851
|
Kovacovicova K, Vinciguerra M. Isolation of senescent cells by iodixanol (OptiPrep) density gradient-based separation. Cell Prolif 2019; 52:e12674. [PMID: 31517418 PMCID: PMC6869531 DOI: 10.1111/cpr.12674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/27/2019] [Accepted: 07/13/2019] [Indexed: 12/25/2022] Open
Abstract
Objectives Chemotherapeutic drugs induce senescence in cancer cells but, unlike replicative senescence or oncogene‐induced senescence, do so rather inefficiently and depending on DNA damage. A thorough understanding of the biology of chemotherapy‐induced senescent cells requires their isolation from a mixed population of adjacent senescent and non‐senescent cancer cells. Materials and methods We have developed and optimized a rapid iodixanol (OptiPrep)‐based gradient centrifugation system to identify, isolate and characterize doxorubicin (DXR)‐induced senescent hepatocellular carcinoma (HCC) cells (HepG2 and Huh‐7) in vitro. Results After cellular exposure to DXR, we used iodixanol gradient‐based centrifugation to isolate and re‐plate cells on collagen‐coated flasks, despite their low or null proliferative capacity. The isolated cell populations were enriched for DXR‐induced senescent HCC cells, as confirmed by proliferation arrest assay, and β‐galactosidase and DNA damage‐dependent γH2A.X staining. Conclusions Analysing pure cultures of chemotherapy‐induced senescent versus non‐responsive cancer cells will increase our knowledge on chemotherapeutic mechanisms of action, and help refine current therapeutic strategies.
Collapse
Affiliation(s)
- Kristina Kovacovicova
- Center for Translational Medicine, International Clinical Research Center (FNUSA-ICRC), Brno, Czech Republic
| | - Manlio Vinciguerra
- Center for Translational Medicine, International Clinical Research Center (FNUSA-ICRC), Brno, Czech Republic
| |
Collapse
|
852
|
Deveza LA, Nelson AE, Loeser RF. Phenotypes of osteoarthritis: current state and future implications. Clin Exp Rheumatol 2019; 37 Suppl 120:64-72. [PMID: 31621574 PMCID: PMC6936212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
In the most recent years, an extraordinary research effort has emerged to disentangle osteoarthritis heterogeneity, opening new avenues for progressing with therapeutic development and unravelling the pathogenesis of this complex condition. Several phenotypes and endotypes have been proposed albeit none has been sufficiently validated for clinical or research use as yet. This review discusses the latest advances in OA phenotyping including how new modern statistical strategies based on machine learning and big data can help advance this field of research.
Collapse
Affiliation(s)
- Leticia A Deveza
- Rheumatology Department, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, NSW, Australia.
| | - Amanda E Nelson
- Department of Medicine, University of North Carolina at Chapel Hill, and Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Richard F Loeser
- Department of Medicine, University of North Carolina at Chapel Hill, and Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
853
|
Abstract
T cell ageing has a pivotal role in rendering older individuals vulnerable to infections and cancer and in impairing the response to vaccination. Easy accessibility to peripheral human T cells as well as an expanding array of tools to examine T cell biology have provided opportunities to examine major ageing pathways and their consequences for T cell function. Here, we review emerging concepts of how the body attempts to maintain a functional T cell compartment with advancing age, focusing on three fundamental domains of the ageing process, namely self-renewal, control of cellular quiescence and cellular senescence. Understanding these critical elements in successful T cell ageing will allow the design of interventions to prevent or reverse ageing-related T cell failure.
Collapse
Affiliation(s)
- Jörg J Goronzy
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.
- The Department of Medicine, Palo Alto Veteran Administration Health Care System, Palo Alto, CA, USA.
| | - Cornelia M Weyand
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- The Department of Medicine, Palo Alto Veteran Administration Health Care System, Palo Alto, CA, USA
| |
Collapse
|
854
|
Novais EJ, Diekman BO, Shapiro IM, Risbud MV. p16 Ink4a deletion in cells of the intervertebral disc affects their matrix homeostasis and senescence associated secretory phenotype without altering onset of senescence. Matrix Biol 2019; 82:54-70. [PMID: 30811968 PMCID: PMC6708504 DOI: 10.1016/j.matbio.2019.02.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/02/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022]
Abstract
Intervertebral disc degeneration is an important contributor to chronic low back and neck pain. Although many environmental and genetic factors are known to contribute to disc degeneration, age is still the most significant risk factor. Recent studies have shown that senescence may play a role in age-related disc degeneration and matrix catabolism in humans and mouse models. Clearance of p16Ink4a-positive senescent cells reduces the degenerative phenotype in many age-associated diseases. Whether p16Ink4a plays a functional role in intervertebral disc degeneration and senescence is unknown. We first characterized the senescence status of discs in young and old mice. Quantitative histology, gene expression and a novel p16tdTom reporter mice showed an increase in p16Ink4a, p21 and IL-6, with a decrease in Ki67 with aging. Accordingly, we studied the spinal-phenotype of 18-month-old mice with conditional deletion of p16Ink4a in the disc driven by Acan-CreERT2 (cKO). The analyses of discs of cKO and age-matched control mice showed little change in cell morphology and tissue architecture. The cKO mice exhibited changes in functional attributes of aggrecan as well as in collagen composition of the intervertebral disc. While cKO discs exhibited a small decrease in TUNEL positive cells, lineage tracing experiments using ZsGreen reporter indicated that the overall changes in cell fate or numbers were minimal. The cKO mice maintained expression of NP-cell phenotypic markers CA3, Krt19 and GLUT-1. Moreover, in cKO discs, levels of p19Arf and RB were higher without alterations in Ki67, γH2AX, CDK4 and Lipofuscin deposition. Interestingly, the cKO discs showed lower levels of SASP markers, IL-1β, IL-6, MCP1 and TGF-β1. These results show that while, p16Ink4a is dispensable for induction and maintenance of senescence, conditional loss of p16Ink4a reduces apoptosis, limits the SASP phenotype and alters matrix homeostasis of disc cells.
Collapse
Affiliation(s)
- Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, USA; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, USA; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Brian O Diekman
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; North Carolina State University, Raleigh, NC, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, USA; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, USA; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
855
|
Abstract
Cardiac ageing manifests as a decline in function leading to heart failure. At the cellular level, ageing entails decreased replicative capacity and dysregulation of cellular processes in myocardial and nonmyocyte cells. Various extrinsic parameters, such as lifestyle and environment, integrate important signalling pathways, such as those involving inflammation and oxidative stress, with intrinsic molecular mechanisms underlying resistance versus progression to cellular senescence. Mitigation of cardiac functional decline in an ageing organism requires the activation of enhanced maintenance and reparative capacity, thereby overcoming inherent endogenous limitations to retaining a youthful phenotype. Deciphering the molecular mechanisms underlying dysregulation of cellular function and renewal reveals potential interventional targets to attenuate degenerative processes at the cellular and systemic levels to improve quality of life for our ageing population. In this Review, we discuss the roles of extrinsic and intrinsic factors in cardiac ageing. Animal models of cardiac ageing are summarized, followed by an overview of the current and possible future treatments to mitigate the deleterious effects of cardiac ageing.
Collapse
|
856
|
Yousefzadeh MJ, Melos KI, Angelini L, Burd CE, Robbins PD, Niedernhofer LJ. Mouse Models of Accelerated Cellular Senescence. Methods Mol Biol 2019; 1896:203-230. [PMID: 30474850 DOI: 10.1007/978-1-4939-8931-7_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Senescent cells accumulate in multiple tissues as virtually all vertebrate organisms age. Senescence is a highly conserved response to many forms of cellular stress intended to block the propagation of damaged cells. Senescent cells have been demonstrated to play a causal role in aging via their senescence-associated secretory phenotype and by impeding tissue regeneration. Depletion of senescent cells either through genetic or pharmacologic methods has been demonstrated to extend murine lifespan and delay the onset of age-related diseases. Measuring the burden and location of senescent cells in vivo remains challenging, as there is no marker unique to senescent cells. Here, we describe multiple methods to detect the presence and extent of cellular senescence in preclinical models, with a special emphasis on murine models of accelerated aging that exhibit a more rapid onset of cellular senescence.
Collapse
Affiliation(s)
- Matthew J Yousefzadeh
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Kendra I Melos
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Luise Angelini
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Christin E Burd
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
857
|
Sessions GA, Copp ME, Liu JY, Sinkler MA, D'Costa S, Diekman BO. Controlled induction and targeted elimination of p16 INK4a-expressing chondrocytes in cartilage explant culture. FASEB J 2019; 33:12364-12373. [PMID: 31408372 DOI: 10.1096/fj.201900815rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cellular senescence is a phenotypic state that contributes to age-related diseases through the secretion of matrix-degrading and inflammatory molecules. An emerging therapeutic strategy for osteoarthritis (OA) is to selectively eliminate senescent cells by initiating apoptosis. This study establishes a cartilage explant model of senescence induction and senolytic clearance using p16Ink4a expression as a biomarker of senescence. Growth-factor stimulation of explants increased the expression of p16Ink4a at both the mRNA and protein levels. Applying this culture system to cartilage from p16tdTom reporter mice (a knockin allele with tdTomato fluorescent protein regulated by the endogenous p16Ink4a promoter) demonstrated the emergence of a p16-high population that was quantified using flow cytometry for tdTomato. Cell sorting was used to separate chondrocytes based on tdTomato fluorescence and p16-high cells showed higher senescence-associated β-galactosidase activity and increased gene expression of the senescence-associated secretory phenotype as compared with p16-low cells. The potential for effective senolysis within the cartilage extracellular matrix was assessed using navitoclax (ABT-263). Navitoclax treatment reduced the percentage of p16-high cells from 17.9 to 6.1% (mean of 13 matched pairs; P < 0.001) and increased cleaved caspase-3 confirmed apoptotic activity. Together, these findings establish a physiologically relevant cartilage explant model for testing the induction and elimination of senescent chondrocytes, which will support investigations of senolytic therapy for OA.-Sessions, G. A., Copp, M. E., Liu, J.-Y., Sinkler, M. A., D'Costa, S., Diekman, B. O. Controlled induction and targeted elimination of p16INK4a-expressing chondrocytes in cartilage explant culture.
Collapse
Affiliation(s)
- Garrett A Sessions
- Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michaela E Copp
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina-North Carolina State University, Raleigh, North Carolina, USA
| | - Jie-Yu Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret A Sinkler
- Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Susan D'Costa
- Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian O Diekman
- Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina-North Carolina State University, Raleigh, North Carolina, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
858
|
Mrazkova B, Dzijak R, Imrichova T, Kyjacova L, Barath P, Dzubak P, Holub D, Hajduch M, Nahacka Z, Andera L, Holicek P, Vasicova P, Sapega O, Bartek J, Hodny Z. Induction, regulation and roles of neural adhesion molecule L1CAM in cellular senescence. Aging (Albany NY) 2019; 10:434-462. [PMID: 29615539 PMCID: PMC5892697 DOI: 10.18632/aging.101404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022]
Abstract
Aging involves tissue accumulation of senescent cells (SC) whose elimination through senolytic approaches may evoke organismal rejuvenation. SC also contribute to aging-associated pathologies including cancer, hence it is imperative to better identify and target SC. Here, we aimed to identify new cell-surface proteins differentially expressed on human SC. Besides previously reported proteins enriched on SC, we identified 78 proteins enriched and 73 proteins underrepresented in replicatively senescent BJ fibroblasts, including L1CAM, whose expression is normally restricted to the neural system and kidneys. L1CAM was: 1) induced in premature forms of cellular senescence triggered chemically and by gamma-radiation, but not in Ras-induced senescence; 2) induced upon inhibition of cyclin-dependent kinases by p16INK4a; 3) induced by TGFbeta and suppressed by RAS/MAPK(Erk) signaling (the latter explaining the lack of L1CAM induction in RAS-induced senescence); and 4) induced upon downregulation of growth-associated gene ANT2, growth in low-glucose medium or inhibition of the mevalonate pathway. These data indicate that L1CAM is controlled by a number of cell growth- and metabolism-related pathways during SC development. Functionally, SC with enhanced surface L1CAM showed increased adhesion to extracellular matrix and migrated faster. Our results provide mechanistic insights into senescence of human cells, with implications for future senolytic strategies.
Collapse
Affiliation(s)
- Blanka Mrazkova
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Rastislav Dzijak
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Terezie Imrichova
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Lenka Kyjacova
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava 84538, Slovakia
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Palacky University, Olomouc 77147, Czech Republic
| | - Dusan Holub
- Institute of Molecular and Translational Medicine, Palacky University, Olomouc 77147, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Palacky University, Olomouc 77147, Czech Republic
| | - Zuzana Nahacka
- Laboratory of Molecular Therapy, Institute of Biotechnology of the ASCR, Prague 14220, Czech Republic
| | - Ladislav Andera
- Laboratory of Molecular Therapy, Institute of Biotechnology of the ASCR, Prague 14220, Czech Republic
| | - Petr Holicek
- Laboratory of Molecular Therapy, Institute of Biotechnology of the ASCR, Prague 14220, Czech Republic
| | - Pavla Vasicova
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Olena Sapega
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic.,Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark.,Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| |
Collapse
|
859
|
Terlecki-Zaniewicz L, Lämmermann I, Latreille J, Bobbili MR, Pils V, Schosserer M, Weinmüllner R, Dellago H, Skalicky S, Pum D, Almaraz JCH, Scheideler M, Morizot F, Hackl M, Gruber F, Grillari J. Small extracellular vesicles and their miRNA cargo are anti-apoptotic members of the senescence-associated secretory phenotype. Aging (Albany NY) 2019; 10:1103-1132. [PMID: 29779019 PMCID: PMC5990398 DOI: 10.18632/aging.101452] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
Abstract
Loss of functionality during aging of cells and organisms is caused and accompanied by altered cell-to-cell communication and signalling. One factor thereby is the chronic accumulation of senescent cells and the concomitant senescence-associated secretory phenotype (SASP) that contributes to microenvironment remodelling and a pro-inflammatory status. While protein based SASP factors have been well characterized, little is known about small extracellular vesicles (sEVs) and their miRNA cargo. Therefore, we analysed secretion of sEVs from senescent human dermal fibroblasts and catalogued the therein contained miRNAs. We observed a four-fold increase of sEVs, with a concomitant increase of >80% of all cargo miRNAs. The most abundantly secreted miRNAs were predicted to collectively target mRNAs of pro-apoptotic proteins, and indeed, senescent cell derived sEVs exerted anti-apoptotic activity. In addition, we identified senescence-specific differences in miRNA composition of sEVs, with an increase of miR-23a-5p and miR-137 and a decrease of miR-625-3p, miR-766-3p, miR-199b-5p, miR-381-3p, miR-17-3p. By correlating intracellular and sEV-miRNAs, we identified miRNAs selectively retained in senescent cells (miR-21-3p and miR-17-3p) or packaged specifically into senescent cell derived sEVs (miR-15b-5p and miR-30a-3p). Therefore, we suggest sEVs and their miRNA cargo to be novel, members of the SASP that are selectively secreted or retained in cellular senescence.
Collapse
|
860
|
Xie J, Lin J, Wei M, Teng Y, He Q, Yang G, Yang X. Sustained Akt signaling in articular chondrocytes causes osteoarthritis via oxidative stress-induced senescence in mice. Bone Res 2019; 7:23. [PMID: 31646013 PMCID: PMC6804644 DOI: 10.1038/s41413-019-0062-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/25/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is an age-related disorder that is strongly associated with chondrocyte senescence. The causal link between disruptive PTEN/Akt signaling and chondrocyte senescence and the underlying mechanism are unclear. In this study, we found activated Akt signaling in human OA cartilage as well as in a mouse OA model with surgical destabilization of the medial meniscus. Genetic mouse models mimicking sustained Akt signaling in articular chondrocytes via PTEN deficiency driven by either Col2a1-Cre or Col2a1-CreERT2 developed OA, whereas restriction of Akt signaling reversed the OA phenotypes in PTEN-deficient mice. Mechanistically, prolonged activation of Akt signaling caused an accumulation of reactive oxygen species and triggered chondrocyte senescence as well as a senescence-associated secretory phenotype, whereas chronic administration of the antioxidant N-acetylcysteine suppressed chondrocyte senescence and mitigated OA progression in PTEN-deficient mice. Therefore, inhibition of Akt signaling by PTEN is required for the maintenance of articular cartilage. Disrupted Akt signaling in articular chondrocytes triggers oxidative stress-induced chondrocyte senescence and causes OA.
Collapse
Affiliation(s)
- Jing Xie
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Jingting Lin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Min Wei
- 2Department of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Qi He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Guan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| |
Collapse
|
861
|
Farr JN, Rowsey JL, Eckhardt BA, Thicke BS, Fraser DG, Tchkonia T, Kirkland JL, Monroe DG, Khosla S. Independent Roles of Estrogen Deficiency and Cellular Senescence in the Pathogenesis of Osteoporosis: Evidence in Young Adult Mice and Older Humans. J Bone Miner Res 2019; 34:1407-1418. [PMID: 30913313 PMCID: PMC6697189 DOI: 10.1002/jbmr.3729] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/27/2019] [Accepted: 03/15/2019] [Indexed: 11/10/2022]
Abstract
Estrogen deficiency is a seminal mechanism in the pathogenesis of osteoporosis. Mounting evidence, however, establishes that cellular senescence, a fundamental mechanism that drives multiple age-related diseases, also causes osteoporosis. Recently, we systematically identified an accumulation of senescent cells, characterized by increased p16Ink4a and p21Cip1 levels and development of a senescence-associated secretory phenotype (SASP), in mouse bone/marrow and human bone with aging. We then demonstrated that elimination of senescent cells prevented age-related bone loss using multiple approaches, eg, treating old mice expressing a "suicide" transgene, INK-ATTAC, with AP20187 to induce apoptosis of p16Ink4a -senescent cells or periodically treating old wild-type mice with "senolytics," ie, drugs that eliminate senescent cells. Here, we investigate a possible role for estrogen in the regulation of cellular senescence using multiple approaches. First, sex steroid deficiency 2 months after ovariectomy (OVX, n = 15) or orchidectomy (ORCH, n = 15) versus sham surgery (SHAM, n = 15/sex) in young adult (4-month-old) wild-type mice did not alter senescence biomarkers or induce a SASP in bone. Next, in elderly postmenopausal women, 3 weeks of estrogen therapy (n = 10; 74 ± 5 years) compared with no treatment (n = 10; 78 ± 5 years) did not alter senescence biomarkers or the SASP in human bone biopsies. Finally, young adult (4-month-old) female INK-ATTAC mice were randomized (n = 17/group) to SHAM+Vehicle, OVX+Vehicle, or OVX+AP20187 for 2 months. As anticipated, OVX+Vehicle caused significant trabecular/cortical bone loss compared with SHAM+Vehicle. However, treatment with AP20187, which eliminates senescent cells in INK-ATTAC mice, did not rescue the OVX-induced bone loss or alter senescence biomarkers. Collectively, our data establish independent roles of estrogen deficiency and cellular senescence in the pathogenesis of osteoporosis, which has important implications for testing novel senolytics for skeletal efficacy, as these drugs will need to be evaluated in preclinical models of aging as opposed to the current FDA model of prevention of OVX-induced bone loss. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joshua N Farr
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jennifer L Rowsey
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Brittany A Eckhardt
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Brianne S Thicke
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Daniel G Fraser
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - David G Monroe
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
862
|
Palacio L, Goyer M, Maggiorani D, Espinosa A, Villeneuve N, Bourbonnais S, Moquin‐Beaudry G, Le O, Demaria M, Davalos AR, Decaluwe H, Beauséjour C. Restored immune cell functions upon clearance of senescence in the irradiated splenic environment. Aging Cell 2019; 18:e12971. [PMID: 31148373 PMCID: PMC6612633 DOI: 10.1111/acel.12971] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 01/01/2023] Open
Abstract
Some studies show eliminating senescent cells rejuvenate aged mice and attenuate deleterious effects of chemotherapy. Nevertheless, it remains unclear whether senescence affects immune cell function. We provide evidence that exposure of mice to ionizing radiation (IR) promotes the senescent‐associated secretory phenotype (SASP) and expression of p16INK4a in splenic cell populations. We observe splenic T cells exhibit a reduced proliferative response when cultured with allogenic cells in vitro and following viral infection in vivo. Using p16‐3MR mice that allow elimination of p16INK4a‐positive cells with exposure to ganciclovir, we show that impaired T‐cell proliferation is partially reversed, mechanistically dependent on p16INK4a expression and the SASP. Moreover, we found macrophages isolated from irradiated spleens to have a reduced phagocytosis activity in vitro, a defect also restored by the elimination of p16INK4a expression. Our results provide molecular insight on how senescence‐inducing IR promotes loss of immune cell fitness, which suggest senolytic drugs may improve immune cell function in aged and patients undergoing cancer treatment.
Collapse
Affiliation(s)
- Lina Palacio
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Marie‐Lyn Goyer
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Damien Maggiorani
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Andrea Espinosa
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
| | | | | | - Gaël Moquin‐Beaudry
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Oanh Le
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
| | - Marco Demaria
- European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG) University of Groningen Groningen The Netherlands
| | | | - Hélène Decaluwe
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de Pédiatrie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Christian Beauséjour
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| |
Collapse
|
863
|
Hambright WS, Niedernhofer LJ, Huard J, Robbins PD. Murine models of accelerated aging and musculoskeletal disease. Bone 2019; 125:122-127. [PMID: 30844492 DOI: 10.1016/j.bone.2019.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/03/2019] [Indexed: 12/13/2022]
Abstract
The primary risk factor for most musculoskeletal diseases, including osteoarthritis, osteoporosis and sarcopenia, is aging. To treat the diverse types of musculoskeletal diseases and pathologies, targeting their root cause, the aging process itself, has the potential to slow or prevent multiple age-related musculoskeletal conditions simultaneously. However, the development of approaches to delay onset of age related diseases, including musculoskeletal pathologies, has been slowed by the relatively long lifespan of rodent models of aging. Thus, to expedite the development of therapeutic approaches for age-related musculoskeletal disease, the implementation of mouse models of accelerated musculoskeletal aging are of great utility. Currently there are multiple genetically diverse mouse models that mirror certain aspects of normal human and mouse aging. Here, we provide a review of some of the most relevant murine models of accelerated aging that mimic many aspects of natural musculoskeletal aging, highlighting their relative strengths and weaknesses. Importantly, these murine models of accelerated aging recapitulate phenotypes of musculoskeletal age-related decline observed in humans.
Collapse
Affiliation(s)
- William S Hambright
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States of America; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States of America
| | - Johnny Huard
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States of America; Steadman Philippon Research Institute, Vail, CO, United States of America.
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States of America; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States of America.
| |
Collapse
|
864
|
Zhou HY, Li Q, Wang JX, Xie YJ, Wang SQ, Lei L, Gao YQ, Huang MM, Hu Y, Xu FY, Zhang C. Low-intensity pulsed ultrasound repair in mandibular condylar cartilage injury rabbit model. Arch Oral Biol 2019; 104:60-66. [DOI: 10.1016/j.archoralbio.2019.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 01/24/2023]
|
865
|
Avivi I, Zisman‐Rozen S, Naor S, Dai I, Benhamou D, Shahaf G, Tabibian‐Keissar H, Rosenthal N, Rakovsky A, Hanna A, Shechter A, Peled E, Benyamini N, Dmitrukha E, Barshack I, Mehr R, Melamed D. Depletion of B cells rejuvenates the peripheral B-cell compartment but is insufficient to restore immune competence in aging. Aging Cell 2019; 18:e12959. [PMID: 31056853 PMCID: PMC6612643 DOI: 10.1111/acel.12959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/03/2019] [Accepted: 02/23/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is associated with increasing prevalence and severity of infections caused by a decline in bone marrow (BM) lymphopoiesis and reduced B‐cell repertoire diversity. The current study proposes a strategy to enhance immune responsiveness in aged mice and humans, through rejuvenation of the B lineage upon B‐cell depletion. We used hCD20Tg mice to deplete peripheral B cells in old and young mice, analyzing B‐cell subsets, repertoire and cellular functions in vitro, and immune responsiveness in vivo. Additionally, elderly patients, previously treated with rituximab healthy elderly and young individuals, were vaccinated against hepatitis B (HBV) after undergoing a detailed analysis for B‐cell compartments. B‐cell depletion in old mice resulted in rejuvenated B‐cell population that was derived from de novo synthesis in the bone marrow. The rejuvenated B cells exhibited a "young"‐like repertoire and cellular responsiveness to immune stimuli in vitro. Yet, mice treated with B‐cell depletion did not mount enhanced antibody responses to immunization in vivo, nor did they survive longer than control mice in "dirty" environment. Consistent with these results, peripheral B cells from elderly depleted patients showed a "young"‐like repertoire, population dynamics, and cellular responsiveness to stimulus. Nevertheless, the response rate to HBV vaccination was similar between elderly depleted and nondepleted subjects, although antibody titers were higher in depleted patients. This study proposes a proof of principle to rejuvenate the peripheral B‐cell compartment in aging, through B‐cell depletion. Further studies are warranted in order to apply this approach for enhancing humoral immune responsiveness among the elderly population.
Collapse
Affiliation(s)
- Irit Avivi
- Department of Hematology Tel Aviv Sourasky Medical Center Tel Aviv Israel
- Sackler Medical School Tel‐Aviv University Tel Aviv Israel
| | - Simona Zisman‐Rozen
- Department of Immunology Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Shulamit Naor
- Department of Immunology Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Isabelle Dai
- Department of Immunology Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - David Benhamou
- Department of Immunology Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Gitit Shahaf
- The Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat‐Gan Israel
| | | | - Noemie Rosenthal
- The Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat‐Gan Israel
| | - Aviya Rakovsky
- The Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat‐Gan Israel
| | - Ammuri Hanna
- Department of Immunology Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Arik Shechter
- Department of Family Medicine Technion Faculty of Medicine Clalit Health Services and Neuro‐urology Unit RAMBAM Medical Center Haifa Israel
| | - Eli Peled
- Orthopedic Division Rambam Health Care Campus Haifa Israel
| | - Noam Benyamini
- Department of Hematology RAMBAM Medical Center Haifa Israel
| | | | - Iris Barshack
- Department of Pathology Sheba Medical Center Ramat Gan Israel
| | - Ramit Mehr
- The Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat‐Gan Israel
| | - Doron Melamed
- Department of Immunology Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| |
Collapse
|
866
|
Wang MJ, Chen J, Chen F, Liu Q, Sun Y, Yan C, Yang T, Bao Y, Hu YP. Rejuvenating Strategies of Tissue-specific Stem Cells for Healthy Aging. Aging Dis 2019; 10:871-882. [PMID: 31440391 PMCID: PMC6675530 DOI: 10.14336/ad.2018.1119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
Although aging is a physiological process, it has raised interest in the science of aging and rejuvenation because of the increasing burden on the rapidly aging global population. With advanced age, there is a decline in homeostatic maintenance and regenerative responsiveness to the injury of various tissues, thereby contributing to the incidence of age-related diseases. The primary cause of the functional declines that occur along with aging is considered to be the exhaustion of stem cell functions in their corresponding tissues. Age-related changes in the systemic environment, the niche, and stem cells contribute to this loss. Thus, the reversal of stem cell aging at the cellular level might lead to the rejuvenation of the animal at an organismic level and the prevention of aging, which would be critical for developing new therapies for age-related dysfunction and diseases. Here, we will explore the effects of aging on stem cells in different tissues. The focus of this discussion is on pro-youth interventions that target intrinsic stem cell properties, environmental niche component, systemic factors, and senescent cellular clearance, which are promising for developing strategies related to the reversal of aged stem cell function and optimizing tissue repair processes.
Collapse
Affiliation(s)
- Min-Jun Wang
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| | - Jiajia Chen
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| | - Fei Chen
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| | - Qinggui Liu
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| | - Yu Sun
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| | - Chen Yan
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| | - Tao Yang
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| | - Yiwen Bao
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China.,2Department of Diagnostic radiology, University of Hong Kong, Hong Kong 999077, China
| | - Yi-Ping Hu
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
867
|
Huang W, Cheng C, Shan W, Ding Z, Liu F, Lu W, He W, Xu J, Yin Z. Knockdown of SGK1 alleviates the IL‐1β‐induced chondrocyte anabolic and catabolic imbalance by activating FoxO1‐mediated autophagy in human chondrocytes. FEBS J 2019; 287:94-107. [PMID: 31330080 DOI: 10.1111/febs.15009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/11/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Wei Huang
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei China
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine University of Science and Technology of China Hefei China
| | - Chao Cheng
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Wen‐Shan Shan
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Zhen‐Fei Ding
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Fu‐En Liu
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Wei Lu
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Wei He
- School of Basic Medical Sciences Anhui Medical University Hefei China
| | - Jie‐Gou Xu
- School of Basic Medical Sciences Anhui Medical University Hefei China
| | - Zong‐Sheng Yin
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei China
| |
Collapse
|
868
|
Deng L, Ren R, Liu Z, Song M, Li J, Wu Z, Ren X, Fu L, Li W, Zhang W, Guillen P, Izpisua Belmonte JC, Chan P, Qu J, Liu GH. Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat Commun 2019; 10:3329. [PMID: 31350386 PMCID: PMC6659673 DOI: 10.1038/s41467-019-10831-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/03/2019] [Indexed: 01/01/2023] Open
Abstract
DiGeorge syndrome critical region 8 (DGCR8) is a critical component of the canonical microprocessor complex for microRNA biogenesis. However, the non-canonical functions of DGCR8 have not been studied. Here, we demonstrate that DGCR8 plays an important role in maintaining heterochromatin organization and attenuating aging. An N-terminal-truncated version of DGCR8 (DR8dex2) accelerated senescence in human mesenchymal stem cells (hMSCs) independent of its microRNA-processing activity. Further studies revealed that DGCR8 maintained heterochromatin organization by interacting with the nuclear envelope protein Lamin B1, and heterochromatin-associated proteins, KAP1 and HP1γ. Overexpression of any of these proteins, including DGCR8, reversed premature senescent phenotypes in DR8dex2 hMSCs. Finally, DGCR8 was downregulated in pathologically and naturally aged hMSCs, whereas DGCR8 overexpression alleviated hMSC aging and mouse osteoarthritis. Taken together, these analyses uncovered a novel, microRNA processing-independent role in maintaining heterochromatin organization and attenuating senescence by DGCR8, thus representing a new therapeutic target for alleviating human aging-related disorders.
Collapse
Affiliation(s)
- Liping Deng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ruotong Ren
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jingyi Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, 100053, Beijing, China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoqing Ren
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lina Fu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, 100053, Beijing, China
| | - Weiqi Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, 100053, Beijing, China
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Pedro Guillen
- Clinica Cemtro. Av. del Ventisquero de la Condesa, 42, 28035, Madrid, Spain
| | | | - Piu Chan
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, 100053, Beijing, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Guang-Hui Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, 100053, Beijing, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, 510632, Guangzhou, China.
- Beijing Institute for Brain Disorders, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
869
|
Ogrodnik M, Salmonowicz H, Jurk D, Passos JF. Expansion and Cell-Cycle Arrest: Common Denominators of Cellular Senescence. Trends Biochem Sci 2019; 44:996-1008. [PMID: 31345557 DOI: 10.1016/j.tibs.2019.06.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022]
Abstract
Cellular senescence is a major driver of age-related diseases, and senotherapies are being tested in clinical trials. Despite its popularity, cellular senescence is weakly defined and is frequently referred to as irreversible cell-cycle arrest. In this article we hypothesize that cellular senescence is a phenotype that results from the coordination of two processes: cell expansion and cell-cycle arrest. We provide evidence for the compatibility of the proposed model with recent findings showing senescence in postmitotic tissues, wound healing, obesity, and development. We believe our model also explains why some characteristics of senescence can be found in non-senescent cells. Finally, we propose new avenues for research from our model.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Department of Physiology and Biochemical Engineering, Mayo Clinic, Rochester, MN, USA.
| | - Hanna Salmonowicz
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Diana Jurk
- Department of Physiology and Biochemical Engineering, Mayo Clinic, Rochester, MN, USA; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - João F Passos
- Department of Physiology and Biochemical Engineering, Mayo Clinic, Rochester, MN, USA; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
870
|
Stenmark KR, Frid MG, Graham BB, Tuder RM. Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension. Cardiovasc Res 2019; 114:551-564. [PMID: 29385432 DOI: 10.1093/cvr/cvy004] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is the end result of interaction between pulmonary vascular tone and a complex series of cellular and molecular events termed 'vascular remodelling'. The remodelling process, which can involve the entirety of pulmonary arterial vasculature, almost universally involves medial thickening, driven by increased numbers and hypertrophy of its principal cellular constituent, smooth muscle cells (SMCs). It is noted, however that SMCs comprise heterogeneous populations of cells, which can exhibit markedly different proliferative, inflammatory, and extracellular matrix production changes during remodelling. We further consider that these functional changes in SMCs of different phenotype and their role in PH are dynamic and may undergo significant changes over time (which we will refer to as cellular plasticity); no single property can account for the complexity of the contribution of SMC to pulmonary vascular remodelling. Thus, the approaches used to pharmacologically manipulate PH by targeting the SMC phenotype(s) must take into account processes that underlie dominant phenotypes that drive the disease. We present evidence for time- and location-specific changes in SMC proliferation in various animal models of PH; we highlight the transient nature (rather than continuous) of SMC proliferation, emphasizing that the heterogenic SMC populations that reside in different locations along the pulmonary vascular tree exhibit distinct responses to the stresses associated with the development of PH. We also consider that cells that have often been termed 'SMCs' may arise from many origins, including endothelial cells, fibroblasts and resident or circulating progenitors, and thus may contribute via distinct signalling pathways to the remodelling process. Ultimately, PH is characterized by long-lived, apoptosis-resistant SMC. In line with this key pathogenic characteristic, we address the acquisition of a pro-inflammatory phenotype by SMC that is essential to the development of PH. We present evidence that metabolic alterations akin to those observed in cancer cells (cytoplasmic and mitochondrial) directly contribute to the phenotype of the SM and SM-like cells involved in PH. Finally, we raise the possibility that SMCs transition from a proliferative to a senescent, pro-inflammatory and metabolically active phenotype over time.
Collapse
Affiliation(s)
- Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| | - Brian B Graham
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| | - Rubin M Tuder
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| |
Collapse
|
871
|
Knoppert SN, Valentijn FA, Nguyen TQ, Goldschmeding R, Falke LL. Cellular Senescence and the Kidney: Potential Therapeutic Targets and Tools. Front Pharmacol 2019; 10:770. [PMID: 31354486 PMCID: PMC6639430 DOI: 10.3389/fphar.2019.00770] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/14/2019] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasing health burden (affecting approximately 13.4% of the population). Currently, no curative treatment options are available and treatment is focused on limiting the disease progression. The accumulation of senescent cells has been implicated in the development of kidney fibrosis by limiting tissue rejuvenation and through the secretion of pro-fibrotic and pro-inflammatory mediators termed as the senescence-associated secretory phenotype. The clearance of senescent cells in aging models results in improved kidney function, which shows promise for the options of targeting senescent cells in CKD. There are several approaches for the development of “senotherapies”, the most rigorous of which is the elimination of senescent cells by the so-called senolytic drugs either newly developed or repurposed for off-target effects in terms of selectively inducing apoptosis in senescent cells. Several chemotherapeutics and checkpoint inhibitors currently used in daily oncological practice show senolytic properties. However, the applicability of such senolytic compounds for the treatment of renal diseases has hardly been investigated. A serious concern is that systemic side effects will limit the use of senolytics for kidney fibrosis. Specifically targeting senescent cells and/or targeted drug delivery to the kidney might circumvent these side effects. In this review, we discuss the connection between CKD and senescence, the pharmacological options for targeting senescent cells, and the means to specifically target the kidney.
Collapse
Affiliation(s)
- Sebastian N Knoppert
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Floris A Valentijn
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lucas L Falke
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Internal Medicine, Diakonessenhuis, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
872
|
From discoveries in ageing research to therapeutics for healthy ageing. Nature 2019; 571:183-192. [PMID: 31292558 DOI: 10.1038/s41586-019-1365-2] [Citation(s) in RCA: 721] [Impact Index Per Article: 144.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
For several decades, understanding ageing and the processes that limit lifespan have challenged biologists. Thirty years ago, the biology of ageing gained unprecedented scientific credibility through the identification of gene variants that extend the lifespan of multicellular model organisms. Here we summarize the milestones that mark this scientific triumph, discuss different ageing pathways and processes, and suggest that ageing research is entering a new era that has unique medical, commercial and societal implications. We argue that this era marks an inflection point, not only in ageing research but also for all biological research that affects the human healthspan.
Collapse
|
873
|
Nogueira-Recalde U, Lorenzo-Gómez I, Blanco FJ, Loza MI, Grassi D, Shirinsky V, Shirinsky I, Lotz M, Robbins PD, Domínguez E, Caramés B. Fibrates as drugs with senolytic and autophagic activity for osteoarthritis therapy. EBioMedicine 2019; 45:588-605. [PMID: 31285188 PMCID: PMC6642320 DOI: 10.1016/j.ebiom.2019.06.049] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Background Ageing-related failure of homeostasis mechanisms contributes to articular cartilage degeneration and osteoarthritis (OA), for which disease-modifying treatments are not available. Our objective was to identify molecules to prevent OA by regulating chondrocyte senescence and autophagy. Methods Human chondrocytes with IL-6 induced senescence and autophagy suppression and SA-β-gal as a reporter of senescence and LC3 as reporter of autophagic flux were used to screen the Prestwick Chemical Library of approved drugs. Preclinical cellular, tissue and blood from OA and blood from OA and ageing models were used to test the efficacy and relevance of activating PPARα related to cartilage degeneration. Findings Senotherapeutic molecules with pro-autophagic activity were identified. Fenofibrate (FN), a PPARα agonist used for dyslipidaemias in humans, reduced the number of senescent cells via apoptosis, increased autophagic flux, and protected against cartilage degradation. FN reduced both senescence and inflammation and increased autophagy in both ageing human and OA chondrocytes whereas PPARα knockdown conferred the opposite effect. Moreover, PPARα expression was reduced through both ageing and OA in mice and also in blood and cartilage from knees of OA patients. Remarkably, in a retrospective study, fibrate treatment improved OA clinical conditions in human patients from the Osteoarthritis Initiative (OAI) Cohort. Interpretation These results demonstrate that FDA-approved fibrate drugs targeting lipid metabolism protect against cartilage degeneration seen with ageing and OA. Thus, these drugs could have immediate clinically utility for age-related cartilage degeneration and OA treatment. Fund This study was supported by Instituto de Salud Carlos III- Ministerio de Ciencia, Innovación y Universidades, Spain, Plan Estatal 2013–2016 and Fondo Europeo de Desarrollo Regional (FEDER), “Una manera de hacer Europa”, PI14/01324 and PI17/02059, by Innopharma Pharmacogenomics platform applied to the validation of targets and discovery of drugs candidates to preclinical phases, Ministerio de Economía y Competitividad, by grants of the National Instiutes of Health to PDR (P01 AG043376 and U19 AG056278). We thank FOREUM Foundation for Research in Rheumatology for their support.
Collapse
Affiliation(s)
- Uxía Nogueira-Recalde
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| | - Irene Lorenzo-Gómez
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| | - Francisco J Blanco
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| | - María I Loza
- Eduardo Domínguez: Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Spain
| | - Diego Grassi
- Institute for Interdisciplinary Neuroscience (IINS), Bordeaux, Nouvelle-Aquitaine, France
| | - Valery Shirinsky
- Scientific Research Institute of Clinical immunology, Novosibirsk, Russia
| | - Ivan Shirinsky
- Scientific Research Institute of Clinical immunology, Novosibirsk, Russia
| | - Martin Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Eduardo Domínguez
- Eduardo Domínguez: Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Spain.
| | - Beatriz Caramés
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain.
| |
Collapse
|
874
|
Li W, Qin L, Feng R, Hu G, Sun H, He Y, Zhang R. Emerging senolytic agents derived from natural products. Mech Ageing Dev 2019; 181:1-6. [PMID: 31077707 DOI: 10.1016/j.mad.2019.05.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/05/2019] [Accepted: 05/07/2019] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a hallmark of aging, it is a permanent state of cell cycle arrest induced by cellular stresses. During the aging process, senescent cells (SCs) increasingly accumulate in tissues, causing a loss of tissue-repair capacity because of cell cycle arrest in progenitor cells and produce proinflammatory and matrix-degrading molecules which are known as the senescence-associated secretory phenotype (SASP), and thereby contribute to the development of various age-related diseases. Genetic evidence has demonstrated that clearance of SCs can delay aging and extend healthspan. Senolytics, small molecules that can selectively kill SCs, have been developed to treat various age-related diseases. In recent years, emerging natural compounds have been discovered to be effective senolytic agents, such as quercetin, fisetin, piperlongumine and the curcumin analog. Some of the compounds have been validated in animal models and have great potential to be pushed to clinical applications. In this review, we will discuss cellular senescence and its potential as a target for treating age-related diseases, and summarize the known natural compounds as senolytic agents and their applications.
Collapse
Affiliation(s)
- Wen Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, China; Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, China
| | - Lin Qin
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, China; Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Guangrong Hu
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hui Sun
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China.
| | - Rongping Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
875
|
He Y, Thummuri D, Zheng G, Okunieff P, Citrin DE, Vujaskovic Z, Zhou D. Cellular senescence and radiation-induced pulmonary fibrosis. Transl Res 2019; 209:14-21. [PMID: 30981698 PMCID: PMC6857805 DOI: 10.1016/j.trsl.2019.03.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/14/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a serious treatment complication that affects about 9%-30% cancer patients receiving radiotherapy for thoracic tumors. RIPF is characterized by progressive and irreversible destruction of lung tissues and deterioration of lung function, which can compromise quality of life and eventually lead to respiratory failure and death. Unfortunately, the mechanisms by which radiation causes RIPF have not been well established nor has an effective treatment for RIPF been developed. Recently, an increasing body of evidence suggests that induction of senescence by radiation may play an important role in RIPF and clearance of senescent cells (SnCs) with a senolytic agent, small molecule that can selectively kill SnCs, has the potential to be developed as a novel therapeutic strategy for RIPF. This review discusses some of these new findings to promote further study on the role of cellular senescence in RIPF and the development of senolytic therapeutics for RIPF.
Collapse
Affiliation(s)
- Yonghan He
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Dinesh Thummuri
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Paul Okunieff
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, Florida
| | - Deborah E Citrin
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, College of Medicine, University of Maryland, Baltimore, Maryland
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
876
|
van der Feen DE, Berger RMF, Bartelds B. Converging Paths of Pulmonary Arterial Hypertension and Cellular Senescence. Am J Respir Cell Mol Biol 2019; 61:11-20. [DOI: 10.1165/rcmb.2018-0329tr] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Diederik E. van der Feen
- Center for Congenital Heart Diseases, Department of Paediatric Cardiology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rolf M. F. Berger
- Center for Congenital Heart Diseases, Department of Paediatric Cardiology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Beatrijs Bartelds
- Center for Congenital Heart Diseases, Department of Paediatric Cardiology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
877
|
Hyaluronic Acid (HA), Platelet-Rich Plasm and Extracorporeal Shock Wave Therapy (ESWT) promote human chondrocyte regeneration in vitro and ESWT-mediated increase of CD44 expression enhances their susceptibility to HA treatment. PLoS One 2019; 14:e0218740. [PMID: 31251756 PMCID: PMC6599220 DOI: 10.1371/journal.pone.0218740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022] Open
Abstract
Novel strategies have been proposed for articular cartilage damage occurring during osteoarthritis (OA) and -among these- Extracorporeal Shock Wave Therapy (ESWT), intra-articular injections of Platelet-Rich Plasma (PRP) or Hyaluronic Acid (HA) revealed encouraging results. To investigate the possible mechanisms responsible for those clinical benefits, we established primary cultures of human chondrocytes derived from cartilage explants and measured the in vitro effects of ESW, PRP and HA therapies. After molecular/morphological cell characterization, we assessed those effects on the functional activities of the chondrocyte cell cultures, at the protein and molecular levels. ESWT significantly prevented the progressive dedifferentiation that spontaneously occurs during prolonged chondrocyte culture. We then attested the efficiency of all such treatments to stimulate the expression of markers of chondrogenic potential such as SOX9 and COL2A, to increase the Ki67 proliferation index as well as to antagonize the traditional marker of chondrosenescence p16INK4a (known as Cdkn2a). Furthermore, all our samples showed an ESW- and HA-mediated enhancement of migratory and anti-inflammatory activity onto the cytokine-rich environment characterizing OA. Taken together, those results suggest a regenerative effect of such therapies on primary human chondrocytes in vitro. Moreover, we also show for the first time that ESW treatment induces the surface expression of major hyaluronan cell receptor CD44 allowing the increase of COL2A/COL1A ratio upon HA administration. Therefore, this work suggests that ESW-induced CD44 overexpression enhances the in vitro cell susceptibility of human chondrocytes to HA, presumably favouring the repair of degenerated cartilage.
Collapse
|
878
|
Chapman J, Fielder E, Passos JF. Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett 2019; 593:1566-1579. [PMID: 31211858 DOI: 10.1002/1873-3468.13498] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/31/2022]
Abstract
Cellular senescence and mitochondrial dysfunction have both been defined as classical hallmarks of the ageing process. Here, we review the intricate relationship between the two. In the context of ageing, it is now well regarded that cellular senescence is a key driver in both ageing and the onset of a number of age-related pathologies. Emerging evidence has pinpointed mitochondria as one of the key modulators in the development of the senescence phenotype, particularly the pro-inflammatory senescence associated secretory phenotype (SASP). This review focuses on the contribution of homeostatic mechanisms, as well as of reactive oxygen species and mitochondrial metabolites in the senescence programme. Furthermore, we discuss emerging pathways and mitochondrial-mediated mechanisms that may be influencing the SASP and, subsequently, explore how these may be exploited to open up new therapeutic avenues.
Collapse
Affiliation(s)
- James Chapman
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Edward Fielder
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - João F Passos
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK.,Department of Physiology and Biochemical Engineering, Mayo Clinic, Rochester, NY, USA
| |
Collapse
|
879
|
Peilin W, Songsong T, Chengyu Z, Zhi C, Chunhui M, Yinxian Y, Lei Z, Min M, Zongyi W, Mengkai Y, Jing X, Tao Z, Zhuoying W, Fei Y, Chengqing Y. Directed elimination of senescent cells attenuates development of osteoarthritis by inhibition of c-IAP and XIAP. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2618-2632. [PMID: 31251987 DOI: 10.1016/j.bbadis.2019.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/28/2019] [Accepted: 05/27/2019] [Indexed: 01/02/2023]
Abstract
Aging drives the accumulation of senescent cells (SnCs) by secreting factors that cause the senescence-associated secretory phenotype (SASP), including stem cells in the bone marrow, which contribute to aging-related bone degradation. Osteoarthritis (OA) is a serious chronic injury disease, and increasing age is a major risk factor. The accumulation of SnCs may accelerate the development of OA, and the accumulation of SnCs may benefit from its resistance to apoptotic stimuli. Therefore, local elimination of SnCs could be a promising treatment for OA. Apoptosis inhibitor protein (IAP) is an important antiapoptotic protein in vivo. AT-406 is a small molecule inhibitor of the IAP genes and also regulates the transcription of several genes. Here, we show that SnCs upregulate the antiapoptotic proteins c-IAP1, c-IAP2 and XIAP.The combined inhibition of c-IAP1, c-IAP2 and XIAP using siRNA or AT-406 specifically induce the apoptosis of SnCs.In addition, XIAP and STX17 bind to each other to regulate the fusion of autophagosomes and lysosomes in SnCs, which in turn, affects the fate of SnCs. It is worth noting that the clearance of SnCs attenuated the secretion of SASP and created a proregenerative environment. Most importantly, local clearance of SnCs significantly attenuated the progression of osteoarthritis in rats without significant toxic effects. Thus, local elimination of SnCs may be a potential treatment for OA. This is the first report of inhibition of IAPs for clearing SnCs and suggests that eradication of SnCs may be a new strategy for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Wang Peilin
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Teng Songsong
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuang Chengyu
- Department of Orthopaedics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Zhi
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Ma Chunhui
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Yinxian
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Lei
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Mao Min
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Wang Zongyi
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China.
| | - Yang Mengkai
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Xu Jing
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Zhang Tao
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China.
| | - Wang Zhuoying
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Yin Fei
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Yi Chengqing
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
880
|
Abstract
PURPOSE OF THE REVIEW Osteoarthritis is widely regarded as a spectrum of conditions that affect all joint tissues, typified by a common entity: cartilage loss. Here, we review recent progress and challenges in chondroprotection and discuss new strategies to prevent cartilage loss in osteoarthritis. RECENT FINDINGS Advances in clinical, molecular, and cellular characterization are enabling improved stratification of osteoarthritis subtypes. Integration of next-generation sequencing and "omics" approaches with clinically relevant readouts shows promise in delineating both subtypes of disease and meaningful trial end points. Novel delivery strategies are enabling joint-specific delivery. Chondroprotection requires a whole joint approach, stratification of patient groups, and use of patient-relevant end points. Drug development should continue to explore new targets, while using modern technologies and recent knowledge to re-visit unsuccessful therapeutics from the past. The overarching goal for chondroprotection is to provide the right treatment(s) for the right patient at the right time.
Collapse
Affiliation(s)
- Jolet Y Mimpen
- The Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, OX3 7LD, UK
| | - Sarah J B Snelling
- The Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
881
|
Prieto LI, Baker DJ. Cellular Senescence and the Immune System in Cancer. Gerontology 2019; 65:505-512. [PMID: 31212284 DOI: 10.1159/000500683] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/01/2019] [Indexed: 12/21/2022] Open
Abstract
In response to a variety of cancer-inducing stresses, cells may engage a stable cell cycle arrest mechanism, termed cellular senescence, to suppress the proliferation of preneoplastic cells. Despite this cell intrinsic tumor suppression, senescent cells have also been implicated as active contributors to tumorigenesis by extrinsically promoting many hallmarks of cancer, including evasion of the immune system. Here, we discuss these dual, and seemingly contradictory, roles of senescence during tumorigenesis. Furthermore, we highlight findings of how senescent cells can influence the immune system and discuss the possibility that immune cells themselves may be acquiring senescence-associated alterations. Lastly, we discuss how senescent cell avoidance or clearance may impact pathology.
Collapse
Affiliation(s)
- Luis I Prieto
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA, .,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA,
| |
Collapse
|
882
|
|
883
|
Muñoz DP, Yannone SM, Daemen A, Sun Y, Vakar-Lopez F, Kawahara M, Freund AM, Rodier F, Wu JD, Desprez PY, Raulet DH, Nelson PS, van ’t Veer LJ, Campisi J, Coppé JP. Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging. JCI Insight 2019; 5:124716. [PMID: 31184599 PMCID: PMC6675550 DOI: 10.1172/jci.insight.124716] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is a tumor suppressive mechanism that can paradoxically contribute to aging pathologies. Despite evidence of immune clearance in mouse models, it is not known how senescent cells (SnCs) persist and accumulate with age or in tumors in individuals. Here, we identify cooperative mechanisms that orchestrate the immunoevasion and persistence of normal and cancer human SnCs through extracellular targeting of natural killer receptor signaling. Damaged SnCs avoid immune recognition through MMPs-dependent shedding of NKG2D-ligands reinforced via paracrine suppression of NKG2D receptor-mediated immunosurveillance. These coordinated immunoediting processes are evident in residual, drug-resistant tumors from cohorts of >700 prostate and breast cancer patients treated with senescence-inducing genotoxic chemotherapies. Unlike in mice, these reversible senescence-subversion mechanisms are independent of p53/p16 and exacerbated in oncogenic RAS-induced senescence. Critically, the p16INK4A tumor suppressor can disengage the senescence growth arrest from the damage-associated immune senescence program, which is manifest in benign nevi lesions where indolent SnCs accumulate over time and preserve a non-pro-inflammatory tissue microenvironment maintaining NKG2D-mediated immunosurveillance. Our study shows how subpopulations of SnCs elude immunosurveillance, and reveals secretome-targeted therapeutic strategies to selectively eliminate -and restore the clearance of- the detrimental SnCs that actively persist after chemotherapy and accumulate at sites of aging pathologies.
Collapse
Affiliation(s)
- Denise P. Muñoz
- Swim Across America National Laboratory, Children’s Hospital Oakland Research Institute, UCSF Benioff Children’s Hospital Oakland, Oakland, California, USA
| | - Steven M. Yannone
- Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, California, USA
| | - Anneleen Daemen
- Helen Diller Family Comprehensive Cancer Center, Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Yu Sun
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Funda Vakar-Lopez
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Misako Kawahara
- Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, California, USA
- Helen Diller Family Comprehensive Cancer Center, Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Adam M. Freund
- Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, California, USA
- Buck Institute for Research on Aging, Novato, California, USA
| | - Francis Rodier
- Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, California, USA
| | - Jennifer D. Wu
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Pierre-Yves Desprez
- Buck Institute for Research on Aging, Novato, California, USA
- Research Institute, California Pacific Medical Center, San Francisco, California, USA
| | - David H. Raulet
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, USA
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Laura J. van ’t Veer
- Helen Diller Family Comprehensive Cancer Center, Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Judith Campisi
- Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, California, USA
- Buck Institute for Research on Aging, Novato, California, USA
| | - Jean-Philippe Coppé
- Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, California, USA
- Helen Diller Family Comprehensive Cancer Center, Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
884
|
Kim H, Chang J, Iyer S, Han L, Campisi J, Manolagas SC, Zhou D, Almeida M. Elimination of senescent osteoclast progenitors has no effect on the age-associated loss of bone mass in mice. Aging Cell 2019; 18:e12923. [PMID: 30773784 PMCID: PMC6516158 DOI: 10.1111/acel.12923] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/15/2019] [Accepted: 01/20/2019] [Indexed: 12/23/2022] Open
Abstract
Both an increase in osteoclast and a decrease in osteoblast numbers contribute to skeletal aging. Markers of cellular senescence, including expression of the cyclin inhibitor p16, increase with aging in several bone cell populations. The elimination of p16-expressing cells in old mice, using the INK-ATTAC transgene, increases bone mass indicating that senescent cells contribute to skeletal aging. However, the identity of the senescent cells and the extent to which ablation of p16-expressing cells may prevent skeletal aging remain unknown. Using mice expressing the p16-3MR transgene, we examined whether elimination of p16-expressing cells between 12 and 24 months of age could preserve bone mass; and whether elimination of these cells from 20 to 26 months of age could restore bone mass. The activation of the p16-3MR transgene by ganciclovir (GCV) greatly diminished p16 levels in the brain, liver, and osteoclast progenitors from the bone marrow. The age-related increase in osteoclastogenic potential of myeloid cells was also abrogated by GCV. However, GCV did not alter p16 levels in osteocytes-the most abundant cell type in bone-and had no effect on the skeletal aging of p16-3MR mice. These findings indicate that the p16-3MR transgene does not eliminate senescent osteocytes but it does eliminate senescent osteoclast progenitors and senescent cells in other tissues, as described previously. Elimination of senescent osteoclast progenitors, in and of itself, has no effect on the age-related loss of bone mass. Hence, other senescent cell types, such as osteocytes, must be the seminal culprits.
Collapse
Affiliation(s)
- Ha‐Neui Kim
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone DiseasesUniversity of Arkansas for Medical SciencesLittle RockArkansas
- The Central Arkansas Veterans Healthcare SystemLittle RockArkansas
| | - Jianhui Chang
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Srividhya Iyer
- Department of Orthopedic SurgeryUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Li Han
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone DiseasesUniversity of Arkansas for Medical SciencesLittle RockArkansas
- The Central Arkansas Veterans Healthcare SystemLittle RockArkansas
| | - Judith Campisi
- Buck Institute for Research on AgingNovatoCalifornia
- Lawrence Berkeley National LaboratoryBerkeleyCalifornia
| | - Stavros C. Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone DiseasesUniversity of Arkansas for Medical SciencesLittle RockArkansas
- The Central Arkansas Veterans Healthcare SystemLittle RockArkansas
- Department of Orthopedic SurgeryUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Daohong Zhou
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansas
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFlorida
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone DiseasesUniversity of Arkansas for Medical SciencesLittle RockArkansas
- The Central Arkansas Veterans Healthcare SystemLittle RockArkansas
- Department of Orthopedic SurgeryUniversity of Arkansas for Medical SciencesLittle RockArkansas
| |
Collapse
|
885
|
Trendelenburg A, Scheuren A, Potter P, Müller R, Bellantuono I. Geroprotectors: A role in the treatment of frailty. Mech Ageing Dev 2019; 180:11-20. [DOI: 10.1016/j.mad.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022]
|
886
|
O’Brien MS, McDougall JJ. Age and frailty as risk factors for the development of osteoarthritis. Mech Ageing Dev 2019; 180:21-28. [DOI: 10.1016/j.mad.2019.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
|
887
|
Patil P, Dong Q, Wang D, Chang J, Wiley C, Demaria M, Lee J, Kang J, Niedernhofer LJ, Robbins PD, Sowa G, Campisi J, Zhou D, Vo N. Systemic clearance of p16 INK4a -positive senescent cells mitigates age-associated intervertebral disc degeneration. Aging Cell 2019; 18:e12927. [PMID: 30900385 PMCID: PMC6516165 DOI: 10.1111/acel.12927] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/27/2019] [Indexed: 12/04/2022] Open
Abstract
RATIONALE Age-related changes in the intervertebral discs are the predominant contributors to back pain, a common physical and functional impairment experienced by older persons. Cellular senescence, a process wherein cells undergo growth arrest and chronically secrete numerous inflammatory molecules and proteases, has been reported to cause decline in the health and function of multiple tissues with age. Although senescent cells have been reported to increase in intervertebral degeneration (IDD), it is not known whether they are causative in age-related IDD. OBJECTIVE The study aimed to elucidate whether a causal relationship exists between cellular senescence and age-related IDD. METHODS AND RESULTS To examine the impact of senescent cells on age-associated IDD, we used p16-3MR transgenic mice, which enables the selective removal of p16Ink4a -positive senescent cells by the drug ganciclovir. Disc cellularity, aggrecan content and fragmentation alongside expression of inflammatory cytokine (IL-6) and matrix proteases (ADAMTS4 and MMP13) in discs of p16-3MR mice treated with GCV and untreated controls were assessed. In aged mice, reducing the per cent of senescent cells decreased disc aggrecan proteolytic degradation and increased overall proteoglycan matrix content along with improved histological disc features. Additionally, reduction of senescent cells lowered the levels of MMP13, which is purported to promote disc degenerative changes during aging. CONCLUSIONS The findings of this study suggest that systemic reduction in the number of senescent cells ameliorates multiple age-associated changes within the disc tissue. Cellular senescence could therefore serve as a therapeutic target to restore the health of disc tissue that deteriorates with age.
Collapse
Affiliation(s)
- Prashanti Patil
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvania
- Department of PathologyUniversity of PittsburghPittsburghPennsylvania
| | - Qing Dong
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvania
- Department of PathologyUniversity of PittsburghPittsburghPennsylvania
| | - Dong Wang
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvania
- Department of PathologyUniversity of PittsburghPittsburghPennsylvania
| | - Jianhui Chang
- Department of Pharmaceutical SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | | | - Marco Demaria
- Buck Institute for Research on AgingNovatoCalifornia
| | - Joon Lee
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvania
- Department of PathologyUniversity of PittsburghPittsburghPennsylvania
| | - James Kang
- Department of Orthopaedic Surgery, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Laura J. Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, The Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesota
| | - Paul D. Robbins
- Department of Biochemistry, Molecular Biology and Biophysics, The Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesota
| | - Gwendolyn Sowa
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvania
- Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghPennsylvania
| | - Judith Campisi
- Buck Institute for Research on AgingNovatoCalifornia
- Life Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| | - Daohong Zhou
- Department of Pharmaceutical SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansas
- Department of PharmacodynamicsUniversity of FloridaGainesvilleFlorida
| | - Nam Vo
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvania
- Department of PathologyUniversity of PittsburghPittsburghPennsylvania
| |
Collapse
|
888
|
Cohen J, Torres C. Astrocyte senescence: Evidence and significance. Aging Cell 2019; 18:e12937. [PMID: 30815970 PMCID: PMC6516680 DOI: 10.1111/acel.12937] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/14/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Astrocytes participate in numerous aspects of central nervous system (CNS) physiology ranging from ion balance to metabolism, and disruption of their physiological roles can therefore be a contributor to CNS dysfunction and pathology. Cellular senescence, one of the mechanisms of aging, has been proposed as a central component of the age dependency of neurodegenerative disorders. Cumulative evidence supports an integral role of astrocytes in the initiation and progression of neurodegenerative disease and cognitive decline with aging. The loss of astrocyte function or the gain of neuroinflammatory function as a result of cellular senescence could have profound implications for the aging brain and neurodegenerative disorders, and we propose the term “astrosenescence” to describe this phenotype. This review summarizes the current evidence pertaining to astrocyte senescence from early evidence, in vitro characterization and relationship to age‐related neurodegenerative disease. We discuss the significance of targeting senescent astrocytes as a novel approach toward therapies for age‐associated neurodegenerative disease.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Pathology and Laboratory Medicine Drexel University College of Medicine Philadelphia Pennsylvania
| | - Claudio Torres
- Department of Pathology and Laboratory Medicine Drexel University College of Medicine Philadelphia Pennsylvania
| |
Collapse
|
889
|
Franceschi C, Garagnani P, Gensous N, Bacalini MG, Conte M, Salvioli S. Accelerated bio-cognitive aging in Down syndrome: State of the art and possible deceleration strategies. Aging Cell 2019; 18:e12903. [PMID: 30768754 PMCID: PMC6516152 DOI: 10.1111/acel.12903] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/08/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Down syndrome (DS) has been proposed by George Martin as a segmental progeroid syndrome since 1978. In fact, DS persons suffer from several age-associated disorders much earlier than euploid persons. Furthermore, a series of recent studies have found that DS persons display elevated levels of age biomarkers, thus supporting the notion that DS is a progeroid trait. Nowadays, due to the progressive advancements in social inclusion processes and medical assistance, DS persons live much longer than in the past; therefore, the early-onset health problems of these persons are becoming an urgent and largely unmet social and medical burden. In particular, the most important ailment of DS persons is the accelerated cognitive decline that starts when they reach about 40 years of age. This decline can be at least in part counteracted by multi-systemic approaches including early-onset cognitive training, physical activity, and psychosocial assistance. However, no pharmacological treatment is approved to counteract this decline. According to the most advanced conceptualization of Geroscience, tackling the molecular mechanisms underpinning the aging process should be a smart/feasible strategy to combat and/or delay the great majority of age-related diseases, including cognitive decline. We think that a debate is needed urgently on if (and how) this strategy could be integrated in protocols to face DS-associated dementia and overall unhealthy aging. In particular we propose that, on the basis of data obtained in different clinical settings, metformin is a promising candidate that could be exploited to counteract cognitive decline in DS.
Collapse
Affiliation(s)
- Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
- Clinical Chemistry, Department of Laboratory MedicineKarolinska Institutet at Huddinge University HospitalStockholmSweden
- Applied Biomedical Research Center (CRBA)S. Orsola‐Malpighi PolyclinicBolognaItaly
- CNR Institute of Molecular GeneticsUnit of BolognaBolognaItaly
| | - Noémie Gensous
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
| | | | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
- Interdepartmental Center “L. Galvani” (CIG)University of BolognaBolognaItaly
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
- Interdepartmental Center “L. Galvani” (CIG)University of BolognaBolognaItaly
| |
Collapse
|
890
|
Postmus AC, Sturmlechner I, Jonker JW, van Deursen JM, van de Sluis B, Kruit JK. Senescent cells in the development of cardiometabolic disease. Curr Opin Lipidol 2019; 30:177-185. [PMID: 30913069 PMCID: PMC6530963 DOI: 10.1097/mol.0000000000000602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Senescent cells have recently been identified as key players in the development of metabolic dysfunction. In this review, we will highlight recent developments in this field and discuss the concept of targeting these cells to prevent or treat cardiometabolic diseases. RECENT FINDINGS Evidence is accumulating that cellular senescence contributes to adipose tissue dysfunction, presumably through induction of low-grade inflammation and inhibition of adipogenic differentiation leading to insulin resistance and dyslipidaemia. Senescent cells modulate their surroundings through their bioactive secretome and only a relatively small number of senescent cells is sufficient to cause persistent physical dysfunction even in young mice. Proof-of-principle studies showed that selective elimination of senescent cells can prevent or delay the development of cardiometabolic diseases in mice. SUMMARY The metabolic consequences of senescent cell accumulation in various tissues are now unravelling and point to new therapeutic opportunities for the treatment of cardiometabolic diseases.
Collapse
Affiliation(s)
- Andrea C. Postmus
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ines Sturmlechner
- Departments of Pediatrics and Adolescent Medicine
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Johan W. Jonker
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan M. van Deursen
- Departments of Pediatrics and Adolescent Medicine
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Janine K. Kruit
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
891
|
Kucheryavenko O, Nelson G, von Zglinicki T, Korolchuk VI, Carroll B. The mTORC1-autophagy pathway is a target for senescent cell elimination. Biogerontology 2019; 20:331-335. [PMID: 30798505 PMCID: PMC6535413 DOI: 10.1007/s10522-019-09802-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/12/2019] [Indexed: 02/02/2023]
Abstract
Cellular senescence has recently been established as a key driver of organismal ageing. The state of senescence is controlled by extensive rewiring of signalling pathways, at the heart of which lies the mammalian Target of Rapamycin Complex I (mTORC1). Here we discuss recent publications aiming to establish the mechanisms by which mTORC1 drives the senescence program. In particular, we highlight our data indicating that mTORC1 can be used as a target for senescence cell elimination in vitro. Suppression of mTORC1 is known to extend lifespan of yeast, worms, flies and some mouse models and our proof-of-concept experiments suggest that it can also act by reducing senescent cell load in vivo.
Collapse
Affiliation(s)
- Olena Kucheryavenko
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
- The Federal Institute for Risk Assessment, 10589, Berlin, Germany
| | - Glyn Nelson
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Thomas von Zglinicki
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| | - Viktor I Korolchuk
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| | - Bernadette Carroll
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
892
|
Wiggins KA, Parry AJ, Cassidy LD, Humphry M, Webster SJ, Goodall JC, Narita M, Clarke MCH. IL-1α cleavage by inflammatory caspases of the noncanonical inflammasome controls the senescence-associated secretory phenotype. Aging Cell 2019; 18:e12946. [PMID: 30916891 PMCID: PMC6516163 DOI: 10.1111/acel.12946] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/08/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1 alpha (IL-1α) is a powerful cytokine that modulates immunity, and requires canonical cleavage by calpain for full activity. Mature IL-1α is produced after inflammasome activation and during cell senescence, but the protease cleaving IL-1α in these contexts is unknown. We show IL-1α is activated by caspase-5 or caspase-11 cleavage at a conserved site. Caspase-5 drives cleaved IL-1α release after human macrophage inflammasome activation, while IL-1α secretion from murine macrophages only requires caspase-11, with IL-1β release needing caspase-11 and caspase-1. Importantly, senescent human cells require caspase-5 for the IL-1α-dependent senescence-associated secretory phenotype (SASP) in vitro, while senescent mouse hepatocytes need caspase-11 for the SASP-driven immune surveillance of senescent cells in vivo. Together, we identify IL-1α as a novel substrate of noncanonical inflammatory caspases and finally provide a mechanism for how IL-1α is activated during senescence. Thus, targeting caspase-5 may reduce inflammation and limit the deleterious effects of accumulated senescent cells during disease and Aging.
Collapse
Affiliation(s)
- Kimberley A. Wiggins
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of CambridgeCambridgeUK
| | - Aled J. Parry
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUK
| | - Liam D. Cassidy
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUK
| | - Melanie Humphry
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of CambridgeCambridgeUK
| | - Steve J. Webster
- Division of RheumatologyDepartment of MedicineUniversity of CambridgeCambridgeUK
- Present address:
Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Jane C. Goodall
- Division of RheumatologyDepartment of MedicineUniversity of CambridgeCambridgeUK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUK
| | - Murray C. H. Clarke
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
893
|
Martín AR, Patel JM, Zlotnick HM, Carey JL, Mauck RL. Emerging therapies for cartilage regeneration in currently excluded 'red knee' populations. NPJ Regen Med 2019; 4:12. [PMID: 31231546 PMCID: PMC6542813 DOI: 10.1038/s41536-019-0074-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
The field of articular cartilage repair has made significant advances in recent decades; yet current therapies are generally not evaluated or tested, at the time of pivotal trial, in patients with a variety of common comorbidities. To that end, we systematically reviewed cartilage repair clinical trials to identify common exclusion criteria and reviewed the literature to identify emerging regenerative approaches that are poised to overcome these current exclusion criteria. The term “knee cartilage repair” was searched on clinicaltrials.gov. Of the 60 trials identified on initial search, 33 were further examined to extract exclusion criteria. Criteria excluded by more than half of the trials were identified in order to focus discussion on emerging regenerative strategies that might address these concerns. These criteria included age (<18 or >55 years old), small defects (<1 cm2), large defects (>8 cm2), multiple defect (>2 lesions), BMI >35, meniscectomy (>50%), bilateral knee pathology, ligamentous instability, arthritis, malalignment, prior repair, kissing lesions, neurologic disease of lower extremities, inflammation, infection, endocrine or metabolic disease, drug or alcohol abuse, pregnancy, and history of cancer. Finally, we describe emerging tissue engineering and regenerative approaches that might foster cartilage repair in these challenging environments. The identified criteria exclude a majority of the affected population from treatment, and thus greater focus must be placed on these emerging cartilage regeneration techniques to treat patients with the challenging “red knee”.
Collapse
Affiliation(s)
- Anthony R Martín
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,2Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA
| | - Jay M Patel
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,2Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA
| | - Hannah M Zlotnick
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,2Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA.,3Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - James L Carey
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Robert L Mauck
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,2Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA.,3Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
894
|
Wang S, Wang X, Cheng Y, Ouyang W, Sang X, Liu J, Su Y, Liu Y, Li C, Yang L, Jin L, Wang Z. Autophagy Dysfunction, Cellular Senescence, and Abnormal Immune-Inflammatory Responses in AMD: From Mechanisms to Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3632169. [PMID: 31249643 PMCID: PMC6556250 DOI: 10.1155/2019/3632169] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022]
Abstract
Age-related macular degeneration (AMD) is a blinding disease caused by multiple factors and is the primary cause of vision loss in the elderly. The morbidity of AMD increases every year. Currently, there is no effective treatment option for AMD. Intravitreal injection of antivascular endothelial growth factor (anti-VEGF) is currently the most widely used therapy, but it only aims at neovascularization, which is an intermediate pathological phenomenon of wet AMD, not at the etiological treatment. Anti-VEGF therapy can only temporarily delay the degeneration process of wet AMD, and AMD is easy to relapse after drug withdrawal. Therefore, it is urgent to deepen our understanding of the pathophysiological processes underlying AMD and to identify integrated or new strategies for AMD prevention and treatment. Recent studies have found that autophagy dysfunction in retinal pigment epithelial (RPE) cells, cellular senescence, and abnormal immune-inflammatory responses play key roles in the pathogenesis of AMD. For many age-related diseases, the main focus is currently the clearing of senescent cells (SNCs) as an antiaging treatment, thereby delaying diseases. However, in AMD, there is no relevant antiaging application. This review will discuss the pathogenesis of AMD and how interactions among RPE autophagy dysfunction, cellular senescence, and abnormal immune-inflammatory responses are involved in AMD, and it will summarize the three antiaging strategies that have been developed, with the aim of providing important information for the integrated prevention and treatment of AMD and laying the ground work for the application of antiaging strategies in AMD treatment.
Collapse
Affiliation(s)
- Shoubi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yaqi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Weijie Ouyang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiahui Liu
- Department of Ophthalmology, Dongguan People's Hospital, Dongguan 523059, China
| | - Yaru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Liu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
895
|
Abstract
Clearing senescent cells with targeted drugs could combat age-associated disease
Collapse
Affiliation(s)
- Jan M van Deursen
- Departments of Biochemistry and Molecular Biology, and Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
896
|
Feng K, Ge Y, Chen Z, Li X, Liu Z, Li X, Li H, Tang T, Yang F, Wang X. Curcumin Inhibits the PERK-eIF2 α-CHOP Pathway through Promoting SIRT1 Expression in Oxidative Stress-induced Rat Chondrocytes and Ameliorates Osteoarthritis Progression in a Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8574386. [PMID: 31223428 PMCID: PMC6541984 DOI: 10.1155/2019/8574386] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/11/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
Oxidative stress plays a crucial role in the occurrence and development of osteoarthritis (OA) through the activation of endoplasmic reticulum (ER) stress. Curcumin is a polyphenolic compound with significant antioxidant and anti-inflammatory activity among various diseases. To elucidate the role of curcumin in oxidative stress-induced chondrocyte apoptosis, this study investigated the effect of curcumin on ER stress-related apoptosis and its potential mechanism in oxidative stress-induced rat chondrocytes. The results of flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining showed that curcumin can significantly attenuate ER stress-associated apoptosis. Curcumin inhibited the expression of cleaved caspase3, cleaved poly (ADP-ribose) polymerase (PARP), C/EBP homologous protein (CHOP), and glucose-regulated protein78 (GRP78) and upregulated the chondroprotective protein Bcl2 in TBHP-treated chondrocytes. In addition, curcumin promoted the expression of silent information regulator factor 2-related enzyme 1 (SIRT1) and suppressed the expression of activating transcription factor 4 (ATF4), the ratio of p-PERK/PERK, p-eIF2α/eIF2α. Our anterior cruciate ligament transection (ACLT) rat OA model research demonstrated that curcumin (50 mg/kg and 150 mg/kg) ameliorated the degeneration of articular cartilage and inhibited chondrocyte apoptosis in ACLT rats in a dose-dependent manner. By applying immunohistochemical analysis, we found that curcumin enhanced the expression of SIRT1 and inhibited the expression of CHOP and cleaved caspase3 in ACLT rats. Taken together, our present findings firstly indicate that curcumin could inhibit the PERK-eIF2α-CHOP axis of the ER stress response through the activation of SIRT1 in tert-Butyl hydroperoxide- (TBHP-) treated rat chondrocytes and ameliorated osteoarthritis development in vivo.
Collapse
Affiliation(s)
- Kai Feng
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuwei Ge
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaoxun Chen
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaodong Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiqing Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xunlin Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Li
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fei Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqing Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
897
|
Chromosomal instability and pro-inflammatory response in aging. Mech Ageing Dev 2019; 182:111118. [PMID: 31102604 DOI: 10.1016/j.mad.2019.111118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/25/2019] [Accepted: 05/14/2019] [Indexed: 01/10/2023]
Abstract
Aging refers to the progressive deterioration of tissue and organ function over time. Increasing evidence points to the accumulation of highly damaged cell cycle-arrested cells with age (cellular senescence) as major reason for the development of certain aging-associated diseases. Recent studies have independently shown that aneuploidy, an abnormal chromosome set, occurs in senescent cells, and that the accumulation of cytoplasmic DNA driven by faulty chromosome segregation during mitosis aids in the establishment of senescence and its associated secretory phenotype known as SASP. Here we review the emerging link between chromosomal instability (CIN) and senescence in the context of aging, with emphasis on the cGAS-STING pathway activation and its role in the development of the SASP. Based on current evidence, we propose that age-associated CIN in mitotically active cells contributes to aging and its associated diseases, and we discuss the inhibition of CIN as a potential strategy to prevent the generation of aneuploid senescent cells and thereby to delay aging.
Collapse
|
898
|
Ogrodnik M, Zhu Y, Langhi LGP, Tchkonia T, Krüger P, Fielder E, Victorelli S, Ruswhandi RA, Giorgadze N, Pirtskhalava T, Podgorni O, Enikolopov G, Johnson KO, Xu M, Inman C, Palmer AK, Schafer M, Weigl M, Ikeno Y, Burns TC, Passos JF, von Zglinicki T, Kirkland JL, Jurk D. Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. Cell Metab 2019; 29:1061-1077.e8. [PMID: 30612898 PMCID: PMC6509403 DOI: 10.1016/j.cmet.2018.12.008] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/23/2018] [Accepted: 12/05/2018] [Indexed: 12/25/2022]
Abstract
Cellular senescence entails a stable cell-cycle arrest and a pro-inflammatory secretory phenotype, which contributes to aging and age-related diseases. Obesity is associated with increased senescent cell burden and neuropsychiatric disorders, including anxiety and depression. To investigate the role of senescence in obesity-related neuropsychiatric dysfunction, we used the INK-ATTAC mouse model, from which p16Ink4a-expressing senescent cells can be eliminated, and senolytic drugs dasatinib and quercetin. We found that obesity results in the accumulation of senescent glial cells in proximity to the lateral ventricle, a region in which adult neurogenesis occurs. Furthermore, senescent glial cells exhibit excessive fat deposits, a phenotype we termed "accumulation of lipids in senescence." Clearing senescent cells from high fat-fed or leptin receptor-deficient obese mice restored neurogenesis and alleviated anxiety-related behavior. Our study provides proof-of-concept evidence that senescent cells are major contributors to obesity-induced anxiety and that senolytics are a potential new therapeutic avenue for treating neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK; Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Larissa G P Langhi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Patrick Krüger
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Edward Fielder
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Stella Victorelli
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Rifqha A Ruswhandi
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Oleg Podgorni
- Department of Anesthesiology, Stony Brook School of Medicine, 101 Nicolls Road, Stony Brook, New York, NY 11794, USA; Center for Developmental Genetics, Stony Brook University, 100 Nicolls Road, Stony Brook, New York, NY 11794, USA
| | - Grigori Enikolopov
- Department of Anesthesiology, Stony Brook School of Medicine, 101 Nicolls Road, Stony Brook, New York, NY 11794, USA; Center for Developmental Genetics, Stony Brook University, 100 Nicolls Road, Stony Brook, New York, NY 11794, USA; Department of Nano-, Bio-, Information Technology and Cognitive Science, Moscow Institute of Physics and Technology, Moscow, Russia; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Kurt O Johnson
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ming Xu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Christine Inman
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Marissa Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Moritz Weigl
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Yuji Ikeno
- The Barshop Institute for Longevity and Aging Studies, San Antonio, Department of Pathology, The University of Texas Health Science Center at San Antonio, Research Service, Audie L. Murphy VA Hospital (STVHCS), San Antonio, TX 78229, USA
| | - Terry C Burns
- Departments of Neurologic Surgery and Neuroscience, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - João F Passos
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas von Zglinicki
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK; Near East University, Arts and Sciences Faculty, Molecular Biology and Genetics, Nicosia, North Cyprus POB 99138 Mersin 10, Turkey
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Diana Jurk
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK; Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
899
|
Abstract
Cellular senescence (CS) is one of hallmarks of aging and accumulation of senescent cells (SCs) with age contributes to tissue or organismal aging, as well as the pathophysiologies of diverse age-related diseases (ARDs). Genetic ablation of SCs in tissues lengthened health span and reduced the risk of age-related pathologies in a mouse model, suggesting a direct link between SCs, longevity, and ARDs. Therefore, senotherapeutics, medicines targeting SCs, might be an emerging strategy for the extension of health span, and prevention or treatment of ARDs. Senotherapeutics are classified as senolytics which kills SCs selectively; senomorphics which modulate functions and morphology of SCs to those of young cells, or delays the progression of young cells to SCs in tissues; and immune-system mediators of the clearance of SCs. Some senolytics and senomorphics have been proven to markedly prevent or treat ARDs in animal models. This review will present the current status of the development of senotherapeutics, in relation to aging itself and ARDs. Finally, future directions and opportunities for senotherapeutics use will discussed. This knowledge will provide information that can be used to develop novel senotherapeutics for health span and ARDs. [BMB Reports 2019; 52(1): 47-55].
Collapse
Affiliation(s)
- Eok-Cheon Kim
- Department of Biochemistry and Molecular Biology, Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu 42415, Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu 42415, Korea
| |
Collapse
|
900
|
Abstract
Osteoarthritis is a leading cause of disability and source of societal cost in older adults. With an ageing and increasingly obese population, this syndrome is becoming even more prevalent than in previous decades. In recent years, we have gained important insights into the cause and pathogenesis of pain in osteoarthritis. The diagnosis of osteoarthritis is clinically based despite the widespread overuse of imaging methods. Management should be tailored to the presenting individual and focus on core treatments, including self-management and education, exercise, and weight loss as relevant. Surgery should be reserved for those that have not responded appropriately to less invasive methods. Prevention and disease modification are areas being targeted by various research endeavours, which have indicated great potential thus far. This narrative Seminar provides an update on the pathogenesis, diagnosis, management, and future research on osteoarthritis for a clinical audience.
Collapse
Affiliation(s)
- David J Hunter
- Rheumatology Department, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, NSW, Australia.
| | - Sita Bierma-Zeinstra
- Departments of General Practice and Orthopaedic Surgery, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|