermore, agonists that increase AA release stimulated MKP-1 induction and activation of MAPKs, including extracellular signal-regulated kinases and c-Jun NH2-terminal protein kinases or stress-activated protein kinases. Taken together, our findings demonstrate that AA induced MKP-1 expression in VSMCs via activation of tyrosine kinases involving AA-induced free radical generation, suggesting an important role for MKP-1 in the regulation of AA-initiated signal transduction in VSMCs.
Collapse
Affiliation(s)
- B Metzler
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
781
|
Huot J, Houle F, Rousseau S, Deschesnes RG, Shah GM, Landry J. SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol 1998; 143:1361-73. [PMID: 9832563 PMCID: PMC2133090 DOI: 10.1083/jcb.143.5.1361] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In endothelial cells, H2O2 induces the rapid formation of focal adhesion complexes at the ventral face of the cells and a major reorganization of the actin cytoskeleton into dense transcytoplasmic stress fibers. This change in actin dynamics results from the activation of the mitogen-activated protein (MAP) kinase stress-activated protein kinase-2/p38 (SAPK2/p38), which, via MAP kinase-activated protein (MAPKAP) kinase-2/3, leads to the phosphorylation of the actin polymerization modulator heat shock protein of 27 kD (HSP27). Here we show that the concomitant activation of the extracellular signal-regulated kinase (ERK) MAP kinase pathway by H2O2 accomplishes an essential survival function during this process. When the activation of ERK was blocked with PD098059, the focal adhesion complexes formed under the plasma membrane, and the actin polymerization activity led to a rapid and intense membrane blebbing. The blebs were delimited by a thin F-actin ring and contained enhanced levels of HSP27. Later, the cells displayed hallmarks of apoptosis, such as DEVD protease activities and internucleosomal DNA fragmentation. Bleb formation but not apoptosis was blocked by extremely low concentrations of the actin polymerization inhibitor cytochalasin D or by the SAPK2 inhibitor SB203580, indicating that the two processes are not in the same linear cascade. The role of HSP27 in mediating membrane blebbing was assessed in fibroblastic cells. In control fibroblasts expressing a low level of endogenous HSP27 or in fibroblasts expressing a high level of a nonphosphorylatable HSP27, H2O2 did not induce F-actin accumulation, nor did it generate membrane blebbing activity in the presence or absence of PD098059. In contrast, in fibroblasts that expressed wild-type HSP27 to a level similar to that found in endothelial cells, H2O2 induced accumulation of F-actin and caused bleb formation when the ERK pathway was inhibited. Cis-platinum, which activated SAPK2 but induced little ERK activity, also induced membrane blebbing that was dependent on the expression of HSP27. In these cells, membrane blebbing was not followed by caspase activation or DNA fragmentation. We conclude that the HSP27-dependent actin polymerization-generating activity of SAPK2 associated with a misassembly of the focal adhesions is responsible for induction of membrane blebbing by stressing agents.
Collapse
Affiliation(s)
- J Huot
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Québec, G1R 2J6, Canada.
| | | | | | | | | | | |
Collapse
|
782
|
Chakraborti S, Chakraborti T. Oxidant-mediated activation of mitogen-activated protein kinases and nuclear transcription factors in the cardiovascular system: a brief overview. Cell Signal 1998; 10:675-83. [PMID: 9884018 DOI: 10.1016/s0898-6568(98)00014-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In response to oxidant stress, the cardiovascular system is known to express a number of genes, which could occur owing to the participation of mitogen-activated protein kinases such as MAPKs, ERK and JNK (SAPK) followed by stimulation of at least two well-defined transcription factors NF-KB and AP-1 (c-Fos and c-Jun). Oxidants activate cytosolic and membrane-bound PLA2 activities with the subsequent production of AA metabolites such as HETEs, which subsequently stimulate ERK and JNK (SAPK) activities leading to the activation of transcriptional factors and the ultimate stimulation of the transcription of several mitogen-stress-responsive genes. LacCer, a ceramide analogue present in atherosclerotic plaques, has been found to induce proliferation of aortic smooth muscle cells. LacCer is involved in Ras-GTP loading, activation of kinase cascades (MEK, Raf, p44 MAPK) and c-fos expression. TNF-alpha, on the other hand, induces c-fos, c-myc and c-jun expression. Recent investigations link ceramide and its analogues to the extracellular signal-regulated kinase (ERK) cascade, stress-activated protein kinase-c-Jun kinase (SAPK/JNK) cascade and apoptotic responses. These critical steps in the signalling pathways are sensitive to intracellular thiol-redox and protease(s)-antiprotease(s) status, both of which can be modified by oxidants. Because mobilisation of intracellular Ca2+ caused by a variety of signals also plays a role in the activation of the signalling pathways, an important aspect of future work will be to ascertain the roles of oxidants and Ca2+ individually and in combination in the activation of the signalling pathways. The following two important questions also deserve future attention: (1) How does NF-kB shield cells from apoptotic death? and (2) By what mechanisms does the activated NF-kB cause cellular transformation? Furthermore, the role of AP-1 acting as transcriptional activator seems clear, but the target genes remain to be defined.
Collapse
Affiliation(s)
- S Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, West Bengal, India.
| | | |
Collapse
|
783
|
Bonner JA, Vroman BT, Christianson TJ, Karnitz LM. Ionizing radiation-induced MEK and Erk activation does not enhance survival of irradiated human squamous carcinoma cells. Int J Radiat Oncol Biol Phys 1998; 42:921-5. [PMID: 9845123 DOI: 10.1016/s0360-3016(98)00325-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Ionizing radiation (IR) triggers several intracellular signaling cascades that have commonly been regarded as mitogenic, including the Raf-MEK-Erk kinase cascade. In addition to promoting proliferation, activated MEK and Erk may also prevent cell death induced by cytotoxic stimuli. Because Raf, MEK, and Erk are activated by IR in some tumor cell lines, this suggests that IR-induced activation of the kinase cascade may enhance the survival of irradiated cells. METHODS AND MATERIALS IR-induced activation of MEK and Erk was assessed in irradiated UM-SCC-6 cells, a human squamous carcinoma cell line. Activation of MEK and Erk was blocked with the pharmacological inhibitor of MEK activation, PD098059. Clonogenic survival was assessed in irradiated UM-SCC-6 cells that were pretreated with nothing or with the MEK inhibitor. RESULTS In UM-SCC-6 cells, IR doses as low as 2 Gy rapidly activated MEK and Erk. Pretreatment of the cells with the pharmacological inhibitor of MEK activation, PD098059, effectively blocked IR-induced activation of MEK and Erk. However, inhibition of the kinase cascade did not affect the clonogenic survival of irradiated cells in either early or delayed-plating experiments. CONCLUSION Taken together, these results suggest that although MEK and Erk are rapidly activated by IR treatment, these protein kinases do not affect the clonogenic survival of irradiated UM-SCC6 cells.
Collapse
Affiliation(s)
- J A Bonner
- Division of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
784
|
Gergawy M, Vollrath B, Cook D. The mechanism by which aminoglycoside antibiotics cause vasodilation of canine cerebral arteries. Br J Pharmacol 1998; 125:1150-7. [PMID: 9863641 PMCID: PMC1565691 DOI: 10.1038/sj.bjp.0702180] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The effects of aminoglycoside antibiotics were examined in canine cerebral arteries and in cultured cerebrovascular smooth muscle cells stimulated with oxyhemoglobin (OxyHb), a blood constituent which has been implicated in the pathogenesis of cerebrovascular spasm. In cerebral arterial rings precontracted with OxyHb (10 microM), the aminoglycosides caused a concentration-dependent decrease in isometric tension. The EC50s for the relaxation were 0.46+/-0.1 mM (n=6), 0.53+/-0.08 mM (n=12), 1.6+/-0.3 mM (n=7) and 3.9+/-0.5 mM (n=5) for neomycin, gentamicin, streptomycin and kanamycin, respectively. This order of potency corresponds approximately to the number of positive charges in the molecules. The aminoglycosides also inhibited the contractions to prostaglandin F2alpha (1 microM) and depolarizing concentrations of potassium chloride (60 mM). The order of potency was neomycin > gentamicin > streptomycin > kanamycin. The relaxation was maintained in vascular preparations denuded of endothelium. Neomycin (5 mM) abolished the Ca2+-independent contraction to PGF2alpha. In Fura-2-loaded cerebrovascular smooth muscle cells, OxyHb (1 microM) significantly enhanced the concentration of intracellular calcium ([Ca2+]i) by 330%. The administration of neomycin, gentamicin, kanamycin and streptomycin in concentrations corresponding to the EC50 from contractility studies, reduced the effects of OxyHb on [Ca2+]i by about 50% to 221+/-35 nM (n=7), 270+/-31 nM (n=7), 229+/-33 nM (n = 6) and 240+/-6 nM (n = 5), respectively. These results suggests that the effects of the aminoglycosides on the OxyHb-induced contraction and the long-term increase in [Ca2+]i, may arise from several effects, including inhibition of PLC, protection of calcium extrusion mechanisms, and interference with the process of [Ca2+]i accumulation.
Collapse
Affiliation(s)
- M Gergawy
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
785
|
Morel Y, Barouki R. Down-regulation of cytochrome P450 1A1 gene promoter by oxidative stress. Critical contribution of nuclear factor 1. J Biol Chem 1998; 273:26969-76. [PMID: 9756946 DOI: 10.1074/jbc.273.41.26969] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress interferes with several cellular functions, in particular transcriptional regulation. We show here that the human cytochrome P450 1A1 (CYP1A1) is down-regulated at the transcriptional level by oxidative stress. Basal as well as 2,3,7, 8-tetrachloro-p-dioxin-induced promoter activities are strongly impaired by H2O2 treatment or glutathione depletion with L-buthionine-(S,R)-sulfoximine. Tumor necrosis factor alpha inhibits CYP1A1 expression, and this inhibition is prevented by the antioxidant pyrrolidine dithiocarbamate. We show that these regulations depend on the integrity of the nuclear factor 1 (NFI) site located in the proximal promoter. We therefore examined the redox regulation of this transcription factor. Treatment of human HepG2 or rat H4 hepatoma cells with H2O2 or L-buthionine-(S, R)-sulfoximine inactivates the binding of the NFI transcription factor to its DNA consensus sequence. Furthermore, H2O2 treatment leads to a dose-dependent decrease of reporter gene expressions driven by promoters containing NFI binding sites. Glutathione depletion and catalase inhibition also repress a NFI-driven promoter. Under the same conditions, the CP-1 transcription factor activity is not affected by oxidative stress. Thus, NFI seems particularly sensitive to oxidative stress. This accounts, at least partially, for the regulation of cyp1A1 gene expression.
Collapse
Affiliation(s)
- Y Morel
- INSERM U490, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75006 Paris, France
| | | |
Collapse
|
786
|
Peiró C, Angulo J, Rodríguez-Mañas L, Llergo JL, Vallejo S, Cercas E, Sánchez-Ferrer CF. Vascular smooth muscle cell hypertrophy induced by glycosylated human oxyhaemoglobin. Br J Pharmacol 1998; 125:637-44. [PMID: 9831896 PMCID: PMC1571011 DOI: 10.1038/sj.bjp.0702097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Nonenzymatic protein glycosylation is a possible mechanism contributing to oxidative stress and vascular disease in diabetes. In this work, the influence of 14%-glycosylated human oxyhaemoglobin (GHHb), compared to the non-glycosylated protein (HHb), was studied on several growth parameters of rat cultured vascular smooth muscle cells (VSMC). A role for reactive oxygen species was also analysed. 2. Treatment of VSMC for 48 h with GHHb, but not with HHb, increased planar cell surface area in a concentration dependent manner. The threshold concentration was 10 nM, which increased cell size from 7965+/-176 to 9411+/-392 microm2. Similarly, only GHHb enhanced protein content per well in VSMC cultures. 3. The planar surface area increase induced by 10 nM GHHb was abolished by superoxide dismutase (SOD; 50 200 u ml(-1)), deferoxamine (100 nM-100 microM), or dimethylthiourea (1 mM), while catalase (50 200 u ml(-1)) or mannitol (1 mM) resulted in a partial inhibition of cell size enhancement. 4. When a known source of oxygen free radicals was administered to VSMC, the xanthine/xanthine oxidase system, the results were analogous to those produced by GHHb. Indeed, enhancements of cell size were observed, which were inhibited by SOD, deferoxamine, or catalase. 5. These results indicate that, at low concentrations, GHHb induces hypertrophy in VSMC, this effect being mediated by superoxide anions, hydrogen peroxide, and/or hydroxyl radicals. Therefore, glycosylated proteins can have a role in the development of the structural vascular alterations associated to diabetes by enhancing oxidative stress.
Collapse
Affiliation(s)
- C Peiró
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
787
|
Ogura M, Kitamura M. Oxidant Stress Incites Spreading of Macrophages via Extracellular Signal-Regulated Kinases and p38 Mitogen-Activated Protein Kinase. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.7.3569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Cultured macrophages exhibit spreading in response to external stimuli. It is relevant to in vivo morphologic changes of macrophages during extravasation, migration, and differentiation. The present study was performed to elucidate molecular mechanisms that regulate spreading of macrophages. Redox is a crucial factor that modulates a wide range of cell function. We found that macrophages undergo spreading in response to oxidant stress caused by hydrogen peroxide or an oxidant generating agent menadione. To identify signaling pathways involved, a role of mitogen-activated protein (MAP) kinases was investigated. Western blot analysis showed that treatment of macrophages with menadione rapidly induced phosphorylation of extracellular signal-regulated kinases (ERK1, ERK2) and p38 MAP kinase, but not c-Jun N-terminal kinase (JNK). Pharmacologic inhibition of either ERK or p38 activation blunted the macrophage spreading. Similarly, transfection with dominant-negative mutants of ERKs or a mutant p38 significantly suppressed the oxidant-triggered spreading. ERKs and p38 are known to activate serum response element (SRE) via phosphorylation of the ternary complex factor Elk-1. To further identify downstream events, we focused on a role of SRE. Stimulation of macrophages with menadione induced activation of SRE. Intervention in the SRE activation by a dominant-negative mutant of Elk-1 inhibited the menadione-induced spreading. These results suggest that oxygen radical metabolites, the well-known mediators for tissue injury, incite spreading of macrophages via the MAP kinase-SRE signaling pathways.
Collapse
Affiliation(s)
- Makoto Ogura
- Glomerular Bioengineering Unit, Department of Medicine, University College London Medical School, London, United Kingdom
| | - Masanori Kitamura
- Glomerular Bioengineering Unit, Department of Medicine, University College London Medical School, London, United Kingdom
| |
Collapse
|
788
|
Höcker M, Rosenberg I, Xavier R, Henihan RJ, Wiedenmann B, Rosewicz S, Podolsky DK, Wang TC. Oxidative stress activates the human histidine decarboxylase promoter in AGS gastric cancer cells. J Biol Chem 1998; 273:23046-54. [PMID: 9722530 DOI: 10.1074/jbc.273.36.23046] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidant stress is thought to play a role in the pathogenesis of many gastric disorders. We have recently reported that histidine decarboxylase (HDC) promoter activity is stimulated by gastrin through a protein kinase C- and extracellular signal-regulating kinase (ERK)-dependent pathway in gastric cancer (AGS-B) cells, and this transcriptional response is mediated by a downstream cis-acting element, the gastrin response element (GAS-RE). To study the mechanism through which oxidant stress affects gastric cells, we examined the effects of hydrogen peroxide (H2O2) on HDC promoter activity and intracellular signaling in AGS-B cells. H2O2 (10 mM) specifically activated the HDC promoter 10-12-fold, and this activation was blocked by both mannitol and N-acetylcysteine. Hydrogen peroxide treatment of AGS-B cells increased the phosphorylation and kinase activity of ERK-1 and ERK-2, but did not affect Jun kinase tyrosine phosphorylation or kinase activity. In addition, treatment of AGS-B cells with H2O2 resulted in increased c-fos/c-jun mRNA expression and AP-1 activity, and also led to increased phosphorylation of epidermal growth factor receptor (EGFR) and Shc. H2O2-dependent stimulation of HDC promoter activity was completely inhibited by kinase-deficient ERKs, dominant-negative (N17 and N15) Ras, and dominant-negative Raf, and partially blocked by a dominant-negative EGFR mutant. In contrast, protein kinase C blockade did not inhibit H2O2-dependent induction of the HDC promoter. Finally, deletion analysis demonstrated that the H2O2 response element could be mapped to the GAS-RE (nucleotides 2 to 24) of the basal HDC promoter. Overall, these studies suggest that oxidant stress activates the HDC promoter through the GAS-RE, and through an Ras-, Raf-, and ERK-dependent pathway at least partially involving the EGFR.
Collapse
Affiliation(s)
- M Höcker
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Universitätsklinikum Charité, Campus Virchow Klinikum, Humboldt Universität, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
789
|
Chen W, Martindale JL, Holbrook NJ, Liu Y. Tumor promoter arsenite activates extracellular signal-regulated kinase through a signaling pathway mediated by epidermal growth factor receptor and Shc. Mol Cell Biol 1998; 18:5178-88. [PMID: 9710602 PMCID: PMC109103 DOI: 10.1128/mcb.18.9.5178] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although arsenite is an established carcinogen, the mechanisms underlying its tumor-promoting properties are poorly understood. Previously, we reported that arsenite treatment leads to the activation of the extracellular signal-regulated kinase (ERK) in rat PC12 cells through a Ras-dependent pathway. To identify potential mediators of the upstream signaling cascade, we examined the tyrosine phosphorylation profile in cells exposed to arsenite. Arsenite treatment rapidly stimulated tyrosine phosphorylation of several proteins in a Ras-independent manner, with a pattern similar to that seen in response to epidermal growth factor (EGF) treatment. Among these phosphorylated proteins were three isoforms of the proto-oncoprotein Shc as well as the EGF receptor (EGFR). Tyrosine phosphorylation of Shc allowed for enhanced interactions between Shc and Grb2 as identified by coimmunoprecipitation experiments. The arsenite-induced tyrosine phosphorylation of Shc, enhancement of Shc and Grb2 interactions, and activation of ERK were all drastically reduced by treatment of cells with either the general growth factor receptor poison suramin or the EGFR-selective inhibitor tyrphostin AG1478. Down-regulation of EGFR expression through pretreatment of cells with EGF also attenuated ERK activation and Shc tyrosine phosphorylation in response to arsenite treatment. These results demonstrate that the EGFR and Shc are critical mediators in the activation of the Ras/ERK signaling cascade by arsenite and suggest that arsenite acts as a tumor promoter largely by usurping this growth factor signaling pathway.
Collapse
Affiliation(s)
- W Chen
- Gene Expression and Aging Section, Laboratory of Biological Chemistry, National Institute on Aging, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
790
|
Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shah A, Harrison DG, Taylor WR, Griendling KK. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 1998; 32:488-95. [PMID: 9740615 DOI: 10.1161/01.hyp.32.3.488] [Citation(s) in RCA: 415] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent evidence suggests that oxidative mechanisms may be involved in vascular smooth muscle cell (VSMC) hypertrophy. We previously showed that angiotensin II (Ang II) increases superoxide production by activating an NADH/NADPH oxidase, which contributes to hypertrophy. In this study, we determined whether Ang II stimulation of this oxidase results in H2O2 production by studying the effects of Ang II on intracellular H2O2 generation, intracellular superoxide dismutase and catalase activity, and hypertrophy. Ang II (100 nmol/L) significantly increased intracellular H2O2 levels at 4 hours. Neither superoxide dismutase activity nor catalase activity was affected by Ang II; the SOD present in VSMCs is sufficient to metabolize Ang II-stimulated superoxide to H2O2, which accumulates more rapidly than it is degraded by catalase. This increase in H2O2 was inhibited by extracellular catalase, diphenylene iodonium, an inhibitor of the NADH/NADPH oxidase, and the AT1 receptor blocker losartan. In VSMCs stably transfected with antisense p22phox, a critical component of the NADH/NADPH oxidase in which oxidase activity was markedly reduced, Ang II-induced production of H2O2 was almost completely inhibited, confirming that the source of Ang II-induced H2O2 was the NADH/NADPH oxidase. Using a novel cell line that stably overexpresses catalase, we showed that this increased H2O2 is a critical step in VSMC hypertrophy, a hallmark of many vascular diseases. Inhibition of intracellular superoxide dismutase by diethylthiocarbamate (1 mmol/L) also resulted in attenuation of Ang II-induced hypertrophy (62+/-2% inhibition). These data indicate that AT1 receptor-mediated production of superoxide generated by the NADH/NADPH oxidase is followed by an increase in intracellular H2O2, suggesting a specific role for these oxygen species and scavenging systems in modifying the intracellular redox state in vascular growth.
Collapse
MESH Headings
- Angiotensin II/adverse effects
- Angiotensin II/pharmacology
- Animals
- Catalase/drug effects
- Catalase/metabolism
- Cells, Cultured
- Hydrogen Peroxide/metabolism
- Hypertrophy/chemically induced
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- NADH, NADPH Oxidoreductases/drug effects
- NADH, NADPH Oxidoreductases/physiology
- Oxidants/metabolism
- RNA, Messenger/isolation & purification
- Rats
- Superoxide Dismutase/drug effects
- Superoxide Dismutase/metabolism
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- A M Zafari
- From the Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
791
|
Keogh B, Allen RG, Tresini M, Furth JJ, Cristofalo VJ. Antioxidants stimulate transcriptional activation of the c-fos gene by multiple pathways in human fetal lung fibroblasts (WI-38). J Cell Physiol 1998; 176:624-33. [PMID: 9699515 DOI: 10.1002/(sici)1097-4652(199809)176:3<624::aid-jcp19>3.0.co;2-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have examined the effects of three structurally distinct antioxidants (N-acetylcysteine [NAC], Trolox C [a water-soluble vitamin E derivative], and nordihydroguaiaretic acid [NGA]) on the expression of the c-fos gene over a 2-hour period. Determination of cellular glutathione concentration (the primary determinant of the cellular redox state) over the same time-course verifies that all the compounds studied cause an increase in cellular reduction potential. The level of c-fos messenger RNA increased rapidly in response to micromolar concentrations of these compounds, reaching a peak in 30-60 minutes. Induction of c-fos expression by these antioxidants is at least partly due to an increase in transcription, as determined by nuclear run-on assay. Down regulation of protein kinase C (PKC) by pretreatment for 24 hours with 500 nm PMA prevents induction by subsequent stimulation with either PMA or NGA. NAC induction of c-fos is unaffected by PMA pretreatment, while Trolox C superinduced c-fos following PMA pretreatment. None of these treatments stimulated translocation of PKC-alpha from the cytosol to the membrane. These results suggest that increasing the intracellular reducing potential induces c-fos expression through multiple pathways.
Collapse
Affiliation(s)
- B Keogh
- Center for Gerontological Research, Allegheny University, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | |
Collapse
|
792
|
Hu Y, Hochleitner BW, Wick G, Xu Q. Decline of shear stress-induced activation of extracellular signal-regulated kinases, but not stress-activated protein kinases, in in vitro propagated endothelial cells. Exp Gerontol 1998; 33:601-13. [PMID: 9789737 DOI: 10.1016/s0531-5565(98)00034-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the involvement of mitogen-activated protein kinase (MAPK) signal transduction pathways in human endothelial cells in response to shear stress and alterations of these kinases in in vitro-propagated endothelial cells (ECs). Potent activation (10-fold) of extracellular signal-regulated kinase (ERK2), a member of the MAPK family, occurred within 10 min of shear stress (5 dynes/cm2), whereupon rapid inactivation ensued. Shear stress also induced activation of stress-activated protein kinase (SAPK) or c-Jun NH2-terminal protein kinase (JNK) in ECs. Suramin pretreatment completely inhibited shear stress stimulation of ERK2, but not SAPK/JNK, highlighting a role for growth factor receptors in ERK activation. Translocation of ERK2 from the cytoplasm to the nucleus was observed in shear-stressed endothelial cells. In addition, we compared activities of MAPKs in shear-stressed cells derived from passages 4 and 10 (older). The magnitude of ERK2 activation was significantly lower in aged ECs compared to those of passage 4, while SAPK/JNK was not altered in the in vitro aged ECs. A similar level of ERK2 activation was found in both young and older cells stimulated with phorbol-12-myristate-13-acetate (PMA), indicating an age-related alteration of the plasma membrane. Taken together, these findings suggest that MAP kinase activation may be crucial for the expression of many genes in ECs stimulated by shear stress, and that an alteration in MAPK activities could contribute to the age-related decline in proliferative capacity.
Collapse
Affiliation(s)
- Y Hu
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Innsbruck, Austria.
| | | | | | | |
Collapse
|
793
|
Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1998; 1:366-73. [PMID: 10196525 DOI: 10.1038/1577] [Citation(s) in RCA: 464] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have investigated the role of mitochondrial calcium buffering in excitotoxic cell death. Glutamate acts at NMDA receptors in cultured rat forebrain neurons to increase the intracellular free calcium concentration. Although concurrent inhibition of mitochondrial calcium uptake substantially enhanced this cytoplasmic calcium increase, it significantly reduced glutamate-stimulated neuronal cell death. Mitochondrial inhibition did not affect nitric oxide production or MAP kinase phosphorylation, which have been proposed to mediate excitotoxicity. These results indicate that very high levels of cytoplasmic calcium are not necessarily toxic to forebrain neurons, and that potential-driven uptake of calcium into mitochondria is required to trigger NMDA-receptor-stimulated neuronal death.
Collapse
Affiliation(s)
- A K Stout
- Department of Pharmacology, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
794
|
Hu Y, Böck G, Wick G, Xu Q. Activation of PDGF receptor alpha in vascular smooth muscle cells by mechanical stress. FASEB J 1998; 12:1135-42. [PMID: 9737716 DOI: 10.1096/fasebj.12.12.1135] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypertension increases mechanical force on the arterial wall by as much as 30%, resulting in marked alterations in signal transductions and gene expression in vascular smooth muscle cells (VSMCs) that contribute to matrix protein synthesis, cell proliferation, and differentiation. How the mechanical stimuli are converted into a biological signal in cells has yet to be studied. We investigated the role of both cyclic strain and shear stresses in initiating the cellular signaling on cultured VSMCs and found that mechanical forces evoked activation of mitogen-activated protein kinases, followed by enhanced DNA binding activity of transcription factor AP-1. Physical forces rapidly induced phosphorylation of platelet-derived growth factor receptor (PDGFR) alpha, an activated state. When GRB2, an adapter protein, was immunoprecipitated from treated VSMCs followed by Western blot analysis with anti-phosphotyrosine, -PDGFR alpha, and -GRB2 antibodies, respectively, phosphotyrosine positive staining was observed on PDGFR alpha bands of the same blot in stretch-stressed VSMCs, supporting the mechanical stress-induced activation of PDGFR alpha. Conditioned medium from stretch-stressed VSMCs did not result in PDGFR alpha phosphorylation, and antibodies binding to all forms of PDGFs did not block stress-induced PDGFR alpha activation. Thus, mechanical stresses may directly perturb the cell surface or alter receptor conformation, thereby initiating signaling pathways normally used by growth factors.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Aorta
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cells, Cultured
- GRB2 Adaptor Protein
- Kinetics
- Mitogen-Activated Protein Kinase 1
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Phosphorylation
- Platelet-Derived Growth Factor/pharmacology
- Platelet-Derived Growth Factor/physiology
- Proteins/metabolism
- Rats
- Receptor, Platelet-Derived Growth Factor alpha
- Receptors, Platelet-Derived Growth Factor/isolation & purification
- Receptors, Platelet-Derived Growth Factor/metabolism
- Signal Transduction
- Stress, Mechanical
- Time Factors
- Transcription Factor AP-1/metabolism
Collapse
Affiliation(s)
- Y Hu
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Innsbruck
| | | | | | | |
Collapse
|
795
|
Mills EM, Takeda K, Yu ZX, Ferrans V, Katagiri Y, Jiang H, Lavigne MC, Leto TL, Guroff G. Nerve growth factor treatment prevents the increase in superoxide produced by epidermal growth factor in PC12 cells. J Biol Chem 1998; 273:22165-8. [PMID: 9712826 DOI: 10.1074/jbc.273.35.22165] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of pheochromocytoma (PC12) cells with the mitogen epidermal growth factor (EGF) produced a rapid and robust accumulation of intracellular reactive oxygen species (ROS), an accumulation which, in other systems, has been shown to be essential for mitogenesis. Brief pretreatment of the cells with nerve growth factor (NGF) suppressed the EGF-mediated ROS increase. EGF failed to produce elevations in ROS in a PC12 variant stably expressing a dominant-negative p21(ras) construct (PC12-N17) or in cells pretreated with the MEK inhibitor PD098059. NGF failed to suppress the increase in ROS in the PC12 variant nnr5, which lacks p140(trk) receptors. The suppression of the increase in ROS by NGF was restored in nnr5 cells stably expressing p140(trk) (nnr5-trk), but NGF failed to prevent the increase in ROS in nnr cells expressing mutant p140(trk) receptors that lack binding sites for Shc and phospholipase Cgamma. Among several inhibitors of superoxide-generating enzymes, only the lipoxygenase inhibitor, nordihydroguaiaretic acid reduced EGF-mediated ROS accumulation. The inhibitory action of NGF on ROS production was mimicked by the nitric oxide donor, sodium nitroprusside, and was blocked by an inhibitor of nitric-oxide synthetase, L-nitroarginine methyl ester. These results suggest a novel mechanism for the rapid interruption of mitogenic signaling by the neurotrophin NGF.
Collapse
Affiliation(s)
- E M Mills
- Section on Growth Factors, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
796
|
Jin YJ, Friedman J, Burakoff SJ. Regulation of Tyrosine Phosphorylation in Isolated T Cell Membrane by Inhibition of Protein Tyrosine Phosphatases. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.4.1743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Jurkat T cells activated by the phosphotyrosine phosphatase inhibitors H2O2 or vanadate were found to have a similar pattern of tyrosine phosphorylation when compared with T cells stimulated by anti-CD3 Ab cross-linking, suggesting that protein tyrosine phosphatase (PTP) inhibitors affect the early steps of TCR signaling. To study the role of PTPs in the most proximal membrane events of tyrosine phosphorylation, subcellular fractions of T cells were treated with the PTP inhibitors in the presence of ATP. In the membrane fraction, tyrosine phosphorylation of Lck, Fyn, and CD3ζ can be induced by PTP inhibitors, but not by anti-CD3. Detailed characterization of this cell-free system showed that the pattern and the order of induced tyrosine phosphorylation is similar to that induced in intact cells. Upon removal of the PTP inhibitor, the tyrosine-phosphorylated proteins, including Lck, Fyn, Syk, Zap70, and CD3ζ, are rapidly dephosphorylated. Preliminary characterizations indicate that a PTP distinct from CD45, SHP1, and SHP2 is present in T cell membranes and the inhibition of this yet unidentified PTP is most likely responsible for the Lck-dependent tyrosine phosphorylation triggered by PTP inhibitors.
Collapse
Affiliation(s)
- Yong-Jiu Jin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Jeff Friedman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Steven J. Burakoff
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
797
|
Clerk A, Michael A, Sugden PH. Stimulation of multiple mitogen-activated protein kinase sub-families by oxidative stress and phosphorylation of the small heat shock protein, HSP25/27, in neonatal ventricular myocytes. Biochem J 1998; 333 ( Pt 3):581-9. [PMID: 9677316 PMCID: PMC1219620 DOI: 10.1042/bj3330581] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated the activation of three subfamilies of mitogen-activated protein kinases (MAPKs), namely the stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs), the extracellularly responsive kinases (ERKs) and p38-MAPK, by oxidative stress as exemplified by H2O2 in primary cultures of neonatal rat ventricular myocytes. The 46 and 54 kDa species of SAPKs/JNKs were activated 5- and 10-fold, respectively, by 0.1 mM H2O2 (the maximally effective concentration). Maximal activation occurred at 15-30 min, but was still detectable after 2 h. Both ERK1 and ERK2 were activated 16-fold by 0.1 mM H2O2 with a similar time course to the SAPKs/JNKs, and this was comparable with their activation by 1 microM PMA, the most powerful activator of ERKs that we have so far identified in these cells. The activation of ERKs by H2O2 was inhibited by PD98059, which inhibits the activation of MAPK (or ERK) kinases, and by the protein kinase C (PKC) inhibitor, GF109203X. ERK activation was also inhibited by down-regulation of PMA-sensitive PKC isoforms. p38-MAPK was activated by 0.1 mM H2O2 as shown by an increase in its phosphorylation. However, maximal phosphorylation (activation) was more rapid (<5 min) than for the SAPKs/JNKs or the ERKs. We studied the downstream consequences of p38-MAPK activation by examining activation of MAPK-activated protein kinase 2 (MAPKAPK2) and phosphorylation of the MAPKAPK2 substrate, the small heat shock protein HSP25/27. As with p38-MAPK, MAPKAPK2 was rapidly activated (maximal within 5 min) by 0.1 mM H2O2. This activation was abolished by 10 microM SB203580, a selective inhibitor of certain p38-MAPK isoforms. The phosphorylation of HSP25/27 rapidly followed activation of MAPKAPK2 and was also inhibited by SB203580. Phosphorylation of HSP25/27 was associated with a decrease in its aggregation state. These data indicate that oxidative stress is a powerful activator of all three MAPK subfamilies in neonatal rat ventricular myocytes. Activation of all three MAPKs has been associated with the development of the hypertrophic phenotype. However, stimulation of p38-MAPK and the consequent phosphorylation of HSP25/27 may also be important in cardioprotection.
Collapse
Affiliation(s)
- A Clerk
- NHLI Division (Cardiac Medicine), Royal Brompton Campus, Imperial College School of Medicine, Dovehouse Street, London SW3 6LY, UK
| | | | | |
Collapse
|
798
|
Aronson D, Wojtaszewski JF, Thorell A, Nygren J, Zangen D, Richter EA, Ljungqvist O, Fielding RA, Goodyear LJ. Extracellular-regulated protein kinase cascades are activated in response to injury in human skeletal muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C555-61. [PMID: 9688610 DOI: 10.1152/ajpcell.1998.275.2.c555] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mitogen-activated protein (MAP) kinase signaling pathways are believed to act as critical signal transducers between stress stimuli and transcriptional responses in mammalian cells. However, it is not known whether these signaling cascades also participate in the response to injury in human tissues. To determine whether injury to the vastus lateralis muscle activates MAP kinase signaling in human subjects, two needle biopsies or open muscle biopsies were taken from the same incision site 30-60 min apart. The muscle biopsy procedures resulted in striking increases in dual phosphorylation of the extracellular-regulated kinases (ERK1 and ERK2) and in activity of the downstream substrate, the p90 ribosomal S6 kinase. Raf-1 kinase and MAP kinase kinase, upstream activators of ERK, were also markedly stimulated in all subjects. In addition, c-Jun NH2-terminal kinase and p38 kinase, components of two parallel MAP kinase pathways, were activated following muscle injury. The stimulation of the three MAP kinase cascades was present only in the immediate vicinity of the injury, a finding consistent with a local rather than systemic activation of these signaling cascades in response to injury. These data demonstrate that muscle injury induces the stimulation of the three MAP kinase cascades in human skeletal muscle, suggesting a physiological relevance of these protein kinases in the immediate response to tissue injury and possibly in the initiation of wound healing.
Collapse
Affiliation(s)
- D Aronson
- Research Division, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
799
|
Meldrum DR, Dinarello CA, Cleveland JC, Cain BS, Shames BD, Meng X, Harken AH. Hydrogen peroxide induces tumor necrosis factor α–mediated cardiac injury by a P38 mitogen-activated protein kinase–dependent mechanism. Surgery 1998. [DOI: 10.1016/s0039-6060(98)70133-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
800
|
Drobnies AE, Venczel EA, Cornell RB. Activation of CTP:phosphocholine cytidylyltransferase by hypochlorite-oxidized phosphatidylcholines. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1393:90-8. [PMID: 9714757 DOI: 10.1016/s0005-2760(98)00060-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CTP:phosphocholine cytidylyltransferase (CT) catalyzes a rate-limiting, regulatory step in mammalian biosynthesis of phosphocholine (PC). Anionic phospholipids, fatty acids and diacylglycerol activate CT and promote its intercalation into the lipid bilayer, whereas zwitterionic phospholipids such as phosphatidylcholines do not. We investigated the effectiveness of polyunsaturated phosphatidylcholines as CT activators after hypochlorite oxidation. Detection and quantitation of oxidized PCs were evaluated by thin layer chromatography, high performance liquid chromatography, and conjugated dienes. Purified CT was assayed in the presence of multilamellar vesicles, containing variable concentrations of oxidized and parent PCs. The results demonstrate that particular species of oxidized PCs activate CT as potently as anionic lipids. The greater the number of double bonds available for oxidation in the fatty acid at the sn-2 position of the PC, the more effective was the oxidized PC as an activator of CT. Oxidized phospholipids at 1:1 bleach/lipid activated CT in the following order: PAPC>PL3PC>PL2PC compared to unoxidized controls. Since oxidized phospholipids decrease bilayer order (M.L. Wratten et al., Biochemistry 31 (1992) 10901-10907) these results are consistent with the activation of CT by perturbations of lipid bilayer packing.
Collapse
Affiliation(s)
- A E Drobnies
- Institute for Molecular Biology and Biochemistry and Department of Chemistry, Simon Fraser University, Burnaby BC V5A 1S6, Canada
| | | | | |
Collapse
|