851
|
Panda D, Samuel JC, Massie M, Feinstein SC, Wilson L. Differential regulation of microtubule dynamics by three- and four-repeat tau: implications for the onset of neurodegenerative disease. Proc Natl Acad Sci U S A 2003; 100:9548-53. [PMID: 12886013 PMCID: PMC170955 DOI: 10.1073/pnas.1633508100] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Indexed: 11/18/2022] Open
Abstract
The microtubule (MT)-associated protein tau is important in neuronal development and in Alzheimer's and other neurodegenerative diseases. Genetic analyses have established a cause-and-effect relationship between tau dysfunction/misregulation and neuronal cell death and dementia in frontotemporal dementia and parkinsonism associated with chromosome 17; several mutations causing this dementia lead to increased ratios of four-repeat (4R) to three-repeat (3R) wild-type tau, and an attractive hypothesis is that the abnormally high ratio of 4R to 3R tau might lead to neuronal cell death by altering normal tau functions in adult neurons. Thus, we tested whether 3R and 4R tau might differentially modulate the dynamic instability of MTs in vitro using video microscopy. Although both isoforms promoted MT polymerization and decreased the tubulin critical subunit concentration to approximately similar extents, 4R tau stabilized MTs significantly more strongly that 3R tau. For example, 4R tau suppressed the shortening rate, whereas 3R tau had little or no detectable effect. Similarly, 3R tau had no effect on the length shortened during a shortening event, whereas 4R tau strongly reduced this parameter. Further, when MTs were diluted into buffer containing 4R tau, the MTs were stabilized and shortened slowly. In contrast, when diluted into 3R tau, the MTs were unstable and shortened rapidly. Thus, 4R tau stabilizes MTs differently and significantly more strongly than 3R tau. We suggest a "dosage effect" or haploinsufficiency model in which both tau alleles must be active and properly regulated to produce appropriate amounts of each tau isoform to maintain MT dynamics within a tolerable window of activity.
Collapse
Affiliation(s)
- Dulal Panda
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | |
Collapse
|
852
|
Abstract
Quantitative neuropsychiatry has provided increasingly precise descriptions of behavioral phenotypes associated with neurodegenerative disorders. Degenerative diseases of the brain are disturbances of protein metabolism, with failure of protein degredation by the ubiquitin-proteosome system, production of neurotoxic peptide oligomers, and accumulation of intracellular protein deposits. Abnormalities of amyloid beta peptide, alpha-synuclein protein, and hyperphosphorylated tau protein account for more than 90% of degenerative dementias. Functionally related neuroanatomical systems have shared metabolic characteristics and common vulnerabilities to protein dysmetabolism, providing the basis for phenotypes that reflect the underlying proteotype. Patients with alpha-synuclein disorders are particularly prone to hallucinations, delusions, and rapid eye movement sleep behavior disorder. Patients with tauopathies manifest disproportionate disinhibition and apathy, and may exhibit compulsions. Alzheimer's disease is a triple proteinopathy with abnormalities of A-beta, tau, and alpha-synculein leading to a complex behavioral phenotype. This molecular approach to neuropsychiatry may assist in understanding the mechanisms of degenerative diseases, provide insight into the pathophysiology of neuropsychiatric symptoms, and contribute to monitoring disease-modifying therapies.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
853
|
Andorfer C, Kress Y, Espinoza M, de Silva R, Tucker KL, Barde YA, Duff K, Davies P. Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 2003; 86:582-90. [PMID: 12859672 DOI: 10.1046/j.1471-4159.2003.01879.x] [Citation(s) in RCA: 531] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurofibrillary tangles are composed of insoluble aggregates of the microtubule-associated protein tau. In Alzheimer's disease the accumulation of neurofibrillary tangles occurs in the absence of tau mutations. Here we present mice that develop pathology from non-mutant human tau, in the absence of other exogenous factors, including beta-amyloid. The pathology in these mice is Alzheimer-like, with hyperphosphorylated tau accumulating as aggregated paired helical filaments. This pathologic tau accumulates in the cell bodies and dendrites of neurons in a spatiotemporally relevant distribution.
Collapse
Affiliation(s)
- Cathy Andorfer
- Departments of Neuroscience and Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
854
|
Allain H, Bentué-Ferrer D, Tribut O, Gauthier S, Michel BF, Drieu-La Rochelle C. Alzheimer's disease: the pharmacological pathway. Fundam Clin Pharmacol 2003; 17:419-28. [PMID: 12914543 DOI: 10.1046/j.1472-8206.2003.00153.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The current pharmacological treatment of Alzheimer's disease (AD) comes down to four marketed drugs (tacrine, donepezil, rivastigmine and galantamine) all of which are cholinesterase inhibitors, conforming to the cholinergic hypothesis. The future is clearly directed at new biological targets closely linked to the pathophysiology of the disease and more precisely, the pathological hallmark of AD which includes widespread neuronal degeneration, neuritic plaques containing beta-amyloid and tau-rich neurofibrillary tangles. For clinicians, this means that new curative drugs will have to be prescribed early in the course of the disease. This review describes the main entry pathways for drug discovery in AD: (1) supplementation therapy, (2) anti-apoptotic compounds, (3) substances with a mitochondrial impact, (4) anti-amyloid substances, (5) anti-protein aggregation and (6) lipid-lowering drugs. The rapidity at which these compounds will be at our disposal is highly dependent on the policy of the pharmaceutical companies.
Collapse
Affiliation(s)
- Hervé Allain
- Laboratoire de Pharmacologie Expérimentale et Clinique, Faculté de Médecine, Université de Rennes I, CS 34317, 35043 Rennes cedex, France.
| | | | | | | | | | | |
Collapse
|
855
|
Syntichaki P, Tavernarakis N. The biochemistry of neuronal necrosis: rogue biology? Nat Rev Neurosci 2003; 4:672-84. [PMID: 12894242 DOI: 10.1038/nrn1174] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Popi Syntichaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Vassilika Vouton, P.O. Box 1527, Heraklion 71110, Crete, Greece
| | | |
Collapse
|
856
|
|
857
|
Abstract
In recent years, it has become increasingly clear that many neurodegenerative diseases involve aggregation and deposition of misfolded proteins such as amyloid beta, tau, alpha-synuclein and polyglutamine containing proteins. This abnormal deposition of misfolded proteins produce malfunctioning of a distinctive set of neurons. It may also induce oxidative and endoplasmic reticulum stress and proteosomal and mitochondrial dysfunction that ultimately leads to neuronal death. While hereditary forms of disorders are caused by genetic mutations, many sporadic cases are likely to be due to genetic and environmental factors. These disorders are progressive in nature. Therefore, treatment is difficult. However, for some diseases, a growing number of treatment options such as drugs, antioxidants, cell transplantation, surgery, rehabilitation procedures and preimplantation diagnosis is available. It should be noted that many of these treatments produce unacceptable risks or adverse effects and they are of only minimal benefit for patients. In future, an understanding of the causes of protein aggregation and genetic and environmental susceptibility factors of a specific individual (or specific individual determinants) may provide a better opportunity for an effective therapeutic intervention.
Collapse
Affiliation(s)
- Barkur S Shastry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
858
|
Chiesa R, Piccardo P, Quaglio E, Drisaldi B, Si-Hoe SL, Takao M, Ghetti B, Harris DA. Molecular distinction between pathogenic and infectious properties of the prion protein. J Virol 2003; 77:7611-22. [PMID: 12805461 PMCID: PMC164780 DOI: 10.1128/jvi.77.13.7611-7622.2003] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tg(PG14) mice express a prion protein (PrP) with a nine-octapeptide insertion associated with a human familial prion disease. These animals spontaneously develop a fatal neurodegenerative disorder characterized by ataxia, neuronal apoptosis, and accumulation in the brain of an aggregated and weakly protease-resistant form of mutant PrP (designated PG14(spon)). Brain homogenates from Tg(PG14) mice fail to transmit disease after intracerebral inoculation into recipient mice, indicating that PG14(spon), although pathogenic, is distinct from PrP(Sc), the infectious form of PrP. In contrast, inoculation of Tg(PG14) mice with exogenous prions of the RML strain induces accumulation of PG14(RML), a PrP(Sc) form of the mutant protein that is infectious and highly protease resistant. Like PrP(Sc), both PG14(spon) and PG14(RML) display conformationally masked epitopes in the central and octapeptide repeat regions. However, these two forms differ profoundly in their oligomeric states, with PG14(RML) aggregates being much larger and more resistant to dissociation. Our analysis provides new molecular insight into an emerging puzzle in prion biology, the discrepancy between the infectious and neurotoxic properties of PrP.
Collapse
Affiliation(s)
- Roberto Chiesa
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
859
|
Yoshiike Y, Chui DH, Akagi T, Tanaka N, Takashima A. Specific compositions of amyloid-beta peptides as the determinant of toxic beta-aggregation. J Biol Chem 2003; 278:23648-55. [PMID: 12716908 DOI: 10.1074/jbc.m212785200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) may be caused by toxic aggregates formed from amyloid-beta (Abeta) peptides. By using Thioflavin T, a dye that specifically binds to beta-sheet structures, we found that highly toxic forms of Abeta-aggregates were formed at the initial stage of fibrillogenesis, which is consistent with recent reports on Abeta oligomers. Formation of such aggregates depends on factors that affect both nucleation and elongation. As reported previously, addition of Abeta42 systematically accelerated the nucleation of Abeta40, most likely because of the extra hydrophobic residues at the C terminus of Abeta42. At Abeta42-increased specific ratio (Abeta40: Abeta42 = 10: 1), on the other hand, not only accelerated nucleation but also induced elongation were observed, suggesting pathogenesis of early-onset AD. Because a larger proportion of Abeta40 than Abeta42 was still required for this phenomenon, we assumed that elongation does not depend only on hydrophobic interactions. Without any change in the C-terminal hydrophobic nature, elongation was effectively induced by mixing wild type Abeta40 with Italian variant Abeta40 (E22K) or Dutch variant (E22Q). We suggest that Abeta peptides in specific compositions that balance hydrophilic and hydrophobic interactions promote the formation of toxic beta-aggregates. These results may introduce a new therapeutic approach through the disruption of this balance.
Collapse
Affiliation(s)
- Yuji Yoshiike
- Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | | | | | | | | |
Collapse
|
860
|
Elam JS, Taylor AB, Strange R, Antonyuk S, Doucette PA, Rodriguez JA, Hasnain SS, Hayward LJ, Valentine JS, Yeates TO, Hart PJ. Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Nat Struct Mol Biol 2003; 10:461-7. [PMID: 12754496 DOI: 10.1038/nsb935] [Citation(s) in RCA: 260] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 04/22/2003] [Indexed: 11/09/2022]
Abstract
Mutations in the SOD1 gene cause the autosomal dominant, neurodegenerative disorder familial amyotrophic lateral sclerosis (FALS). In spinal cord neurons of human FALS patients and in transgenic mice expressing these mutant proteins, aggregates containing FALS SOD1 are observed. Accumulation of SOD1 aggregates is believed to interfere with axonal transport, protein degradation and anti-apoptotic functions of the neuronal cellular machinery. Here we show that metal-deficient, pathogenic SOD1 mutant proteins crystallize in three different crystal forms, all of which reveal higher-order assemblies of aligned beta-sheets. Amyloid-like filaments and water-filled nanotubes arise through extensive interactions between loop and beta-barrel elements of neighboring mutant SOD1 molecules. In all cases, non-native conformational changes permit a gain of interaction between dimers that leads to higher-order arrays. Normal beta-sheet-containing proteins avoid such self-association by preventing their edge strands from making intermolecular interactions. Loss of this protection through conformational rearrangement in the metal-deficient enzyme could be a toxic property common to mutants of SOD1 linked to FALS.
Collapse
Affiliation(s)
- Jennifer Stine Elam
- Department of Biochemistry and the Center for Biomolecular Structure Analysis, The University of Texas, Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
861
|
Stirling PC, Lundin VF, Leroux MR. Getting a grip on non-native proteins. EMBO Rep 2003; 4:565-70. [PMID: 12776175 PMCID: PMC1319208 DOI: 10.1038/sj.embor.embor869] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Accepted: 04/24/2003] [Indexed: 11/09/2022] Open
Abstract
It is an underappreciated fact that non-native polypeptides are prevalent in the cellular environment. Native proteins have the folded structure, assembled state and cellular localization required for activity. By contrast, non-native proteins lack function and are particularly prone to aggregation because hydrophobic residues that are normally buried are exposed on their surfaces. These unstable entities include polypeptides that are undergoing synthesis, transport to and translocation across membranes, and those that are unfolded before degradation. Non-native proteins are normal, biologically relevant components of a healthy cell, except in cases in which their misfolding results from disease-causing mutations or adverse extrinsic factors. Here, we explore the nature and occurrence of non-native proteins, and describe the diverse families of molecular chaperones and coordinated cellular responses that have evolved to prevent their misfolding and aggregation, thereby maintaining quality control over these potentially damaging protein species.
Collapse
Affiliation(s)
- Peter C. Stirling
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
- These authors contributed equally to this work
| | - Victor F. Lundin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
- These authors contributed equally to this work
| | - Michel R. Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
- Tel: +1 604 268 6683; Fax: +1 604 291 5583;
| |
Collapse
|
862
|
Apostol BL, Kazantsev A, Raffioni S, Illes K, Pallos J, Bodai L, Slepko N, Bear JE, Gertler FB, Hersch S, Housman DE, Marsh JL, Thompson LM. A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila. Proc Natl Acad Sci U S A 2003; 100:5950-5. [PMID: 12730384 PMCID: PMC156307 DOI: 10.1073/pnas.2628045100] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of polyglutamine-containing aggregates and inclusions are hallmarks of pathogenesis in Huntington's disease that can be recapitulated in model systems. Although the contribution of inclusions to pathogenesis is unclear, cell-based assays can be used to screen for chemical compounds that affect aggregation and may provide therapeutic benefit. We have developed inducible PC12 cell-culture models to screen for loss of visible aggregates. To test the validity of this approach, compounds that inhibit aggregation in the PC12 cell-based screen were tested in a Drosophila model of polyglutamine-repeat disease. The disruption of aggregation in PC12 cells strongly correlates with suppression of neuronal degeneration in Drosophila. Thus, the engineered PC12 cells coupled with the Drosophila model provide a rapid and effective method to screen and validate compounds.
Collapse
Affiliation(s)
- Barbara L Apostol
- Department of Psychiatry and Human Behavior, Gillespie 2121, University of California, Irvine, CA 92697-4260, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
863
|
Andrews RJ. Neuroprotection trek--the next generation: neuromodulation II. Applications--epilepsy, nerve regeneration, neurotrophins. Ann N Y Acad Sci 2003; 993:14-24; discussion 48-53. [PMID: 12853291 DOI: 10.1111/j.1749-6632.2003.tb07507.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Three examples of neuroprotective applications of electrical stimulation-neuromodulation-are considered: (1) the diagnosis and treatment of epilepsy, (2) the augmentation of peripheral nerve regeneration after transection, and (3) the interaction between electrical stimulation and neurotrophins (notably brain derived neurotrophic factor [BDNF]) in various neuroprotective situations. The research cited demonstrates clear benefit from appropriate electrical stimulation in the treatment of (1) certain patients with medication-refractory epilepsy, and (2) the functional regeneration of peripheral nerves after transection and surgical repair. Furthermore, neuromodulation of peripheral nerve regeneration has been associated with an increase in the neurotrophin BDNF. The roles of BDNF and other neurotrophins in several disorders of the nervous system are discussed in the context of neuromodulation and its augmentation of neurotrophins. Neuromodulation-at least in part through its effect on BDNF and other neurotrophins-will likely play a major role in the treatment (and possibly prevention) of disorders of the nervous system for which neuroproteive pharmacologic agents have traditionally been sought.
Collapse
|
864
|
Li Z, Jansen M, Pierre SR, Figueiredo-Pereira ME. Neurodegeneration: linking ubiquitin/proteasome pathway impairment with inflammation. Int J Biochem Cell Biol 2003; 35:547-52. [PMID: 12672447 DOI: 10.1016/s1357-2725(02)00384-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurodegenerative disorders have been reported to be associated with accumulation of ubiquitinated proteins in neuronal inclusions and also with signs of inflammation. In these disorders, the abnormal protein aggregates may, themselves, trigger the expression of inflammatory mediators, such as, cyclooxygenase 2 (COX-2). Impairment of the ubiquitin/proteasome pathway may contribute to this neurodegenerative process. Accordingly, proteasome inhibitors and oxidative stressors such as cadmium, were found to decrease survival, induce the accumulation of ubiquitinated proteins and elicit up-regulation of cyclooxygenase 2 in neuronal cell cultures. Products of cyclooxygenase 2, such as prostaglandin J2, can, in turn, increase the levels of ubiquitinated proteins and also cause cyclooxygenase 2 up-regulation, creating a "self-destructive" feedback mechanism. In neurodegenerative disorders characterized by neuronal inclusions containing ubiquitinated proteins, a disruption of the ubiquitin/proteasome pathway may, therefore, act in conjunction with cyclooxygenase 2 up-regulation to exacerbate the neurodegenerative process. Cyclooxygenase 2 inhibitors and agents that prevent protein aggregation could be of therapeutic value to these forms of neurodegeneration.
Collapse
Affiliation(s)
- Zongmin Li
- Department of Biological Sciences, Hunter College of CUNY, 695 Park Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
865
|
Abstract
In many cases, the clinical manifestations of inherited neurodegenerative disorders appear after decades of normal function, which suggests that neurons may die through cumulative damage. Several genes that cause these diseases have been identified in recent years, but no common pathogenetic mechanism has been found. However, the most recent studies have begun to implicate the same mechanism in a range of neurodegenerative diseases, particularly those that involve motor neurons. The results of these studies suggest that the morphology and energy requirements of neurons make them particularly susceptible to the disruption of cellular transport systems.
Collapse
|
866
|
Goellner GM, Rechsteiner M. Are Huntington's and polyglutamine-based ataxias proteasome storage diseases? Int J Biochem Cell Biol 2003; 35:562-71. [PMID: 12672449 DOI: 10.1016/s1357-2725(02)00388-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To date, 10 neurological diseases, including Huntington's and several ataxias, are caused by a lengthening of glutamine (Q) tracts in various proteins. Even though the Q expansions arise in unrelated proteins, the diseases share three striking features: (1) 35 contiguous glutamines constitutes the pathological threshold for 9 of the 10 diseases; (2) the Q-expanded proteins are expressed in many tissues, yet pathology is largely restricted to neurons; and (3) the Q-expanded proteins or fragments thereof form nuclear inclusions that also contain ubiquitin, proteasomes and chaperones. Our studies of the proteasome activator REGgamma suggest a possible explanation for these shared properties. REGgamma is highly expressed in brain, located in the nucleus and actually suppresses the proteasome active sites principally responsible for cleaving glutamine-MCA bonds. These observations coupled with reports that peptides longer than 35 residues, the polyQ pathology threshold, are unable to diffuse out of the proteasome suggest the following hypothesis. Proteins containing long glutamine tracts are efficiently pumped into REGgamma-capped 26S proteasomes, but REGgamma suppression of cleavage after glutamine produces polyQ fragments too long to diffuse out of the 20S proteolytic core thereby inactivating the 26S proteasome. In effect, we hypothesize that the polyQ pathologies may be proteasomal storage diseases analogous to disorders of lysosome catabolism.
Collapse
Affiliation(s)
- Geoffrey M Goellner
- Department of Biochemistry, University of Utah, 50 N Medical Drive, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
867
|
Kubodera T, Yokota T, Ohwada K, Ishikawa K, Miura H, Matsuoka T, Mizusawa H. Proteolytic cleavage and cellular toxicity of the human alpha1A calcium channel in spinocerebellar ataxia type 6. Neurosci Lett 2003; 341:74-8. [PMID: 12676347 DOI: 10.1016/s0304-3940(03)00156-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease caused by small CAG repeat expansion in the alpha1A calcium channel gene. We found that the human alpha1A calcium channel protein expressed in human embryonic kidney 293T cells produces a 75 kDa C-terminal fragment. This fragment is more toxic to cells than the full-length alpha1A calcium channel, regardless of polyglutamine tract length. In cells stably transfected with plasmids of full-length alpha1A calcium channel cDNAs, the C-terminal fragment protein is present in the mutant transformant but not in the wild-type one, indicative that this C-terminal fragment with the expanded polyglutamine tract is more resistant to proteolysis than that with the normal sized polyglutamine tract. We speculate that the toxic C-terminal fragment, in which resistance to proteolysis is rendered by the expanded polyglutamine, has a key role in the pathological mechanism of SCA6.
Collapse
Affiliation(s)
- Takayuki Kubodera
- Department of Neurology and Neurological Science, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | |
Collapse
|
868
|
Watase K, Zoghbi HY. Modelling brain diseases in mice: the challenges of design and analysis. Nat Rev Genet 2003; 4:296-307. [PMID: 12671660 DOI: 10.1038/nrg1045] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetically engineered mice have been generated to model a variety of neurological disorders. Several of these models have provided valuable insights into the pathogenesis of the relevant diseases; however, they have rarely reproduced all, or even most, of the features observed in the corresponding human conditions. Here, we review the challenges that must be faced when attempting to accurately reproduce human brain disorders in mice, and discuss some of the ways to overcome them. Building on the knowledge gathered from the study of existing mutants, and on recent progress in phenotyping mutant mice, we anticipate better methods for preclinical interventional trials and significant advances in the understanding and treatment of neurological diseases.
Collapse
Affiliation(s)
- Kei Watase
- Department of Molecular and Human Genetics and Howard Hughes Medical Institute, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
869
|
Steffan JS, Thompson LM. Targeting aggregation in the development of therapeutics for the treatment of Huntington's disease and other polyglutamine repeat diseases. Expert Opin Ther Targets 2003; 7:201-13. [PMID: 12667098 DOI: 10.1517/14728222.7.2.201] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Huntington's disease (HD) is one of a number of familial polyglutamine (polyQ) repeat diseases. These neurodegenerative disorders are caused by expression of otherwise unrelated proteins that contain an expansion of a polyQ tract, rendering them toxic to specific subsets of vulnerable neurons. These expanded repeats have an inherent propensity to aggregate; insoluble neuronal nuclear and cytoplasmic polyQ aggregates or inclusions are hallmarks of the disorders [1,2]. In HD, inclusions in diseased brains often precede onset of symptoms, and have been proposed to be involved in pathogenicity [3-5]. Various strategies to block the process of aggregation have been developed in an effort to create drugs that decrease neurotoxicity. A discussion of the effect of antibodies, caspase inhibitors, chemical inhibitors, heat-shock proteins, suppressor peptides and transglutaminase inhibitors upon aggregation and disease is presented.
Collapse
Affiliation(s)
- Joan S Steffan
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-4260, USA.
| | | |
Collapse
|
870
|
Kruttgen A, Saxena S, Evangelopoulos ME, Weis J. Neurotrophins and neurodegenerative diseases: receptors stuck in traffic? J Neuropathol Exp Neurol 2003; 62:340-50. [PMID: 12722826 DOI: 10.1093/jnen/62.4.340] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neurotrophins are well known for their physiological role as key modulators of neuronal survival, neurite out-growth, and synaptic connectivity during development and into adulthood. Moreover, neurotrophins are potent agents, ameliorating neuronal degeneration in many model systems for neurological diseases. However, a causal role for mutations in neurotrophins or neurotrophin receptors in human neurodegenerative diseases has been largely lacking. As neurotrophin receptors are located at synapses and as their signaling involves the neuronal nucleus, they need to bridge tantalizing distances in order to retrogradely communicate their survival signals. On the other hand, anterogradely transported neurotrophins are released at the synapse and act on postsynaptic cells. Antero- and retrograde signaling and trafficking is an emerging focus of interest in neurotrophin research. Some neurodegenerative diseases are known to affect transport of organelles. Thus, it appears likely that neurodegeneration could be caused by "indirect" effects on neurotrophin trafficking and, hence, signaling. In this review we summarize recent work on neurotrophins in neurodegenerative diseases with special focus on possible implications of disturbed trafficking of organelles and retrograde axonal signaling.
Collapse
Affiliation(s)
- Alex Kruttgen
- Division of Neuropathology, Institute of Pathology, University of Berne, Berne, Switzerland
| | | | | | | |
Collapse
|
871
|
Bratko D, Blanch HW. Effect of secondary structure on protein aggregation: A replica exchange simulation study. J Chem Phys 2003. [DOI: 10.1063/1.1546429] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
872
|
Kitamura Y, Ishida Y, Takata K, Mizutani H, Kakimura JI, Inden M, Nakata J, Taniguchi T, Tsukahara T, Akaike A, Shimohama S. Hyperbilirubinemia protects against focal ischemia in rats. J Neurosci Res 2003; 71:544-50. [PMID: 12548710 DOI: 10.1002/jnr.10514] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Heme oxygenase-1 (HO1) catalyzes oxidation of the heme molecule in concert with NADPH-cytochrome P450 reductase following the specific cleavage of heme into carbon monoxide, iron, and biliverdin, which is rapidly metabolized to bilirubin. HO1 is a stress-inducible protein that protects cells against oxidative injury, but its protective mechanism is not fully understood. The Eizai hyperbilirubinemic rat (EHBR), a mutant strain derived from the Sprague-Dawley rat (SDR), has a mutation in the gene for the canalicular multispecific organic anion transporter, which results in a phenotype of hyperbilirubinemia, and thus is a model of Dubin-Johnson syndrome in humans. In this study, we compared EHBR and SDR with regard to neuronal death induced by 2 hr of occlusion of the middle cerebral artery and reperfusion. In EHBR, the area that was immunoreactive for microtubule-associated protein-2 was significantly reduced, and the HO1-immunoreactive area was smaller than that in SDR. These results suggest that bilirubin has essentially a neuroprotective effect against focal ischemia and may participate in HO1-induced neuroprotection.
Collapse
Affiliation(s)
- Yoshihisa Kitamura
- Department of Neurobiology, Kyoto Pharmaceutical University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
873
|
Redwine JM, Kosofsky B, Jacobs RE, Games D, Reilly JF, Morrison JH, Young WG, Bloom FE. Dentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: a magnetic resonance microscopy and stereologic analysis. Proc Natl Acad Sci U S A 2003; 100:1381-6. [PMID: 12552120 PMCID: PMC298781 DOI: 10.1073/pnas.242746599] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2002] [Indexed: 01/24/2023] Open
Abstract
High-resolution magnetic resonance microscopy (MRM) was used to determine regional brain volumetric changes in a mouse model of Alzheimer's disease. These transgenic (Tg) mice overexpress human mutant amyloid precursor protein (APP) V717F under control of platelet-derived growth factor promoter (PDAPP mice), and cortical and hippocampal beta-amyloid (Abeta) deposits accumulate in heterozygotes after 8-10 mos. We used MRM to obtain 3D volumetric data on mouse brains imaged in their skulls to define genotype- and age-related changes. Hippocampal, cerebellar, and brain volumes and corpus callosum length were quantified in 40-, 100-, 365-, and 630-day-old mice. Measurements taken at age 100 days, before Abeta deposition, revealed a 12.3% reduction of hippocampus volume in Tg mice compared with WT controls. This reduction persisted without progression to age 21 mos. A significant 18% increase in hippocampal volume occurred between 40 and 630 days in WT mice, and no corresponding significant increase occurred in Tg mice. Cavalieri volume estimates of hippocampal subfields from 100-day-old Tg mice further localized a 28% volume deficit in the dentate gyrus. In addition, corpus callosum length was reduced by approximately 25% in Tg mice at all ages analyzed. In summary, reduced hippocampal volume and corpus callosum length can be detected by MRM before Abeta deposition. We conclude that overexpression of APP and amyloid may initiate pathologic changes before the appearance of plaques, suggesting novel targets for the treatment of Alzheimer's disease and further reinforcing the need for early diagnosis and treatment.
Collapse
|
874
|
Temussi PA, Masino L, Pastore A. From Alzheimer to Huntington: why is a structural understanding so difficult? EMBO J 2003; 22:355-61. [PMID: 12554637 PMCID: PMC140729 DOI: 10.1093/emboj/cdg044] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An increasing family of neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases, prion encephalopathies and cystic fibrosis is associated with aggregation of misfolded polypeptide chains which are toxic to the cell. Knowledge of the three-dimensional structure of the proteins implicated is essential for understanding why and how endogenous proteins may adopt a non-native fold. Yet, structural work has been hampered by the difficulty of handling proteins insoluble or prone to aggregation, and at the same time that is why it is interesting to study these molecules. In this review, we compare the structural knowledge accumulated for two paradigmatic misfolding disorders, Alzheimer's disease (AD) and the family of poly-glutamine diseases (poly-Q) and discuss some of the hypotheses suggested for explaining aggregate formation. While a common mechanism between these pathologies remains to be proven, a direct comparison may help in designing new strategies for approaching their study.
Collapse
Affiliation(s)
- Piero Andrea Temussi
- National Institute for Medical Research, Medical Research Council, The Ridgeway, Mill Hill, London NW7 1AA, UK and
Department of Chemistry, University of Naples ‘Federico II’, Via Cinthia 45, I 80126 Naples, Italy Corresponding authors e-mail: or
| | | | - Annalisa Pastore
- National Institute for Medical Research, Medical Research Council, The Ridgeway, Mill Hill, London NW7 1AA, UK and
Department of Chemistry, University of Naples ‘Federico II’, Via Cinthia 45, I 80126 Naples, Italy Corresponding authors e-mail: or
| |
Collapse
|
875
|
Albrecht M, Hoffmann D, Evert BO, Schmitt I, Wüllner U, Lengauer T. Structural modeling of ataxin-3 reveals distant homology to adaptins. Proteins 2003; 50:355-70. [PMID: 12486728 DOI: 10.1002/prot.10280] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine disorder caused by a CAG repeat expansion in the coding region of a gene encoding ataxin-3, a protein of yet unknown function. Based on a comprehensive computational analysis, we propose a structural model and structure-based functions for ataxin-3. Our predictive strategy comprises the compilation of multiple sequence and structure alignments of carefully selected proteins related to ataxin-3. These alignments are consistent with additional information on sequence motifs, secondary structure, and domain architectures. The application of complementary methods revealed the homology of ataxin-3 to ENTH and VHS domain proteins involved in membrane trafficking and regulatory adaptor functions. We modeled the structure of ataxin-3 using the adaptin AP180 as a template and assessed the reliability of the model by comparison with known sequence and structural features. We could further infer potential functions of ataxin-3 in agreement with known experimental data. Our database searches also identified an as yet uncharacterized family of proteins, which we named josephins because of their pronounced homology to the Josephin domain of ataxin-3.
Collapse
Affiliation(s)
- Mario Albrecht
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany.
| | | | | | | | | | | |
Collapse
|
876
|
Hinkle A, Tobacman LS. Folding and function of the troponin tail domain. Effects of cardiomyopathic troponin T mutations. J Biol Chem 2003; 278:506-13. [PMID: 12409295 DOI: 10.1074/jbc.m209194200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Troponin contains a globular Ca(2+)-binding domain and an elongated tail domain composed of the N terminus of subunit troponin T (TnT). The tail domain anchors troponin to tropomyosin and actin, modulates myosin function, and is a site of cardiomyopathy-inducing mutations. Critical interactions between tropomyosin and troponin are proposed to depend on tail domain residues 112-136, which are highly conserved across phyla. Most cardiomyopathy mutations in TnT flank this region. Three such mutations were examined and had contrasting effects on peptide TnT-(1-156), promoting folding and thermal stability assessed by circular dichroism (F110I) or weakening folding and stability (T104V and to a small extent R92Q). Folding of both TnT-(1-156) and whole troponin was promoted by replacing bovine TnT Thr-104 with human TnT Ala-104, further indicating the importance of this cardiomyopathy site residue for protein folding. Mutation F110I markedly stabilized the troponin tail but weakened binding of holo-troponin to actin-tropomyosin 8-fold, suggesting that loss of flexibility impairs troponin tail function. The effect of the F110I mutation on troponin-tropomyosin binding to actin was much less, indicating this flexibility is particularly important for the interactions of troponin with tropomyosin. We suggest that most cardiomyopathic mutations in the troponin tail alter muscle function indirectly, by perturbing interactions between troponin and tropomyosin requisite for the complex effects of these proteins on myosin.
Collapse
Affiliation(s)
- Ashley Hinkle
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
877
|
Desnick RJ, Schuchman EH. Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat Rev Genet 2002; 3:954-66. [PMID: 12459725 DOI: 10.1038/nrg963] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The past decade has witnessed remarkable advances in our ability to treat inherited metabolic disorders, especially the lysosomal storage diseases, a group of more than 40 disorders, each of which is caused by the deficiency of a lysosomal enzyme or protein. During the past few years, both enzyme replacement and enhancement therapies have been developed to treat these disorders. This review discusses the successes and shortcomings of these therapeutic strategies, and the contributions that they have made to treating lysosomal storage diseases.
Collapse
Affiliation(s)
- Robert J Desnick
- Department of Human Genetics, Mount Sinai School of Medicine at New York University, New York, New York 10029, USA.
| | | |
Collapse
|
878
|
Abstract
Over 90 individual mutations in SOD1 are known to cause familial amyotrophic lateral sclerosis (FALS). It is widely accepted that these mutations exert their toxic effects by a gain of function mechanism, but the nature of these toxic effects is as yet unknown. It has been proposed by several laboratories that reactions of FALS-mutant CuZnSOD are the source of elevated oxidative stress in CuZnSOD-linked FALS. It has also been proposed that aggregates of CuZnSOD are somehow involved in the disease. The hypothesis that aggregates of CuZnSOD cause ALS is particularly attractive because protein aggregates are frequently associated with other neurodegenerative diseases. Recent evidence increasingly suggests that protein aggregates containing CuZnSOD protein play a role in CuZnSOD-linked ALS, but it is not yet know why the aggregates form nor if the CuZnSOD proteins in the aggregates are cleaved, oxidized, demetallated, or otherwise covalently modified.
Collapse
Affiliation(s)
- Joan Selverstone Valentine
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|
879
|
Ross CA. Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron 2002; 35:819-22. [PMID: 12372277 DOI: 10.1016/s0896-6273(02)00872-3] [Citation(s) in RCA: 408] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms of neurodegeneration in the CAG repeat polyglutamine diseases, including Spinal and Bulbar Muscular Atrophy (SBMA), Huntington's disease (HD), DentatoRubral and PallidoLuysian Atrophy (DRPLA), and Spino-Cerebellar Ataxia (SCA), have been controversial. Issues have included the role of polyglutamine aggregation and possible amyloid formation, localization in the cell nucleus, and possible proteolytic processing. Proposed mechanisms have included activation of caspases or other triggers of apoptosis, mitochondrial or metabolic toxicity, and interference with gene transcription. Recent studies using transgenic mouse and Drosophila models have helped resolve some of these issues and raise hopes for development of therapeutic targets.
Collapse
Affiliation(s)
- Christopher A Ross
- Johns Hopkins University School of Medicine, Department of Psychiatry, Division of Neurobiology, Baltimore, MD 21205, USA.
| |
Collapse
|
880
|
Metzler DE, Metzler CM, Sauke DJ. Chemical Communication Between Cells. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|