851
|
Abstract
Abstract
This study was performed to investigate the occurrence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in batches of pigs at slaughter and at different stages along the slaughter line. Nasal and ear skin swabs were collected from 105 batches of 10 pigs at six abattoirs. Cultures (pooled or individual) were performed for MRSA using selective media; presumptive MRSA were confirmed by mecA and nuc gene detection and a selection was spa-typed. MRSA was detected in 46 batches. All spa-types detected were those associated with LA-MRSA clonal complex 398. The proportion of positive batches varied among abattoirs (0–100%). Two abattoirs were subsequently further investigated, with samples taken at post-stunning, chiller and either at lairage or post-singe. Results suggested cross-contamination occurred between the lairage and point of post-stunning, but the slaughter processes appeared effective at reducing contamination before carcases entered the chiller. One abattoir provided only negative samples in the initial study and in the subsequent study along the slaughter line (26 batches in total), suggesting differences possibly in the MRSA status of pigs on arrival from supply farms or in its abattoir practices affecting the MRSA status of pigs at the sampling points. This study highlights that in the investigated abattoirs, MRSA was detected in 43.8% of batches of pigs at slaughter using sensitive selective culture methods.
Collapse
|
852
|
Foster C, Bagdure D, Custer J, Holloway A, Rycus P, Day J, Bhutta A. Outcomes of Pediatric Patients With Sepsis Related to Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus Infections Requiring Extracorporeal Life Support: An ELSO Database Study. Front Pediatr 2021; 9:706638. [PMID: 34692605 PMCID: PMC8531717 DOI: 10.3389/fped.2021.706638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Extracorporeal membrane oxygenation (ECMO) is increasingly utilized for pediatric sepsis unresponsive to steroids and inotropic support. Outcomes of children with sepsis are influenced by the type of pathogen causing their illness. Objective: To determine if the outcomes of children with Staphylococcus aureus sepsis receiving ECMO differed according to microbial sensitivity (Methicillin-resistant Staphylococcus aureus [MRSA] vs. Methicillin-sensitive Staphylococcus aureus [MSSA]). Methods: Retrospective case-matched cohort study of children (0-<18 years) with Staphylococcus aureus sepsis reported to the ELSO registry from more than 995 centers. Inclusion criteria were age 0-18 years, laboratory diagnosis of Staphylococcal infection, clinical diagnosis of sepsis, and ECMO deployment. Exclusion criteria were no laboratory diagnosis of Staphylococcal infection. We compared patient demographics, pre-ECMO management and outcomes of those with MRSA vs. MSSA using Chi-Square test, with independent samples t-test used to test to compare continuous variables. Results: In our study cohort of 308 patients, 160 (52%) had MSSA and 148 (48%) MRSA with an overall survival rate of 41.5%. There were no differences in the age group (p = 0.76), gender distribution (p = 0.1) or racial distribution (p = 0.58) between the two groups. P value for racial distribution should be 0.058. There were 91 (56.8%) deaths in the MSSA group and 89 (60.1%) deaths (p = 0.56) in the MRSA group. Duration on ECMO (p = 0.085) and the time from intubation to ECMO (p = 0.37) were also similar in the two groups. Survival with MSSA sepsis and MRSA sepsis did not improve significantly over the 20 years evaluated despite an increase in ECMO utilization. Conclusion: In this multi-center retrospective study, there were no differences in outcomes for children receiving ECMO support with Staphylococcus aureus sepsis according to microbial methicillin sensitivity. There was no significant increase in survival among patients with MRSA and MSSA infections receiving ECMO in the last 20 years.
Collapse
Affiliation(s)
- Cortney Foster
- Division of Pediatric Critical Care, Department of Pediatrics, University of Maryland, Baltimore, MD, United States
| | - Dayanand Bagdure
- Division of Pediatric Critical Care, Department of Pediatrics, University of Maryland, Baltimore, MD, United States
| | - Jason Custer
- Division of Pediatric Critical Care, Department of Pediatrics, University of Maryland, Baltimore, MD, United States
| | - Adrian Holloway
- Division of Pediatric Critical Care, Department of Pediatrics, University of Maryland, Baltimore, MD, United States
| | | | - Jenni Day
- Department of Nursing and Patient Care Services, University of Maryland Medical Center, Baltimore, MD, United States
| | - Adnan Bhutta
- Division of Pediatric Critical Care, Department of Pediatrics, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
853
|
Dramatic Changes in Oligomerization Property Caused by Single Residue Deletion in Staphylococcus aureus Enolase. Mol Biotechnol 2021; 63:125-139. [PMID: 33385272 DOI: 10.1007/s12033-020-00291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Studies were conducted to understand the role of C-terminal lysine residues in the catalytic activity, structural stability and oligomeric properties of Staphylococcus aureus enolase. Interestingly, the S. aureus enolase, in solution, shows its presence as a stable dimer as well as the catalytically active fragile octamer. Compared to the hexa-histidine tagged S. aureus enolase (rSaeno), the deletion mutant showed the negligible difference in Km, but approximately 20-25% reduction in maximum reaction velocity (Vmax) and 2% reduction in turnover number were observed. These kinetic parameters indicate that K-434Δ deletion mutation does not drastically compromise the enzyme efficiency. The secondary structure and the octameric conformation of both the rSaeno and the K-434Δ mutant are very much stable between pH ranging from 6 to 9, temperatures ranging from 20 to 40 °C and in the presence of divalent metal ions Mg2+, Zn2+ and Mn2+. Under these conditions, the recombinant enzyme and the mutant are also catalytically very active. Intrinsic tryptophan fluorescence (320-380 nm) and CD spectral (195-260 nm) analysis revealed that the secondary structure and the surface architecture of the proteins are not majorly altered by the mutation. But, a significant correlation was observed between the time-dependent decrease in the catalytic activity and the oligomeric stability of rSaeno and K-434Δ mutant. The C-terminal lysine residues in the inter-dimer groove aid in folding and oligomerization of S. aureus enolase.
Collapse
|
854
|
Jian Y, Zhao L, Zhao N, Lv HY, Liu Y, He L, Liu Q, Li M. Increasing prevalence of hypervirulent ST5 methicillin susceptible Staphylococcus aureus subtype poses a serious clinical threat. Emerg Microbes Infect 2020; 10:109-122. [PMID: 33355507 PMCID: PMC7832517 DOI: 10.1080/22221751.2020.1868950] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Staphylococcus aureus (S. aureus) is a clinical pathogen of great significance causing metastatic or complicated infections. ST5 clonotype isolates have dominated S. aureus infections for more than 10 years in Shanghai, China, and the proportion of methicillin-susceptible S. aureus (MSSA) has remarkably increased in the past decades. By whole-genome sequencing (WGS) 121 ST5 clonotype S. aureus isolates using next-generation sequencing (NGS) platforms and characterizing the evolutionary dynamics of ST5 linages, we found that MSSA evolved independently, making it a subtype differed from other MRSA clones. Drug resistance gene analysis by using the NGS data demonstrated that ST5 clonotype MRSA might be more tolerant under the threat of antimicrobials, which was confirmed in further in vitro susceptibility tests. However, MSSA subtype isolates exhibited relatively high virulence upon the analysis of virulence factors. Furthermore, MSSA subtype isolates displayed higher hemolysis capacity and higher ability to adhere to epithelial cells including A549 human alveolar epithelial cells and HaCaT human skin keratinocytes, caused more severe infections in murine abscess model. With its high virulence and enhanced magnitude in the past decades, the ST5 MSSA subtype poses a serious clinical threat hence more attention should be paid to the prevention and control.
Collapse
Affiliation(s)
- Ying Jian
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lin Zhao
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Na Zhao
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hui-Ying Lv
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yao Liu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lei He
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qian Liu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
855
|
Hu Y, Pan G, Yang Z, Li T, Wang J, Ansari MF, Hu C, Yadav Bheemanaboina RR, Cheng Y, Zhou C, Zhang J. Novel Schiff base-bridged multi-component sulfonamide imidazole hybrids as potentially highly selective DNA-targeting membrane active repressors against methicillin-resistant Staphylococcus aureus. Bioorg Chem 2020; 107:104575. [PMID: 33385978 DOI: 10.1016/j.bioorg.2020.104575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 01/12/2023]
Abstract
A new type of Schiff base-bridged multi-component sulfonamide imidazole hybrids with antimicrobial potential was developed. Some target compounds showed significant antibacterial potency. Observably, butylene hybrids 4h exhibited remarkable inhibitory efficacy against clinical MRSA (MIC = 1 µg/mL), but had no significant toxic effect on normal mammalian cells (RAW 264.7). The highly active molecule 4h was revealed by molecular modeling study that it could insert into the base-pairs of DNA hexamer duplex and bind with the ASN-62 residue of human carbonic anhydrase isozyme II through hydrogen bonding. Furthermore, further preliminary antibacterial mechanism experiments confirmed that compound 4h could effectively interfere with MRSA membrane and insert into bacterial DNA isolated from clinical MRSA strains through non-covalent bonding to produce a supramolecular complex, thus exerting its strong antibacterial efficacy by impeding DNA replication. These findings strongly implied that the highly active hybrid 4h could be used as a potential DNA-targeting template for the development of valuable antimicrobial agent.
Collapse
Affiliation(s)
- Yuanyuan Hu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Guangxing Pan
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhixiong Yang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tiejun Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Juan Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Mohammad Fawad Ansari
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chunfang Hu
- Dongguan School Affiliated to South China Normal University, Dongguan 523755, China
| | - Rammohan R Yadav Bheemanaboina
- Sokol Institute for Pharmaceutical Life Sciences, Department of Chemistry and Biochemistry, Montclair State University, NJ 07043, USA
| | - Yu Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chenghe Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
856
|
Design, synthesis, antibacterial activity and toxicity of novel quaternary ammonium compounds based on pyridoxine and fatty acids. Eur J Med Chem 2020; 211:113100. [PMID: 33385851 DOI: 10.1016/j.ejmech.2020.113100] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022]
Abstract
A diverse series of 43 novel "soft antimicrobials" based on quaternary ammonium pyridoxine derivatives which include six-membered acetals and ketals of pyridoxine bound via cleavable linker moieties (amide, ester) with a fragment of fatty carboxylic acid was designed. Nine compounds exhibited in vitro promising antibacterial activity against Gram-positive and Gram-negative bacterial strains with MIC values comparable with reference antiseptics miramistin, benzalkonium chloride and chlorohexidine. On various clinical isolates, the lead compounds 6i and 12a exhibited antibacterial activity comparable with that of benzalkonium chloride while higher than that of miramistin. Moreover, 6i and 12a were able to kill bacteria embedded into the matrix of mono- and dual species biofilms. The treatment of bacterial cells by either 6i and 12a lead to fast depolarization of the membrane suggesting that the membrane is an apparent molecular target of compounds. 6i and 12a were non mutagenic neither in SOS-chromotest nor in Ames test and non-toxic in vivo at acute oral (LD50 > 2000 mg/kg) and cutaneous administration (LD50 > 2500 mg/kg) on mice. Taken together, our data allow suggesting described active compounds as promising starting point for the new antibacterial agents development.
Collapse
|
857
|
Lim T, Kim EG, Choi J, Kwon S. A high-throughput cell culture system based on capillary and centrifugal actions for rapid antimicrobial susceptibility testing. LAB ON A CHIP 2020; 20:4552-4560. [PMID: 33169754 DOI: 10.1039/d0lc00753f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance is a global threat to modern society. Rapid determination of suitable antibiotics that inhibit bacterial growth can effectively reduce antibiotic resistance and improve clinical treatment. The conventional methods of antimicrobial susceptibility testing (AST) depend on optical density measurements, which require long-time incubation. Various kinds of rapid AST systems which utilize various technologies from the field of lab on a chip have promised a great reduction in measurement time, but cannot achieve high-throughput, user-friendly testing due to the complexity of the testing system. Here, we introduce a capillary and centrifuge-based rapid AST system that reduces the time of loading the sample and culture media while achieving a high-throughput testing capacity. The capability of the proposed system is validated in a systematic analysis that includes sample loading characteristics and AST trials with standard strains. The proposed system provides a useful tool for drug testing in cell-culture systems with user-friendly and high-throughput analysis.
Collapse
Affiliation(s)
- Taegeun Lim
- QuantaMatrix Inc., Seoul National University Hospital CMI, Seoul, 03082, Republic of Korea and Department of Electrical Engineering and Computer Science, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Eun-Geun Kim
- Lowendtechnologies Co., Anyang, 14056, Republic of Korea
| | - Jungil Choi
- School of Mechanical Engineering, Kookmin University, Seoul, 02707, Republic of Korea.
| | - Sunghoon Kwon
- QuantaMatrix Inc., Seoul National University Hospital CMI, Seoul, 03082, Republic of Korea and Department of Electrical Engineering and Computer Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
858
|
Ochoa SA, Cruz-Córdova A, Mancilla-Rojano J, Escalona-Venegas G, Esteban-Kenel V, Franco-Hernández I, Parra-Ortega I, Arellano-Galindo J, Hernández-Castro R, Perez-López CF, De la Rosa-Zamboni D, Xicohtencatl-Cortes J. Control of Methicillin-Resistant Staphylococcus aureus Strains Associated With a Hospital Outbreak Involving Contamination From Anesthesia Equipment Using UV-C. Front Microbiol 2020; 11:600093. [PMID: 33381094 PMCID: PMC7767929 DOI: 10.3389/fmicb.2020.600093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is considered an opportunistic pathogen in humans and is mainly associated with healthcare-associated infections (HCAIs). This bacterium colonizes the skin and mucous membranes of healthy people and causes frequent hospital outbreaks. The aim of this study was to perform molecular typing of the staphylococcal cassette chromosome mec (SCCmec) and agr loci as wells as to establish the pulsotypes and clonal complexes (CCs) for MRSA and methicillin-sensitive S. aureus (MSSA) outbreaks associated with the operating room (OR) at a pediatric hospital. Twenty-five clinical strains of S. aureus (19 MRSA and 6 MSSA strains) were recovered from the outbreak (patients, anesthesia equipment, and nasopharyngeal exudates from external service anesthesia technicians). These clinical S. aureus strains were mainly resistant to benzylpenicillin (100%) and erythromycin (84%) and were susceptible to vancomycin and nitrofurantoin. The SCCmec type II was amplified in 84% of the S. aureus strains, and the most frequent type of the agr locus was agrII, which was amplified in 72% of the strains; however, the agrI and agrIII genes were mainly detected in MSSA strains. A pulsed-field gel electrophoresis (PFGE) analysis grouped the 25 strains into 16 pulsotypes (P), the most frequent of which was P1, including 10 MRSA strains related to the anesthesia equipment, external service anesthesia technicians, and hospitalized patients. Multilocus sequence typing (MLST) identified 15 sequence types (STs) distributed in nine CCs. The most prevalent ST was ST1011, belonging to CC5, which was associated with the SCCmec type II and agrII type. We postulate that the external service anesthesia technicians were MRSA carriers and that these strains were indirectly transmitted from the contaminated anesthesia equipment that was inappropriately disinfected. Finally, the MRSA outbreak was controlled when the anesthesia equipment disinfection was improved and hand hygiene was reinforced.
Collapse
Affiliation(s)
- Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Jetsi Mancilla-Rojano
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico.,Facultad de Medicina, Posgrado de Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gerardo Escalona-Venegas
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Veronica Esteban-Kenel
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Isabel Franco-Hernández
- Laboratorio Central de Bacteriología, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Israel Parra-Ortega
- Laboratorio Central de Bacteriología, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - José Arellano-Galindo
- Departamento de Infectología, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico
| | - Citlalli F Perez-López
- Departamento de Epidemiología Hospitalaria, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Daniela De la Rosa-Zamboni
- Departamento de Epidemiología Hospitalaria, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| |
Collapse
|
859
|
Screening and characterization of a novel Antibiofilm polypeptide derived from filamentous Fungi. J Proteomics 2020; 233:104075. [PMID: 33309927 DOI: 10.1016/j.jprot.2020.104075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/17/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022]
Abstract
In the present study, 120 fungal isolates were locally isolated from soil and selected according to their ability to antimicrobial activity. Then, selected isolates were tested for their ability to prevent biofilm formation and only one isolate (A01) showed an antibiofilm effect. The isolate A01 identified as Aspergillus tubingensis by sequencing of the 18S ITS region and a segment of β-tubulin gene. Then, 5 fractions were prepared from the culture filtrate of A. tubingensis A01 using the ultrafiltration technique to find active polypeptide fraction. The experiments revealed that one of them had an antibiofilm activity. The MALDI-TOF/MS analyses demonstrated that this polypeptide composed of 92 amino acids and had a molecular mass of 10,087 Da. The sequence alignment showed homology with hypothetical protein (OJI81679.1). The gene coding for this polypeptide consisting of 279 nucleotides, herein we called astucin, was cloned and sequenced from A. tubingensis A01 to confirm results. The MIC of the purified polypeptide was 32 m/L and 128 μg/mL and the MBIC was 2 and 8 μg/mL against Staphylococcus aureus and MRSA, respectively. The results demonstrated that the antimicrobial and antibiofilm activity of astucin, together with its lack of cytotoxicity, makes it an alternative for application in medicine. SIGNIFICANCE: Antibiotic resistance is a global problem and the emergence of antibiotic resistant bacteria reduce the effect the current treatment approaches. In this context, antimicrobial peptides stand out as potentional agents to combat bacterial infection especially, biofilm related infections. Importantly, this study have greatly considered our understanding for fungal derived antibiofilm polypeptides. In this study, traditional selection method combined with crystal violet assay is used to investigate antibiofilm polypeptides. We identified antibiofilm polypeptides purified from A. tubingensis A01. This protein shows antimicrobial and antibiofilm activity against S. aureus.
Collapse
|
860
|
Selvaraj A, Valliammai A, Muthuramalingam P, Priya A, Suba M, Ramesh M, Karutha Pandian S. Carvacrol Targets SarA and CrtM of Methicillin-Resistant Staphylococcus aureus to Mitigate Biofilm Formation and Staphyloxanthin Synthesis: An In Vitro and In Vivo Approach. ACS OMEGA 2020; 5:31100-31114. [PMID: 33324819 PMCID: PMC7726784 DOI: 10.1021/acsomega.0c04252] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/06/2020] [Indexed: 05/25/2023]
Abstract
Carvacrol is an essential oil traditionally used in culinary processes as spice due to its aromatic nature and also known for various biological activities. In the present study, the antivirulence efficacy of carvacrol against methicillin-resistant Staphylococcus aureus (MRSA) is explored. MRSA is an opportunistic pathogen capable of causing various superficial and systemic infections in humans. Biofilm formation and virulence factors of MRSA are responsible for its pathogenesis and resistance. Hence, the aim of this study was to explore the antibiofilm and antivirulence efficacy of carvacrol against MRSA. Carvacrol at 75 μg/mL inhibited MRSA biofilm by 93%, and it also decreased the biofilm formation on polystyrene and glass surfaces. Further, microscopic analyses revealed the reduction in microcolony formation and collapsed structure of biofilm upon carvacrol treatment. The growth curve analysis and the Alamar blue assay showed the nonfatal effect of carvacrol on MRSA. Further, carvacrol significantly reduced the production of MRSA biofilm-associated slime and extracellular polysaccharide. In addition, carvacrol strongly inhibited the antioxidant pigment staphyloxanthin and its intermediates' synthesis in MRSA. Inhibition of biofilm and staphyloxanthin by carvacrol enhanced the susceptibility of MRSA to oxidants and healthy human blood. Quantitative polymerase chain reaction (qPCR) analysis unveiled the downregulation of sarA-mediated biofilm gene expression and staphyloxanthin-associated crtM gene expression. The sarA-dependent antibiofilm potential of carvacrol was validated using S. aureus Newman wild-type and isogenic ΔsarA strains. In silico molecular docking analysis showed the high binding efficacy of carvacrol with staphylococcal accessory regulator A (SarA) and 4,4'-diapophytoene synthase (CrtM) when compared to positive controls. Furthermore, the in vivo efficacy of carvacrol against MRSA infection was demonstrated using the model organism Galleria mellonella. The results revealed the nontoxic nature of carvacrol to the larvae and the rescuing potential of carvacrol against MRSA infection. Finally, the current study reveals the potential of carvacrol in inhibiting the biofilm formation and staphyloxanthin synthesis of MRSA by targeting the global regulator SarA and a novel antivirulence target CrtM.
Collapse
Affiliation(s)
- Anthonymuthu Selvaraj
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Alaguvel Valliammai
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Pandiyan Muthuramalingam
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
- Department
of Systems Biology, Science Research Centre, Yonsei University, Seoul 03722, South Korea
| | - Arumugam Priya
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Manokaran Suba
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Manikandan Ramesh
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | | |
Collapse
|
861
|
Nam J, Alam ST, Kang K, Choi J, Seo MH. Anti-staphylococcal activity of a cyclic lipopeptide, C 15 -bacillomycin D, produced by Bacillus velezensis NST6. J Appl Microbiol 2020; 131:93-104. [PMID: 33211361 DOI: 10.1111/jam.14936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022]
Abstract
AIM The aim of this study was to assess antibacterial activity of a novel Bacillus velezensis strain NST6, and further identify its active compound against pathogenic Staphylococcus strains for clinical therapeutic applications. METHODS AND RESULTS In this study, a novel B. velezensis strain NST6 harbouring strong antimicrobial activity against human pathogenic bacteria was isolated from a soil sample. The solvent extract of the strain exhibited strong antibacterial activity against Gram-positive and Gram-negative bacteria in disc diffusion assay and measurement of minimal inhibitory concentration and bactericidal concentration, of which it showed notable efficacy to Staphylococcus species including Staphylococcus epidermidis, Staphylococcus aureus and methicillin-resistant S. aureus. Strong antibacterial effect against pathogenic S. aureus and low toxicity of the bacterial extract were further validated in Caenorhabditis elegans model. Moreover, by antibacterial activity-guided fractionation using RP-HPLC and LC-MS, we defined C15 -bacillomycin D as the anti-staphylococcal compound produced by the strain. CONCLUSION The primary anti-staphylococcal compound from B. velezensis NST6 was identified as a cyclic lipopeptide, C15 -bacillomycin D, which proved its potential to treat Staphylococcus strains in vitro and in vivo experiments with insignificant level of toxicity. SIGNIFICANCE AND IMPACT OF THE STUDY We provide an alternative treatment option to Staphylococcus infections by investigating the specific anti-staphylococcal activity of C15 -bacillomycin D produced by a B. velezensis strain.
Collapse
Affiliation(s)
- J Nam
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - S T Alam
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - K Kang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - J Choi
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - M-H Seo
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| |
Collapse
|
862
|
Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep 2020; 21:e51034. [PMID: 33400359 PMCID: PMC7726816 DOI: 10.15252/embr.202051034] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/13/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) and persistence are associated with an elevated risk of treatment failure and relapsing infections. They are thus important drivers of increased morbidity and mortality rates resulting in growing healthcare costs. Antibiotic resistance is readily identifiable with standard microbiological assays, and the threat imposed by antibiotic resistance has been well recognized. Measures aiming to reduce resistance development and spreading of resistant bacteria are being enforced. However, the phenomenon of bacteria surviving antibiotic exposure despite being fully susceptible, so-called antibiotic persistence, is still largely underestimated. In contrast to antibiotic resistance, antibiotic persistence is difficult to measure and therefore often missed, potentially leading to treatment failures. In this review, we focus on bacterial mechanisms allowing evasion of antibiotic killing and discuss their implications on human health. We describe the relationship between antibiotic persistence and bacterial heterogeneity and discuss recent studies that link bacterial persistence and tolerance with the evolution of antibiotic resistance. Finally, we review persister detection methods, novel strategies aiming at eradicating bacterial persisters and the latest advances in the development of new antibiotics.
Collapse
Affiliation(s)
- Markus Huemer
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| |
Collapse
|
863
|
Lima LM, Silva BNMD, Barbosa G, Barreiro EJ. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur J Med Chem 2020; 208:112829. [DOI: 10.1016/j.ejmech.2020.112829] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 11/27/2022]
|
864
|
Pongchaidecha M, Changpradub D, Bannalung K, Seejuntra K, Thongmee S, Unnual A, Santimaleeworagun W. Vancomycin Area under the Curve and Pharmacokinetic Parameters during the First 24 Hours of Treatment in Critically Ill Patients using Bayesian Forecasting. Infect Chemother 2020; 52:573-582. [PMID: 33263245 PMCID: PMC7779987 DOI: 10.3947/ic.2020.52.4.573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/18/2020] [Indexed: 12/29/2022] Open
Abstract
Background Currently, the achievement of the target area under the curve (AUC)/minimum inhibitory concentration ratio during the first 24 - 48 h of treatment is associated with reduced 30-day mortality and greater microbiological eradication in patients with methicillin-resistant Staphylococcus aureus bacteremia. This study aimed to determine the AUC and pharmacokinetic parameters on the first day of vancomycin administration based on the Bayesian theorem to optimize the dosing regimen in critically ill patients. Materials and Methods This retrospective study included participants meeting the following criteria: 1) ≥18 years old; 2) receipt of at least one dose of vancomycin; 3) measurement of 2 vancomycin serum concentrations during the first 24 h of treatment; and 4) an intensive care unit admission, mechanical ventilator use, or an Acute Physiology and Chronic Health Evaluation II score >15 points. The AUC on day 1 of treatment and the estimated vancomycin pharmacokinetic parameters were measured using PrecisePK software based on the Bayesian theorem. Results We obtained 132 vancomycin concentrations from 66 patients. The vancomycin pharmacokinetic parameters were as follows: AUC0-24, 571.09 (± standard deviation [SD] 188.62) mg/L·h; clearance (CL), 2.97 (± SD 1.81) L/h; volume of distribution (Vd), 50.60 (± SD 13.91) L; elimination rate constant, 0.062 (± SD 0.039) h−1; and half-life, 18.19 (± SD 15.96) h. Focusing on the vancomycin loading dose, AUC0-24 400 - 600 was achieved in 41.7, 46.1, 44.4, and 26.3% of patients with loading doses of <20, 20 – 24.9, 25 – 30, and >30 mg/kg, respectively. Whereas AUC0-24 ≥521 was achieved in 50, 50, 77.8, and 84.2% of patients with loading doses of <20, 20 – 24.9, 25 – 30, and >30 mg/kg, respectively. The CL of vancomycin was correlated with creatinine CL, whereas the Vd of vancomycin was significantly correlated with age and body weight. Conclusion This study revealed that the higher Vd and CL values on the first day of vancomycin therapy were found in critically ill patients. Additionally, a higher vancomycin loading dose (25 – 30 mg/kg) might be required to achieve target of AUC0-24 during early phase of administration for critically ill patients.
Collapse
Affiliation(s)
- Manat Pongchaidecha
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Dhitiwat Changpradub
- Division of Infectious Diseases, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Kanjana Bannalung
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Kajeewan Seejuntra
- Department of Pharmacy, Ramathibodi Chakri Naruebodindra Hospital, Samutprakarn, Thailand
| | | | - Aminta Unnual
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Wichai Santimaleeworagun
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.,Antibiotic Optimization and Patient Care Project by Pharmaceutical Initiative for Resistant Bacteria and Infectious Diseases Working Group, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.
| |
Collapse
|
865
|
Yang X, Xie B, Peng H, Shi G, Sreenivas B, Guo J, Wang C, He Y. Eradicating intracellular MRSA via targeted delivery of lysostaphin and vancomycin with mannose-modified exosomes. J Control Release 2020; 329:454-467. [PMID: 33253805 DOI: 10.1016/j.jconrel.2020.11.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/17/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
Intracellular methicillin-resistant Staphylococcus aureus (MRSA) is extremely difficult to remove by common antibiotics, leading to infection recurrence and resistance. Herein we report a novel exosome-based antibiotic delivery platform for eradicating intracellular MRSA, where mannosylated exosome (MExos) is employed as the drug carrier and preferentially taken up by macrophages, delivering lysostaphin (MExoL) and vancomycin (MExoV) to intracellular pathogens. Combination of MExoL and MExoV eradicated intracellular quiescent MRSA. Moreover, MExos rapidly accumulated in mouse liver and spleen, the target organs of intracellular MRSA, after intravenous (IV) administration. Thus, the MExos antibiotic delivery platform is a promising strategy for combating intracellular infection.
Collapse
Affiliation(s)
- Xiaohong Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Ave, Shuitu Technology Development Zone, Beibei, 400714 Chongqing, China; Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Beibei Xie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Haibo Peng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Gongming Shi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Banne Sreenivas
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Jian Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China.
| |
Collapse
|
866
|
Kiani M, Bagherzadeh M, Kaveh R, Rabiee N, Fatahi Y, Dinarvand R, Jang HW, Shokouhimehr M, Varma RS. Novel Pt-Ag 3PO 4/CdS/Chitosan Nanocomposite with Enhanced Photocatalytic and Biological Activities. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2320. [PMID: 33238536 PMCID: PMC7700689 DOI: 10.3390/nano10112320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 01/14/2023]
Abstract
Decorating photocatalysts with noble metal nanoparticles (e.g., Pt) often increases the catalysts' photocatalytic activity and biomedical properties. Here, a simple and inexpensive method has been developed to prepare a Pt-Ag3PO4/CdS/chitosan composite, which was characterized and used for the visible light-induced photocatalytic and antibacterial studies. This synthesized composite showed superior photocatalytic activity for methylene blue degradation as a hazardous pollutant (the maximum dye degradation was observed in 90 min of treatment) and killing of Gram positive bacterial (Staphylococcus aureus and Bacillus cereus) as well as Gram negative bacteria (Klebsiella pneumoniae, Salmonella typhimurium, Escherichia coli, and Pseudomonas aeruginosa) under visible light irradiation. The antibacterial activity of CdS, CdS/Ag3PO4, and Pt-Ag3PO4/CdS/chitosan against E. coli, Pseudomonas aeruginosa, Salmonella typhimurium, Klebsiella pneumoniae, Staphylococcus aureus, and Bacillus cereus showed the zone of inhibition (mm) under visible light and under dark conditions at a concentration of 20 µg mL-1. Furthermore, the cell viability of the CdS/chitosan, Ag3PO4, Ag3PO4/CdS/chitosan, and Pt-Ag3PO4/CdS/chitosan were investigated on the human embryonic kidney 293 cells (HEK-293), Henrietta Lacks (HeLa), human liver cancer cell line (HepG2), and pheochromocytoma (PC12) cell lines. In addition, the results indicated that the photodegradation rate for Pt-Ag3PO4/CdS/chitosan is 3.53 times higher than that of CdS and 1.73 times higher than that of the CdS/Ag3PO4 composite. Moreover, Pt-Ag3PO4/CdS/chitosan with an optimal amount of CdS killed large areas of different bacteria and different cells separately in a shorter time period under visible-light irradiation, which shows significantly higher efficiency than pure CdS and other CdS/Ag3PO4 composites. The superb performances of this composite are attributed to its privileged properties, such as retarded recombination of photoinduced electron/hole pairs and a large specific surface area, making Pt-Ag3PO4/CdS/chitosan a valuable composite that can be deployed for a range of important applications, such as visible light-induced photocatalysis and antibacterial activity.
Collapse
Affiliation(s)
- Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran 14155-6451, Iran; (M.K.); (R.K.); (N.R.)
| | - Mojtaba Bagherzadeh
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran 14155-6451, Iran; (M.K.); (R.K.); (N.R.)
| | - Reyhaneh Kaveh
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran 14155-6451, Iran; (M.K.); (R.K.); (N.R.)
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran 14155-6451, Iran; (M.K.); (R.K.); (N.R.)
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran; (Y.F.); (R.D.)
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
- Universal Scientific Education and Research Network (USERN), Tehran 15875-4413, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran; (Y.F.); (R.D.)
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea;
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea;
| | - Rajender S. Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| |
Collapse
|
867
|
Bispo M, Anaya-Sanchez A, Suhani S, Raineri EJM, López-Álvarez M, Heuker M, Szymański W, Romero Pastrana F, Buist G, Horswill AR, Francis KP, van Dam GM, van Oosten M, van Dijl JM. Fighting Staphylococcus aureus infections with light and photoimmunoconjugates. JCI Insight 2020; 5:139512. [PMID: 33048846 PMCID: PMC7710284 DOI: 10.1172/jci.insight.139512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
Infections caused by multidrug-resistant Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), are responsible for high mortality and morbidity worldwide. Resistant lineages were previously confined to hospitals but are now also causing infections among healthy individuals in the community. It is therefore imperative to explore therapeutic avenues that are less prone to raise drug resistance compared with today’s antibiotics. An opportunity to achieve this ambitious goal could be provided by targeted antimicrobial photodynamic therapy (aPDT), which relies on the combination of a bacteria-specific targeting agent and light-induced generation of ROS by an appropriate photosensitizer. Here, we conjugated the near-infrared photosensitizer IRDye700DX to a fully human mAb, specific for the invariantly expressed staphylococcal antigen immunodominant staphylococcal antigen A (IsaA). The resulting immunoconjugate 1D9-700DX was characterized biochemically and in preclinical infection models. As demonstrated in vitro, in vivo, and in a human postmortem orthopedic implant infection model, targeted aPDT with 1D9-700DX is highly effective. Importantly, combined with the nontoxic aPDT-enhancing agent potassium iodide, 1D9-700DX overcomes the antioxidant properties of human plasma and fully eradicates high titers of MRSA. We show that the developed immunoconjugate 1D9-700DX targets MRSA and kills it upon illumination with red light, without causing collateral damage to human cells. An immunoconjugate for targeted photodynamic therapy of Staphylococcus aureus infections kills MRSA with high efficacy upon illumination with red light.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wiktor Szymański
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | | | | | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Gooitzen M van Dam
- Department of Surgery, Division of Surgical Oncology, Nuclear Medicine and Molecular Imaging, Intensive Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | | | |
Collapse
|
868
|
Successful Development of Bacteriocins into Therapeutic Formulation for Treatment of MRSA Skin Infection in a Murine Model. Antimicrob Agents Chemother 2020; 64:AAC.00829-20. [PMID: 32958719 PMCID: PMC7674055 DOI: 10.1128/aac.00829-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of antibiotic-resistant pathogens has caused a serious worldwide problem in infection treatment in recent years. One of the pathogens is methicillin-resistant Staphylococcus aureus (MRSA), which is a major cause of skin and soft tissue infections. Alternative strategies and novel sources of antimicrobials to solve antibiotic resistance problems are urgently needed. In this study, we explored the potential of two broad-spectrum bacteriocins, garvicin KS and micrococcin P1, in skin infection treatments. The emergence of antibiotic-resistant pathogens has caused a serious worldwide problem in infection treatment in recent years. One of the pathogens is methicillin-resistant Staphylococcus aureus (MRSA), which is a major cause of skin and soft tissue infections. Alternative strategies and novel sources of antimicrobials to solve antibiotic resistance problems are urgently needed. In this study, we explored the potential of two broad-spectrum bacteriocins, garvicin KS and micrococcin P1, in skin infection treatments. The two bacteriocins acted synergistically with each other and with penicillin G in killing MRSA in vitro. The MICs of the antimicrobials in the three-component mixture were 40 ng/ml for micrococcin P1 and 2 μg/ml for garvicin KS and penicillin G, which were 62, 16, and at least 1,250 times lower than their MICs when assessed individually. To assess its therapeutic potential further, we challenged the three-component formulation in a murine skin infection model with the multidrug-resistant luciferase-tagged MRSA Xen31, a strain derived from the clinical isolate S. aureus ATCC 33591. Using the tagged-luciferase activity as a reporter for the presence of Xen31 in wounds, we demonstrated that the three-component formulation was efficient in eradicating the pathogen from treated wounds. Furthermore, compared to Fucidin cream, which is an antibiotic commonly used in skin infection treatments, our formulation was also superior in terms of preventing resistance development.
Collapse
|
869
|
Wang Z, Wang HY, Chung CR, Horng JT, Lu JJ, Lee TY. Large-scale mass spectrometry data combined with demographics analysis rapidly predicts methicillin resistance in Staphylococcus aureus. Brief Bioinform 2020; 22:5983719. [PMID: 33197936 DOI: 10.1093/bib/bbaa293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND A mass spectrometry-based assessment of methicillin resistance in Staphylococcus aureus would have huge potential in addressing fast and effective prediction of antibiotic resistance. Since delays in the traditional antibiotic susceptibility testing, methicillin-resistant S. aureus remains a serious threat to human health. RESULTS Here, linking a 7 years of longitudinal study from two cohorts in the Taiwan area of over 20 000 individually resolved methicillin susceptibility testing results, we identify associations of methicillin resistance with the demographics and mass spectrometry data. When combined together, these connections allow for machine-learning-based predictions of methicillin resistance, with an area under the receiver operating characteristic curve of >0.85 in both the discovery [95% confidence interval (CI) 0.88-0.90] and replication (95% CI 0.84-0.86) populations. CONCLUSIONS Our predictive model facilitates early detection for methicillin resistance of patients with S. aureus infection. The large-scale antibiotic resistance study has unbiasedly highlighted putative candidates that could improve trials of treatment efficiency and inform on prescriptions.
Collapse
Affiliation(s)
- Zhuo Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan City, Taiwan
| | - Jorng-Tzong Horng
- Department of Computer Science and Information Engineering, National Central University, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| |
Collapse
|
870
|
Rossato AM, Primon-Barros M, Rocha LDL, Reiter KC, Dias CAG, d’Azevedo PA. Resistance profile to antimicrobials agents in methicillin-resistant Staphylococcus aureus isolated from hospitals in South Brazil between 2014-2019. Rev Soc Bras Med Trop 2020; 53:e20200431. [PMID: 33174961 PMCID: PMC7670760 DOI: 10.1590/0037-8682-0431-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is a common pathogen causing healthcare-associated infections. Owing to the restricted use of beta-lactams in MRSA infections, non-beta-lactam antimicrobials are required for treatment. However, MRSA can develop resistance mechanisms to non-beta-lactam antimicrobials, which reduces viable treatment options. Here, we evaluated the antimicrobial susceptibility and resistance genes of MRSA isolated from hospitalized patients in South Brazil. METHODS The antimicrobial susceptibilities of hospital MRSA (217) isolates were determined by disk diffusion or microdilution methods. Additionally, the presence of 14 resistance genes and SCCmec typing was performed by PCR. RESULTS Among the antimicrobials tested, we observed high erythromycin (74.2%), ciprofloxacin (64.5%), and clindamycin (46.1%) resistance rates and complete susceptibility to linezolid and vancomycin. Seventeen different patterns of MRSA antimicrobial resistance were observed, of which 42.9% represented multidrug resistance. Among erythromycin-resistant MRSA, 53.4%, 45.3%, 37.9%, 13.0%, and 6.8% carried ermA, msrA, msrB, ermC, and ermB genes, respectively. Among clindamycin-resistant MRSA, 83%, 17%, 10%, 4%, and 2% carried ermA, ermC, ermB, linA, and linB genes, respectively. Among gentamicin-resistant MRSA, 96.8%, 83.9%, and 9.7% carried aac(6')/aph(2''), aph(3')-IIIa, and ant(4')-Ia genes, respectively. Among tetracycline-resistant MRSA, 6.5% and 93.5% carried tetK and tetM genes, respectively. Lastly, among trimethoprim/sulfamethoxazole-resistant MRSA, 13.3% and 100% carried dfrA and dfrG genes, respectively. The SCCmec type IV isolates were detected more frequently, whereas the SCCmec type III isolates exhibited higher multidrug resistance. CONCLUSIONS The study data provides information regarding the MRSA resistance profile in South Brazil that is associated with the clinical conditions of patients and can contribute to clinical decision-making.
Collapse
Affiliation(s)
- Adriana Medianeira Rossato
- Universidade Federal de Ciências da Saúde de Porto Alegre,
Programa de Pós-graduação em Ciências da Saúde, Porto Alegre, RS, Brasil
| | - Muriel Primon-Barros
- Universidade Federal de Ciências da Saúde de Porto Alegre,
Programa de Pós-graduação em Ciências da Saúde, Porto Alegre, RS, Brasil
| | - Lisiane da Luz Rocha
- Universidade Federal de Ciências da Saúde de Porto Alegre,
Programa de Pós-graduação em Ciências da Saúde, Porto Alegre, RS, Brasil
| | - Keli Cristine Reiter
- Universidade Federal de Ciências da Saúde de Porto Alegre,
Programa de Pós-graduação em Ciências da Saúde, Porto Alegre, RS, Brasil
| | - Cícero Armídio Gomes Dias
- Universidade Federal de Ciências da Saúde de Porto Alegre,
Programa de Pós-graduação em Ciências da Saúde, Porto Alegre, RS, Brasil
| | - Pedro Alves d’Azevedo
- Universidade Federal de Ciências da Saúde de Porto Alegre,
Programa de Pós-graduação em Ciências da Saúde, Porto Alegre, RS, Brasil
| |
Collapse
|
871
|
Zhang H, Xu GY, Mao C, Xu Y, Dong W, Inam M, Pan S, Hu R, Wang Y, Wang Y, Ma H, Kong L. Characterization and complete genome analysis of Bacillus velezensis CB6 revealed ATP synthase subunit α against foodborne pathogens. Arch Microbiol 2020; 203:1061-1069. [PMID: 33146800 DOI: 10.1007/s00203-020-02102-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/13/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Given the serious threat of foodborne multidrug-resistant bacteria to animals and humans, finding an effective antibacterial compound has always been an important topic for scientists. Here, from the soil of Changbaishan, we have identified a bacterium that can inhibit the growth of Staphylococcus aureus. Nr genome database analysis and phylogenetic analysis showed that strain CB6 belongs to Bacillus velezensis. We found that the crude extract of strain CB6 has broad-spectrum antibacterial activity against foodborne pathogens. In addition, we showed that the crude extract loses antibacterial activity after treatment with papain. Next, strain CB6 was purified using ammonium sulfate precipitation, a Sephadex G-75 gel filtration column and high-performance liquid chromatography system (HPLC). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis indicated that the antibacterial compound was the protein ATP synthase subunit α (ATP-1), with a molecular weight of 55.397 KDa. Moreover, we reported the complete genome sequence of strain CB6, which is composed of a unique circular 3,963,507 bp chromosome with 3749 coding genes and a G + C content of 46.53%. The genome contained 12 gene clusters with antibacterial functions, which constituted over 20.947% of the complete genome. Of note, the amino acid sequence encoding the ATP-1 protein in the strain CB6 genome was identified. In addition to these findings, we speculate that the ATP-1 protein may provide energy for secondary metabolites, which in turn will improve the antibacterial activity of the secondary metabolites. All the above important features make the ATP-1 as a potential candidate for the development of new antibacterial drugs and food preservatives in the future.
Collapse
Affiliation(s)
- Haipeng Zhang
- College of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Guan-Yi Xu
- College of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Changsi Mao
- College of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Yuxuan Xu
- College of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Wenlong Dong
- College of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Muhammad Inam
- College of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | | | - Renge Hu
- College of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Yiming Wang
- College of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Yu Wang
- College of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Hongxia Ma
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.
| | - Lingcong Kong
- College of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.
| |
Collapse
|
872
|
de Freire Bastos MDC, Miceli de Farias F, Carlin Fagundes P, Varella Coelho ML. Staphylococcins: an update on antimicrobial peptides produced by staphylococci and their diverse potential applications. Appl Microbiol Biotechnol 2020; 104:10339-10368. [PMID: 33128614 DOI: 10.1007/s00253-020-10946-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022]
Abstract
Staphylococcins are antimicrobial peptides or proteins produced by staphylococci. They can be separated into different classes, depending on their amino acid composition, structural complexity, and steps involved in their production. In this review, an overview of the current knowledge on staphylococcins will be presented with emphasis on the information collected in the last decade, including a brief description of new peptides. Most staphylococcins characterized to date are either lantibiotics or linear class II bacteriocins. Recently, gene clusters coding for production of circular bacteriocins, sactipeptides, and thiopeptides have been mined from the genome of staphylococcal isolates. In contrast to class II bacteriocins, lantibiotics, sactipeptides, and thiopeptides undergo post-translational modifications that can be quite extensive, depending on the peptide. Few staphylococcins inhibit only some staphylococcal species, but most of them have proven to target pathogens belonging to different genera and involved in a variety of infectious diseases of clinical or agronomic importance. Therefore, these peptides exhibit potential application as anti-infective drugs in different areas. This review will also cover this diverse and remarkable potential. To be commercialized, however, staphylococcin production should be cost-effective and result in high bacteriocin yields, which are not generally achieved from the culture supernatant of their native producers. Such low yields make their production quite costly and not suitable at large industrial scale. Efforts already made to overcome this limitation, minimizing costs and time of production of some staphylococcins and employing either chemical synthesis or in vivo biosynthesis, will be addressed in this review as well. KEY POINTS: • Staphylococci produce a variety of antimicrobial peptides known as staphylococcins. • Most staphylococcins are post-translationally modified peptides. • Staphylococcins exhibit potential biotechnological applications. Graphical abstract.
Collapse
Affiliation(s)
- Maria do Carmo de Freire Bastos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Felipe Miceli de Farias
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Patrícia Carlin Fagundes
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Marcus Lívio Varella Coelho
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.,Instituto Nacional da Propriedade Industrial, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
873
|
Novel Antibiotic Combinations of Diverse Subclasses for Effective Suppression of Extensively Drug-Resistant Methicillin-Resistant Staphylococcus aureus (MRSA). Int J Microbiol 2020; 2020:8831322. [PMID: 33488725 PMCID: PMC7803158 DOI: 10.1155/2020/8831322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 01/12/2023] Open
Abstract
The emergence of multidrug-resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), the chief etiological agent for a range of refractory infections, has rendered all β-lactams ineffective against it. The treatment process is further complicated with the development of resistance to glycopeptides, primary antibiotics for treatment of MRSA. Antibiotic combination therapy with existing antimicrobial agents may provide an immediate treatment option. Minimum inhibitory concentrations (MICs) of 18 different commercially available antibiotics were determined along with their 90 possible pairwise combinations and 64 triple combinations to filter out 5 best combinations. Time-Kill kinetics of these combinations were then analyzed to find collateral bactericidal combinations which were then tested on other randomly selected MRSA isolates. Among the top 5 combinations including levofloxacin-ceftazidime; amoxicillin/clavulanic acid-tobramycin; amoxicillin/clavulanic acid-cephradine; amoxicillin/clavulanic acid-ofloxacin; and piperacillin/tazobactam-tobramycin, three combinations were found to be collaterally effective. Levofloxacin-ceftazidime acted synergistically in 80% of the tested clinical MRSA isolates. First-line β-lactams of lower generations can be used effectively against MRSA infection when used in combination. Antibiotics other than glycopeptides may still work in combination.
Collapse
|
874
|
Senok A, Nassar R, Celiloglu H, Nabi A, Alfaresi M, Weber S, Rizvi I, Müller E, Reissig A, Gawlik D, Monecke S, Ehricht R. Genotyping of methicillin resistant Staphylococcus aureus from the United Arab Emirates. Sci Rep 2020; 10:18551. [PMID: 33122734 PMCID: PMC7596093 DOI: 10.1038/s41598-020-75565-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/16/2020] [Indexed: 12/04/2022] Open
Abstract
Reports from Arabian Gulf countries have demonstrated emergence of novel methicillin resistant Staphylococcus aureus (MRSA) strains. To address the lack of data from the United Arab Emirates (UAE), genetic characterisation of MRSA identified between December 2017 and August 2019 was conducted using DNA microarray-based assays. The 625 MRSA isolates studied were grouped into 23 clonal complexes (CCs) and assigned to 103 strains. CC5, CC6, CC22 and CC30 represented 54.2% (n/N = 339/625) of isolates with other common CCs being CC1, CC8, CC772, CC361, CC80, CC88. Emergence of CC398 MRSA, CC5-MRSA-IV Sri Lanka Clone and ST5/ST225-MRSA-II, Rhine-Hesse EMRSA/New York-Japan Clone in our setting was detected. Variants of pandemic CC8-MRSA-[IVa + ACME I] (PVL+) USA300 were detected and majority of CC772 strains were CC772-MRSA-V (PVL+), “Bengal- Bay Clone”. Novel MRSA strains identified include CC5-MRSA-V (edinA+), CC5-MRSA-[VT + fusC], CC5-MRSA-IVa (tst1+), CC5-MRSA-[V/VT + cas + fusC + ccrA/B-1], CC8-MRSA-V/VT, CC22-MRSA-[IV + fusC + ccrAA/(C)], CC45-MRSA-[IV + fusC + tir], CC80-MRSA-IVa, CC121-MRSA-V/VT, CC152-MRSA-[V + fusC] (PVL+). Although several strains harboured SCC-borne fusidic acid resistance (fusC) (n = 181), erythromycin/clindamycin resistance (ermC) (n = 132) and gentamicin resistance (aacA-aphD) (n = 179) genes, none harboured vancomycin resistance genes while mupirocin resistance gene mupR (n = 2) and cfr gene (n = 1) were rare. An extensive MRSA repertoire including CCs previously unreported in the region and novel strains which probably arose locally suggest an evolving MRSA landscape.
Collapse
Affiliation(s)
- Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, P.O. Box 505055, Dubai, United Arab Emirates.
| | - Rania Nassar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, P.O. Box 505055, Dubai, United Arab Emirates.,Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, UK
| | - Handan Celiloglu
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, P.O. Box 505055, Dubai, United Arab Emirates.,Microbiology Department, Mediclinic City Hospital, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Anju Nabi
- Microbiology & Infection Control Unit, Pathology Department, Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Mubarak Alfaresi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Stefan Weber
- Reference Laboratory for Infectious Diseases, Shaikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Irfan Rizvi
- Microbiology Department, Mediclinic City Hospital, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany.,InfectoGnostics Research Campus Jena, Jena, Germany
| | - Annett Reissig
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany.,InfectoGnostics Research Campus Jena, Jena, Germany
| | - Darius Gawlik
- PTC - Phage Technology Center GmbH, Bönen, Germany.,Institute of Infectious Diseases and Infection Control, University Hospital, Jena, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany.,InfectoGnostics Research Campus Jena, Jena, Germany.,Institute for Medical Microbiology and Hygiene, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Dresden, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany.,InfectoGnostics Research Campus Jena, Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| |
Collapse
|
875
|
Liu W, Ou-Yang W, Zhang C, Wang Q, Pan X, Huang P, Zhang C, Li Y, Kong D, Wang W. Synthetic Polymeric Antibacterial Hydrogel for Methicillin-Resistant Staphylococcus aureus-Infected Wound Healing: Nanoantimicrobial Self-Assembly, Drug- and Cytokine-Free Strategy. ACS NANO 2020; 14:12905-12917. [PMID: 32946218 DOI: 10.1021/acsnano.0c03855] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibacterial hydrogels are attracting extensive attention in soft tissue repair and regeneration, including bacteria-infected-wound healing. The abuse of antibiotics leads to drug resistance. Recent developments have demonstrated that the delivery of inorganic bactericidal agents in hydrogels can drive the wound healing process; however, this approach is complicated by external light stimuli, cytotoxicity, nondegradability, and sophisticated fabrication. Herein, an inherent antibacterial, bioresorbable hydrogel was developed by the spontaneous self-aggregation of amphiphilic, oxadiazole-group-decorated quaternary ammonium salts (QAS)-conjugated poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCEC-QAS) micellar nanoantimicrobials for methicillin-resistant Staphylococcus aureus (MRSA)-infected cutaneous wound healing. The PCEC-QAS hydrogel showed a stable gel state within the temperature range of 5-50 °C and antibacterial efficacy against both Gram-negative and -positive bacteria in vitro and in vivo. Additionally, the PCEC-QAS hydrogel facilitated the cell spreading, proliferation, and migration without cytotoxicity. An in vivo degradation and skin defect healing study suggested the PCEC-QAS hydrogel was totally absorbed without local or systemic toxicity and could promote wound repair in the absence of drugs, cytokines, or cells. Significantly, this hydrogel accelerated the regeneration of a MRSA-infected full-thickness impaired skin wound by successfully reconstructing an intact and thick epidermis similar to normal mouse skin. Collectively, a self-assembling PCEC-QAS antibacterial hydrogel is a promising dressing material to promote skin regeneration and prevent bacterial infection without additional drugs, cells, light irradiation, or delivery systems, providing a simple but effective strategy for treating dermal wounds.
Collapse
Affiliation(s)
- Wenshuai Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wenbin Ou-Yang
- Structural Heart Disease Center, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chao Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qiangsong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiangbin Pan
- Structural Heart Disease Center, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yuejie Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
876
|
Al-Tameemi H, Beavers WN, Norambuena J, Skaar EP, Boyd JM. Staphylococcus aureus lacking a functional MntABC manganese import system has increased resistance to copper. Mol Microbiol 2020; 115:554-573. [PMID: 33034093 DOI: 10.1111/mmi.14623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
S. aureus USA300 isolates utilize the copBL and copAZ gene products to prevent Cu intoxication. We created and examined a ΔcopAZ ΔcopBL mutant strain (cop-). The cop- strain was sensitive to Cu and accumulated intracellular Cu. We screened a transposon (Tn) mutant library in the cop- background and isolated strains with Tn insertions in the mntABC operon that permitted growth in the presence of Cu. The mutations were in mntA and they were recessive. Under the growth conditions utilized, MntABC functioned in manganese (Mn) import. When cultured with Cu, strains containing a mntA::Tn accumulated less Cu than the parent strain. Mn(II) supplementation improved growth when cop- was cultured with Cu and this phenotype was dependent upon the presence of MntR, which is a repressor of mntABC transcription. A ΔmntR strain had an increased Cu load and decreased growth in the presence of Cu, which was abrogated by the introduction of mntA::Tn. Over-expression of mntABC increased cellular Cu load and sensitivity to Cu. The presence of a mntA::Tn mutation protected iron-sulfur (FeS) enzymes from inactivation by Cu. The data presented are consistent with a model wherein defective MntABC results in decreased cellular Cu accumulation and protection to FeS enzymes from Cu poisoning.
Collapse
Affiliation(s)
- Hassan Al-Tameemi
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
877
|
Rehberg N, Sommer GA, Drießen D, Kruppa M, Adeniyi ET, Chen S, Wang L, Wolf K, Tasch BOA, Ioerger TR, Zhu K, Müller TJJ, Kalscheuer R. Nature-Inspired (di)Azine-Bridged Bisindole Alkaloids with Potent Antibacterial In Vitro and In Vivo Efficacy against Methicillin-Resistant Staphylococcus aureus. J Med Chem 2020; 63:12623-12641. [PMID: 33103423 DOI: 10.1021/acs.jmedchem.0c00826] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural bisindole alkaloids such as Hyrtinadine A and Alocasin A, which are known to exhibit diverse bioactivities, provide promising chemical scaffolds for drug development. By optimizing the Masuda borylation-Suzuki coupling sequence, a library of various natural product-derived and non-natural (di)azine-bridged bisindoles was created. While unsubstituted bisindoles were devoid of antibacterial activity, 5,5'-chloro derivatives were highly active against methicillin-resistant Staphylococcus aureus (MRSA) and further Gram-positive pathogens at minimal inhibitory concentrations ranging from 0.20 to 0.78 μM. These compounds showed strong bactericidal killing effects but only moderate cytotoxicity against human cell lines. Furthermore, the two front-runner compounds 4j and 4n exhibited potent in vivo efficacy against MRSA in a mouse wound infection model. Although structurally related bisindoles were reported to specifically target pyruvate kinase in MRSA, antibacterial activity of 4j and 4n is independent of pyruvate kinase. Rather, these compounds lead to bacterial membrane permeabilization and cellular efflux of low-molecular-weight molecules.
Collapse
Affiliation(s)
- Nidja Rehberg
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Gereon A Sommer
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Daniel Drießen
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Marco Kruppa
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Emmanuel T Adeniyi
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Shang Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Lin Wang
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Karina Wolf
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Boris O A Tasch
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Thomas R Ioerger
- Department of Computer Science, Texas A&M University, 710 Ross St., College Station, Texas 77843, United States
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Thomas J J Müller
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
878
|
Masila VM, Ndakala AJ, Midiwo JO, Byamukama R, Kamau RW, Kumarihamy M, Muhammad I. Synthesis of a pyrrolidine derivative of a carvotacetone and monoterpenes for anti-methicillin-resistant Staphylococcus aureus and anti-cryptococcal properties. Nat Prod Res 2020; 36:2321-2328. [PMID: 33103456 DOI: 10.1080/14786419.2020.1833201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Monoterpene derivatives are of great biological relevance in the pharmaceutical industry. In the present study, pyrrolidine derivative of a carvotacetone, 3-O-benzylcarvotacetone (1), and selected monoterpenes (3-hydroxy-2-isopropyl-5-methyl-p-benzoquinone (3) and cis-piperitol (5)) were prepared to provide (R)-1-(4-(benzyloxy)-5-isopropyl-2-methylcyclohexa-1,3-dien-1-yl)-pyrrolidine (2), 2-isopropyl-5-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl acetate (4), cis-3-hydroxypiperitone (6) and carvacrol (7). Structure of 2 was determined based on NMR and HRMS spectral data. Compound 4 exhibited activity against fungi Cryptococcus neoformans with an IC50 value of < 0.8 µg/mL. In addition, this compound 4 had an IC50 value of 14.97 µg/mL against methicillin resistant Staphylococcus aureus bacteria. Previous to the current study, both compound 6 and 7 had been reported to have anti-microbial and anti-fungal activities.
Collapse
Affiliation(s)
- Veronica M Masila
- Department of Chemistry, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Albert J Ndakala
- Department of Chemistry, School of Physical Sciences, University of Nairobi, Nairobi, Kenya
| | - Jacob O Midiwo
- Department of Chemistry, School of Physical Sciences, University of Nairobi, Nairobi, Kenya
| | - Robert Byamukama
- Department of Chemistry, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Rahab W Kamau
- Department of Chemistry, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Mallika Kumarihamy
- National Centre for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Mississippi, MS, USA
| | - Ilias Muhammad
- National Centre for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Mississippi, MS, USA
| |
Collapse
|
879
|
Karki AB, Neyaz L, Fakhr MK. Comparative Genomics of Plasmid-Bearing Staphylococcus aureus Strains Isolated From Various Retail Meats. Front Microbiol 2020; 11:574923. [PMID: 33193185 PMCID: PMC7644949 DOI: 10.3389/fmicb.2020.574923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/06/2020] [Indexed: 01/19/2023] Open
Abstract
Food poisoning due to the consumption of Staphylococcus aureus contaminated food is a major health problem worldwide. In this study, we sequenced the genomes of ten plasmid-bearing S. aureus strains isolated from retail beef, chicken, turkey, and pork. The chromosomes of the strains varied in size from 2,654,842 to 2,807,514 bp, and a total of 25 plasmids were identified ranging from 1.4 to 118 kb. Comparative genomic analysis revealed similarities between strains isolated from the same retail meat source, indicating an origin-specific genomic composition. Genes known to modulate attachment, invasion, and toxin production were identified in the 10 genomes. Strains from retail chicken resembled human clinical isolates with respect to virulence factors and genomic islands, and retail turkey and pork isolates shared similarity with S. aureus from livestock. Most chromosomes contained antimicrobial resistance, heavy metal resistance, and stress response genes, and several plasmids contained genes involved in antimicrobial resistance and virulence. In conclusion, the genomes of S. aureus strains isolated from retail meats showed an origin-specific composition and contained virulence and antimicrobial resistance genes similar to those present in human clinical isolates.
Collapse
Affiliation(s)
| | | | - Mohamed K. Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
880
|
Zhang Z, Li K, Zhang GY, Tang YZ, Jin Z. Design, synthesis and biological activities of novel pleuromutilin derivatives with a substituted triazole moiety as potent antibacterial agents. Eur J Med Chem 2020; 204:112604. [PMID: 32731187 DOI: 10.1016/j.ejmech.2020.112604] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/27/2022]
Abstract
A series of novel pleuromutilin derivatives possessing 1,2,3-triazole moieties were synthesized via click reactions under mild conditions. The in vitro antibacterial activities of these derivatives against 4 strains of S. aureus (MRSA ATCC 43300, ATCC 29213, AD 3, and 144) and 1 strain of E. coli (ATCC 25922) were tested by the broth dilution method. The majority of the synthesized derivatives displayed potent antibacterial activities against MRSA (MIC = 0.125-2 μg/mL). It was also found that most compounds had no significant inhibitory effect on the proliferation of RAW264.7 cells at the concentration of 8 μg/mL. Among these derivatives, compound 32 (∼1.71 log10 CFU/g) containing dimethylamine group side chain displayed more effective than tiamulin (∼0.77 log10 CFU/g) at the dose of 20 mg/kg in reducing MRSA load in thigh infected mice. Additionally, compound 32 (the survival rate was 50%) also displayed superior in vivo efficacy to that of tiamulin (the survival rate was 20%) in the mouse systemic model. Structure-activity relationship (SAR) studies resulted in compound 32 with the most potent in vitro and in vivo antibacterial activity among the series. Moreover, compound 32 was evaluated in CYP450 inhibition assay and showed moderate in vitro inhibition of CYP3A4 (IC50 = 6.148 μM).
Collapse
Affiliation(s)
- Zhe Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Guang-Yu Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
881
|
Lima WG, de Brito JCM, Cardoso VN, Fernandes SOA. In-depth characterization of antibacterial activity of melittin against Staphylococcus aureus and use in a model of non-surgical MRSA-infected skin wounds. Eur J Pharm Sci 2020; 156:105592. [PMID: 33049305 DOI: 10.1016/j.ejps.2020.105592] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Skin infections caused by methicillin-resistant Staphylococcus aureus (MRSA) require the development of new and effective topical antibiotics. In this context, melittin, the main component of apitoxin, has a potent antibacterial effect. However, little is known regarding the anti-inflammatory potential this peptide in infection models, or its ability to induce clinically important resistance. Here, we aimed to conduct an in-depth characterization of the antibacterial potential of melittin in vitro and evaluate the pharmaceutical potential of an ointment containing melittin for the treatment of non-surgical infections induced by MRSA. The minimum inhibitory concentration of melittin varied from 0.12 to 4 μM. The antibacterial effect was mainly bactericidal and fast (approximately 0.5 h after incubation) and was maintained even in stationary cells and mature MRSA biofilms. Melittin interacts synergistically with beta-lactams and aminoglycosides, and its ability to form pores in the membrane reverses the resistance of vancomycin-intermediate Staphylococcus aureus (VISA) to amoxicillin, and vancomycin. Its ability to induce resistance in vitro was absent, and melittin was stable in several conditions often associated with infected wounds. In vivo, aointment containing melittin reduced bacterial load and the content of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6 (IL-6), and IL-1 beta. Collectively, these data point to melittin as a potential candidate for topical formulations aimed at the treatment of non-surgical infections caused by MRSA.
Collapse
Affiliation(s)
- William Gustavo Lima
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
882
|
Scherf JR, Barbosa Dos Santos CR, Sampaio de Freitas T, Rocha JE, Macêdo NS, Mascarenhas Lima JN, Melo Coutinho HD, Bezerra da Cunha FA. Effect of terpinolene against the resistant Staphylococcus aureus strain, carrier of the efflux pump QacC and β-lactamase gene, and its toxicity in the Drosophila melanogaster model. Microb Pathog 2020; 149:104528. [PMID: 33002597 DOI: 10.1016/j.micpath.2020.104528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 11/26/2022]
Abstract
Efflux pumps and β-lactamases are mechanisms of bacterial resistance that exist in Staphylococcus aureus, where both mechanisms are expressed simultaneously in the SA K4100 strain, with its efflux pump being characterized as QacC (Quaternary Ammonium Compounds C). The search for inhibitors of these mechanisms has grown gradually, with research on isolated compounds, including terpenes, which have innumerable biological activities, being common. This study sought to evaluate the antibacterial activity of Terpinolene against the S. aureus K4100 strain, carrying a QacC efflux pump and β-lactamase, as well as to evaluate its toxicity in the Drosophila melanogaster arthropod model. Determination of the Minimum Inhibitory Concentration (MIC) was performed by broth microdilution. Efflux pump inhibition was evaluated by the MIC reduction of Oxacillin and Ethidium Bromide (EtBr). β-Lactamase inhibition was analyzed by the MIC reduction of Ampicillin with Sulbactam. Toxicity was verified by mortality parameters and locomotor assays in D. melanogaster. The results demonstrated that Terpinolene did not present a direct antibacterial activity (MIC ≥ 1024 μg/mL). However, a reduction in MIC was observed when Terpinolene was associated with Oxacillin (161.26-71.83 μg/mL) and EtBr (45.25-32 μg/mL), possibly by a β-lactamase and efflux pump inhibition, thus evidencing a modulatory activity. Terpinolene presented D. melanogaster mortality with an EC50 of 34.6 μL/L within 12 h of exposure. Additionally, Terpinolene presented damage to the locomotor system after the second hour of exposure, with the effect increasing in a concentration-dependent manner. In conclusion, new tests should be carried out to investigate the Terpinolene reinforcement of antibiotic activity and toxic activity mechanisms of action.
Collapse
Affiliation(s)
- Jackelyne Roberta Scherf
- Laboratory of Bioprospecting in the Semi-Arid and Alternative Methods (LABSEMA), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Chemistry Pos Graduate Program, Brazil.
| | - Cristina Rodrigues Barbosa Dos Santos
- Laboratory of Bioprospecting in the Semi-Arid and Alternative Methods (LABSEMA), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Chemistry Pos Graduate Program, Brazil.
| | - Thiago Sampaio de Freitas
- Laboratory of Simulations and Molecular Spectroscopy, Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Chemistry Pos Graduate Program, Brazil.
| | - Janaína Esmeraldo Rocha
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Chemistry Pos Graduate Program, Brazil.
| | - Nair Silva Macêdo
- Laboratory of Bioprospecting in the Semi-Arid and Alternative Methods (LABSEMA), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Sciences Pos Graduate Program - PPGCB, Federal University of Pernambuco - UFPE, Recife, 50670-901, PE, Brazil.
| | - Jessyca Nayara Mascarenhas Lima
- Laboratory of Bioprospecting in the Semi-Arid and Alternative Methods (LABSEMA), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil.
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil
| | - Francisco Assis Bezerra da Cunha
- Laboratory of Bioprospecting in the Semi-Arid and Alternative Methods (LABSEMA), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil.
| |
Collapse
|
883
|
Huang J, Zhang T, Zou X, Wu S, Zhu J. Panton-valentine leucocidin carrying Staphylococcus aureus causing necrotizing pneumonia inactivates the JAK/STAT signaling pathway and increases the expression of inflammatory cytokines. INFECTION GENETICS AND EVOLUTION 2020; 86:104582. [PMID: 33017689 DOI: 10.1016/j.meegid.2020.104582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/13/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022]
Abstract
PURPOSE Methicillin-resistant Staphylococcus aureus (MRSA) carrying Panton-Valentine leukocidin, a pore-forming toxin, is a common cause of necrotizing pneumonia. However, the early pulmonary inflammatory response following PVL(+) MRSA infection is unknown. The purpose of this study was to use a murine model to determine the effect of PVL(+) MRSA on lung tissues and the expression of cytokines and JAK and STAT mRNA and protein. METHODS Mice were randomly divided into 3 groups and intra-nasally treated with PBS (control group), recombinant PVL (rPVL group), and PVL(+) MRSA (PVL group). At 24 and 48 h after inoculation, bronchoalveolar lavage fluid (BALF) was tested for cytokine levels, and lung tissues were tested for JAK and STAT mRNA and protein expression, and examined after hematoxylin and eosin staining. RESULTS Mice infected with the PVL(+) strain became ill, characterized by impaired mobility, hunched posture, ruffled fur, and labored breathing. Lung tissue exhibited tissue necrosis and hemorrhage. BALF levels of IL-8, TNF-α, IFN-γ, IL-12, sICAM-1, and sVCAM-1 were increased in the rPVL or PVL groups, while levels of IL-10 and IL-4 levels were similar among the groups. JAK1 and STAT1 mRNA expression and protein levels were increased in lung tissue from mice infected with PVL(+) MRSA and rPVL. CONCLUSIONS PVL is a significant S. aureus virulence factor, and upregulates the expression of proinflammatory cytokines but does not affect the expression of anti-inflammatory cytokines. The effect of PVL may be due to JAK/STAT pathway activation. Blockade of the JAK/STAT pathway may decrease the severity of PVL(+) MRSA pneumonia.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, China.
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, China
| | - Xiaoling Zou
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, China
| | - Shaozhu Wu
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, China
| | - Jiaxin Zhu
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, China
| |
Collapse
|
884
|
Nyerges A, Tomašič T, Durcik M, Revesz T, Szili P, Draskovits G, Bogar F, Skok Ž, Zidar N, Ilaš J, Zega A, Kikelj D, Daruka L, Kintses B, Vasarhelyi B, Foldesi I, Kata D, Welin M, Kimbung R, Focht D, Mašič LP, Pal C. Rational design of balanced dual-targeting antibiotics with limited resistance. PLoS Biol 2020; 18:e3000819. [PMID: 33017402 PMCID: PMC7561186 DOI: 10.1371/journal.pbio.3000819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/15/2020] [Accepted: 08/26/2020] [Indexed: 12/02/2022] Open
Abstract
Antibiotics that inhibit multiple bacterial targets offer a promising therapeutic strategy against resistance evolution, but developing such antibiotics is challenging. Here we demonstrate that a rational design of balanced multitargeting antibiotics is feasible by using a medicinal chemistry workflow. The resultant lead compounds, ULD1 and ULD2, belonging to a novel chemical class, almost equipotently inhibit bacterial DNA gyrase and topoisomerase IV complexes and interact with multiple evolutionary conserved amino acids in the ATP-binding pockets of their target proteins. ULD1 and ULD2 are excellently potent against a broad range of gram-positive bacteria. Notably, the efficacy of these compounds was tested against a broad panel of multidrug-resistant Staphylococcus aureus clinical strains. Antibiotics with clinical relevance against staphylococcal infections fail to inhibit a significant fraction of these isolates, whereas both ULD1 and ULD2 inhibit all of them (minimum inhibitory concentration [MIC] ≤1 μg/mL). Resistance mutations against these compounds are rare, have limited impact on compound susceptibility, and substantially reduce bacterial growth. Based on their efficacy and lack of toxicity demonstrated in murine infection models, these compounds could translate into new therapies against multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Akos Nyerges
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Tamas Revesz
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Petra Szili
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Gabor Draskovits
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Ferenc Bogar
- MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, Hungary
| | - Žiga Skok
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Anamarija Zega
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Balint Kintses
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
- HCEMM-BRC Translational Microbiology Lab, Szeged, Hungary
| | - Balint Vasarhelyi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Imre Foldesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Diána Kata
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Martin Welin
- SARomics Biostructures, Medicon Village, Lund, Sweden
| | | | - Dorota Focht
- SARomics Biostructures, Medicon Village, Lund, Sweden
| | | | - Csaba Pal
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| |
Collapse
|
885
|
Ge X, Xu Z. 1,2,4-Triazole hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch Pharm (Weinheim) 2020; 354:e2000223. [PMID: 32985011 DOI: 10.1002/ardp.202000223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/03/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has developed numerous mechanisms of virulence and strategies to evade the human immune system, and it can be transmitted between humans, animals, and the environment. Thus, MRSA is an important cause of morbidity and mortality in both hospitals and in the community, creating an urgent demand for the development of novel anti-MRSA candidates. The 1,2,4-triazole nucleus is a bioisostere of amide, ester, and carboxylic acid, and the 1,2,4-triazole ring is found in many compounds with diverse biological effects. 1,2,4-Triazole derivatives could exert their antibacterial activity through inhibition of efflux pumps, filamentous temperature-sensitive protein Z, penicillin-binding protein, DNA gyrase, and topoisomerase IV, and they play an important role in the discovery of novel antibacterial agents. Among them, 1,2,4-triazole hybrids, which have the potential to exert dual/multiple mechanisms of action, possess a promising broad-spectrum antibacterial activity against a panel of clinically important drug-resistant pathogens including MRSA. This review outlines the recent developments of 1,2,4-triazole hybrids with a potential anti-MRSA activity, covering articles published between 2010 and 2020. The mechanisms of action, critical aspects of their design, and structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhi Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
886
|
Krukowski H, Bakuła Z, Iskra M, Olender A, Bis-Wencel H, Jagielski T. The first outbreak of methicillin-resistant Staphylococcus aureus in dairy cattle in Poland with evidence of on-farm and intrahousehold transmission. J Dairy Sci 2020; 103:10577-10584. [PMID: 32896418 DOI: 10.3168/jds.2020-18291] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is a widely recognized pathogen responsible for many serious diseases in both humans and animals. It is also one of the major causative agents of bovine mastitis. Methicillin-resistant S. aureus (MRSA), although relatively rare in this pathology, has been increasingly reported in livestock animals, mainly in pigs, but also cattle, sheep, and poultry. The recent emergence of livestock-associated (LA-)MRSA is cause for an immediate public health concern due to the risk of zoonotic transmission to humans, and is of particular concern for people who work in animal husbandry or have prolonged contact with livestock animals. This study reports on the first LA-MRSA outbreak in dairy cattle and the first probable case of MRSA transmission between humans and cows in Poland. A single dairy farm located in Eastern Poland was monitored on a regular basis for the occurrence of mastitis. Over a 1-yr study period, 717 quarter-milk samples from 583 cows were collected and examined microbiologically. A total of 5 MRSA isolates from as many cows with subclinical mastitis were cultured. They all belonged to the same outbreak, given a 2-mo time window in which they were identified. During the outbreak, 24 oral and nasal swabs were voluntarily taken from 6 people: a milker, a veterinarian, and 4 members of the veterinarian's family. Eight swabs from a milker, veterinarian, and 2 family members yielded positive MRSA cultures. All MRSA isolates were genotyped with a combination of multiple-locus variable number tandem repeat analysis, multilocus sequence typing, and staphylococcal protein A gene (spa) typing. Eleven bovine (n = 5; 5 cases) and human (n = 6; 4 cases) isolates showed an identical drug-susceptibility profile and were indistinguishable upon multiple-locus variable number tandem repeat analysis (pattern A), multilocus sequence typing (ST398) and spa (t034) typing. The results of this study provide the evidence of transmission of MRSA between humans and cows, and between humans in the family setting. This work, despite being a preliminary investigation, underscores the risk of intra- and interspecies transmission of LA-MRSA and urges enhancement of the existing biosecurity measures aimed at preventing MRSA (and other milk pathogens) spread at both the farm- and household levels.
Collapse
Affiliation(s)
- Henryk Krukowski
- Department of Animal and Environmental Hygiene, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Zofia Bakuła
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Mateusz Iskra
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Alina Olender
- Department of Medical Microbiology, Medical University of Lublin, W. Chodźki 1, 20-093 Lublin, Poland
| | - Hanna Bis-Wencel
- Department of Animal and Environmental Hygiene, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
887
|
Meng T, Hou Y, Shang C, Zhang J, Zhang B. Recent advances in indole dimers and hybrids with antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch Pharm (Weinheim) 2020; 354:e2000266. [PMID: 32986279 DOI: 10.1002/ardp.202000266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 01/27/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), one of the major and most dangerous pathogens in humans, is a causative agent of severe pandemic of mainly skin and soft tissue and occasionally fatal infections. Therefore, it is imperative to develop potent and novel anti-MRSA agents. Indole derivatives could act against diverse enzymes and receptors in bacteria, occupying a salient place in the development of novel antibacterial agents. Dimerization and hybridization are common strategies to discover new drugs, and a number of indole dimers and hybrids possess potential antibacterial activity against a panel of clinically important pathogens including MRSA. Accordingly, indole dimers and hybrids are privileged scaffolds for the discovery of novel anti-MRSA agents. This review outlines the recent development of indole dimers and hybrids with a potential activity against MRSA, covering articles published between 2010 and 2020. The structure-activity relationship and the mechanism of action are also discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Tingting Meng
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi, China
| | - Yani Hou
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi, China
| | - Congshan Shang
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi, China
| | - Jing Zhang
- School of Biomedical and Food Engineering, Shangluo University, Shangluo, Shaanxi, China
| | - Bo Zhang
- School of Biomedical and Food Engineering, Shangluo University, Shangluo, Shaanxi, China
| |
Collapse
|
888
|
Mrochen DM, Fernandes de Oliveira LM, Raafat D, Holtfreter S. Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models. Int J Mol Sci 2020; 21:E7061. [PMID: 32992784 PMCID: PMC7582387 DOI: 10.3390/ijms21197061] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathobiont of humans as well as a multitude of animal species. The high prevalence of multi-resistant and more virulent strains of S. aureus necessitates the development of new prevention and treatment strategies for S. aureus infection. Major advances towards understanding the pathogenesis of S. aureus diseases have been made using conventional mouse models, i.e., by infecting naïve laboratory mice with human-adapted S.aureus strains. However, the failure to transfer certain results obtained in these murine systems to humans highlights the limitations of such models. Indeed, numerous S. aureus vaccine candidates showed promising results in conventional mouse models but failed to offer protection in human clinical trials. These limitations arise not only from the widely discussed physiological differences between mice and humans, but also from the lack of attention that is paid to the specific interactions of S. aureus with its respective host. For instance, animal-derived S. aureus lineages show a high degree of host tropism and carry a repertoire of host-specific virulence and immune evasion factors. Mouse-adapted S.aureus strains, humanized mice, and microbiome-optimized mice are promising approaches to overcome these limitations and could improve transferability of animal experiments to human trials in the future.
Collapse
Affiliation(s)
- Daniel M. Mrochen
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Liliane M. Fernandes de Oliveira
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Silva Holtfreter
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| |
Collapse
|
889
|
Selvaraj A, Valliammai A, Premika M, Priya A, Bhaskar JP, Krishnan V, Pandian SK. Sapindus mukorossi Gaertn. and its bioactive metabolite oleic acid impedes methicillin-resistant Staphylococcus aureus biofilm formation by down regulating adhesion genes expression. Microbiol Res 2020; 242:126601. [PMID: 33010587 DOI: 10.1016/j.micres.2020.126601] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/04/2020] [Accepted: 09/11/2020] [Indexed: 11/27/2022]
Abstract
Plants are boon to the mankind due to plenty of metabolites with medicinal values. Though plants have traditionally been used to treat various diseases, their biological values are not completely explored yet. Sapindus mukorossi is one such ethnobotanical plant identified for various biological activities. As biofilm formation and biofilm mediated drug resistance of methicillin-resistant Staphylococcus aureus (MRSA) have raised as serious global issue, search for antibiofilm agents has gained greater importance. Notably, antibiofilm potential of S. mukorossi is still unexplored. The aim of the study is to explore the effect of S. mukorossi methanolic extract (SMME) on MRSA biofilm formation and adhesive molecules production. Significantly, SMME exhibited 82 % of biofilm inhibition at 250 μg/mL without affecting the growth and microscopic analyses evidenced the concentration dependent antibiofilm activity of SMME. In vitro assays exhibited the reduction in slime, cell surface hydrophobicity, autoaggregation, extracellular polysaccharides substance and extracellular DNA synthesis upon SMME treatment. Further, qPCR analysis confirmed the ability of SMME to interfere with the expression of adhesion genes associated with biofilm formation such as icaA, icaD, fnbA, fnbB, clfA, cna, and altA. GC-MS analysis and molecular docking study revealed that oleic acid is responsible for the antibiofilm activity. FT-IR analysis validated the presence of oleic acid in SMME. These results suggest that SMME can be used as a promising therapeutic agent against MRSA biofilm-associated infections.
Collapse
Affiliation(s)
- Anthonymuthu Selvaraj
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Alaguvel Valliammai
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Muruganatham Premika
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Arumugam Priya
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | | | | | | |
Collapse
|
890
|
Chopra T, Sandhu A, Theriault N, Meehan J, Tillotson G. Omadacycline: a therapeutic review of use in community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections. Future Microbiol 2020; 15:1319-1333. [PMID: 32959689 DOI: 10.2217/fmb-2020-0182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Omadacycline is a novel aminomethylcycline antimicrobial, US FDA approved for the treatment of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections. It is not susceptible to common tetracycline resistance mechanisms, and has demonstrated efficacy against a broad spectrum of pathogens including resistant isolates, which are increasing in prevalence and complexity. It is available in both intravenous and oral formats, and can be administered in single, once daily doses or multiple doses, with no dosing adjustments required for sex, age, hepatic or renal impairment. It can be a good option for patients with low treatment adherence, and oral therapy may be used to reduce length of hospitalization for iv. treatment. This article reviews the in vitro and in vivo activity, PK/PD profile, integrated data from clinical trials including clinical efficacy and safety profile, and looks to future application of omadacycline.
Collapse
Affiliation(s)
- Teena Chopra
- Department of Infectious Diseases, Wayne State University, Detroit, MI 42801, USA
| | - Avnish Sandhu
- Department of Infectious Diseases, Wayne State University, Detroit, MI 42801, USA
| | | | - Joni Meehan
- Department of Medical Affairs, GST Micro LLC, Richmond, VA 23231, USA
| | - Glenn Tillotson
- Department of Medical Affairs, GST Micro LLC, Richmond, VA 23231, USA
| |
Collapse
|
891
|
Abstract
Staphylococcus aureus and Streptococcus pneumoniae infections cause significant morbidity and mortality in humans. For both, nasal colonization is a risk factor for infection. Studies of nasal microbiota identify Dolosigranulum pigrum as a benign bacterium present when adults are free of S. aureus or when children are free of S. pneumoniae. Here, we validated these in vivo associations with functional assays. We found that D. pigrum inhibited S. aureusin vitro and, together with a specific nasal Corynebacterium species, also inhibited S. pneumoniae. Furthermore, genomic analysis of D. pigrum indicated that it must obtain key nutrients from other nasal bacteria or from humans. These phenotypic interactions support the idea of a role for microbe-microbe interactions in shaping the composition of human nasal microbiota and implicate D. pigrum as a mutualist of humans. These findings support the feasibility of future development of microbe-targeted interventions to reshape nasal microbiota composition to exclude S. aureus and/or S. pneumoniae. Multiple epidemiological studies identify Dolosigranulum pigrum as a candidate beneficial bacterium based on its positive association with health, including negative associations with nasal/nasopharyngeal colonization by the pathogenic species Staphylococcus aureus and Streptococcus pneumoniae. Using a multipronged approach to gain new insights into D. pigrum function, we observed phenotypic interactions and predictions of genomic capacity that support the idea of a role for microbe-microbe interactions involving D. pigrum in shaping the composition of human nasal microbiota. We identified in vivo community-level and in vitro phenotypic cooperation by specific nasal Corynebacterium species. Also, D. pigrum inhibited S. aureus growth in vitro, whereas robust inhibition of S. pneumoniae required both D. pigrum and a nasal Corynebacterium together. D. pigruml-lactic acid production was insufficient to account for these inhibitions. Genomic analysis of 11 strains revealed that D. pigrum has a small genome (average 1.86 Mb) and multiple predicted auxotrophies consistent with D. pigrum relying on its human host and on cocolonizing bacteria for key nutrients. Further, the accessory genome of D. pigrum harbored a diverse repertoire of biosynthetic gene clusters, some of which may have a role in microbe-microbe interactions. These new insights into D. pigrum’s functions advance the field from compositional analysis to genomic and phenotypic experimentation on a potentially beneficial bacterial resident of the human upper respiratory tract and lay the foundation for future animal and clinical experiments. IMPORTANCEStaphylococcus aureus and Streptococcus pneumoniae infections cause significant morbidity and mortality in humans. For both, nasal colonization is a risk factor for infection. Studies of nasal microbiota identify Dolosigranulum pigrum as a benign bacterium present when adults are free of S. aureus or when children are free of S. pneumoniae. Here, we validated these in vivo associations with functional assays. We found that D. pigrum inhibited S. aureusin vitro and, together with a specific nasal Corynebacterium species, also inhibited S. pneumoniae. Furthermore, genomic analysis of D. pigrum indicated that it must obtain key nutrients from other nasal bacteria or from humans. These phenotypic interactions support the idea of a role for microbe-microbe interactions in shaping the composition of human nasal microbiota and implicate D. pigrum as a mutualist of humans. These findings support the feasibility of future development of microbe-targeted interventions to reshape nasal microbiota composition to exclude S. aureus and/or S. pneumoniae.
Collapse
|
892
|
Qiao Y, Liu X, Li B, Han Y, Zheng Y, Yeung KWK, Li C, Cui Z, Liang Y, Li Z, Zhu S, Wang X, Wu S. Treatment of MRSA-infected osteomyelitis using bacterial capturing, magnetically targeted composites with microwave-assisted bacterial killing. Nat Commun 2020; 11:4446. [PMID: 32895387 PMCID: PMC7477539 DOI: 10.1038/s41467-020-18268-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/14/2020] [Indexed: 11/21/2022] Open
Abstract
Owing to the poor penetration depth of light, phototherapy, including photothermal and photodynamic therapies, remains severely ineffective in treating deep tissue infections such as methicillin-resistant Staphylococcus aureus (MRSA)-infected osteomyelitis. Here, we report a microwave-excited antibacterial nanocapturer system for treating deep tissue infections that consists of microwave-responsive Fe3O4/CNT and the chemotherapy agent gentamicin (Gent). This system, Fe3O4/CNT/Gent, is proven to efficiently target and eradicate MRSA-infected rabbit tibia osteomyelitis. Its robust antibacterial effectiveness is attributed to the precise bacteria-capturing ability and magnetic targeting of the nanocapturer, as well as the subsequent synergistic effects of precise microwaveocaloric therapy from Fe3O4/CNT and chemotherapy from the effective release of antibiotics in infection sites. The advanced target-nanocapturer of microwave-excited microwaveocaloric-chemotherapy with effective targeting developed in this study makes a major step forward in microwave therapy for deep tissue infections. Deep tissue infections can be difficult to treat due to limited light penetration associated with phototherapies. Here, the authors report on a bacterial capture system for antibiotic delivery and microwave-assisted killing of MRSA in osteomyelitis and demonstrate application in vivo.
Collapse
Affiliation(s)
- Yuqian Qiao
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Xiangmei Liu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China.
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shanxi, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shanxi, China
| | - Yufeng Zheng
- College of Engineering, State Key Laboratory for Turbulence and Complex System, Department of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Changyi Li
- Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yanqin Liang
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Xianbao Wang
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
893
|
Khiralla A, Spina R, Varbanov M, Philippot S, Lemiere P, Slezack-Deschaumes S, André P, Mohamed I, Yagi SM, Laurain-Mattar D. Evaluation of Antiviral, Antibacterial and Antiproliferative Activities of the Endophytic Fungus Curvularia papendorfii, and Isolation of a New Polyhydroxyacid. Microorganisms 2020; 8:microorganisms8091353. [PMID: 32899776 PMCID: PMC7564059 DOI: 10.3390/microorganisms8091353] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
An endophytic fungus isolated from Vernonia amygdalina, a medicinal plant from Sudan, was taxonomically characterized as Curvularia papendorfii. Ethyl acetate crude extract of C. papendorfii revealed an important antiviral effect against two viral pathogens, the human coronavirus HCoV 229E and a norovirus surrogate, the feline coronavirus FCV F9. For the last one, 40% of the reduction of the virus-induced cytopathogenic effect at lower multiplicity of infection (MOI) 0.0001 was observed. Selective antibacterial activity was obtained against Staphylococcus sp. (312 µg/mL), and interesting antiproliferative activity with half maximal inhibitory concentration (IC50) value of 21.5 ± 5.9 µg/mL was observed against human breast carcinoma MCF7 cell line. Therefore, C. papendorfii crude extract was further investigated and fractionated. Twenty-two metabolites were identified by gas chromatography coupled to mass spectrometry (GC–MS), and two pure compounds, mannitol and a new polyhydroxyacid, called kheiric acid, were characterized. A combination of spectroscopic methods was used to elucidate the structure of the new aliphatic carboxylic acid: kheiric acid (3,7,11,15-tetrahydroxy-18-hydroxymethyl-14,16,20,22,24-pentamethyl-hexacosa-4E,8E,12E,16,18-pentaenoic acid). Kheiric acid showed an interesting result with a minimum inhibitory concentration (MIC) value of 62.5 µg/mL against meticillin-resistant Staphylococcus aureus (MRSA). Hence, endophytes associated with medicinal plants from Sudan merit more attention, as they could be a treasure of new bioactive compounds.
Collapse
Affiliation(s)
- Afra Khiralla
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.K.); (M.V.); (S.P.); (P.L.)
- Botany Department, Faculty of Sciences and Technologies, Shendi University, P.O. Box 142 Shendi, Sudan
| | - Rosella Spina
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.K.); (M.V.); (S.P.); (P.L.)
- Correspondence: (R.S.); (D.L.-M.); Tel.: +33-3-7274-5226 (R.S.); +33-3-7274-5675 (D.L.-M.)
| | - Mihayl Varbanov
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.K.); (M.V.); (S.P.); (P.L.)
| | - Stéphanie Philippot
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.K.); (M.V.); (S.P.); (P.L.)
| | - Pascal Lemiere
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.K.); (M.V.); (S.P.); (P.L.)
| | | | - Philippe André
- Université de Strasbourg, UMR 7021 CNRS, 67401 Illkirch, France;
| | - Ietidal Mohamed
- Department of Botany, Faculty of Science, University of Khartoum, 11115 Khartoum, Sudan; (I.M.); (S.M.Y.)
| | - Sakina Mohamed Yagi
- Department of Botany, Faculty of Science, University of Khartoum, 11115 Khartoum, Sudan; (I.M.); (S.M.Y.)
| | - Dominique Laurain-Mattar
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.K.); (M.V.); (S.P.); (P.L.)
- Correspondence: (R.S.); (D.L.-M.); Tel.: +33-3-7274-5226 (R.S.); +33-3-7274-5675 (D.L.-M.)
| |
Collapse
|
894
|
Avberšek J, Golob M, Papić B, Dermota U, Grmek Košnik I, Kušar D, Ocepek M, Zdovc I. Livestock-associated methicillin-resistant Staphylococcus aureus: Establishing links between animals and humans on livestock holdings. Transbound Emerg Dis 2020; 68:789-801. [PMID: 32687685 DOI: 10.1111/tbed.13745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/01/2022]
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) represents a concern in both human and veterinary medicine. The aim of this study was to investigate potential LA-MRSA transmission between animals and humans in rural settings. To this aim, a study was designed to include 14 farms in Slovenia, which were selected on the basis of a farmer (initial patient) with confirmed LA-MRSA infection and regular animal contacts. On all farms, the initial patients, their household members, animals and barn environment were analysed for the presence of LA-MRSA. In addition, the epidemiologically linked hospital-related LA-MRSA isolates were included to investigate possible nosocomial transmissions. On five farms, LA-MRSA was discovered both in animals and in humans. In total, 49 LA-MRSA isolates of different origins underwent whole-genome sequencing, antimicrobial susceptibility testing and spa typing. All 49 isolates belonged to the sequence type 398 (ST398), spa types t011 and t034, and harboured staphylococcal chromosomal cassette mec Vc. High levels of concordance between resistance phenotypes and genotypes were observed. No transmission pairs between animals and initial patients were discovered. However, several isolates originating from farm animals and other household members formed clusters with pairwise distances of ≤14 single nucleotide polymorphisms (SNPs), indicating recent transmission events. In addition, three closely related isolates (0 SNP) form hospitalized patients were observed, indicating a possible nosocomial transmission. Two hospital-related isolates harboured the immune evasion cluster genes, which are associated with adaptation to the human host; however, these two isolates differed in >30 SNPs from the remaining isolates. Characteristics of LA-MRSA from Slovenia reflect those observed previously in other European studies. Immune evasion cluster-positive LA-MRSA ST398 suggests its re-adaptation to the human host and calls for a closer monitoring of such emerging LA-MRSA lineages, in addition to monitoring and preventing the introduction of LA-MRSA from farms to hospitals where transmission is highly plausible.
Collapse
Affiliation(s)
- Jana Avberšek
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - Majda Golob
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - Bojan Papić
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dermota
- National Laboratory of Health, Environment and Food, Kranj, Slovenia
| | | | - Darja Kušar
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - Matjaž Ocepek
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - Irena Zdovc
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
895
|
Righi D, Huber R, Koval A, Marcourt L, Schnee S, Le Floch A, Ducret V, Perozzo R, de Ruvo CC, Lecoultre N, Michellod E, Ebrahimi SN, Rivara-Minten E, Katanaev VL, Perron K, Wolfender JL, Gindro K, Queiroz EF. Generation of Stilbene Antimicrobials against Multiresistant Strains of Staphylococcus aureus through Biotransformation by the Enzymatic Secretome of Botrytis cinerea. JOURNAL OF NATURAL PRODUCTS 2020; 83:2347-2356. [PMID: 32705864 DOI: 10.1021/acs.jnatprod.0c00071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The biotransformation of a mixture of resveratrol and pterostilbene was performed by the protein secretome of Botrytis cinerea. Several reaction conditions were tested to overcome solubility issues and to improve enzymatic activity. Using MeOH as cosolvent, a series of unusual methoxylated compounds was generated. The reaction was scaled-up, and the resulting mixture purified by semipreparative HPLC-PDA-ELSD-MS. Using this approach, 15 analogues were isolated in one step. Upon full characterization by NMR and HRMS analyses, eight of the compounds were new. The antibacterial activities of the isolated compounds were evaluated in vitro against the opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus. The selectivity index was calculated based on cytotoxic assays performed against human liver carcinoma cells (HepG2) and the human breast epithelial cell line (MCF10A). Some compounds revealed remarkable antibacterial activity against multidrug-resistant strains of S. aureus with moderate human cell line cytotoxicity.
Collapse
Affiliation(s)
- Davide Righi
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Robin Huber
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Sylvain Schnee
- Plant Protection Research Division, Mycology Group, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Anaïs Le Floch
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Verena Ducret
- Microbiological Analysis Platform, Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Remo Perozzo
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Concetta C de Ruvo
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Nicole Lecoultre
- Plant Protection Research Division, Mycology Group, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Emilie Michellod
- Plant Protection Research Division, Mycology Group, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Samad N Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, Iran
| | - Elisabeth Rivara-Minten
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia
| | - Karl Perron
- Microbiological Analysis Platform, Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Katia Gindro
- Plant Protection Research Division, Mycology Group, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Emerson F Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
896
|
Povidone Iodine: Properties, Mechanisms of Action, and Role in Infection Control and Staphylococcus aureus Decolonization. Antimicrob Agents Chemother 2020; 64:AAC.00682-20. [PMID: 32571829 PMCID: PMC7449185 DOI: 10.1128/aac.00682-20] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nasal decolonization is an integral part of the strategies used to control and prevent the spread of methicillin-resistant Staphylococcus aureus (MRSA) infections. The two most commonly used agents for decolonization are intranasal mupirocin 2% ointment and chlorhexidine wash, but the increasing emergence of resistance and treatment failure has underscored the need for alternative therapies. This article discusses povidone iodine (PVP-I) as an alternative decolonization agent and is based on literature reviewed during an expert’s workshop on resistance and MRSA decolonization. Nasal decolonization is an integral part of the strategies used to control and prevent the spread of methicillin-resistant Staphylococcus aureus (MRSA) infections. The two most commonly used agents for decolonization are intranasal mupirocin 2% ointment and chlorhexidine wash, but the increasing emergence of resistance and treatment failure has underscored the need for alternative therapies. This article discusses povidone iodine (PVP-I) as an alternative decolonization agent and is based on literature reviewed during an expert’s workshop on resistance and MRSA decolonization. Compared to chlorhexidine and mupirocin, respectively, PVP-I 10 and 7.5% solutions demonstrated rapid and superior bactericidal activity against MRSA in in vitro and ex vivo studies. Notably, PVP-I 10 and 5% solutions were also active against both chlorhexidine-resistant and mupirocin-resistant strains, respectively. Unlike chlorhexidine and mupirocin, available reports have not observed a link between PVP-I and the induction of bacterial resistance or cross-resistance to antiseptics and antibiotics. These preclinical findings also translate into clinical decolonization, where intranasal PVP-I significantly improved the efficacy of chlorhexidine wash and was as effective as mupirocin in reducing surgical site infection in orthopedic surgery. Overall, these qualities of PVP-I make it a useful alternative decolonizing agent for the prevention of S. aureus infections, but additional experimental and clinical data are required to further evaluate the use of PVP-I in this setting.
Collapse
|
897
|
Selective Eradication of Staphylococcus aureus by the Designer Genetically Programmed Yeast Biocontrol Agent. Antibiotics (Basel) 2020; 9:antibiotics9090527. [PMID: 32824911 PMCID: PMC7559405 DOI: 10.3390/antibiotics9090527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus is a common human pathogen that is particularly often associated with antibiotic resistance. The eradication of this ubiquitous infectious agent from its ecological niches and contaminated surfaces is especially complicated by excessive biofilm formation and persisting cells, which evade the antibacterial activity of conventional antibiotics. Here, we present an alternative view of the problem of specific S. aureus eradication. The constitutive heterologous production of highly specific bacteriolytic protease lysostaphin in yeast Pichia pastoris provides an efficient biocontrol agent, specifically killing S. aureus in coculture. A yeast-based anti-S. aureus probiotic was efficient in a high range of temperatures and target-to-effector ratios, indicating its robustness and versatility in eliminating S. aureus cells. The efficient eradication of S. aureus by live lysostaphin-producing P. pastoris was achieved at high scales, providing a simple, biocompatible and cost-effective strategy for S. aureus lysis in bioproduction and surface decontamination. Future biomedical applications based on designer yeast biocontrol agents require evaluation in in vivo models. However, we believe that this strategy is very promising since it provides highly safe, efficient and selective genetically programmed probiotics and targeted biocontrol agents.
Collapse
|
898
|
Reassessment of the distinctive geometry of Staphylococcus aureus cell division. Nat Commun 2020; 11:4097. [PMID: 32796861 PMCID: PMC7427965 DOI: 10.1038/s41467-020-17940-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/24/2020] [Indexed: 01/03/2023] Open
Abstract
Staphylococcus aureus is generally thought to divide in three alternating orthogonal planes over three consecutive division cycles. Although this mode of division was proposed over four decades ago, the molecular mechanism that ensures this geometry of division has remained elusive. Here we show, for three different strains, that S. aureus cells do not regularly divide in three alternating perpendicular planes as previously thought. Imaging of the divisome shows that a plane of division is always perpendicular to the previous one, avoiding bisection of the nucleoid, which segregates along an axis parallel to the closing septum. However, one out of the multiple planes perpendicular to the septum which divide the cell in two identical halves can be used in daughter cells, irrespective of its orientation in relation to the penultimate division plane. Therefore, division in three orthogonal planes is not the rule in S. aureus.
Collapse
|
899
|
Paterson MJ, Caldera JR, Nguyen C, Sharma P, Castro AM, Kolar SL, Tsai CM, Limon JJ, Becker CA, Martins GA, Liu GY, Underhill DM. Harnessing antifungal immunity in pursuit of a Staphylococcus aureus vaccine strategy. PLoS Pathog 2020; 16:e1008733. [PMID: 32817694 PMCID: PMC7446838 DOI: 10.1371/journal.ppat.1008733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/22/2020] [Indexed: 02/03/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most common bacterial infections worldwide, and antibiotic resistant strains such as Methicillin-Resistant S. aureus (MRSA) are a major threat and burden to public health. MRSA not only infects immunocompromised patients but also healthy individuals and has rapidly spread from the healthcare setting to the outside community. However, all vaccines tested in clinical trials to date have failed. Immunocompromised individuals such as patients with HIV or decreased levels of CD4+ T cells are highly susceptible to S. aureus infections, and they are also at increased risk of developing fungal infections. We therefore wondered whether stimulation of antifungal immunity might promote the type of immune responses needed for effective host defense against S. aureus. Here we show that vaccination of mice with a fungal β-glucan particle (GP) loaded with S. aureus antigens provides protective immunity to S. aureus. We generated glucan particles loaded with the four S. aureus proteins ClfA, IsdA, MntC, and SdrE, creating the 4X-SA-GP vaccine. Vaccination of mice with three doses of 4X-SA-GP promoted protection in a systemic model of S. aureus infection with a significant reduction in the bacterial burden in the spleen and kidneys. 4X-SA-GP vaccination induced antigen-specific Th1 and Th17 CD4+ T cell and antibody responses and provided long-term protection. This work suggests that the GP vaccine system has potential as a novel approach to developing vaccines for S. aureus.
Collapse
Affiliation(s)
- Marissa J. Paterson
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - JR Caldera
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Division of Infectious Diseases, Department of Pediatics, UCSD, San Diego, California, United States of America
| | - Christopher Nguyen
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Purnima Sharma
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Anthony M. Castro
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Stacey L. Kolar
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Chih-Ming Tsai
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Division of Infectious Diseases, Department of Pediatics, UCSD, San Diego, California, United States of America
| | - Jose J. Limon
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Courtney A. Becker
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Gislâine A. Martins
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - George Y. Liu
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Division of Infectious Diseases, Department of Pediatics, UCSD, San Diego, California, United States of America
| | - David M. Underhill
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
900
|
Liu T, Luo J, Bi G, Du Z, Kong J, Chen Y. Antibacterial synergy between linezolid and baicalein against methicillin-resistant Staphylococcus aureus biofilm in vivo. Microb Pathog 2020; 147:104411. [PMID: 32745664 DOI: 10.1016/j.micpath.2020.104411] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/09/2020] [Accepted: 07/18/2020] [Indexed: 10/23/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) can form biofilms, which prevents the penetration of antibiotics, decreasing their efficacy. This study investigated whether baicalein has synergistic antibacterial effects with linezolid in vivo. We cultivated MRSA 17546 biofilms on silicone implants and inserted them into the air pouches of rat models. The rats were treated with linezolid, baicalein, or a combination therapy for three consecutive days. All treatments reduced the number of colony-forming units (CFU) in the biofilms compared to the control (p < 0.05). However, by day two, the CFU counts were significantly lower in the combination group than in the individual treatment groups (p < 0.05). Histological analysis of the air pouches showed that the severity of the inflammatory cell infiltration was severe in the combination therapy group. In the combination group, the biofilm structure on the implant's surface was sparse and more free colonies could be seen by scanning electron microscopy (SEM); by day three, no obvious biofilm was observed. The serum levels of Staphylococcus enterotoxin A (SEA), C-reactive protein (CRP), and procalcitonin (PCT) were the lowest in the group where rats were treated with the combination of baicalein and linezolid (p < 0.05) compared to other groups. The results suggest that baicalein may inhibit the accessory gene regulator system, reducing the expression of SEA, thus lowering CRP and PCT levels. Furthermore, the inhibitory effect was more pronounced when baicalein was combined with linezolid. These results provide an important basis for the development of a new combination regimen to treat patients with biofilm-associated MRSA infections.
Collapse
Affiliation(s)
- Tangjuan Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Jing Luo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Guan Bi
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Zhongye Du
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Jinliang Kong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.
| | - Yiqiang Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.
| |
Collapse
|