851
|
El-Sayyad HIH, El-Gallil HA, El-Ghaweet HA. Synergistic effects of pomegranate juice and atorvastatin for improving cerebellar structure and function of breast-feeding rats maternally fed on a high cholesterol diet. J Chem Neuroanat 2020; 107:101798. [PMID: 32339653 DOI: 10.1016/j.jchemneu.2020.101798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022]
Abstract
A highly cholesterol-diet is associated with atherosclerosis and little about the development of cerebellar cortex disorder. The study illustrated the changes of cerebellar cortex of rat neonate maternally fed on high cholesterol diet and the capacity of pomegranate alone or in combination with atorvastatin to improve it. Eighty-eight pregnant Wister rats were divided into eight groups (n = 11); control, pomegranate supplemented group (daily orally 0.4 mL (20 %), atorvastatin (10 mg/kg BT), hypercholesterolemia (dietary consumption 3% cholesterol for 6 weeks prior to conception and throughout gestation and lactation period), hypercholesterolemia and pomegranate or atorvastatin, hypercholesterolemia and atorvastatin and pomegranate. Dams and their offspring were sacrificed at 21 days post-partum. Sera of mother and cerebellum of offspring were investigated biochemically as well as histo-cytological changes of cerebellar cortex of offspring. Offspring maternally fed on high cholesterol diet showed damage of the cerebellar Purkinje and granular cells associated with demyelination, increased caspase 3 immunohistochemistry and increased DNA damage. These were associated with decreased brain neurotransmitters and increase apoptic markers. Dams supplemented pomegranate and/or atorvastatin improved the assayed parameters more than that of atorvastatin alone. The authors concluded that pomegranate juice contains potent antioxidant nutrients capable of reducing the cytotoxicity of hypercholesterolemia and atorvastatin, and enhancing the structure and function of the cerebellar cortex.
Collapse
Affiliation(s)
- Hassan I H El-Sayyad
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | | | - Heba A El-Ghaweet
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt; Biology Department, Faculty of Science, Jazan University, Saudi Arabia.
| |
Collapse
|
852
|
Schaeffer E, Rogge A, Nieding K, Helmker V, Letsch C, Hauptmann B, Berg D. Patients' views on the ethical challenges of early Parkinson disease detection. Neurology 2020; 94:e2037-e2044. [DOI: 10.1212/wnl.0000000000009400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/19/2019] [Indexed: 11/15/2022] Open
Abstract
ObjectiveTo evaluate the point of view of patients with Parkinson disease (PD) on early detection and risk disclosure in the prodromal phase of PD and to derive recommendations for an ethical framework for the recruitment of prodromal PD cohorts.MethodsA standardized questionnaire to evaluate the patients' perception on early diagnosis in PD was designed by an interdisciplinary study group. After testing in a preliminary feasibility study (n = 20), the survey was performed retrospectively with patients from our clinic.ResultsA total of 101 patients with PD answered the questions. The majority of patients reported that time from onset of motor symptoms to diagnosis was burdensome, including false diagnoses and many consultations of various medical specialists. However, most of the patients evaluated early risk disclosure with skepticism. Freedom of choice and the potential of changes in lifestyle were rated as important.ConclusionAlthough patients with PD reported the time to diagnosis retrospectively as burdensome, the majority was skeptical regarding early disclosure of risk, especially with regard to the lack of pharmacologic options. Circumstances under which early detection and disclosure would have been approved by the majority of patients were (1) advice on lifestyle changes (exercise, nutrition) as potentially disease course–modifying therapy; (2) the establishment of an early diagnosis “culture,” including early clarification of the patients' wish to know; and (3) regular support and follow-up of individuals after risk disclosure.
Collapse
|
853
|
Lipids Nutrients in Parkinson and Alzheimer's Diseases: Cell Death and Cytoprotection. Int J Mol Sci 2020; 21:ijms21072501. [PMID: 32260305 PMCID: PMC7178281 DOI: 10.3390/ijms21072501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, particularly Parkinson’s and Alzheimer’s, have common features: protein accumulation, cell death with mitochondrial involvement and oxidative stress. Patients are treated to cure the symptoms, but the treatments do not target the causes; so, the disease is not stopped. It is interesting to look at the side of nutrition which could help prevent the first signs of the disease or slow its progression in addition to existing therapeutic strategies. Lipids, whether in the form of vegetable or animal oils or in the form of fatty acids, could be incorporated into diets with the aim of preventing neurodegenerative diseases. These different lipids can inhibit the cytotoxicity induced during the pathology, whether at the level of mitochondria, oxidative stress or apoptosis and inflammation. The conclusions of the various studies cited are oriented towards the preventive use of oils or fatty acids. The future of these lipids that can be used in therapy/prevention will undoubtedly involve a better delivery to the body and to the brain by utilizing lipid encapsulation.
Collapse
|
854
|
AlKahtane AA, Ghanem E, Bungau SG, Alarifi S, Ali D, AlBasher G, Alkahtani S, Aleya L, Abdel-Daim MM. Carnosic acid alleviates chlorpyrifos-induced oxidative stress and inflammation in mice cerebral and ocular tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11663-11670. [PMID: 31965510 DOI: 10.1007/s11356-020-07736-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Chlorpyrifos is an organophosphate pesticide whose exposure leads to inhibition of acetylcholinesterase (AChE) enzyme and induces oxidative stress, inflammation, and neurotoxicity. The current study was designed to evaluate the efficacy of carnosic acid (CA) in ameliorating CPF-induced cytotoxicity in mice brain and eye tissues. We allocated 40 male Swiss albino mice to receive DMSO 1% solution, oral CA 60 mg/kg/day bw, CPF 12 mg/kg/day bw via gastric gavage, or CPF plus CA at 30 and 60 mg/kg/day bw. Carnosic acid was administered once/day for 14 days, while CPF was administered in the last 7 days of the experiment. Biochemical analysis showed that CPF administration was associated with significant increases in the serum concentrations of interleukin-1β, IL-6, and tumor necrosis factor-α, while it was associated with significant reductions in serum AChE levels in mice. Moreover, CPF-intoxicated mice exhibited significantly higher levels of malondialdehyde and nitric oxide in the brain and eye tissues. However, they had significantly lower levels of reduced glutathione, glutathione peroxidase, superoxide dismutase, and catalase in comparison with normal controls. Pretreatment with CA at 30 and 60 mg/kg/day bw for 14 days significantly alleviated all the aforementioned CPF-induced alterations in a dose-dependent manner; more frequent restorations of the normal control ranges were observed in the higher dose group. In conclusion, CA offers a neuroprotective effect against CPF-induced oxidative stress and inflammation and should be further studied in upcoming experimental and clinical research.
Collapse
Affiliation(s)
- Abdullah A AlKahtane
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Esraa Ghanem
- Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Simona G Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Gadah AlBasher
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
855
|
Bensouici C, Boudiar T, Kashi I, Bouhedjar K, Boumechhour A, Khatabi L, Larguet H. Chemical characterization, antioxidant, anticholinesterase and alpha-glucosidase potentials of essential oil of Rosmarinus tournefortii de noé. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-019-00309-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
856
|
Won YS, Seo KI. Sanggenol L promotes apoptotic cell death in melanoma skin cancer cells through activation of caspase cascades and apoptosis-inducing factor. Food Chem Toxicol 2020; 138:111221. [PMID: 32084496 DOI: 10.1016/j.fct.2020.111221] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/22/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
Sanggenol L is one component of root bark of Morus alba. The molecular and cellular mechanisms of sanggenol L effects on melanoma cells are not well known. Recently, melanoma is the most common skin cancer with a high mortality rate not only in United States, but also in East Asia. Therefore, safe and effective treatments for melanoma treatment are required. In this study, we investigated whether or not sanggenol L possesses anti-cancer activity in human and mouse melanoma skin cancer cells. Sanggenol L treatment exerted significant cell growth inhibitory effects and inhibited colony formation capacity against B16, SK-MEL-2, and SK-MEL-28 melanoma skin cancer cells, whereas HaCaT human epithelial keratinocyte cells was unaffected by sanggenol L treatment. Sanggenol L treatment resulted in apoptotic cell death in melanoma skin cancer cells, which was characterized by accumulation of apoptotic cells, nuclear condensation, and apoptotic bodies. We also showed that sanggenol L treatment induced caspase-dependent apoptosis (up-regulation of Bax and cleaved-PARP or down-regulation of Bid, Bcl-2, procaspse-3, -8, and -9), induction of caspase-independent apoptosis (up-regulation of AIF and Endo G on cytosol) in melanoma skin cancer cells. These results suggest that sanggenol L induces caspase-dependent and -independent apoptosis in melanoma skin cancer cells.
Collapse
Affiliation(s)
- Yeong-Seon Won
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea
| | - Kwon-Il Seo
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
857
|
Cognitive Facilitation and Antioxidant Effects of an Essential Oil Mix on Scopolamine-Induced Amnesia in Rats: Molecular Modeling of In Vitro and In Vivo Approaches. Molecules 2020; 25:molecules25071519. [PMID: 32230815 PMCID: PMC7181224 DOI: 10.3390/molecules25071519] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/11/2023] Open
Abstract
The present study investigated the capability of an essential oil mix (MO: 1% and 3%) in ameliorating amnesia and brain oxidative stress in a rat model of scopolamine (Sco) and tried to explore the underlying mechanism. The MO was administered by inhalation to rats once daily for 21 days, while Sco (0.7 mg/kg) treatment was delivered 30 min before behavioral tests. Donepezil (DP: 5 mg/kg) was used as a positive reference drug. The cognitive-enhancing effects of the MO in the Sco rat model were assessed in the Y-maze, radial arm maze (RAM), and novel object recognition (NOR) tests. As identified by gas chromatography–mass spectrometry (GC–MS), the chemical composition of the MO is comprised by limonene (91.11%), followed by γ-terpinene (2.02%), β-myrcene (1.92%), β-pinene (1.76%), α-pinene (1.01%), sabinene (0.67%), linalool (0.55%), cymene (0.53%), and valencene (0.43%). Molecular interactions of limonene as the major compound in MO with the active site of butyrylcholinesterase (BChE) was explored via molecular docking experiments, and Van der Waals (vdW) contacts were observed between limonene and the active site residues SER198, HIS438, LEU286, VAL288, and PHE329. The brain oxidative status and acetylcholinesterase (AChE) and BChE inhibitory activities were also determined. MO reversed Sco-induced memory deficits and brain oxidative stress, along with cholinesterase inhibitory effects, which is an important mechanism in the anti-amnesia effect. Our present findings suggest that MO ameliorated memory impairment induced by Sco via restoration of the cholinergic system activity and brain antioxidant status.
Collapse
|
858
|
Phytochemical Screening and Acanthamoebic Activity of Shoots from in Vitro Cultures and in Vivo Plants of Eryngium alpinum L.-The Endangered and Protected Species. Molecules 2020; 25:molecules25061416. [PMID: 32244952 PMCID: PMC7144402 DOI: 10.3390/molecules25061416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Genetically uniform shoots of Eryngium alpinum L. cultured in vitro were subjected to the qualitative analysis applying the UPLC-HESI-HRMS technique. In vitro cultures give the opportunity to perform the phytochemical studies on the protected species without harvesting the plant material from the natural environment. The phytochemical screening of the crude methanolic extracts of shoots, both from in vitro cultures and in vivo plants, revealed the presence of phenolic acids, coumarins, flavonoids, triterpenoid saponins, amino acids, or dipeptides. Active compounds detected are known to have medicinal importance, and for this reason, the present study represents a preliminary investigation of the extracts against pathogenic and opportunistic amoeba. Among the extracts tested, the extract of shoots from in vitro cultures exhibited remarkable amoebicidal action against trophozoites. On the second day of treatment, the extract at the concentrations of 5 mg/mL, 2.5 mg/mL, and 0.5 mg/mL showed the highest antiamoebicidal effect: the inhibition of trophozoites reached 81.14%, 66.38%, and 54.99%, respectively. To our best knowledge, the present report is the first to show the phytochemical screening and to discuss the antiamoebic activity of Eryngium alpinum L. shoots, both from in vitro cultures and in vivo plants.
Collapse
|
859
|
Wang Z, Li S, Ge S, Lin S. Review of Distribution, Extraction Methods, and Health Benefits of Bound Phenolics in Food Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3330-3343. [PMID: 32092268 DOI: 10.1021/acs.jafc.9b06574] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phenolic compounds are important functional bioactive substances distributed in various food plants. They have gained wide interest from researchers due to their multiple health benefits. There are two forms of phenolic compounds: free form and bound form. The latter is also called bound phenolics (BPs), which are found mainly in the cell wall and distributed in various tissues/organs of the plant body. They can either chemically bind to macromolecules and food matrixes or be physically entrapped in food matrixes and intact cells. Various isolation methods, including chemical, biological, and physical methods, have been employed to extract BPs from plants. BPs have been shown to have strong biological activities, including antioxidant, probiotic, anticancer, anti-inflammation, antiobesity, and antidiabetic effects as well as beneficial effects on central nervous system diseases. This review summarizes research findings on these topics to help in better understanding of BPs and provide comprehensive information on their health effects.
Collapse
Affiliation(s)
- Zhenyu Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiyang Li
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shenghan Ge
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
860
|
Hadipour E, Taleghani A, Tayarani-Najaran N, Tayarani-Najaran Z. Biological effects of red beetroot and betalains: A review. Phytother Res 2020; 34:1847-1867. [PMID: 32171042 DOI: 10.1002/ptr.6653] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/22/2020] [Accepted: 02/16/2020] [Indexed: 12/22/2022]
Abstract
Over the past few years, the use of natural substances as protective or therapeutic agents has gained much attention worldwide. Recent modern studies have shown a variety of health benefits for red beetroot and its active compounds betalains (also betanin) such as antioxidative, anti-inflammation, anticancer, blood pressure and lipid lowering, also antidiabetic and anti-obesity effects. Betanin, the main component of the red beetroot, is a betalain glycosidic pigment, which is used as a food additive. This review summarizes findings in the literature and shows the therapeutic potential of red beetroot and its active compounds (betalains) as promising alternatives for supplemental therapies in multiple diseases.
Collapse
Affiliation(s)
- Elham Hadipour
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akram Taleghani
- Assistant Professor of Chemistry, Faculty of Science, Gonbad Kavous University, Gonbad Kavus, Iran
| | - Nilufar Tayarani-Najaran
- Department of Prosthodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Associate Professor of Pharmacology, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
861
|
Piotrowska-Kempisty H, Nowicki M, Jodynis-Liebert J, Kurpik M, Ewertowska M, Adamska T, Oszmiański J, Kujawska M. Assessment of Hepatoprotective Effect of Chokeberry Juice in Rats Treated Chronically with Carbon Tetrachloride. Molecules 2020; 25:1268. [PMID: 32168847 PMCID: PMC7144002 DOI: 10.3390/molecules25061268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to compare the protective effects of chokeberry juice and silymarin against chemical-induced liver fibrosis in rats. Liver fibrosis was induced by CCl4 administered two days a week for six weeks. Two groups of rats were co-treated with chokeberry juice, 10 mL/kg/day. or silymarin as a positive control, 100 mg/kg/day for six weeks. Hepatic lipid peroxidation was suppressed by 50% and the activity of hepatic antioxidant enzymes was increased by 19%-173% in rats co-treated with CCl4 and substances tested as compared to rats administered CCl4 alone. Hepatic hydroxyproline was decreased by 24% only in rats treated with silymarin. The messenger RNA (mRNA) expression levels of fibrosis-related molecules, procollagen I, α-SMA, TIMP-1, TGFβ, and TNFα, which were significantly increased in the liver of CCl4-treated rats, were not modulated by substances tested. Histological evaluation revealed a slight protective effect of silymarin against fibrosis. However, in CCl4 + chokeberry-treated rats, the density of vacuolated hepatocytes was significantly lower than that in silymarin administered animals. Chokeberry juice did not demonstrate an antifibrotic effect in the applied experimental model of fibrosis, and the effect of the known antifibrotic agent, silymarin, was very limited.
Collapse
Affiliation(s)
- Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznań, Poland; (H.P.-K.); (J.J.-L.); (M.K.); (M.E.); (T.A.)
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznań, Poland; (H.P.-K.); (J.J.-L.); (M.K.); (M.E.); (T.A.)
| | - Monika Kurpik
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznań, Poland; (H.P.-K.); (J.J.-L.); (M.K.); (M.E.); (T.A.)
| | - Małgorzata Ewertowska
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznań, Poland; (H.P.-K.); (J.J.-L.); (M.K.); (M.E.); (T.A.)
| | - Teresa Adamska
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznań, Poland; (H.P.-K.); (J.J.-L.); (M.K.); (M.E.); (T.A.)
| | - Jan Oszmiański
- Department of Fruit, Vegetable and Cereal Technology, Environmental and Life Science University, 51-630 Wrocław, Poland;
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznań, Poland; (H.P.-K.); (J.J.-L.); (M.K.); (M.E.); (T.A.)
| |
Collapse
|
862
|
Chidamide Inhibits Glioma Cells by Increasing Oxidative Stress via the miRNA-338-5p Regulation of Hedgehog Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7126976. [PMID: 32256960 PMCID: PMC7086450 DOI: 10.1155/2020/7126976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Objective Chidamide has a broad spectrum of antitumor activity but its function on glioma remains unknown. The increase of reactive oxygen species (ROS) and reactive nitrogen species (RNS) may control glioma risk by promoting its apoptosis and necrosis. Hedgehog pathway is crucial to glioma cell proliferation and controls ROS production. We aimed to explore the effects of chidamide on the levels of miR-338-5p (glioma cell inhibitor), which may regulate Hedgehog signaling, resulting in the changes of RNS. Materials and Methods. Migration and invasion activities of glioma cells were measured by using the Transwell chamber assay. The expression levels of Sonic Hedgehog (Shh), Indian Hedgehog (Ihh), Desert Hedgehog (Dhh), miR-338-5p, and related molecules were detected by using real-time PCR (RT-PCR) and or Western Blot in U87 and HS683 glioma cells. The effects of chidamide on these molecules were measured by using the miR-338-5p inhibitor or mimics in U87 and HS683 glioma cell lines. ROS and RNS were measured by DCF DA and DAF-FM DA fluorescence. Biomarkers of oxidative stress were measured by using a corresponding kit. Apoptosis and necrosis rates were measured by using flow cytometry. Results Chidamide inhibited the growth rate, migration, and invasion of human malignant glioma cells and increased the level of miR-338-5p. miR-338-5p inhibitor or mimics increased or inhibited the growth rate of U87 and HS683 glioma cells. Chidamide inhibited the levels of Shh, Ihh, migration protein E-cadherin, and invading protein MMP-2. The increase in the level of Shh and Ihh led to the reduction in the ROS and RNS levels. miR-338-5p inhibitor or mimics also showed a promoting or inhibitory function for the levels of Shh and Ihh. Furthermore, miR-338-5p mimics and inhibitor inhibited or promoted the migration and invasion of the glioma cells (P < 0.05). Evaluated levels of miR-338-5p increased oxidative stress level and apoptosis and necrosis rate by regulating the levels of biomarkers of oxidative stress (P < 0.05). Evaluated levels of miR-338-5p increased oxidative stress level and apoptosis and necrosis rate by regulating the levels of biomarkers of oxidative stress ( Conclusion Chidamide inhibits glioma cells by increasing oxidative stress via the miRNA-338-5p regulation of Hedgehog signaling. Chidamide may be a potential drug in the prevention of glioma development.
Collapse
|
863
|
Wei Y, Fang S, Jin G, Ni T, Hou Z, Li T, Deng W, Ning J. Effects of two yellowing process on colour, taste and nonvolatile compounds of bud yellow tea. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
- School of Tea and Food Science and Technology Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
| | - Shimao Fang
- Guizhou Tea Research Institute Guizhou Academy of Agricultural Sciences Guiyang Guizhou 550006 China
| | - Ge Jin
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
- School of Tea and Food Science and Technology Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
| | - Tiancheng Ni
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
- School of Tea and Food Science and Technology Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
| | - Zhiwei Hou
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
- School of Tea and Food Science and Technology Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
- School of Tea and Food Science and Technology Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
| | - Wei‐Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
- School of Tea and Food Science and Technology Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
- School of Tea and Food Science and Technology Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
| |
Collapse
|
864
|
Hamed MA, Aboul Naser AF, Aziz WM, Ibrahim FM, Ali SA, El-Rigal NS, Khalil WK. Natural sources, dopaminergic and non-dopaminergic agents for therapeutic assessment of Parkinsonism in rats model. PHARMANUTRITION 2020; 11:100171. [DOI: 10.1016/j.phanu.2019.100171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
865
|
Sharifi-Rad J, Ezzat SM, El Bishbishy MH, Mnayer D, Sharopov F, Kılıç CS, Neagu M, Constantin C, Sharifi-Rad M, Atanassova M, Nicola S, Pignata G, Salehi B, Fokou PVT, Martins N. Rosmarinus plants: Key farm concepts towards food applications. Phytother Res 2020; 34:1474-1518. [PMID: 32058653 DOI: 10.1002/ptr.6622] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
Abstract
Rosmarinus species are aromatic plants that mainly grow in the Mediterranean region. They are widely used in folk medicine, food, and flavor industries and represent a valuable source of biologically active compounds (e.g., terpenoids, flavonoids, and phenolic acids). The extraction of rosemary essential oil is being done using three main methods: carbon dioxide supercritical extraction, steam distillation, and hydrodistillation. Furthermore, interesting antioxidant, antibacterial, antifungal, antileishmanial, anthelmintic, anticancer, anti-inflammatory, antidepressant, and antiamnesic effects have also been broadly recognized for rosemary plant extracts. Thus the present review summarized data on economically important Rosmarinus officinalis species, including isolation, extraction techniques, chemical composition, pharmaceutical, and food applications.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
| | - Mahitab H El Bishbishy
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
| | - Dima Mnayer
- Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Dushanbe, Tajikistan
| | - Ceyda S Kılıç
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, "Colentina" Clinical Hospital, Bucharest, Romania.,Doctoral School, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, "Colentina" Clinical Hospital, Bucharest, Romania
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, UCTM, Sofia, Bulgaria
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Giuseppe Pignata
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Patrick V T Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
866
|
Pujols J, Peña-Díaz S, Pallarès I, Ventura S. Chemical Chaperones as Novel Drugs for Parkinson's Disease. Trends Mol Med 2020; 26:408-421. [PMID: 32277934 DOI: 10.1016/j.molmed.2020.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/19/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive loss of dopaminergic neurons and the accumulation of deposits of α-synuclein (α-syn) in the brain. The pivotal role of α-syn aggregation in PD makes it an attractive target for potential disease-modifying therapies. However, the disordered nature of the protein, its multistep aggregation mechanism, and the lack of structural information on intermediate species complicate the discovery of modulators of α-syn amyloid deposition. Despite these difficulties, small molecules have been shown to block the misfolding and aggregation of α-syn, and can even disentangle mature α-syn amyloid fibrils. In this review we provide an updated overview of these leading small compounds and discuss how these chemical chaperones hold great promise to alter the course of PD progression.
Collapse
Affiliation(s)
- Jordi Pujols
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
867
|
Schaeffer E, Postuma RB, Berg D. Prodromal PD: A new nosological entity. PROGRESS IN BRAIN RESEARCH 2020; 252:331-356. [PMID: 32247370 DOI: 10.1016/bs.pbr.2020.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Recent years have brought a rapid growth in knowledge of the prodromal phase of Parkinson's disease (PD). It is now clear that the clinical phase of PD is preceded by a phase of progressing neurodegeneration lasting many years. This involves not only central nervous system structures outside the substantia nigra and neurotransmitter systems other than the dopaminergic system, but also the peripheral nervous systems. Different ways of alpha-synuclein spreading are presumed, corresponding to typical prodromal non-motor symptoms like constipation, REM sleep behavior disorder (RBD) and hyposmia. Moreover, many risk and prodromal markers have been identified and combined in the prodromal research criteria, which can be used to calculate an individual's probability of being in the prodromal phase of PD. Apart from specific genetic risk markers, including most importantly GBA- and LRRK2 mutations, RBD is currently the most important prodromal marker, predicting PD with a very high likelihood. This makes individuals with RBD a promising cohort for future clinical trials to detect and treat PD in its prodromal phase. New markers, especially those derived from tissue biopsies, quantitative motor assessment and imaging, appear very promising; these are paving the way for a better understanding of the prodromal phase and its potential clinicopathological subtypes, and a more precise probability calculation.
Collapse
Affiliation(s)
- Eva Schaeffer
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | - Ronald B Postuma
- Department of Neurology, Montreal General Hospital, Montreal, QC, Canada
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
868
|
Albasher G, Albrahim T, Alsultan N, Alfaraj S, Alharthi MS, Kassab RB, Abdel Moneim AE. Red beetroot extract mitigates chlorpyrifos-induced reprotoxicity associated with oxidative stress, inflammation, and apoptosis in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3979-3991. [PMID: 31823260 DOI: 10.1007/s11356-019-07009-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
The goal of our investigation is to evaluate the potential protective efficacy of red beetroot extract (RBR) against testicular toxicity produced by CPF in rats. CPF exposure decreased the weight of testis and the levels of luteinizing hormone, follicle stimulating hormone and testosterone. CPF impaired also the oxidative status in favor of pro-oxidant molecules in the testicular tissue. Additionally, CPF stimulated the production of pro-inflammatory cytokines and their gene expression. Concomitantly, an apoptotic cascade has been observed upon CPF intoxication. However, RBR administration protected the testis tissue through modulating the hormonal level, inhibiting the oxidative damage, inflammation and the apoptotic responses following CPF intoxication. The obtained data recommend the use of RBR to prevent CPF-induced testicular damage via antioxidant, anti-inflammatory, and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Tarfa Albrahim
- Department of Health Sciences, Clinical Nutrition, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nouf Alsultan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Alfaraj
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mada S Alharthi
- Medical Laboratory Science Microbiology, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
869
|
Lama A, Pirozzi C, Avagliano C, Annunziata C, Mollica MP, Calignano A, Meli R, Mattace Raso G. Nutraceuticals: An integrative approach to starve Parkinson's disease. Brain Behav Immun Health 2020; 2:100037. [PMID: 34589828 PMCID: PMC8474522 DOI: 10.1016/j.bbih.2020.100037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 01/15/2023] Open
Abstract
The therapeutic approach of multifactorial complex diseases is always a challenge; Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder triggered by genetic and environmental factors, contributing to its etiology. Indeed, several pathogenic mechanisms lead to selective dopaminergic neuronal injury, including oxidative stress, mitochondrial dysfunction, alteration of endoplasmic reticulum-to-Golgi protein trafficking, excitotoxicity, and neuroinflammation. Current treatment approaches include mainly dopamine replacement therapy or optimizing dopaminergic transmission; however, these strategies that do not counteract the pathogenic mechanisms underlying PD symptoms and often are less effective over time. Recently, there has been growing interest in the therapeutic use of nutraceuticals, that could represent an integrative approach to the pharmacological standard therapy and specifically affect one or more pathogenic pathways. The intake of nutraceuticals or nutritional modifications are generally safe and can be combined with current common drug therapy in most cases to improve the patient's quality of life and/or mitigate PD symptoms. The current review focuses on several key nutritional compounds and dietary modifications that are effective on several pathogenic pathways involved in PD onset and progression, and further highlights the rationale behind their potential use for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Chiara Annunziata
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Maria Pina Mollica
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Department of Biology, University of Naples Federico II, Cupa Nuova Cinthia 21-Edificio 7, 80126, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Giuseppina Mattace Raso
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
870
|
Leja K, Majcher M, Juzwa W, Czaczyk K, Komosa M. Comparative Evaluation of Piper nigrum, Rosmarinus officinalis, Cymbopogon citratus and Juniperus communis L. Essential Oils of Different Origin as Functional Antimicrobials in Foods. Foods 2020; 9:E141. [PMID: 32023843 PMCID: PMC7074057 DOI: 10.3390/foods9020141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
Essential oils can be used as preservatives in foods because of their ability to inhibit bacteria growth in low concentration, which does not influence on foods' organoleptic properties and does not generate the resistance mechanisms in cells. The aim of that work was to compare the effectiveness of commercial oils from black pepper (Piper nigrum), rosemary (Rosmarinus officinalis), lemongrass (Cymbopogon citratus) and juniper (Juniperus communis L.) with oils obtained in our laboratory. The typical cultivation method was supported by the flow cytometry to detect the cells of very low physiologic and metabolic activity. Our investigation demonstrated that both types of oils can effectively inhibit the growth of saprophytic bacteria P. orientalis. The oils distilled in our laboratory had a bacteriostatic effect at a lower concentration, which is important for application in the food industry. Flow cytometry analyzes and confirmed the thesis that essential oils do not have a germicidal effect on bacteria cells.
Collapse
Affiliation(s)
- Katarzyna Leja
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland; (W.J.); (K.C.)
| | - Małgorzata Majcher
- Institute of Food Technology of Plant Origin, Faculty of Food Science, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland; (W.J.); (K.C.)
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland; (W.J.); (K.C.)
| | - Marcin Komosa
- Department of Animal Anatomy, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland;
| |
Collapse
|
871
|
Singh S, Dharamveer, Kulshreshtha M. Pharmacological Approach of Pistacia Vera Fruit to Assess Learning and Memory Potential in Chemically-Induced Memory Impairment in Mice. Cent Nerv Syst Agents Med Chem 2020; 19:125-132. [PMID: 30836928 DOI: 10.2174/1871524919666190304122927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The present study was designed to investigate the potential of Pistacia vera (P. vera) fruits in experimental memory impairments in mice. MATERIAL & METHODS Memory impairment was induced in Swiss Albino mice by scopolamine (0.4mg mg/kg. i.p). Animals were divided into five separate groups of six animals each, positive control group received carboxy methyl cellulose (CMC) as vehicle, negative control group received scopolamine with vehicle, and standard group received donepezil (5mg/kg i.p) with Scopolamine. Ethanolic extract of P. vera (EEPV) at doses of 200mg/kg & 400mg/kg p.o were administered to group test1 & test 2 respectively along with scopolamine. Elevated plus maze (EPM), passive avoidance paradigms and morris water maze (MWM) were used as exteroceptive behavioral models to access learning and memory activity. Transfer latency, step down latency and escape latency parameters were evaluated plus maze, passive avoidance paradigm, morris water maze. Thereafter lipid peroxidation test, glutathione level and catalase activities were estimated in homogenized brain of mice. RESULTS Pretreatment of mice with EEPV (200mg/kg & 400mg/kg) significantly reduced scopolamine induced amnesia. The obtained data clearly revealed that there was increase in escape latency in MWM and also increase in step down latency in passive avoidance paradigm. Transfer latencey was found to be decrease in EPM and biochemical. Parameters were clearly satisfied the data as compared to negative control group which was indicative of cognitive improvement. CONCLUSION P. vera fruit extract demonstrated to improve cognitive process by enhancing memory in different experimental paradigm such as EPM, passive avoidance and MWM when administered orally. Hence it would be worthwhile to explore the potential of this plant in the management of memory disorders.
Collapse
Affiliation(s)
- Satyam Singh
- School of Pharmacy, Babu Banarasi Das University, Babu Banarasi Das City, Faizabad Road, Chinhat, Lucknow- 227105, Uttar Pradesh, India
| | - Dharamveer
- School of Pharmacy, Babu Banarasi Das University, Babu Banarasi Das City, Faizabad Road, Chinhat, Lucknow- 227105, Uttar Pradesh, India
| | - Mayank Kulshreshtha
- School of Pharmacy, Babu Banarasi Das University, Babu Banarasi Das City, Faizabad Road, Chinhat, Lucknow- 227105, Uttar Pradesh, India
| |
Collapse
|
872
|
Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson's disease. J Chem Neuroanat 2020; 104:101752. [PMID: 31996329 DOI: 10.1016/j.jchemneu.2020.101752] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Since the discovery of L-dopa in the middle of the 20th century (1960s), there is not any neuroprotective therapy available although significant development has been made in the treatment of symptomatic Parkinson's disease (PD). Neurological disorders like PD can be modelled in animals so as to recapitulates most of the symptoms seen in PD patients. In aging population, PD is the second most common neurodegenerative disease after Alzheimer's disease, even though significant outcomes have been achieved in PD research yet it still is a mystery to solve the treatments for PD. In the last two decades, PD models have provided enhanced precision into the understanding of the process of PD disease, its etiology, pathology, and molecular mechanisms behind it. Furthermore, at the same time as cellular models have helped to recognize specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are very helpful for testing and finding new strategies for neuroprotection. Recently, in both classical and newer models, major advances have been done in the modelling of supplementary PD features have come into the light. In this review, we have try to provide an updated summary of the characteristics of these models related to in vitro and in vivo models, animal models for PD, stem cell model for PD, newer 3D model as well as the strengths and limitations of these most popular PD models.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Department of Zoology, Mahila Maha Vidhyalaya, Institute of Science, Banaras Hindu University, Varanasi, India.
| | - Payal Singh
- Department of Zoology, Mahila Maha Vidhyalaya, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
873
|
Yasuhara T. Neurobiology Research in Parkinson's Disease. Int J Mol Sci 2020; 21:E793. [PMID: 31991804 PMCID: PMC7036854 DOI: 10.3390/ijms21030793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, therapeutic strategies [...].
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| |
Collapse
|
874
|
Kandylis P, Kokkinomagoulos E. Food Applications and Potential Health Benefits of Pomegranate and its Derivatives. Foods 2020; 9:E122. [PMID: 31979390 PMCID: PMC7074153 DOI: 10.3390/foods9020122] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Pomegranate (Punica granatum L.) is an ancient fruit that is particularly cultivated in west Asia, though it is also cultivated in the Mediterranean region and other parts of the world. Since ancient years, its consumption has been associated with numerous health benefits. In recent years, several in vitro and in vivo studies have revealed its beneficial physiological activities, especially its antioxidative, antimicrobial and anti-inflammatory properties. Furthermore, human-based studies have shown promising results and have indicated pomegranate potential as a protective agent of several diseases. Following that trend and the food industry's demand for antioxidants and antimicrobials from natural sources, the application of pomegranate and its extracts (mainly as antioxidants and antimicrobials), has been studied extensively in different types of food products with satisfactory results. This review aims to present all the recent studies and trends in the applications of pomegranate in the food industry and how these trends have affected product's physicochemical characteristics and shelf-life. In addition, recent in vitro and in vivo studies are presented in order to reveal pomegranate's potential in the treatment of several diseases.
Collapse
Affiliation(s)
- Panagiotis Kandylis
- Laboratory of Oenology and Alcoholic Beverages, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece;
| | | |
Collapse
|
875
|
Age related neurodegenerative Alzheimer's disease: Usage of traditional herbs in therapeutics. Neurosci Lett 2020; 717:134679. [PMID: 31816333 DOI: 10.1016/j.neulet.2019.134679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease mainly associated with cognition impairment. Studies in last more than six decades have suggested that the disease pathology primarily includes the depleted cholinergic neurons, accumulation of amyloid beta plaques and hyper phosphorylation of tau proteins. However, the disease etiology remains enigmatic and no therapy is available to modify the disease status. Studies in experimental models and in post mortem brain of AD patients have suggested the involvement of oxidative stress, inflammatory responses, unfolded protein responses and apoptosis in disease pathology, yet the information is deficit to develop the disease modifying therapeutics. Owing to the need of novel effective treatment, chronic consumption of medicines with minimum side effects, recently the researchers turned towards the traditional medicines. This review is mainly focusing on the traditional herbs which have been suggested to contain disease related antidote activities and may be utilized for the effective treatment of AD patients.
Collapse
|
876
|
Capatina L, Boiangiu RS, Dumitru G, Napoli EM, Ruberto G, Hritcu L, Todirascu-Ciornea E. Rosmarinus officinalis Essential Oil Improves Scopolamine-Induced Neurobehavioral Changes via Restoration of Cholinergic Function and Brain Antioxidant Status in Zebrafish ( Danio rerio). Antioxidants (Basel) 2020; 9:antiox9010062. [PMID: 31936730 PMCID: PMC7023291 DOI: 10.3390/antiox9010062] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 11/25/2022] Open
Abstract
Rosmarinus officinalis L. is a traditional herb with various therapeutic applications such as antibacterial, antioxidant, anti-inflammatory, antidepressant, and anticholinesterase activities, and can be used for the prevention or treatment of dementia. In the present study, we tested whether Rosmarinus officinalis L. could counteract scopolamine-induced anxiety, dementia, and brain oxidative stress in the zebrafish model and tried to find the underlying mechanism. Rosmarinus officinalis L. essential oil (REO: 25, 150, and 300 µL/L) was administered by immersion to zebrafish (Danio rerio) once daily for eight days while scopolamine (100 µM) treatment was delivered 30 min before behavioral tests. The antidepressant and cognitive-enhancing actions of the essential oil in the scopolamine zebrafish model was measured in the novel tank diving test (NTT) and Y-maze test. The chemical composition was identified by Gas chromatograph–Mass spectrometry (GC-MS) analysis. The brain oxidative status and acetylcholinesterase (AChE) activity was also determined. REO reversed scopolamine-induced anxiety, memory impairment, and brain oxidative stress. In addition, a reduced brain AChE activity following the administration of REO in scopolamine-treated fish was observed. In conclusion, REO exerted antidepressant-like effect and cognitive-enhancing action and was able to abolish AChE alteration and brain oxidative stress induced by scopolamine.
Collapse
Affiliation(s)
- Luminita Capatina
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| | - Edoardo Marco Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
- Correspondence: ; Tel.: +40-232201666
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| |
Collapse
|
877
|
Gao Y, Ma L, Han T, Wang M, Zhang D, Wang Y. Protective role of protocatechuic acid in sevoflurane-induced neuron apoptosis, inflammation and oxidative stress in mice. Restor Neurol Neurosci 2020; 38:323-331. [PMID: 32986634 DOI: 10.3233/rnn-201022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In neonatal mice, sevoflurane, inspired through the nasal cavity to act as anesthesia, triggers neuronal apoptosis, inflammation and oxidative injury that can hamper cognitive functions in the growth of the central nervous system in the later stages of life. OBJECTIVE Our study aimed to explore the potential neuroprotective effects of protocatechuic acid (PCA) to ameliorate neonatal sevoflurane-induced neurotoxicity. METHODS Male mice were pretreated with PCA (10 or 20 mg/kg) for half an hour before continuous treatment for 6 h with 3 % sevoflurane. TUNEL staining was performed to examine the apoptotic cells to record their count. ELISA was performed to evaluate the expressions of the proteins - IL-1β, IL-18 and TNF-α. Analysis of the Western blot and test of the Morris maze was determined and the results analyzed. RESULTS TUNEL findings assay showed a significant reduction with sevoflurane in neuronal apoptosis treated with PCA at 20 mg/kg. The expression of protein Caspase-3 showed significant changes in the group SEV + PCA (20 mg/kg). ELISA analysis showed that the levels of IL-18 and TNF-α were significantly reduced in the SEV + PCA (20 mg/kg) group as compared to SEV + PCA (10 mg/kg) group. MDA, ROS and SOD levels were noted to decrease significantly only in the SEV + PCA group (20 mg/kg) while IL-1β levels decreased in both SEV + PCA groups (10 or 20 mg/kg) respectively. CONCLUSIONS Our findings imply that apoptosis, inflammation, and oxidative stress in the hippocampal region of neonatal mouse brain were significantly reduced by pre-treatment with PCA before sevoflurane exposure. Therefore, suggesting a role for PCA as a novel therapeutic agent in the treatment of sevoflurane anesthesia-induced neurobehavioral dysfunction.
Collapse
Affiliation(s)
- Yuhua Gao
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Liping Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Tao Han
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Meng Wang
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Dongmei Zhang
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yana Wang
- Department of medical Genetics and cell biology of school of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
878
|
Neuroprotective effects of lignan 7-hydroxymatairesinol (HMR/lignan) in a rodent model of Parkinson's disease. Nutrition 2020; 69:110494. [DOI: 10.1016/j.nut.2019.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 01/01/2023]
|
879
|
Neuroprotective potential of chrysin in Parkinson's disease: Molecular mechanisms and clinical implications. Neurochem Int 2020; 132:104612. [DOI: 10.1016/j.neuint.2019.104612] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023]
|
880
|
Adamczak A, Ożarowski M, Karpiński TM. Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed in Plants. J Clin Med 2019; 9:109. [PMID: 31906141 PMCID: PMC7019947 DOI: 10.3390/jcm9010109] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 01/03/2023] Open
Abstract
Among natural substances widespread in fruits, vegetables, spices, and medicinal plants, flavonoids and organic acids belong to the promising groups of bioactive compounds with strong antioxidant and anti-inflammatory properties. The aim of the present work was to evaluate the antibacterial activity of 13 common flavonoids (flavones, flavonols, flavanones) and 6 organic acids (aliphatic and aromatic acids). The minimal inhibitory concentrations (MICs) of selected plant substances were determined by the micro-dilution method using clinical strains of four species of pathogenic bacteria. All tested compounds showed antimicrobial properties, but their biological activity was moderate or relatively low. Bacterial growth was most strongly inhibited by salicylic acid (MIC = 250-500 μg/mL). These compounds were generally more active against Gram-negative bacteria: Escherichia coli and Pseudomonas aeruginosa than Gram-positive ones: Enterococcus faecalis and Staphylococcus aureus. An analysis of the antibacterial effect of flavone, chrysin, apigenin, and luteolin showed that the presence of hydroxyl groups in the phenyl rings A and B usually did not influence on the level of their activity. A significant increase in the activity of the hydroxy derivatives of flavone was observed only for S. aureus. Similarly, the presence and position of the sugar group in the flavone glycosides generally had no effect on the MIC values.
Collapse
Affiliation(s)
- Artur Adamczak
- Department of Botany, Breeding and Agricultural Technology of Medicinal Plants, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, 62-064 Plewiska, Poland;
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| |
Collapse
|
881
|
Kujawska M, Jourdes M, Kurpik M, Szulc M, Szaefer H, Chmielarz P, Kreiner G, Krajka-Kuźniak V, Mikołajczak PŁ, Teissedre PL, Jodynis-Liebert J. Neuroprotective Effects of Pomegranate Juice against Parkinson's Disease and Presence of Ellagitannins-Derived Metabolite-Urolithin A-In the Brain. Int J Mol Sci 2019; 21:202. [PMID: 31892167 PMCID: PMC6981883 DOI: 10.3390/ijms21010202] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
Pomegranate juice is a rich source of ellagitannins (ETs) believed to contribute to a wide range of pomegranate's health benefits. While a lot of experimental studies have been devoted to Alzheimer disease and hypoxic-ischemic brain injury, our knowledge of pomegranate's effects against Parkinson's disease (PD) is very limited. It is suggested that its neuroprotective effects are mediated by ETs-derived metabolites-urolithins. In this study, we examined the capability of pomegranate juice for protection against PD in a rat model of parkinsonism induced by rotenone. To evaluate its efficiency, assessment of postural instability, visualization of neurodegeneration, determination of oxidative damage to lipids and α-synuclein level, as well as markers of antioxidant defense status, inflammation, and apoptosis, were performed in the midbrain. We also check the presence of plausible active pomegranate ETs-derived metabolite, urolithin A, in the plasma and brain. Our results indicated that pomegranate juice treatment provided neuroprotection as evidenced by the postural stability improvement, enhancement of neuronal survival, its protection against oxidative damage and α-synuclein aggregation, the increase in mitochondrial aldehyde dehydrogenase activity, and maintenance of antiapoptotic Bcl-xL protein at the control level. In addition, we have provided evidence for the distribution of urolithin A to the brain.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
| | - Michael Jourdes
- Université de Bordeaux, ISVV, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
- INRA, ISVV, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Monika Kurpik
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
| | - Michał Szulc
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland
| | - Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland
| | | | - Pierre-Louis Teissedre
- Université de Bordeaux, ISVV, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
- INRA, ISVV, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
| |
Collapse
|
882
|
Betanin Attenuates Oxidative Stress Induced by 6-OHDA in PC12 Cells via SAPK/JNK and PI3 K Pathways. Neurochem Res 2019; 45:395-403. [PMID: 31858376 DOI: 10.1007/s11064-019-02927-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder which accompanied with cognitive decline, chorei form moves and behavioral difficulties. Oxidative stress which promote the apoptotic cell death are responsible for neurodegeneration in Parkinson. The purpose of this study is to evaluate the protective effects of betanin against toxicity and oxidative damage induced by 6-hydroxydopamine (6-OHDA) and hydrogen peroxide (H2O2) in PC12 cells as an appropriate model of Parkinson's cell damage. PC12 cells pretreated with betanin (1-200 µM) for 24 h, and exposed to either 6-OHDA (100 µM) or H2O2 (150 µM) for 24 h. Cell survival and intracellular reactive oxygen species (ROS) production analyzed by resazurin and DCF-DA assay. The anti-apoptotic effects of betanin in PC12 cells were studied using flow cytometry of PI stained cells. Also, western blot analysis of survivin, Cyt c, Phospho SAPK/JNK, SAPK/JNK, Phospho-PI3 kinase P85, PI3 kinase P85 was performed for detection of apoptosis. Betanin (1-200 µM) significantly decreased the 6-OHDA and H2O2 cytotoxicity also attenuated the ROS level. Cell apoptosis significantly increased after 6-OHDA (100 µM) treatment, compared to the control. However, pretreatment with betanin (20 and 50 µM), protected against apoptosis. Western blot analysis of PC12 cells showed that 100 µM 6-OHDA could increase the proteins involved in apoptosis signaling and betanin (20 and 50 µM), could decrease the apoptosis. The results show that betanin has antioxidant and anti-apoptotic effects and may have the ability to prevent or delay the progress of neural death in Parkinson's disease.
Collapse
|
883
|
Jackson A, Forsyth CB, Shaikh M, Voigt RM, Engen PA, Ramirez V, Keshavarzian A. Diet in Parkinson's Disease: Critical Role for the Microbiome. Front Neurol 2019; 10:1245. [PMID: 31920905 PMCID: PMC6915094 DOI: 10.3389/fneur.2019.01245] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Parkinson's disease (PD) is the most common movement disorder affecting up to 1% of the population above the age of 60 and 4–5% of those above the age of 85. Little progress has been made on efforts to prevent disease development or halt disease progression. Diet has emerged as a potential factor that may prevent the development or slow the progression of PD. In this review, we discuss evidence for a role for the intestinal microbiome in PD and how diet-associated changes in the microbiome may be a viable approach to prevent or modify disease progression. Methods: We reviewed studies demonstrating that dietary components/foods were related to risk for PD. We reviewed evidence for the dysregulated intestinal microbiome in PD patients including abnormal shifts in the intestinal microbiota composition (i.e., dysbiosis) characterized by a loss of short chain fatty acid (SCFA) bacteria and increased lipopolysaccharide (LPS) bacteria. We also examined several candidate mechanisms by which the microbiota can influence PD including the NLRP3 inflammasome, insulin resistance, mitochondrial function, vagal nerve signaling. Results: The PD-associated microbiome is associated with decreased production of SCFA and increased LPS and it is believed that these changes may contribute to the development or exacerbation of PD. Diet robustly impacts the intestinal microbiome and the Western diet is associated with increased risk for PD whereas the Mediterranean diet (including high intake of dietary fiber) decreases PD risk. Mechanistically this may be the consequence of changes in the relative abundance of SCFA-producing or LPS-containing bacteria in the intestinal microbiome with effects on intestinal barrier function, endotoxemia (i.e., systemic LPS), NLRP3 inflammasome activation, insulin resistance, and mitochondrial dysfunction, and the production of factors such as glucagon like peptide 1 (GLP-1) and brain derived neurotrophic factor (BDNF) as well as intestinal gluconeogenesis. Conclusions: This review summarizes a model of microbiota-gut-brain-axis regulation of neuroinflammation in PD including several new mechanisms. We conclude with the need for clinical trials in PD patients to test this model for beneficial effects of Mediterranean based high fiber diets.
Collapse
Affiliation(s)
- Aeja Jackson
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Christopher B Forsyth
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Maliha Shaikh
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Robin M Voigt
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Phillip A Engen
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Vivian Ramirez
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Ali Keshavarzian
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| |
Collapse
|
884
|
Shanmugavel V, Komala Santhi K, Kurup AH, Kalakandan S, Anandharaj A, Rawson A. Potassium bromate: Effects on bread components, health, environment and method of analysis: A review. Food Chem 2019; 311:125964. [PMID: 31865111 DOI: 10.1016/j.foodchem.2019.125964] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Potassium bromate, is an oxidizing agent and one of the best and cheapest dough improvers in the baking industry. Due to its positive effects it plays a major role in the bread-making industry. Potassium bromate has significant effect on food biomolecules, such as starch and protein, as it affects the extent of gelatinization, viscosity, swelling characteristics as well as gluten proteins; it removes the sulfhydryl group and leads to the formation of disulfide linkages and thus improves the bread properties. However, there are many reports elucidating its negative impact on human health. It is deemed as a potential human carcinogen by IARC and classified under class 2B. Due to this, countries across world have either partially or completely banned it. Numerous techniques have evolved to determine the concentration of potassium bromate in bread. This review explains in detail, the effects of potassium bromate on biomolecules, human health, environment and various methods of analysis.
Collapse
Affiliation(s)
- Venu Shanmugavel
- Department of Food Safety and Quality Testing, Indian Institute of Food Processing Technology, Thanjavur, Tamil Nadu, India
| | - Kotturu Komala Santhi
- Department of Food Safety and Quality Testing, Indian Institute of Food Processing Technology, Thanjavur, Tamil Nadu, India
| | - Anjali H Kurup
- Department of Food Safety and Quality Testing, Indian Institute of Food Processing Technology, Thanjavur, Tamil Nadu, India
| | - Sureshkumar Kalakandan
- Department of Food Safety and Quality Testing, Indian Institute of Food Processing Technology, Thanjavur, Tamil Nadu, India
| | - Arunkumar Anandharaj
- Department of Food Safety and Quality Testing, Indian Institute of Food Processing Technology, Thanjavur, Tamil Nadu, India
| | - Ashish Rawson
- Department of Food Safety and Quality Testing, Indian Institute of Food Processing Technology, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
885
|
Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, Feng YB, Li S, Wei XL, Atanasov AG, Corke H, Li HB. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int J Mol Sci 2019; 20:6196. [PMID: 31817990 PMCID: PMC6941079 DOI: 10.3390/ijms20246196] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Atanas G. Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| |
Collapse
|
886
|
Xu YW, Xing RX, Zhang WH, Li L, Wu Y, Hu J, Wang C, Luo QL, Shen JL, Chen X. Toxoplasma ROP16 I/III ameliorated inflammatory bowel diseases via inducing M2 phenotype of macrophages. World J Gastroenterol 2019; 25:6634-6652. [PMID: 31832003 PMCID: PMC6906210 DOI: 10.3748/wjg.v25.i45.6634] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized by chronic and non-specific inflammation of the intestinal mucosa and mainly includes ulcerative colitis and Crohn's disease.
AIM To explore the beneficial effect of ToxoROP16I/III-induced M2 phynotype macrophages in homeostasis of IBDs through downregulation of M1 inflammatory cells.
METHODS RAW264.7 macrophages stimulated by lipopolysaccharide (LPS) (M1 cells) were co-cultured with Caco-2 cells as an inflammatory model of IBD in vitro. The expression of ToxoROP16I/III was observed in RAW264.7 macrophages that were transfected with pEGFP-rop16I/III. The phenotypes of M2 and M1 macrophage cells were assessed by quantitative real-time reverse transcriptase polymerase chain reaction and the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1, IL-10, inducible nitric oxide synthase (iNOS), and arginase-1 (Arg-1) was detected. The expression of iNOS, Arg-1, signal transducer and activator of transcription 3 (Stat3), p-Stat3, Stat6, p-Stat6, programmed death ligand-2 (PD-L2), caspase-3, -8, and -9 was analyzed by Western blotting, and Griess assays were performed to detect nitric oxide (NO). TNF-α, IL-1β, IL-6, TGF-β1, and IL-10 expression in the supernatants was detected by enzyme-linked immunosorbent assay, and Caco-2 cell apoptosis was determined by flow cytometry after mixing M1 cells with M2 cells in a Caco-2 cell co-culture system.
RESULTS M1 cells exhibited significantly increased production of iNOS, NO, TNF-α, IL-1β, and IL-6, while ToxoROP16I/III induced macrophage bias to M2 cells in vitro, showing increased expression of Arg-1, IL-10 and TGF-β1 and elevated production of p-Stat3 and p-Stat6. The mixed M1 and M2 cell culture induced by ToxoROP16I/III exhibited decreased production of NO and iNOS and upregulated expression of Arg-1 and PD-L2. Accordingly, Caco-2 cells became apoptotic, and apoptosis-associated proteins such as caspase-3, -8 and -9 were dampened during co-culture of M1 and M2 cells. Flow cytometry analysis showed that co-culture of M1 cells with Caco-2 cells facilitated the apoptosis of Caco-2 cells, but co-culture of M1 and M2 cells alleviated Caco-2 cell apoptosis.
CONCLUSION ToxoROP16I/III-induced M2 macrophages inhibited apoptosis of Caco-2 cells caused by M1 macrophages. This finding may help gain a better understanding of the underlying mechanism and represent a promising therapeutic strategy for IBDs.
Collapse
Affiliation(s)
- Yong-Wei Xu
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Rui-Xin Xing
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Wen-Hui Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Lu Li
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yi Wu
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Jing Hu
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Cong Wang
- Department of Pathogen Biology, Provincial Laboratory of Pathogen Biology and Zoonoses Anhui, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Qing-Li Luo
- Department of Pathogen Biology, Provincial Laboratory of Pathogen Biology and Zoonoses Anhui, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Ji-Long Shen
- Department of Pathogen Biology, Provincial Laboratory of Pathogen Biology and Zoonoses Anhui, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Xi Chen
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
887
|
Basilicata MG, Pepe G, Rapa SF, Merciai F, Ostacolo C, Manfra M, Di Sarno V, Autore G, De Vita D, Marzocco S, Campiglia P. Anti-Inflammatory and Antioxidant Properties of Dehydrated Potato-Derived Bioactive Compounds in Intestinal Cells. Int J Mol Sci 2019; 20:E6087. [PMID: 31816826 PMCID: PMC6928682 DOI: 10.3390/ijms20236087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023] Open
Abstract
Inflammation and oxidative stress are always more recognized as responsible for chronic disease at the intestinal level. Currently, a growing interest is addressed to the discovery of diet-derived products which have anti-inflammatory and antioxidant properties. This work aims to characterize the pharmacological potential of dehydrated potatoes. For this purpose, a simulated gastrointestinal digestion was carried out. The bioaccessible peptides were fractionated on the basis of their molecular weight and tested on intestinal epithelial cells (IEC-6) under oxidative and inflammatory conditions. Our results demonstrate that the tested peptide fractions were able to significantly inhibit tumor necrosis factor-α release and cycloxygenase-2 and inducible nitric oxide synthase expression. The tested peptides also showed significant antioxidant activity, being able to both reduce reactive oxygen species (ROS) release, also from mitochondria, and nitrotyrosine formation, and increase the antioxidant response by heme oxygenase-1 and superoxide dismutase expression. Moreover, the peptide fractions were able to significantly increase the wound repair in IEC-6. The obtained results indicate the anti-inflammatory and antioxidant potential of dehydrated potatoes at the intestinal level.
Collapse
Affiliation(s)
- Manuela Giovanna Basilicata
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy; (M.G.B.); (G.P.); (S.F.R.); (F.M.); (V.D.S.); (G.A.)
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| | - Giacomo Pepe
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy; (M.G.B.); (G.P.); (S.F.R.); (F.M.); (V.D.S.); (G.A.)
| | - Shara Francesca Rapa
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy; (M.G.B.); (G.P.); (S.F.R.); (F.M.); (V.D.S.); (G.A.)
| | - Fabrizio Merciai
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy; (M.G.B.); (G.P.); (S.F.R.); (F.M.); (V.D.S.); (G.A.)
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Napoli, Italy;
| | - Michele Manfra
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, I-85100 Potenza, Italy;
| | - Veronica Di Sarno
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy; (M.G.B.); (G.P.); (S.F.R.); (F.M.); (V.D.S.); (G.A.)
| | - Giuseppina Autore
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy; (M.G.B.); (G.P.); (S.F.R.); (F.M.); (V.D.S.); (G.A.)
| | - Daniela De Vita
- Department of Environmental Biology, University of Rome “La Sapienza”, I-00185 Rome, Italy;
| | - Stefania Marzocco
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy; (M.G.B.); (G.P.); (S.F.R.); (F.M.); (V.D.S.); (G.A.)
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy; (M.G.B.); (G.P.); (S.F.R.); (F.M.); (V.D.S.); (G.A.)
- European Biomedical Research Institute of Salerno, Via De Renzi 50, I-84125 Salerno, Italy
| |
Collapse
|
888
|
Sampath C, Kalpana R, Ansah T, Charlton C, Hale A, Channon KM, Srinivasan S, Gangula PR. Impairment of Nrf2- and Nitrergic-Mediated Gastrointestinal Motility in an MPTP Mouse Model of Parkinson's Disease. Dig Dis Sci 2019; 64:3502-3517. [PMID: 31187328 PMCID: PMC6858486 DOI: 10.1007/s10620-019-05693-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/31/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Gastrointestinal (GI) motility dysfunction is the most common non-motor symptom of Parkinson's disease (PD). Studies have indicated that GI motility functions are impaired before the onset of PD. AIMS To investigate the underlying mechanism of PD-induced GI dysmotility in MPTP (1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine)-induced animal model. METHODS C57BL/6 mice were administered with or without a selective dopamine neurotoxin, MPTP, to induce parkinsonian symptoms. In addition to in vivo studies, in vitro experiments were also conducted in colon specimens using l-methyl-4-phenylpyridinium (MPP+), a metabolic product of MPTP. Gastric emptying, colon motility, nitrergic relaxation, and western blot experiments were performed as reported. RESULTS MPTP-induced PD mice showed decreased expression of nuclear factor erythroid 2-related factor (Nrf2) and its target phase II genes in gastric and colon neuromuscular tissues. Decreased levels of tetrahydrobiopterin (BH4, a critical cofactor for nNOS dimerization) associated with uncoupling of nNOS in gastric and colon tissues exposed to MPTP. Impaired enteric nitrergic system led to delayed gastric emptying and slower colonic motility compared to the control mice. In vitro results in colon specimens confirm that activation of Nrf2 restored MPP+-induced suppression of alpha-synuclein, tyrosine hydroxylase (TH), Nrf2, and heme oxygenase-1. In vitro exposure to L-NAME [N(w)-nitro-L-arginine methyl ester], a NOS synthase inhibitor, reduced protein expression of TH in colon tissue homogenates. CONCLUSIONS Loss of Nrf2/BH4/nNOS expression in PD impairs antioxidant gene expression, which deregulates NO synthesis, thereby contributing to the development of GI dysmotility and constipation. Nitric oxide appears to be important to maintain dopamine synthesis in the colon.
Collapse
Affiliation(s)
- C Sampath
- Department of ODS and Research, School of Dentistry, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd, Nashville, TN, 37208, USA
| | - R Kalpana
- Department of ODS and Research, School of Dentistry, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd, Nashville, TN, 37208, USA
| | - T Ansah
- Department of Cancer Biology Physiology Pharmacology and Neuroscience, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - C Charlton
- Department of Cancer Biology Physiology Pharmacology and Neuroscience, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - A Hale
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - K M Channon
- Oxford Heart Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - S Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, Atlanta, GA, USA
| | - P R Gangula
- Department of ODS and Research, School of Dentistry, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd, Nashville, TN, 37208, USA.
| |
Collapse
|
889
|
Venugopal A, Sundaramoorthy K, Vellingiri B. Therapeutic potential of Hsp27 in neurological diseases. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0023-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AbstractBackgroundHeat shock proteins (Hsps) are widely reported in normal cellular dynamics under stress and non-stress conditions, and parallelly, the studies regarding its role in disease condition are also progressing steadily. The function of Hsps in neurodegenerative disorders is puzzling and not fully understood. This review aims to focus on the role of Hsp27 in normal and diseased conditions and emphasize its therapeutic potential.Hsp27Hsp27, in particular, has shown to be involved in cell viability and actin cytoskeleton remodeling and also shown to improve many disease conditions. Phosphorylated Hsp27 modulates the p53 pathway by downregulating cellular senescence and also lowers reactive oxygen species to protect TNFα-mediated apoptosis. Hsp27 is also known to interfere with mitochondria-dependent and mitochondria-independent cell apoptotic stimulation.ConclusionThis article will highlight the various functions of Hsp27 especially as an anti-apoptotic factor and stress response factor and its therapeutic potential in preventing neuronal apoptosis in neurological diseases. This review also includes a comparison of the therapeutic potential of Hsp27 with regard to other small Hsps.
Collapse
|
890
|
Litwin NS, Van Ark HJ, Hartley SC, Michell KA, Vazquez AR, Fischer EK, Melby CL, Weir TL, Wei Y, Rao S, Hildreth KL, Seals DR, Pagliassotti MJ, Johnson SA. Impact of Red Beetroot Juice on Vascular Endothelial Function and Cardiometabolic Responses to a High-Fat Meal in Middle-Aged/Older Adults with Overweight and Obesity: A Randomized, Double-Blind, Placebo-Controlled, Crossover Trial. Curr Dev Nutr 2019; 3:nzz113. [PMID: 31737860 PMCID: PMC6848269 DOI: 10.1093/cdn/nzz113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND High-fat meal (HFM) consumption may induce transient postprandial atherogenic responses, including impairment of vascular endothelial function, in individuals with overweight/obesity. Red beetroot juice (RBJ) may modulate endothelial function and other measures of cardiometabolic health. OBJECTIVE This study investigated the impact of acute and chronic RBJ consumption, including nitrate-dependent and -independent effects, on postprandial endothelial function and other cardiometabolic responses to a HFM. METHODS Fifteen men and postmenopausal women with overweight/obesity were enrolled in this randomized, double-blind, placebo-controlled, 4-period, crossover clinical trial. Following an overnight fast, participants underwent baseline assessment of endothelial function (reactive hyperemia index; RHI) and hemodynamics, and biological sample collection. In random order, participants consumed 70 mL (acute visit) of: 1) RBJ, 2) nitrate-free RBJ (NF-RBJ), 3) placebo + nitrate (PBO + NIT), or 4) placebo (PBO), followed by a HFM. RHI was remeasured 4 h post-HFM, and hemodynamic assessment and biological sample collection were performed 1, 2, and 4 h post-HFM consumption. Participants consumed treatments daily for 4 wk (chronic visit), and assessments were repeated before/after the HFM (without consuming treatments). RESULTS HFM consumption did not induce significant impairment of postprandial RHI. No significant differences in RHI were detected across treatment groups following acute or chronic exposure, despite increases in circulating nitrate/nitrite (NOx) concentrations in the RBJ and PBO + NIT groups compared with PBO and NF-RBJ (P < 0.0001 for all time points at the acute visit; P < 0.05 for all time points at the chronic visit). Although the HFM led to significant alterations in several secondary outcomes, there were no consistent treatment effects on postprandial cardiometabolic responses. CONCLUSIONS HFM consumption did not impair postprandial endothelial function in this population, and RBJ exposure did not alter postprandial endothelial function or other outcomes despite increasing NOx concentrations. This trial is registered at clinicaltrials.gov as NCT02949115.
Collapse
Affiliation(s)
- Nicole S Litwin
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Hannah J Van Ark
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Shannon C Hartley
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Kiri A Michell
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Allegra R Vazquez
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Emily K Fischer
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Christopher L Melby
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Yuren Wei
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kerry L Hildreth
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado-Boulder, Boulder, CO, USA
| | - Michael J Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Sarah A Johnson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
891
|
Kim KB, Lee S, Kim JH. Neuroprotective effects of urolithin A on H 2O 2-induced oxidative stress-mediated apoptosis in SK-N-MC cells. Nutr Res Pract 2019; 14:3-11. [PMID: 32042368 PMCID: PMC6997143 DOI: 10.4162/nrp.2020.14.1.3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/11/2019] [Accepted: 09/06/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND/OBJECTIVES Oxidative stress causes cell damage and death, which contribute to the pathogenesis of neurodegenerative diseases. Urolithin A (UA), a gut microbial-derived metabolite of ellagitannins and ellagic acid, has high bioavailability and various health benefits such as antioxidant and anti-inflammatory effects. However, it is unknown whether it has protective effects against oxidative stress-induced cell death. We investigated whether UA ameliorates H2O2-induced neuronal cell death. MATERIALS/METHODS We induced oxidative damage with 300 µM H2O2 after UA pretreatment at concentrations of 1.25, 2.5, and 5 µM in SK-N-MC cells. Cytotoxicity and cell viability were determined using the CCK-8 assay. The formation of reactive oxygen species (ROS) was measured using a 2,7-dichlorofluorescein diacetate assay. Hoechst 33342 staining was used to characterize morphological changes in apoptotic cells. The expressions of apoptosis proteins were measured using Western blotting. RESULTS UA significantly increased cell viability and decreased intracellular ROS production in a dose-dependent manner in SK-N-MC cells. It also decreased the Bax/Bcl-2 ratio and the expressions of cytochrome c, cleaved caspase-9, cleaved caspase-3, and cleaved PARP. In addition, it suppressed the phosphorylation of the p38 mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS UA attenuates oxidative stress-induced apoptosis via inhibiting the mitochondrial-related apoptosis pathway and modulating the p38 MAPK pathway, suggesting that it may be an effective neuroprotective agent.
Collapse
Affiliation(s)
- Kkot Byeol Kim
- Research Institute, Seoul Medical Center, Seoul 02053, Korea
| | - Seonah Lee
- Research Institute, Seoul Medical Center, Seoul 02053, Korea
| | - Jung Hee Kim
- Research Institute, Seoul Medical Center, Seoul 02053, Korea.,Department of Neurosurgery, Seoul Medical Center, 156 Shinnea-ro, Seoul 02053, Korea
| |
Collapse
|
892
|
Abd El-Ghffar EA, Hegazi NM, Saad HH, Soliman MM, El-Raey MA, Shehata SM, Barakat A, Yasri A, Sobeh M. HPLC-ESI- MS/MS analysis of beet (Beta vulgaris) leaves and its beneficial properties in type 1 diabetic rats. Biomed Pharmacother 2019; 120:109541. [PMID: 31629949 DOI: 10.1016/j.biopha.2019.109541] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022] Open
Abstract
The phenolic profile of the leaves of Beta vulgaris subspecies vulgaris variety rubra was investigated by high-performance liquid chromatography (HPLC) coupled to electrospray ionization high resolution mass spectrometric (ESI-HRMS-MS) detection. Mass spectrometry-based molecular networking was employed to dereplicate the known compounds. Twelve known compounds, seven of which are previously undescribed as constituents in the B. vulgaris leaves were dereplicated and assigned with various levels of identification confidence. The ameliorative effects of the aqueous methanolic extract of the leaves were assessed against alloxan induced diabetic rats. It was found that the extract significantly decreased (p < 0.001) serum glucose, lipid profile, ALT, AST, TNF-α, IL-1β, IL-6, and hepatic MDA levels; and significantly increased (p < 0.001) hepatic TAO and GSH; and down-regulated the expression of hepatic NF-κB versus the untreated diabetic groups, in a dose-dependent manner. In molecular docking, all identified compounds exhibited good glide score against the PPAR-ɣ target, confirming the in vivo observed activities. In conclusion, B. vulgaris has immunomodulatory / antioxidant effects that could be helpful in slowing the progression of diabetic complications.
Collapse
Affiliation(s)
- Eman A Abd El-Ghffar
- Biology Department, Faculty of Science, Taibah University, Yanbu Branch, PO Box 46526, Saudi Arabia; Zoology Department, Faculty of Science, Ain Shams University, Cairo, PO Box 11566, Egypt
| | - Nesrine M Hegazi
- Phytochemistry and Plant Systematics Department, Division of Pharmaceutical Industries, National Research Centre, Cairo, PO Box 12622, Egypt.
| | - Hamada H Saad
- Phytochemistry and Plant Systematics Department, Division of Pharmaceutical Industries, National Research Centre, Cairo, PO Box 12622, Egypt; Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls University of Tübingen, Tübingen, PO Box 72074, Germany
| | - Mohamed M Soliman
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, PO Box 11566, Egypt; Biology Department, Faculty of Science, Jazan University, KSA PO Box 2097, Saudi Arabia
| | - Mohamed A El-Raey
- Phytochemistry and Plant Systematics Department, Division of Pharmaceutical Industries, National Research Centre, Cairo, PO Box 12622, Egypt
| | - Safia M Shehata
- Clinical Pathology Department, Ain Shams University Hospitals, Cairo, PO Box 11566, Egypt
| | - Alaa Barakat
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo, PO Box11361, Egypt
| | - Aziz Yasri
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660-Hay MoulayRachid, 43150 Ben-Guerir, Morocco
| | - Mansour Sobeh
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660-Hay MoulayRachid, 43150 Ben-Guerir, Morocco; Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany.
| |
Collapse
|
893
|
Iahtisham-Ul-Haq, Butt MS, Randhawa MA, Shahid M. Hepatoprotective effects of red beetroot-based beverages against CCl 4 -induced hepatic stress in Sprague Dawley rats. J Food Biochem 2019; 43:e13057. [PMID: 31583751 DOI: 10.1111/jfbc.13057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/30/2022]
Abstract
Red beetroot (Beta vulgaris L.) is considered important to improve hepatic health but its use is primarily limited to fresh salads in Pakistan. This study was aimed at exploring prophylactic role of red beetroot-based beverages against carbon tetrachloride (CCl4 )-induced hepatic stress. Purposely, red beetroot-based beverages (8 ml/kg b.w. per day) were administered to normal and hepatotoxicity-induced rats for 8 weeks. The biochemical analyses revealed significantly higher levels of superoxide dismutase (25%-28%), catalase (21%-24%), and hepatic enzymes (15%-19%) alongside reduced lipid peroxidation (27%-32%) in liver tissues of hepatotoxicity-induced rats treated with beetroot-based beverages compared to control. Similarly, hepatic injury was reduced by 19%-26% as indicated by concentrations of serum hepatic health biomarkers. Moreover, histological architecture of hepatocytes also portrayed promising effects of beetroot-based beverages to preserve hepatocellular portfolio. It was concluded that red beetroot-based beverages considerably assuage negative impacts of hepatic stress. PRACTICAL APPLICATIONS: Functional foods and nutraceuticals are considered vital in controlling the oxidative stress-mediated metabolic disorders as safer alternatives to pharmaceutical agents. The current research explored the protective effects of red beetroot-based beverages which can be utilized as an effective approach to prevent liver injuries. Also, the outcomes of this research endorsed the defensive role of these beverages against oxidative stress-induced hepatic stress, so dietary supplementation of such products can be synchronized in clinical practices to alleviate oxidative stress. However, there is a need to further explore the safety aspects of such products in their long-term usage before implementing this module in humans for disease prevention/cure.
Collapse
Affiliation(s)
- Iahtisham-Ul-Haq
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Masood Sadiq Butt
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Atif Randhawa
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahid
- Medicinal Biochemistry Research Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
894
|
Dusek J, Skoda J, Holas O, Horvatova A, Smutny T, Linhartova L, Hirsova P, Kucera O, Micuda S, Braeuning A, Pavek P. Stilbene compound trans-3,4,5,4´-tetramethoxystilbene, a potential anticancer drug, regulates constitutive androstane receptor (Car) target genes, but does not possess proliferative activity in mouse liver. Toxicol Lett 2019; 313:1-10. [PMID: 31170421 DOI: 10.1016/j.toxlet.2019.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
Abstract
The constitutive androstane receptor(CAR) activation is connected with mitogenic effects leading to liver hyperplasia and tumorigenesis in rodents. CAR activators, including phenobarbital, are considered rodent non-genotoxic carcinogens. Recently, trans-3,4,5,4´-tetramethoxystilbene(TMS), a potential anticancer drug (DMU-212), have been shown to alleviate N-nitrosodiethylamine/phenobarbital-induced liver carcinogenesis. We studied whether TMS inhibits mouse Car to protect from the PB-induced tumorigenesis. Unexpectedly, we identified TMS as a murine CAR agonist in reporter gene experiments, in mouse hepatocytes, and in C57BL/6 mice in vivo. TMS up-regulated Car target genes Cyp2b10, Cyp2c29 and Cyp2c55 mRNAs, but down-regulated expression of genes involved in gluconeogenesis and lipogenesis. TMS did not change or down-regulate genes involved in liver proliferation or apoptosis such as Mki67, Foxm1, Myc, Mcl1, Pcna, Bcl2, or Mdm2, which were up-regulated by another Car ligand TCPOBOP. TMS did not increase liver weight and had no significant effect on Ki67 and Pcna labeling indices in mouse liver in vivo. In murine hepatic AML12 cells, we confirmed a Car-independent proapoptotic effect of TMS. We conclude that TMS is a Car ligand with limited effects on hepatocyte proliferation, likely due to promoting apoptosis in mouse hepatic cells, while controlling Car target genes involved in xenobiotic and endobiotic metabolism.
Collapse
Affiliation(s)
- Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Josef Skoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Ondrej Holas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Alzbeta Horvatova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Lenka Linhartova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Otto Kucera
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, Simkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Simkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany; Department of Toxicology, University of Tübingen, Wilhelmstr. 56, 72074, Tübingen, Germany
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic.
| |
Collapse
|
895
|
Nielsen BE, Bermudez I, Bouzat C. Flavonoids as positive allosteric modulators of α7 nicotinic receptors. Neuropharmacology 2019; 160:107794. [PMID: 31560909 DOI: 10.1016/j.neuropharm.2019.107794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/09/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
The use of positive allosteric modulators (PAM) of α7 nicotinic receptors is a promising therapy for neurodegenerative, inflammatory and cognitive disorders. Flavonoids are polyphenolic compounds showing neuroprotective, anti-inflammatory and pro-cognitive actions. Besides their well-known antioxidant activity, flavonoids trigger intracellular pathways and interact with receptors, including α7. To reveal how the beneficial actions of flavonoids are linked to α7 function, we evaluated the effects of three representative flavonoids -genistein, quercetin and the neoflavonoid 5,7-dihydroxy-4-phenylcoumarin- on whole-cell and single-channel currents. All flavonoids increase the maximal currents elicited by acetylcholine with minimal effects on desensitization and do not reactivate desensitized receptors, a behaviour consistent with type I PAMs. At the single-channel level, they increase the duration of the open state and produce activation in long-duration episodes with a rank order of efficacy of genistein > quercetin ≥ neoflavonoid. By using mutant and chimeric α7 receptors, we demonstrated that flavonoids share transmembrane structural determinants with other PAMs. The α7-PAM activity of flavonoids results in decreased cell levels of reactive oxygen species. Thus, allosteric potentiation of α7 may be an additional mechanism underlying neuroprotective actions of flavonoids, which may be used as scaffolds for designing new therapeutic agents.
Collapse
Affiliation(s)
- Beatriz Elizabeth Nielsen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Isabel Bermudez
- Department of Medical and Biological Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina.
| |
Collapse
|
896
|
Namsi A, Nury T, Khan AS, Leprince J, Vaudry D, Caccia C, Leoni V, Atanasov AG, Tonon MC, Masmoudi-Kouki O, Lizard G. Octadecaneuropeptide (ODN) Induces N2a Cells Differentiation through a PKA/PLC/PKC/MEK/ERK-Dependent Pathway: Incidence on Peroxisome, Mitochondria, and Lipid Profiles. Molecules 2019; 24:molecules24183310. [PMID: 31514417 PMCID: PMC6767053 DOI: 10.3390/molecules24183310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022] Open
Abstract
Neurodegenerative diseases are characterized by oxidative stress, mitochondrial damage, and death of neuronal cells. To counteract such damage and to favor neurogenesis, neurotrophic factors could be used as therapeutic agents. Octadecaneuropeptide (ODN), produced by astrocytes, is a potent neuroprotective agent. In N2a cells, we studied the ability of ODN to promote neuronal differentiation. This parameter was evaluated by phase contrast microscopy, staining with crystal violet, cresyl blue, and Sulforhodamine 101. The effect of ODN on cell viability and mitochondrial activity was determined with fluorescein diacetate and DiOC6(3), respectively. The impact of ODN on the topography of mitochondria and peroxisomes, two tightly connected organelles involved in nerve cell functions and lipid metabolism, was evaluated by transmission electron microscopy and fluorescence microscopy: detection of mitochondria with MitoTracker Red, and peroxisome with an antibody directed against the ABCD3 peroxisomal transporter. The profiles in fatty acids, cholesterol, and cholesterol precursors were determined by gas chromatography, in some cases coupled with mass spectrometry. Treatment of N2a cells with ODN (10-14 M, 48 h) induces neurite outgrowth. ODN-induced neuronal differentiation was associated with modification of topographical distribution of mitochondria and peroxisomes throughout the neurites and did not affect cell viability and mitochondrial activity. The inhibition of ODN-induced N2a differentiation with H89, U73122, chelerythrine and U0126 supports the activation of a PKA/PLC/PKC/MEK/ERK-dependent signaling pathway. Although there is no difference in fatty acid profile between control and ODN-treated cells, the level of cholesterol and some of its precursors (lanosterol, desmosterol, lathosterol) was increased in ODN-treated cells. The ability of ODN to induce neuronal differentiation without cytotoxicity reinforces the interest for this neuropeptide with neurotrophic properties to overcome nerve cell damage in major neurodegenerative diseases.
Collapse
Affiliation(s)
- Amira Namsi
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté (UBFC)/Inserm, 21000 Dijon, France.
- Faculty of Science of Tunis, University Tunis El Manar, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| | - Thomas Nury
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté (UBFC)/Inserm, 21000 Dijon, France.
| | - Amira S Khan
- Physiology of Nutrition & Toxicology (NUTox), Inserm U1231, University UBFC, 21000 Dijon, France.
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie University, 76000 Rouen, France.
- UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie University, 76000 Rouen, France.
| | - David Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie University, 76000 Rouen, France.
- UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie University, 76000 Rouen, France.
| | - Claudio Caccia
- Laboratory of Medical Genetics and Neurogenetics, Foundation IRCCS Istituto Neurologico Carlo Besta, 20100 Milan, Italy.
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, 20100 Milan, Italy.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland.
- Department of Pharmacognosy, University of Vienna, 1010 Vienna, Austria.
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria.
| | - Marie-Christine Tonon
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie University, 76000 Rouen, France.
| | - Olfa Masmoudi-Kouki
- Faculty of Science of Tunis, University Tunis El Manar, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| | - Gérard Lizard
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté (UBFC)/Inserm, 21000 Dijon, France.
| |
Collapse
|
897
|
Vyas S, Kothari S, Kachhwaha S. Nootropic medicinal plants: Therapeutic alternatives for Alzheimer’s disease. J Herb Med 2019. [DOI: 10.1016/j.hermed.2019.100291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
898
|
Latief U, Umar MF, Ahmad R. Nrf2 protein as a therapeutic target during diethylnitrosamine-induced liver injury ameliorated by β-carotene-reduced graphene oxide (βC-rGO) nanocomposite. Int J Biol Macromol 2019; 137:346-357. [DOI: 10.1016/j.ijbiomac.2019.06.219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022]
|
899
|
Mukherjee D, Ahmad R. COX-2/iNOS regulation during experimental hepatic injury and its mitigation by cloudy apple juice. Int J Biol Macromol 2019; 140:1006-1017. [PMID: 31445146 DOI: 10.1016/j.ijbiomac.2019.08.180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
Abstract
A number of enzymes and transcription factors have been correlated with disease etiology. In this study, involvement of cyclooxygenase-2 and inducible-nitric oxide synthase is examined during diethylnitrosamine (DEN)-induced hepatic injury and cloudy apple juice (CAJ) supplementation. Liver injury was administered in rats by single dose of DEN (10 ml/kg bwt of 1% DEN), while 10 ml/kg bwt CAJ daily was given after 2 h of latency in DEN-treated animals for two weeks. CAJ was characterized by HPLC and subsequently examined for antioxidant power. During the course of treatment liver function, collagen (hydroxyproline), malondialdehyde, protein oxidation, antioxidant enzymes, ATPases, nitrite levels were investigated along with liver histopathology and electron microscopy. COX-2 and iNOS proteins were also localized in liver specimens. The results demonstrated rich polyphenols and antioxidant activity in CAJ. CAJ supplementation significantly restored liver biochemistry and anatomy as revealed by the refurbished investigated parameters. CAJ treatment also declined COX-2 and iNOS activities in injured animals. Electron microscopy demonstrated rejuvenated hepatocytes, Kupffer cells, RER, mitochondria and nucleus in CAJ supplemented animals. The novel outcomes of this study suggest that CAJ potentiates hepatoprotection by stimulating antioxidant power and regulating the COX-2 and iNOS proteins in the liver during experimental liver injury.
Collapse
Affiliation(s)
- Devoshree Mukherjee
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Riaz Ahmad
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
900
|
Nutritional Risk Factors, Microbiota and Parkinson's Disease: What Is the Current Evidence? Nutrients 2019; 11:nu11081896. [PMID: 31416163 PMCID: PMC6722832 DOI: 10.3390/nu11081896] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is a frequent neurodegenerative disease among elderly people. Genetic and underlying environmental factors seem to be involved in the pathogenesis of PD related to degeneration of dopaminergic neurons in the striatum. In previous experimental researches oxidative stress, mitochondrial dysfunction, homocysteine, and neuroinflammation have been reported as potential mechanisms. Among environmental factors, nutrition is one of the most investigated areas as it is a potentially modifiable factor. The purpose of this review is to provide current knowledge regarding the relation between diet and PD risk. We performed a comprehensive review including the most relevant studies from the year 2000 onwards including prospective studies, nested case-control studies, and meta-analysis. Among dietary factors we focused on specific nutrients and food groups, alcoholic beverages, uric acid, and dietary patterns. Furthermore, we included studies on microbiota as recent findings have shown a possible impact on neurodegeneration. As a conclusion, there are still many controversies regarding the relationship between PD and diet which, beside methodological differences among studies, may be due to underlying genetic and gender-specific factors. However, some evidence exists regarding a potential protective effect of uric acid, poly-unsaturated fatty acids, coffee, and tea but mainly in men, whereas dairy products, particularly milk, might increase PD risk through contaminant mediated effect.
Collapse
|