751
|
The Intriguing Role of Neuropeptides at the Ocular Surface. Ocul Surf 2017; 15:2-14. [DOI: 10.1016/j.jtos.2016.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 10/05/2016] [Accepted: 10/26/2016] [Indexed: 02/02/2023]
|
752
|
Heteroreceptors Modulating CGRP Release at Neurovascular Junction: Potential Therapeutic Implications on Some Vascular-Related Diseases. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2056786. [PMID: 28116293 PMCID: PMC5223010 DOI: 10.1155/2016/2056786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/12/2016] [Accepted: 11/27/2016] [Indexed: 01/23/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino-acid neuropeptide belonging to the calcitonin gene peptide superfamily. CGRP is a potent vasodilator with potential therapeutic usefulness for treating vascular-related disease. This peptide is primarily located on C- and Aδ-fibers, which have extensive perivascular presence and a dual sensory-efferent function. Although CGRP has two major isoforms (α-CGRP and β-CGRP), the α-CGRP is the isoform related to vascular actions. Release of CGRP from afferent perivascular nerve terminals has been shown to result in vasodilatation, an effect mediated by at least one receptor (the CGRP receptor). This receptor is an atypical G-protein coupled receptor (GPCR) composed of three functional proteins: (i) the calcitonin receptor-like receptor (CRLR; a seven-transmembrane protein), (ii) the activity-modifying protein type 1 (RAMP1), and (iii) a receptor component protein (RCP). Although under physiological conditions, CGRP seems not to play an important role in vascular tone regulation, this peptide has been strongly related as a key player in migraine and other vascular-related disorders (e.g., hypertension and preeclampsia). The present review aims at providing an overview on the role of sensory fibers and CGRP release on the modulation of vascular tone.
Collapse
|
753
|
Desai M, Slusarczyk AL, Chapin A, Barch M, Jasanoff A. Molecular imaging with engineered physiology. Nat Commun 2016; 7:13607. [PMID: 27910951 PMCID: PMC5146284 DOI: 10.1038/ncomms13607] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/19/2016] [Indexed: 12/30/2022] Open
Abstract
In vivo imaging techniques are powerful tools for evaluating biological systems. Relating image signals to precise molecular phenomena can be challenging, however, due to limitations of the existing optical, magnetic and radioactive imaging probe mechanisms. Here we demonstrate a concept for molecular imaging which bypasses the need for conventional imaging agents by perturbing the endogenous multimodal contrast provided by the vasculature. Variants of the calcitonin gene-related peptide artificially activate vasodilation pathways in rat brain and induce contrast changes that are readily measured by optical and magnetic resonance imaging. CGRP-based agents induce effects at nanomolar concentrations in deep tissue and can be engineered into switchable analyte-dependent forms and genetically encoded reporters suitable for molecular imaging or cell tracking. Such artificially engineered physiological changes, therefore, provide a highly versatile means for sensitive analysis of molecular events in living organisms.
Collapse
Affiliation(s)
- Mitul Desai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| | - Adrian L. Slusarczyk
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| | - Ashley Chapin
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| | - Mariya Barch
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
754
|
Giamberardino MA, Affaitati G, Curto M, Negro A, Costantini R, Martelletti P. Anti-CGRP monoclonal antibodies in migraine: current perspectives. Intern Emerg Med 2016; 11:1045-1057. [PMID: 27339365 DOI: 10.1007/s11739-016-1489-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022]
Abstract
Migraine is a highly disabling neurological pain disorder in which management is frequently problematic. Most abortive and preventative treatments employed are classically non-specific, and their efficacy and safety and tolerability are often unsatisfactory. Mechanism-based therapies are, therefore, needed. Calcitonin gene-related peptide (CGRP) is recognized as crucial in the pathophysiology of migraine, and new compounds that target the peptide have been increasingly explored in recent years. First tested were CGRP receptor antagonists; they proved effective in acute migraine treatment in several trials, but were discontinued due to liver toxicity in long-term administration. Monoclonal antibodies against CGRP (LY2951742, ALD-403, and LBR-101/TEV-48125) or its receptor (AMG334) were subsequently developed. As reviewed in this study, numerous phase 1 and 2 trials and preliminary results of phase 3 trials have shown a good safety/tolerability profile and efficacy in migraine prevention, especially in high frequent episodic and chronic forms. Being macromolecules, these mAbs are not suitable for oral administration; however, their intravenous or subcutaneous delivery can be performed at relatively low frequency-every month or even quarterly-which enhances patients' compliance. Although not all migraineurs respond to this treatment, and longer administration periods will be needed to assess long-term effects, the results so far obtained are extraordinarily promising. The future introduction of mAbs on the market will probably represent a turning point for prevention similar to that represented by triptans for abortive treatment in migraine.
Collapse
Affiliation(s)
- Maria Adele Giamberardino
- Department of Medicine and Science of Aging, Headache Center and Geriatrics Clinic, Gabriele D'Annunzio University, Chieti, Italy
| | - Giannapia Affaitati
- Department of Medicine and Science of Aging, Headache Center and Geriatrics Clinic, Gabriele D'Annunzio University, Chieti, Italy
| | - Martina Curto
- Department of Clinical and Molecular Medicine, Regional Referral Headache Center, Sapienza University, Via di Grottarossa, 1035, 00189, Rome, Italy
- Regional Referral Headache Center, Sant'Andrea Hospital, Rome, Italy
- Department of Psychiatry, Harvard Medical School, Boston, USA
- Bipolar and Psychotic Disorders Program, McLean Hospital, Belmont, MA, USA
| | - Andrea Negro
- Department of Clinical and Molecular Medicine, Regional Referral Headache Center, Sapienza University, Via di Grottarossa, 1035, 00189, Rome, Italy
- Regional Referral Headache Center, Sant'Andrea Hospital, Rome, Italy
| | - Raffaele Costantini
- Institute of Surgical Pathology, Gabriele D'Annunzio University, Chieti, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Regional Referral Headache Center, Sapienza University, Via di Grottarossa, 1035, 00189, Rome, Italy.
- Regional Referral Headache Center, Sant'Andrea Hospital, Rome, Italy.
| |
Collapse
|
755
|
Genovese F, Bauersachs HG, Gräßer I, Kupke J, Magin L, Daiber P, Nakajima J, Möhrlen F, Messlinger K, Frings S. Possible role of calcitonin gene-related peptide in trigeminal modulation of glomerular microcircuits of the rodent olfactory bulb. Eur J Neurosci 2016; 45:587-600. [PMID: 27891688 DOI: 10.1111/ejn.13490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022]
Abstract
Chemosensation in the mammalian nose comprises detection of odorants, irritants and pheromones. While the traditional view assigned one distinct sub-system to each stimulus type, recent research has produced a more complex picture. Odorants are not only detected by olfactory sensory neurons but also by the trigeminal system. Irritants, in turn, may have a distinct odor, and some pheromones are detected by the olfactory epithelium. Moreover, it is well established that irritants change odor perception and vice versa. A wealth of psychophysical evidence on olfactory-trigeminal interactions in humans contrasts with a paucity of structural insight. In particular, it is unclear whether the two systems communicate just by sharing stimuli, or whether neuronal connections mediate cross-modal signaling. One connection could exist in the olfactory bulb that performs the primary processing of olfactory signals and receives trigeminal innervation. In the present study, neuroanatomical tracing of the mouse ethmoid system illustrates how peptidergic fibers enter the glomerular layer of the olfactory bulb, where local microcircuits process and filter the afferent signal. Biochemical assays reveal release of calcitonin gene-related peptide from olfactory bulb slices and attenuation of cAMP signaling by the neuropeptide. In the non-stimulated tissue, the neuropeptide specifically inhibited the basal activity of calbindin-expressing periglomerular interneurons, but did not affect the basal activity of neurons expressing calretinin, parvalbumin, or tyrosine hydroxylase, nor the activity of astrocytes. This study represents a first step towards understanding trigeminal neuromodulation of olfactory-bulb microcircuits and provides a working hypothesis for trigeminal inhibition of olfactory signal processing. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Federica Genovese
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Hanke Gwendolyn Bauersachs
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Ines Gräßer
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Janina Kupke
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Laila Magin
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Philipp Daiber
- Interfacultary Biomedical Faculty, Heidelberg University, Heidelberg, Germany
| | - Julika Nakajima
- Institute of Physiology and Pathophysiology, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Frank Möhrlen
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Stephan Frings
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
756
|
Abushik PA, Bart G, Korhonen P, Leinonen H, Giniatullina R, Sibarov DA, Levonen AL, Malm T, Antonov SM, Giniatullin R. Pro-nociceptive migraine mediator CGRP provides neuroprotection of sensory, cortical and cerebellar neurons via multi-kinase signaling. Cephalalgia 2016; 37:1373-1383. [PMID: 27884929 DOI: 10.1177/0333102416681588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Blocking the pro-nociceptive action of CGRP is one of the most promising approaches for migraine prophylaxis. The aim of this study was to explore a role for CGRP as a neuroprotective agent for central and peripheral neurons. Methods The viability of isolated rat trigeminal, cortical and cerebellar neurons was tested by fluorescence vital assay. Engagement of Nrf2 target genes was analyzed by qPCR. The neuroprotective efficacy of CGRP in vivo was tested in mice using a permanent cerebral ischemia model. Results CGRP prevented apoptosis induced by the amino acid homocysteine in all three distinct neuronal populations. Using a set of specific kinase inhibitors, we show the role of multi-kinase signaling pathways involving PKA and CaMKII in neuronal survival. Forskolin triggered a very similar signaling cascade, suggesting that cAMP is the main upstream trigger for multi-kinase neuroprotection. The specific CGRP antagonist BIBN4096 reduced cellular viability, lending further support to the proposed neuroprotective function of CGRP. Importantly, CGRP was neuroprotective against permanent ischemia in mice. Conclusion Our data show an unexpected 'positive' role for the endogenous pro-nociceptive migraine mediator CGRP, suggesting more careful examination of migraine prophylaxis strategy based on CGRP antagonism although it should be noted that homocysteine induced apoptosis in primary neuronal cell culture might not necessarily reproduce all the features of cell loss in the living organism.
Collapse
Affiliation(s)
- Polina A Abushik
- 1 Department of Neurobiology, University of Eastern Finland, Kuopio, Finland.,2 Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Laboratory of Comparative Neurophysiology, Saint-Petersburg, Russia
| | - Geneviève Bart
- 1 Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Paula Korhonen
- 1 Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Hanna Leinonen
- 3 Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Raisa Giniatullina
- 1 Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Dmitry A Sibarov
- 2 Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Laboratory of Comparative Neurophysiology, Saint-Petersburg, Russia
| | - Anna-Liisa Levonen
- 3 Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- 1 Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Sergei M Antonov
- 2 Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Laboratory of Comparative Neurophysiology, Saint-Petersburg, Russia
| | - Rashid Giniatullin
- 1 Department of Neurobiology, University of Eastern Finland, Kuopio, Finland.,4 Laboratory of Neurobiology, Department of Physiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
757
|
Pota V, Quagliariello V, Armenia E, Aurilio C, Passavanti MB, Sansone P, Iannotti M, Catauro M, Coaccioli S, Barbarisi M, Pace MC. CGRP and Visceral Pain: The Role of Sex Hormones in In Vitro Experiment. J Cell Biochem 2016; 118:510-517. [PMID: 27579553 DOI: 10.1002/jcb.25680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 11/06/2022]
Abstract
A large number of studies have showed that women reported feeling pain more acutely than men. In support of this hypothesis, many research groups proved that in different animals model of pain the sex hormones regulate the somatic and visceral sensitivity to different noxious stimuli. Therefore, in this study, we went to evaluate if estrogen hormones by regulating the CGRP levels are implicated during the visceral pain transmission. Toward this aim, we have investigated the effect of 17β-estradiol in regulating the synthesis and release of CGRP, as well as the expression levels of the opioid receptor of type K. In order to gain information about the potential effects of 17β-estradiol on K-opioid receptor expression and activity, we have cultured F11 cells. Our results revealed that, when F11 cells were short-term exposed (30 min) to 17β-estradiol, the expression of the opioid K receptor was not significantly modified. We carried out enzyme immunoassay analysis to evaluate the potential effects of short-term exposure to 17-estradiol (30 min) on the release of CGRP in F11 cells. The results obtained showed that 17β-estradiol at the dose of 100 nM is able to induce the release of CGRP from F11 cells; whereas, a higher dose of 17β-estradiol (200 nM) did not produce significant effects when compared to control. In conclusion, all these findings suggest that the 17β-estradiol-regulated release of CGRP could at least in part provide a rational explanation for the difference of gender in the visceral pain sensitivity. J. Cell. Biochem. 118: 510-517, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vincenzo Pota
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Vincenzo Quagliariello
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Emilia Armenia
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Caterina Aurilio
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Maria Beatrice Passavanti
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Pasquale Sansone
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Mario Iannotti
- Department of Anaesthesiology, ASL Salerno, Salerno, Italy
| | | | - Stefano Coaccioli
- Perugia University School of Medicine-District of Terni, Institute of Internal Medicine, Rheumatology and Medical Pain Therapy, Perugia, Italy
| | - Manlio Barbarisi
- Department of Neurosurgery, Second University of Naples, Naples, Italy
| | - Maria Caterina Pace
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| |
Collapse
|
758
|
Semmens DC, Mirabeau O, Moghul I, Pancholi MR, Wurm Y, Elphick MR. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol 2016; 6:150224. [PMID: 26865025 PMCID: PMC4772807 DOI: 10.1098/rsob.150224] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an ‘intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan.
Collapse
Affiliation(s)
- Dean C Semmens
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Olivier Mirabeau
- Institut Curie, Genetics and Biology of Cancers Unit, INSERM U830, PSL Research University, Paris 75005, France
| | - Ismail Moghul
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mahesh R Pancholi
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Yannick Wurm
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
759
|
Pinho-Ribeiro FA, Verri WA, Chiu IM. Nociceptor Sensory Neuron-Immune Interactions in Pain and Inflammation. Trends Immunol 2016; 38:5-19. [PMID: 27793571 DOI: 10.1016/j.it.2016.10.001] [Citation(s) in RCA: 616] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
Nociceptor sensory neurons protect organisms from danger by eliciting pain and driving avoidance. Pain also accompanies many types of inflammation and injury. It is increasingly clear that active crosstalk occurs between nociceptor neurons and the immune system to regulate pain, host defense, and inflammatory diseases. Immune cells at peripheral nerve terminals and within the spinal cord release mediators that modulate mechanical and thermal sensitivity. In turn, nociceptor neurons release neuropeptides and neurotransmitters from nerve terminals that regulate vascular, innate, and adaptive immune cell responses. Therefore, the dialog between nociceptor neurons and the immune system is a fundamental aspect of inflammation, both acute and chronic. A better understanding of these interactions could produce approaches to treat chronic pain and inflammatory diseases.
Collapse
Affiliation(s)
- Felipe A Pinho-Ribeiro
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA; Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR 10011, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR 10011, Brazil
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
760
|
Naizhen X, Linnoila RI, Kimura S. Co-expression of Achaete-Scute Homologue-1 and Calcitonin Gene-Related Peptide during NNK-Induced Pulmonary Neuroendocrine Hyperplasia and Carcinogenesis in Hamsters. J Cancer 2016; 7:2124-2131. [PMID: 27877229 PMCID: PMC5118677 DOI: 10.7150/jca.16399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/14/2016] [Indexed: 01/26/2023] Open
Abstract
Achaete-scute homologue-1 or ASCL1 (MASH1, hASH1) plays roles in neural development and pulmonary neuroendocrine (NE) differentiation, and it is expressed in certain lung cancers. This study was aimed to assess whether and/or how ASCL1 plays a role in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced pulmonary NE hyperplasia and carcinogenesis in hamsters. Hamsters were injected 3 times weekly with either NNK or solvent alone (control) for treatment periods of 6 and 24 weeks, both without and with 6-week recovery. Immunohistochemical analysis was carried out to examine the expressions of ASCL1, CGRP (calcitonin gene-related peptide), secretoglobin SCGB1A1 (club [Clara] cell specific 10 kD protein, CC10, CCSP), synaptophysin (SYP), and PCNA (proliferating cell nuclear antigen). The number of ASCL1-expressing NE foci per airway increased from 0.8 in controls to 1.6 and 2.0 during NNK exposure for 6 and 24 weeks, respectively, and the number of cells per foci doubled after NNK exposure. Most ASCL1-expressing cells in NEBs (neuroepithelial bodies) were also CGRP immunoreactive; NNK enhanced this co-expression with CGRP, a NE marker with known proliferation-promoting properties. NNK also increased PCNA expression within NE foci. NNK-induced tumors showed no immunoreactivity for NE markers. This study confirms ASCL1 as an excellent marker for pulmonary NE cells and demonstrates CGRP co-expression in ASCL1-positive NEB cells participating in NNK-induced NE hyperplasia.
Collapse
Affiliation(s)
- Xu Naizhen
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - R. Ilona Linnoila
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
761
|
Cornelison LE, Hawkins JL, Durham PL. Elevated levels of calcitonin gene-related peptide in upper spinal cord promotes sensitization of primary trigeminal nociceptive neurons. Neuroscience 2016; 339:491-501. [PMID: 27746346 DOI: 10.1016/j.neuroscience.2016.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 01/08/2023]
Abstract
Orofacial pain conditions including temporomandibular disorder (TMD) and migraine are characterized by peripheral and central sensitization of trigeminal nociceptive neurons. The goal of this study was to investigate the role of calcitonin gene-related peptide (CGRP) in promoting bidirectional signaling within the trigeminal system to mediate sensitization of primary nociceptive neurons. Adult male Sprague-Dawley rats were injected intercisternally with CGRP or co-injected with the receptor antagonist CGRP8-37 or KT 5720, a protein kinase A (PKA) inhibitor. Nocifensive head withdrawal response to mechanical stimulation was investigated using von Frey filaments. Expression of PKA, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule 1 (Iba1) in the spinal cord and phosphorylated extracellular signal-regulated kinase (P-ERK) in the ganglion was studied using immunohistochemistry. Some animals were co-injected with CGRP and Fast Blue dye and the ganglion was imaged using fluorescent microscopy. CGRP increased nocifensive responses to mechanical stimulation when compared to control. Co-injection of CGRP8-37 or KT 5720 with CGRP inhibited the nocifensive response. CGRP stimulated PKA and GFAP expression in the spinal cord, and P-ERK in ganglion neurons. Seven days post injection, Fast Blue was observed in ganglion neurons and satellite glial cells. Our results demonstrate that elevated levels of CGRP in the upper spinal cord promote sensitization of primary nociceptive neurons via a mechanism that involves activation of PKA centrally and P-ERK in ganglion neurons. Our findings provide evidence of bidirectional signaling within the trigeminal system that facilitate increased neuron-glia communication within the ganglion associated with trigeminal sensitization.
Collapse
Affiliation(s)
- Lauren E Cornelison
- Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO, USA
| | - Jordan L Hawkins
- Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO, USA
| | - Paul L Durham
- Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO, USA.
| |
Collapse
|
762
|
Schlereth T, Schukraft J, Krämer-Best HH, Geber C, Ackermann T, Birklein F. Interaction of calcitonin gene related peptide (CGRP) and substance P (SP) in human skin. Neuropeptides 2016; 59:57-62. [PMID: 27344069 DOI: 10.1016/j.npep.2016.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 11/25/2022]
Abstract
Calcitonin gene related peptide (CGRP) and substance P (SP) are neuropeptides that are simultaneously released from nociceptive C-fibers. CGRP is a potent vasodilator, inducing a long-lasting increase in superficial skin blood flow, whereas SP induces only a brief vasodilation but a significant plasma extravasation. CGRP and SP may play important roles in the pathophysiology of various pain states but little is known about their interaction. Different concentrations of SP (ranging from 10-5M to 10-9M) were applied to the volar forearm of 24 healthy subjects via dermal microdialysis. SP was applied either alone or in combination with CGRP10-9M and CGRP 10-6M. As expected, SP induced a transient increase in skin blood flow that decayed shortly after application. This transient blood flow peak was blunted with co-application of CGRP 10-9M and inhibited with co-application of CGRP10-6M. SP alone induced plasma protein extravasation (PPE). However, when CGRP10-6M was added, the PPE significantly increased. Our results demonstrate a complex interaction of the neuropeptides CGRP and SP. CGRP10-6M prevented SP-induced early vasodilation but augmented SP-induced PPE. These interactions might explain why vascular symptoms in chronic pain can differ strikingly between individuals.
Collapse
Affiliation(s)
- Tanja Schlereth
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany.
| | - Jonas Schukraft
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Heidrun H Krämer-Best
- Department of Neurology, Justus-Liebig-University, Klinikstr. 33, D-35385 Gießen, Germany
| | - Christian Geber
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Tatiana Ackermann
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Frank Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| |
Collapse
|
763
|
MaassenVanDenBrink A, Meijer J, Villalón CM, Ferrari MD. Wiping Out CGRP: Potential Cardiovascular Risks. Trends Pharmacol Sci 2016; 37:779-788. [DOI: 10.1016/j.tips.2016.06.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 01/06/2023]
|
764
|
Botz B, Bölcskei K, Helyes Z. Challenges to develop novel anti-inflammatory and analgesic drugs. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27576790 DOI: 10.1002/wnan.1427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 07/30/2016] [Indexed: 12/11/2022]
Abstract
Chronic inflammatory diseases and persistent pain of different origin represent common medical, social, and economic burden, and their pharmacotherapy is still an unresolved issue. Therefore, there is a great and urgent need to develop anti-inflammatory and analgesic agents with novel mechanisms of action, but it is a very challenging task. The main problem is the relatively large translational gap between the preclinical experimental data and the clinical results due to characteristics of the models, difficulties with the investigational techniques particularly for pain, as well as species differences in the mechanisms. We summarize here the current state-of-the-art medication and related ongoing strategies, and the novel targets with lead molecules under clinical development. The first members of the gold-standard categories, such as nonsteroidal anti-inflammatory drugs, glucocorticoids, and opioids, were introduced decades ago, and since then very few drugs with novel mechanisms of action have been successfully taken to the clinics despite considerable development efforts. Several biologics targeting different key molecules have provided breakthrough in some autoimmune/inflammatory diseases, but they are expensive, only parenterally available, their long-term side effects often limit their administration, and they do not effectively reduce pain. Some kinase inhibitors and phosphodiesterase-4 blockers have recently been introduced as new directions. There are in fact some promising novel approaches at different clinical stages of drug development focusing on transient receptor potential vanilloid 1/ankyrin 1 channel antagonism, inhibition of voltage-gated sodium/calcium channels, several enzymes (kinases, semicarbazide-sensitive amine oxidases, and matrix metalloproteinases), cytokines/chemokines, transcription factors, nerve growth factor, and modulation of several G protein-coupled receptors (cannabinoids, purinoceptors, and neuropeptides). WIREs Nanomed Nanobiotechnol 2017, 9:e1427. doi: 10.1002/wnan.1427 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Bálint Botz
- Department of Radiology, Faculty of Medicine, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kata Bölcskei
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary.,MTA-PTE NAP B Chronic Pain Research Group, Faculty of Medicine, University of Pécs, Pécs, Hungary
| |
Collapse
|
765
|
Weston C, Winfield I, Harris M, Hodgson R, Shah A, Dowell SJ, Mobarec JC, Woodlock DA, Reynolds CA, Poyner DR, Watkins HA, Ladds G. Receptor Activity-modifying Protein-directed G Protein Signaling Specificity for the Calcitonin Gene-related Peptide Family of Receptors. J Biol Chem 2016; 291:21925-21944. [PMID: 27566546 PMCID: PMC5063977 DOI: 10.1074/jbc.m116.751362] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 11/08/2022] Open
Abstract
The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in a Gαs-mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gαs and Gαq but also identify a Gαi component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMP-dependent signaling bias among the Gαs, Gαi, and Gαq/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology.
Collapse
Affiliation(s)
- Cathryn Weston
- From the Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Ian Winfield
- From the Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom, the Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, United Kingdom
| | - Matthew Harris
- the Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, United Kingdom
| | - Rose Hodgson
- From the Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Archna Shah
- From the Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Simon J Dowell
- the Department of Platform Technology and Science, GlaxoSmithkline, Hertfordshire, SG1 2NY, United Kingdom
| | - Juan Carlos Mobarec
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, United Kingdom
| | - David A Woodlock
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, United Kingdom
| | - Christopher A Reynolds
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, United Kingdom
| | - David R Poyner
- the School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom, and
| | - Harriet A Watkins
- the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Graham Ladds
- the Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, United Kingdom,
| |
Collapse
|
766
|
Sastre E, Caracuel L, Prieto I, Llévenes P, Aller MÁ, Arias J, Balfagón G, Blanco-Rivero J. Decompensated liver cirrhosis and neural regulation of mesenteric vascular tone in rats: role of sympathetic, nitrergic and sensory innervations. Sci Rep 2016; 6:31076. [PMID: 27484028 PMCID: PMC4971476 DOI: 10.1038/srep31076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/14/2016] [Indexed: 02/08/2023] Open
Abstract
We evaluated the possible alterations produced by liver cholestasis (LC), a model of decompensated liver cirrhosis in sympathetic, sensory and nitrergic nerve function in rat superior mesenteric arteries (SMA). The vasoconstrictor response to electrical field stimulation (EFS) was greater in LC animals. Alpha-adrenoceptor antagonist phentolamine and P2 purinoceptor antagonist suramin decreased this response in LC animals more than in control animals. Both non-specific nitric oxide synthase (NOS) L-NAME and calcitonin gene related peptide (CGRP) (8-37) increased the vasoconstrictor response to EFS more strongly in LC than in control segments. Vasomotor responses to noradrenaline (NA) or CGRP were greater in LC segments, while NO analogue DEA-NO induced a similar vasodilation in both experimental groups. The release of NA was not modified, while those of ATP, nitrite and CGRP were increased in segments from LC. Alpha 1 adrenoceptor, Rho kinase (ROCK) 1 and 2 and total myosin phosphatase (MYPT) expressions were not modified, while alpha 2B adrenoceptor, nNOS expression and nNOS and MYPT phosphorylation were increased by LC. Together, these alterations might counteract the increased splanchnic vasodilation observed in the last phases of decompensated liver cirrhosis.
Collapse
Affiliation(s)
- Esther Sastre
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| | - Laura Caracuel
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| | - Isabel Prieto
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España.,Departamento de Cirugía General y Digestiva, Hospital la Paz, Madrid, España
| | - Pablo Llévenes
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España
| | - M Ángeles Aller
- Cátedra de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, España
| | - Jaime Arias
- Cátedra de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, España
| | - Gloria Balfagón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| | - Javier Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| |
Collapse
|
767
|
Gaydukov AE, Bogacheva PO, Balezina OP. Calcitonin gene-related peptide increases acetylcholine quantal size in neuromuscular junctions of mice. Neurosci Lett 2016; 628:17-23. [DOI: 10.1016/j.neulet.2016.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 11/29/2022]
|
768
|
Aubdool AA, Kodji X, Abdul-Kader N, Heads R, Fernandes ES, Bevan S, Brain SD. TRPA1 activation leads to neurogenic vasodilatation: involvement of reactive oxygen nitrogen species in addition to CGRP and NO. Br J Pharmacol 2016; 173:2419-33. [PMID: 27189253 PMCID: PMC4945766 DOI: 10.1111/bph.13519] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 01/08/2023] Open
Abstract
Background and Purpose Transient receptor potential ankyrin‐1 (TRPA1) activation is known to mediate neurogenic vasodilatation. We investigated the mechanisms involved in TRPA1‐mediated peripheral vasodilatation in vivo using the TRPA1 agonist cinnamaldehyde. Experimental Approach Changes in vascular ear blood flow were measured in anaesthetized mice using laser Doppler flowmetry. Key Results Topical application of cinnamaldehyde to the mouse ear caused a significant increase in blood flow in the skin of anaesthetized wild‐type (WT) mice but not in TRPA1 knockout (KO) mice. Cinnamaldehyde‐induced vasodilatation was inhibited by the pharmacological blockade of the potent microvascular vasodilator neuropeptide CGRP and neuronal NOS‐derived NO pathways. Cinnamaldehyde‐mediated vasodilatation was significantly reduced by treatment with reactive oxygen nitrogen species (RONS) scavenger such as catalase and the SOD mimetic TEMPOL, supporting a role of RONS in the downstream vasodilator TRPA1‐mediated response. Co‐treatment with a non‐selective NOS inhibitor L‐NAME and antioxidant apocynin further inhibited the TRPA1‐mediated vasodilatation. Cinnamaldehyde treatment induced the generation of peroxynitrite that was blocked by the peroxynitrite scavenger FeTPPS and shown to be dependent on TRPA1, as reflected by an increase in protein tyrosine nitration in the skin of WT, but not in TRPA1 KO mice. Conclusion and Implications This study provides in vivo evidence that TRPA1‐induced vasodilatation mediated by cinnamaldehyde requires neuronal NOS‐derived NO, in addition to the traditional neuropeptide component. A novel role of peroxynitrite is revealed, which is generated downstream of TRPA1 activation by cinnamaldehyde. This mechanistic pathway underlying TRPA1‐mediated vasodilatation may be important in understanding the role of TRPA1 in pathophysiological situations.
Collapse
Affiliation(s)
- Aisah A Aubdool
- Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK
| | - Xenia Kodji
- Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK
| | - Nayaab Abdul-Kader
- Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK
| | - Richard Heads
- Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK
| | - Elizabeth S Fernandes
- Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK.,Programa de Pós-graduação, Universidade CEUMA, São Luís, MA, Brazil
| | - Stuart Bevan
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | - Susan D Brain
- Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK
| |
Collapse
|
769
|
Kovacs CS. Maternal Mineral and Bone Metabolism During Pregnancy, Lactation, and Post-Weaning Recovery. Physiol Rev 2016; 96:449-547. [PMID: 26887676 DOI: 10.1152/physrev.00027.2015] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During pregnancy and lactation, female physiology adapts to meet the added nutritional demands of fetuses and neonates. An average full-term fetus contains ∼30 g calcium, 20 g phosphorus, and 0.8 g magnesium. About 80% of mineral is accreted during the third trimester; calcium transfers at 300-350 mg/day during the final 6 wk. The neonate requires 200 mg calcium daily from milk during the first 6 mo, and 120 mg calcium from milk during the second 6 mo (additional calcium comes from solid foods). Calcium transfers can be more than double and triple these values, respectively, in women who nurse twins and triplets. About 25% of dietary calcium is normally absorbed in healthy adults. Average maternal calcium intakes in American and Canadian women are insufficient to meet the fetal and neonatal calcium requirements if normal efficiency of intestinal calcium absorption is relied upon. However, several adaptations are invoked to meet the fetal and neonatal demands for mineral without requiring increased intakes by the mother. During pregnancy the efficiency of intestinal calcium absorption doubles, whereas during lactation the maternal skeleton is resorbed to provide calcium for milk. This review addresses our current knowledge regarding maternal adaptations in mineral and skeletal homeostasis that occur during pregnancy, lactation, and post-weaning recovery. Also considered are the impacts that these adaptations have on biochemical and hormonal parameters of mineral homeostasis, the consequences for long-term skeletal health, and the presentation and management of disorders of mineral and bone metabolism.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
770
|
Lindsley CW, Emmitte KA, Hopkins CR, Bridges TM, Gregory KJ, Niswender CM, Conn PJ. Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances with Metabotropic Glutamate Receptors. Chem Rev 2016; 116:6707-41. [PMID: 26882314 PMCID: PMC4988345 DOI: 10.1021/acs.chemrev.5b00656] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allosteric modulation of GPCRs has initiated a new era of basic and translational discovery, filled with therapeutic promise yet fraught with caveats. Allosteric ligands stabilize unique conformations of the GPCR that afford fundamentally new receptors, capable of novel pharmacology, unprecedented subtype selectivity, and unique signal bias. This review provides a comprehensive overview of the basics of GPCR allosteric pharmacology, medicinal chemistry, drug metabolism, and validated approaches to address each of the major challenges and caveats. Then, the review narrows focus to highlight recent advances in the discovery of allosteric ligands for metabotropic glutamate receptor subtypes 1-5 and 7 (mGlu1-5,7) highlighting key concepts ("molecular switches", signal bias, heterodimers) and practical solutions to enable the development of tool compounds and clinical candidates. The review closes with a section on late-breaking new advances with allosteric ligands for other GPCRs and emerging data for endogenous allosteric modulators.
Collapse
Affiliation(s)
- Craig W. Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | - Corey R. Hopkins
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville VIC 3052, Australia
| | - Colleen M. Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
771
|
Lei J, Zhu F, Zhang Y, Duan L, Lei H, Huang W. Transient Receptor Potential Vanilloid Subtype 1 Inhibits Inflammation and Apoptosis via the Release of Calcitonin Gene-Related Peptide in the Heart after Myocardial Infarction. Cardiology 2016; 134:436-43. [PMID: 27144592 DOI: 10.1159/000444439] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/04/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE A high mortality rate occurs with silent myocardial infarction (MI), particularly in aging and diabetic populations due to defects in the transient receptor potential vanilloid (TRPV1)-positive sensory nerve function. We have previously shown that TRPV1 deficiency markedly enhances post-MI inflammation and remodeling. However, the mechanisms remain unknown. The objective of this study was to clarify whether calcitonin gene-related peptide (CGRP) release was associated with the protective role of TRPV1 against postmyocardial inflammation and apoptosis. METHODS TRPV1 gene knockout (TRPV1KO) and wild-type (WT) mice were subjected to left anterior descending ligation or sham operation. The concentration of CGRP in the myocardium was measured at 30 min, 1, 6 and 24 h post-MI. Mice received saline vehicle, CGRP or the CGRP antagonist CGRP8-37 before ligation. Inflammation was evaluated by ELISA assay and histological staining. Apoptosis was assessed by Western blot and TUNEL assay. RESULTS Post-MI, both TRPV1KO and WT mice displayed elevated CGRP levels in myocardium when compared to sham controls. However, the levels of CGRP were significantly lower in TRPV1KO mice than in WT mice at 30 min after MI. Exogenous CGRP downregulated the levels of tumor necrosis factor-α and interleukin-6 expression in TRPV1KO mice post-MI. Moreover, exogenous CGRP decreased the neutrophil infiltration in TRPV1KO mice, whereas inhibition of CGRP by CGRP8-37 increased the neutrophil infiltration in WT mice. Western blotting data indicated that CGRP attenuated caspase-3 and caspase-9 expression, and enhanced Bcl-2 expression in TRPV1KO mice post-MI. CGRP8-37 upregulated caspase-3 and caspase-9 expression and downregulated Bcl-2 expression in WT mice. CONCLUSION Our data suggest a protective role of TRPV1 activation against inflammation and apoptosis in mice post-MI, possibly through CGRP release. These findings elucidate a neurogenic mechanism in mice post-MI, which may participate in sensory neurotransmitter-mediated protection in TRPV1 activation.
Collapse
Affiliation(s)
- Jiayan Lei
- Department of Cardiology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
772
|
Adrenomedullin: A potential therapeutic target for retinochoroidal disease. Prog Retin Eye Res 2016; 52:112-29. [DOI: 10.1016/j.preteyeres.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/22/2022]
|
773
|
Gazerani P. Toward mechanism-based treatment of migraine: spotlight on CGRP. FUTURE NEUROLOGY 2016. [DOI: 10.2217/fnl-2016-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Parisa Gazerani
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Frederik Bajers Vej 7A2-A2-208, 9220 Aalborg East, Denmark
| |
Collapse
|
774
|
Azuma Y, Miwa Y, Sato I. Expression of CGRP in embryonic mouse masseter muscle. Ann Anat 2016; 206:34-47. [PMID: 27136747 DOI: 10.1016/j.aanat.2016.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
Neuropeptide calcitonin gene-related peptide (CGRP) is a mediator of inflammation and head pain that influences the functional vascular blood supply. The CGRP also regulate myoblast and acetylcholine receptors on neuromuscular junctions in development. However, little is known about its appearance and location during mouse masseter muscle (MM) development. We detected the mRNA abundance of CGRP, vascular genesis markers (Vascular endothelial growth factor A (VEGF-A), PECAM (CD31), lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1)) and embryonic and adult myosin heavy chain (MyHCs) (embryonic, IIa, IIb, and IIx) using real-time RT-PCR during development from the embryonic stage to after birth (E12.5, E14.5, E17.5, E18.5, P0, P1 and P5). We also endeavored to analyze the expression and localization of CGRP in situ hybridization in the developing mouse MM during development from the embryonic stage to after birth (E12.5, E14.5, E17.5, and P1). The antisense probe for CGRP was detected by in situ hybridization at E12.5, E14.5 E17.5 and then no longer detected after birth. The CGRP, CD31, embryonic MyHC abundance levels are highest at E17.5 (p<0.001) and they show a pattern similar to that of the other markers from E12.5 to P5. PCA analysis indicates a specific relation between CGRP and embryonic MyHC, CD31, and LYVE-1 in MM development. Cluster analyses identified the following distinct clusters for mRNA abundance in the MM: cluster 1, P5; cluster 2, E12.5, E14.5, E17.5, E18.5, P0, and P1. The positive correlation between CGRP and embryonic MyHC (Pearson's r>0.65; p<0.01) was analyzed. These data suggested that CGRP may have an influence on embryonic MyHC during mouse MM development. CGRP also affects the angiogenesis markers at embryonic stages.
Collapse
Affiliation(s)
- Yuri Azuma
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Japan
| | - Yoko Miwa
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Japan
| | - Iwao Sato
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Japan.
| |
Collapse
|
775
|
Sun H, Dodick DW, Silberstein S, Goadsby PJ, Reuter U, Ashina M, Saper J, Cady R, Chon Y, Dietrich J, Lenz R. Safety and efficacy of AMG 334 for prevention of episodic migraine: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 2016; 15:382-90. [PMID: 26879279 DOI: 10.1016/s1474-4422(16)00019-3] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/23/2015] [Accepted: 01/13/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND The calcitonin gene-related peptide (CGRP) pathway is a promising target for preventive therapies in patients with migraine. We assessed the safety and efficacy of AMG 334, a fully human monoclonal antibody against the CGRP receptor, for migraine prevention. METHODS In this multicentre, randomised, double-blind, placebo-controlled, phase 2 trial, patients aged 18-60 years with 4 to 14 migraine days per month were enrolled at 59 headache and clinical research centres in North America and Europe, and randomly assigned in a 3:2:2:2 ratio to monthly subcutaneous placebo, AMG 334 7 mg, AMG 334 21 mg, or AMG 334 70 mg using a sponsor-generated randomisation sequence centrally executed by an interactive voice response or interactive web response system. Study site personnel, patients, and the sponsor study personnel were masked to the treatment assignment. The primary endpoint was the change in monthly migraine days from baseline to the last 4 weeks of the 12-week double-blind treatment phase. The primary endpoint was calculated using the least squares mean at each timepoint from a generalised linear mixed-effect model for repeated measures. Safety endpoints were adverse events, clinical laboratory values, vital signs, and anti-AMG 334 antibodies. The study is registered with ClinicalTrials.gov, number NCT01952574. An open-label extension phase of up to 256 weeks is ongoing and will assess the long-term safety of AMG 334. FINDINGS From Aug 6, 2013, to June 30, 2014, 483 patients were randomly assigned to placebo (n=160), AMG 334 7 mg (n=108), AMG 334 21 mg (n=108), or AMG 334 70 mg (n=107). The mean change in monthly migraine days at week 12 was -3·4 (SE 0·4) days with AMG 334 70 mg versus -2·3 (0·3) days with placebo (difference -1·1 days [95% CI -2·1 to -0·2], p=0·021). The mean reductions in monthly migraine days with the 7 mg (-2·2 [SE 0·4]) and the 21 mg (-2·4 [0·4]) doses were not significantly different from that with placebo. Adverse events were recorded in 82 (54%) patients who received placebo, 54 (50%) patients in the AMG 334 7 mg group, 54 (51%) patients in the AMG 334 21 mg group, and 57 (54%) patients in the AMG 334 70 mg group. The most frequently reported adverse events were nasopharyngitis, fatigue, and headache. Serious adverse events were reported for one patient in the AMG 334 7 mg group (ruptured ovarian cyst) and one patient in the AMG 334 70 mg group (migraine and vertigo); these events were judged to be unrelated to AMG 334 treatment. Nine (3%) of 317 patients had neutralising antibodies. No apparent association was recorded between patients with positive anti-AMG 334 antibodies and adverse events. No clinically significant vital signs, laboratory, or electrocardiogram findings were recorded. INTERPRETATION These results suggest that AMG 334 70 mg might be a potential therapy for migraine prevention in patients with episodic migraine and support further investigation of AMG 334 in larger phase 3 trials. FUNDING Amgen.
Collapse
Affiliation(s)
- Hong Sun
- Department of Global Development, Amgen, Thousand Oaks, CA, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Peter J Goadsby
- Department of Neurology NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, London, UK
| | - Uwe Reuter
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joel Saper
- Michigan Head Pain and Neurological Institute, Ann Arbor, MI, USA
| | - Roger Cady
- Clinvest Research, Banyan Group, Headache Care Center, Springfield, MO, USA
| | - Yun Chon
- Department of Biostatistics, Amgen, Thousand Oaks, CA, USA
| | - Julie Dietrich
- Department of Global Development, Amgen, Thousand Oaks, CA, USA
| | - Robert Lenz
- Department of Global Development, Amgen, Thousand Oaks, CA, USA.
| |
Collapse
|
776
|
Hong P, Liu Y. Calcitonin gene-related peptide antagonism for acute treatment of migraine: a meta-analysis. Int J Neurosci 2016; 127:20-27. [DOI: 10.3109/00207454.2015.1137915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
777
|
Long acting analogue of the calcitonin gene-related peptide induces positive metabolic effects and secretion of the glucagon-like peptide-1. Eur J Pharmacol 2016; 773:24-31. [PMID: 26808305 DOI: 10.1016/j.ejphar.2016.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/30/2015] [Accepted: 01/21/2016] [Indexed: 11/22/2022]
Abstract
The pharmacological potential of Calcitonin gene-related peptide (CGRP) beyond vasodilation is not completely understood and studies are limited by the potent vasodilatory effect and the short half-life of CGRP. In particular, the effects of CGRP on metabolic diseases are not clarified. A peptide analogue of the α form of CGRP (αAnalogue) with prolonged half-life (10.2 ± 0.9h) in rodents was synthesised and used to determine specific metabolic effects in 3 rodent models; normal rats, diet-induced obese rats and the Leptin deficient mouse model (ob/ob mice). The αAnalogue (100 nmol/kg) induced elevated energy expenditure and reduced food intake after single dosing in normal rats. In addition, the αAnalogue increased levels of circulating Glucagon-Like Peptide-1 (GLP-1) by >60% and a specific concentration dependent CGRP-induced GLP-1 secretion was verified in a murine L-cell line. Two weeks treatment of the type 2 diabetic ob/ob mice with the αAnalogue caused reduction in fasting insulin levels (199 ± 36 pM vs 332 ± 68 pM) and a tendency to reduce fasting blood glucose (11.2 ± 1.1mM vs 9.5 ± 0.5mM) and % glycosylated haemoglobin (HbA1c) (5.88 ± 0.17 vs 5.12 ± 0.24), demonstrating a potential anti-diabetic effect. Furthermore, two weeks treatment of diet-induced obese rats with the αAnalogue caused reduction in food intake and a significant decline in body weight (3.6 ± 1.9 gvs. -36 ± 1.1g). We have demonstrated that long-acting CGRP analogues may have a therapeutic potential for the treatment of type 2 diabetes through positive metabolic effects and effect on GLP-1 secretion.
Collapse
|
778
|
Liu YJ, Lian ZY, Liu G, Zhou HY, Yang HJ. RNA sequencing reveals retinal transcriptome changes in STZ-induced diabetic rats. Mol Med Rep 2016; 13:2101-9. [PMID: 26781437 PMCID: PMC4768987 DOI: 10.3892/mmr.2016.4793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 12/11/2015] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to investigate changes in retinal gene expression in streptozotocin (STZ)‑induced diabetic rats using next‑generation sequencing, utilize transcriptome signatures to investigate the molecular mechanisms of diabetic retinopathy (DR), and identify novel strategies for the treatment of DR. Diabetes was chemically induced in 10‑week‑old male Sprague‑Dawley rats using STZ. Flash‑electroretinography (F‑ERG) was performed to evaluate the visual function of the rats. The retinas of the rats were removed to perform high throughput RNA sequence (RNA‑seq) analysis. The a‑wave, b‑wave, oscillatory potential 1 (OP1), OP2 and ∑OP amplitudes were significantly reduced in the diabetic group, compared with those of the control group (P<0.05). Furthermore, the implicit b‑wave duration 16 weeks post‑STZ induction were significantly longer in the diabetic rats, compared with the control rats (P<0.001). A total of 868 genes were identified, of which 565 were upregulated and 303 were downregulated. Among the differentially expressed genes (DEGs), 94 apoptotic genes and apoptosis regulatory genes, and 19 inflammatory genes were detected. The results of the KEGG pathway significant enrichment analysis revealed enrichment in cell adhesion molecules, complement and coagulation cascades, and antigen processing and presentation. Diabetes alters several transcripts in the retina, and RNA‑seq provides novel insights into the molecular mechanisms underlying DR.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhi-Yun Lian
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Geng Liu
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong-Ying Zhou
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hui-Jun Yang
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
779
|
HNO/Thiol Biology as a Therapeutic Target. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2016. [DOI: 10.1007/978-3-319-30705-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
780
|
Tang WJ. Targeting Insulin-Degrading Enzyme to Treat Type 2 Diabetes Mellitus. Trends Endocrinol Metab 2016; 27:24-34. [PMID: 26651592 PMCID: PMC4698235 DOI: 10.1016/j.tem.2015.11.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
Abstract
Insulin-degrading enzyme (IDE) selectively degrades peptides, such as insulin, amylin, and amyloid β (Aβ) that form toxic aggregates, to maintain proteostasis. IDE defects are linked to the development of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD). Structural and biochemical analyses revealed the molecular basis for IDE-mediated destruction of amyloidogenic peptides and this information has been exploited to develop promising inhibitors of IDE to improve glucose homeostasis. However, the inhibition of IDE can also lead to glucose intolerance. In this review, I focus on recent advances regarding our understanding of the structure and function of IDE and the discovery of IDE inhibitors, as well as challenges in developing IDE-based therapy for human diseases, particularly T2DM.
Collapse
Affiliation(s)
- Wei-Jen Tang
- Ben-May Department for Cancer Research, the University of Chicago, Chicago, IL, USA.
| |
Collapse
|
781
|
Erickson LA, Vrana JA, Theis J, Rivera M, Lloyd RV, McPhail E, Zhang J. Analysis of Amyloid in Medullary Thyroid Carcinoma by Mass Spectrometry-Based Proteomic Analysis. Endocr Pathol 2015; 26:291-5. [PMID: 26304852 DOI: 10.1007/s12022-015-9390-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Amyloid is a characteristic histologic feature in medullary thyroid carcinomas (MTC). We utilized a novel mass spectrometry-based proteomic analysis to determine if we could identify specific proteins associated with amyloid in MTC. We studied 9 MTC (1 multiple endocrine neoplasia type 2A, 1 familial MTC, and 7 sporadic). Laser microdissection was utilized to sample the amyloid which was then trypsin digested and evaluated by liquid chromatography electrospray tandem MS (LC-MS/MS) which identified the presence of amyloidogenic proteins in all cases of MTC. High levels of calcitonin were identified in all 9 cases of MTC. Secretogranin-1 was identified in 6 of 9 MTC. Calcitonin gene-related peptide was identified in 4 of 9 cases of MTC. LC-MS/MS proteomic analysis provides a rapid, highly specific, and sensitive method for identification of the specific type of amyloid in these endocrine tumors. This approach may allow classification of different forms of endocrine amyloid present in neuroendocrine tumors.
Collapse
Affiliation(s)
- Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55901, USA.
| | - Julie A Vrana
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55901, USA
| | - Jason Theis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55901, USA
| | - Michael Rivera
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55901, USA
| | - Ricardo V Lloyd
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55901, USA
| | - Ellen McPhail
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55901, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55901, USA
| |
Collapse
|
782
|
Buntinx L, Vermeersch S, de Hoon J. Development of anti-migraine therapeutics using the capsaicin-induced dermal blood flow model. Br J Clin Pharmacol 2015; 80:992-1000. [PMID: 26114340 DOI: 10.1111/bcp.12704] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 06/02/2015] [Accepted: 06/16/2015] [Indexed: 12/30/2022] Open
Abstract
The efficacy of calcitonin gene-related peptide (receptor) (CGRP-(R)) blocking therapeutics in the treatment of acute migraine headache provided proof-of-concept for the involvement of CGRP in the pathophysiology of this disorder. One of the major hurdles for the development of any class of drugs, including CGRP blocking therapeutics, is the early clinical development process during which toxic and inefficacious compounds need to be eliminated as early as possible in order to focus on the most promising molecules. At this stage, human models providing proof of target engagement, combined with safety and tolerability studies, are extremely valuable in focusing on those therapeutics that have the highest engagement from the lowest exposure. They guide the go/no-go decision making, establish confidence in the candidate molecule by de-risking toxicity and safety issues and thereby speed up the early clinical development. In this review the focus is on the so called 'capsaicin model' as a typical example of a target engagement biomarker used as a human model for the development of CGRP blocking therapeutics. By applying capsaicin onto the skin, TRPV1 channels are activated and a CGRP-mediated increase in dermal blood flow can be quantified with laser Doppler perfusion imaging. Effective CGRP blocking therapeutics in turn, display blockade of this response. The translation of this biomarker model from animals to humans is discussed as well as the limitations of the assay in predicting the efficacy of anti-migraine drugs.
Collapse
Affiliation(s)
- Linde Buntinx
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Steve Vermeersch
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Jan de Hoon
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
783
|
Zeeman ME, Kartha S, Jaumard NV, Baig HA, Stablow AM, Lee J, Guarino BB, Winkelstein BA. Whole-body Vibration at Thoracic Resonance Induces Sustained Pain and Widespread Cervical Neuroinflammation in the Rat. Clin Orthop Relat Res 2015; 473:2936-47. [PMID: 25917423 PMCID: PMC4523525 DOI: 10.1007/s11999-015-4315-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Whole-body vibration (WBV) is associated with back and neck pain in military personnel and civilians. However, the role of vibration frequency and the physiological mechanisms involved in pain symptoms are unknown. QUESTIONS/PURPOSES This study asked the following questions: (1) What is the resonance frequency of the rat spine for WBV along the spinal axis, and how does frequency of WBV alter the extent of spinal compression/extension? (2) Does a single WBV exposure at resonance induce pain that is sustained? (3) Does WBV at resonance alter the protein kinase C epsilon (PKCε) response in the dorsal root ganglia (DRG)? (4) Does WBV at resonance alter expression of calcitonin gene-related peptide (CGRP) in the spinal dorsal horn? (5) Does WBV at resonance alter the spinal neuroimmune responses that regulate pain? METHODS Resonance of the rat (410 ± 34 g, n = 9) was measured by imposing WBV at frequencies from 3 to 15 Hz. Separate groups (317 ± 20 g, n = 10/treatment) underwent WBV at resonance (8 Hz) or at a nonresonant frequency (15 Hz). Behavioral sensitivity was assessed throughout to measure pain, and PKCε in the DRG was quantified as well as spinal CGRP, glial activation, and cytokine levels at Day 14. RESULTS Accelerometer-based thoracic transmissibility peaks at 8 Hz (1.86 ± 0.19) and 9 Hz (1.95 ± 0.19, mean difference [MD] 0.290 ± 0.266, p < 0.03), whereas the video-based thoracic transmissibility peaks at 8 Hz (1.90 ± 0.27), 9 Hz (2.07 ± 0.20), and 10 Hz (1.80 ± 0.25, MD 0.359 ± 0.284, p < 0.01). WBV at 8 Hz produces more cervical extension (0.745 ± 0.582 mm, MD 0.242 ± 0.214, p < 0.03) and compression (0.870 ± 0.676 mm, MD 0.326 ± 0.261, p < 0.02) than 15 Hz (extension, 0.503 ± 0.279 mm; compression, 0.544 ± 0.400 mm). Pain is longer lasting (through Day 14) and more robust (p < 0.01) after WBV at the resonant frequency (8 Hz) compared with 15 Hz WBV. PKCε in the nociceptors of the DRG increases according to the severity of WBV with greatest increases after 8 Hz WBV (p < 0.03). However, spinal CGRP, cytokines, and glial activation are only evident after painful WBV at resonance. CONCLUSIONS WBV at resonance produces long-lasting pain and widespread activation of a host of nociceptive and neuroimmune responses as compared with WBV at a nonresonance condition. Based on this work, future investigations into the temporal and regional neuroimmune response to resonant WBV in both genders would be useful. CLINICAL RELEVANCE Although WBV is a major issue affecting the military population, there is little insight about its mechanisms of injury and pain. The neuroimmune responses produced by WBV are similar to other pain states, suggesting that pain from WBV may be mediated by similar mechanisms as other neuropathic pain conditions. This mechanistic insight suggests WBV-induced injury and pain may be tempered by antiinflammatory intervention.
Collapse
Affiliation(s)
- Martha E. Zeeman
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Nicolas V. Jaumard
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Hassam A. Baig
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Alec M. Stablow
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Jasmine Lee
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Benjamin B. Guarino
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| |
Collapse
|
784
|
Schmelz M. Nociceptors in the skin: fire-raisers to be kept at bay? Exp Dermatol 2015; 24:732-3. [DOI: 10.1111/exd.12796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Martin Schmelz
- Department of Anesthesiology; Heidelberg University; Mannheim Germany
| |
Collapse
|
785
|
Tajti J, Szok D, Majláth Z, Tuka B, Csáti A, Vécsei L. Migraine and neuropeptides. Neuropeptides 2015; 52:19-30. [PMID: 26094101 DOI: 10.1016/j.npep.2015.03.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022]
Abstract
Migraine is a common disabling neurovascular primary headache disorder. The pathomechanism is not clear, but extensive preclinical and clinical studies are ongoing. The structural basis of the leading hypothesis is the trigeminovascular system, which includes the trigeminal ganglion, the meningeal vasculature, and the distinct nuclei of the brainstem, the thalamus and the somatosensory cortex. This review covers the effects of sensory (calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide and substance P), sympathetic (neuropeptide Y) and parasympathetic (vasoactive intestinal peptide) migraine-related neuropeptides and the functions of somatostatin, nociceptin and the orexins in the trigeminovascular system. These neuropeptides may take part in neurogenic inflammation (plasma protein extravasation and vasodilatation) of the intracranial vasculature and peripheral and central sensitization of the trigeminal system. The results of human clinical studies are discussed with regard to the alterations in these neuropeptides in the plasma, saliva and cerebrospinal fluid during or between migraine attacks, and the therapeutic possibilities involving migraine-related neuropeptides in the acute and prophylactic treatment of migraine headache are surveyed.
Collapse
Affiliation(s)
- János Tajti
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary.
| | - Délia Szok
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Bernadett Tuka
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Anett Csáti
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary; MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| |
Collapse
|
786
|
Morara S, Colangelo AM, Provini L. Microglia-Induced Maladaptive Plasticity Can Be Modulated by Neuropeptides In Vivo. Neural Plast 2015; 2015:135342. [PMID: 26273481 PMCID: PMC4529944 DOI: 10.1155/2015/135342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023] Open
Abstract
Microglia-induced maladaptive plasticity is being recognized as a major cause of deleterious self-sustaining pathological processes that occur in neurodegenerative and neuroinflammatory diseases. Microglia, the primary homeostatic guardian of the central nervous system, exert critical functions both during development, in neural circuit reshaping, and during adult life, in the brain physiological and pathological surveillance. This delicate critical role can be disrupted by neural, but also peripheral, noxious stimuli that can prime microglia to become overreactive to a second noxious stimulus or worsen underlying pathological processes. Among regulators of microglia, neuropeptides can play a major role. Their receptors are widely expressed in microglial cells and neuropeptide challenge can potently influence microglial activity in vitro. More relevantly, this regulator activity has been assessed also in vivo, in experimental models of brain diseases. Neuropeptide action in the central nervous system has been associated with beneficial effects in neurodegenerative and neuroinflammatory pathological experimental models. This review describes some of the mechanisms of the microglia maladaptive plasticity in vivo and how neuropeptide activity can represent a useful therapeutical target in a variety of human brain pathologies.
Collapse
Affiliation(s)
- Stefano Morara
- Neuroscience Institute (CNR), Via Vanvitelli 32, 20129 Milano, Italy
- Department of BIOMETRA, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience “R. Levi-Montalcini”, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Luciano Provini
- Department of BIOMETRA, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| |
Collapse
|
787
|
Russo AF. CGRP as a neuropeptide in migraine: lessons from mice. Br J Clin Pharmacol 2015; 80:403-14. [PMID: 26032833 DOI: 10.1111/bcp.12686] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/25/2015] [Accepted: 05/18/2015] [Indexed: 01/04/2023] Open
Abstract
Migraine is a neurological disorder that is far more than just a bad headache. A hallmark of migraine is altered sensory perception. A likely contributor to this altered perception is the neuropeptide calcitonin gene-related peptide (CGRP). Over the past decade, CGRP has become firmly established as a key player in migraine. Although the mechanisms and sites of action by which CGRP might trigger migraine remain speculative, recent advances with mouse models provide some hints. This brief review focuses on how CGRP might act as both a central and peripheral neuromodulator to contribute to the migraine-like symptom of light aversive behaviour in mice.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA.,Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.,Veterans Affairs Medical Center, Iowa City, IA, 52246, USA
| |
Collapse
|
788
|
Russell RGG. Pharmacological diversity among drugs that inhibit bone resorption. Curr Opin Pharmacol 2015; 22:115-30. [DOI: 10.1016/j.coph.2015.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 02/08/2023]
|
789
|
Cargnin S, Pautasso C, Viana M, Sances G, Mittino D, Cantello R, Tassorelli C, Nappi G, Terrazzino S. Association ofRAMP1 rs7590387 With the Risk of Migraine Transformation Into Medication Overuse Headache. Headache 2015; 55:658-68. [DOI: 10.1111/head.12559] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Sarah Cargnin
- Department of Pharmaceutical Sciences; Università del Piemonte Orientale; Novara Italy
| | - Chiara Pautasso
- Department of Pharmaceutical Sciences; Università del Piemonte Orientale; Novara Italy
| | - Michele Viana
- Headache Science Centre; National Neurological Institute C. Mondino; Pavia Italy
| | - Grazia Sances
- Headache Science Centre; National Neurological Institute C. Mondino; Pavia Italy
| | - Daniela Mittino
- Division of Neurology; Maggiore Hospital; Università del Piemonte Orientale; Novara Italy
| | - Roberto Cantello
- Division of Neurology; Maggiore Hospital; Università del Piemonte Orientale; Novara Italy
| | - Cristina Tassorelli
- Headache Science Centre; National Neurological Institute C. Mondino; Pavia Italy
- Department of Brain and Behaviour; University of Pavia; Pavia Italy
| | - Giuseppe Nappi
- Headache Science Centre; National Neurological Institute C. Mondino; Pavia Italy
| | - Salvatore Terrazzino
- Department of Pharmaceutical Sciences; Università del Piemonte Orientale; Novara Italy
| |
Collapse
|
790
|
Squair JW, West CR, Krassioukov AV. Neuroprotection, Plasticity Manipulation, and Regenerative Strategies to Improve Cardiovascular Function following Spinal Cord Injury. J Neurotrauma 2015; 32:609-21. [PMID: 25582334 DOI: 10.1089/neu.2014.3743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Damage to the central nervous system, as in the case of spinal cord injury (SCI), results in disrupted supraspinal sympathetic influence and subsequent cardiovascular control impairments. Consequently, people with SCI suffer from disordered basal hemodynamics and devastating fluctuations in blood pressure, as in the case of autonomic dysreflexia (AD), which likely contribute to this population's leading cause of mortality: cardiovascular disease. The development of AD is related, at least in part, to neuroanatomical changes that include disrupted descending supraspinal sympathetic control, changes in propriospinal circuitry, and inappropriate afferent sprouting in the dorsal horn. These anatomical mechanisms may thus be targeted by neural regenerative and protective therapies to improve cardiovascular control and reduce AD. Here, we discuss the relationship between abnormal cardiovascular control and its underlying neuroanatomy. We then review current studies investigating biochemical strategies to reduce the severity of AD through: 1) reducing aberrant calcitonin gene-related peptide immunoreactive afferent sprouting; 2) inhibiting inflammatory processes; and 3) re-establishing descending supraspinal sympathetic control. Finally, we discuss why additional biochemical agents and combinational approaches may be needed to completely ameliorate this condition.
Collapse
Affiliation(s)
- Jordan W Squair
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
791
|
Calcitonin gene-related peptide can be selected as a predictive biomarker on progression and prognosis of knee osteoarthritis. INTERNATIONAL ORTHOPAEDICS 2015; 39:1237-43. [PMID: 25813459 DOI: 10.1007/s00264-015-2744-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The purpose of this study was to examine calcitonin gene-related peptide (CGRP) concentrations in serum and synovial fluid of patients with primary knee osteoarthritis (OA) and healthy controls and to explore their relationship with clinical and radiographic severity of OA. METHODS Sixty-five patients with primary knee OA and 21 healthy controls were recruited. CGRP concentrations in the serum and synovial fluid were measured using enzyme-linked immunosorbent assays. The radiographic severity of OA was evaluated using the Kellgren and Lawrence (KL) classification. The Western Ontario and McMaster University Osteoarthritis Index (WOMAC) was used to assess pain, stiffness and physical function. RESULTS Serum and synovial fluid CGRP concentrations tended to be higher with the increase in KL grades (r = 0.565 and r = 0.441, P < 0.001, respectively), and were significantly positively correlated with KL grades, total WOMAC score and each subscale (pain, stiffness and physical function). CONCLUSIONS The result demonstrated that CGRP in serum and synovial fluid was related to progressive joint damage in knee OA. CGRP can be selected as a biomarker for monitoring disease severity and could be a predictive role on prognosis and progression of knee OA.
Collapse
|
792
|
Mao LF, Wang LD, Zhang HW, Liu JH, Du XJ, Peng ZH. Functional dyspepsia and brain-gut peptides. Shijie Huaren Xiaohua Zazhi 2015; 23:570-576. [DOI: 10.11569/wcjd.v23.i4.570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Functional dyspepsia (FD) is a frequently occurring gastrointestinal disorder, but its etiology and pathogenesis are still unclear because it is associated with multiple factors. As a typically physical and psychological disease, the role of psychological factors in the pathogenesis of FD involves the brain-gut axis, mainly abnormal stimulation processing by the central nervous system and abnormal levels of brain-gut peptides. Brain-gut peptides are the molecular basis of the action of the brain-gut axis, and the brain-gut axis affects the occurrence of FD by regulating the levels of brain-gut peptides. So far, 15 brain-gut peptides associated with FD have been found, which are predominantly expressed in the hypothalamus, medulla oblongata, spinal cord and gastrointestinal mucosa. The aim of this study is to clarify the relationship between brain-gut peptide levels and the occurrence of FD based on brain-gut peptide in terms of their secretion and mechanisms of action.
Collapse
|