851
|
Li S, Wang W, Zhang Q, Yan B. Co-exposures of TiO 2 nanoparticles and cadmium ions at non-lethal doses aggravates liver injury in mice with ConA-induced hepatitis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103669. [PMID: 33964399 DOI: 10.1016/j.etap.2021.103669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The wide applications of titanium dioxide nanoparticles (TNP) and ubiquitous cadmium (Cd) pollution increase the chances of their co-existence in the environment and also pose potential health risks to humans. However, toxicological understanding of effects of co-exposures of TNP and Cd to mammals is still lacking. In this study, non-lethal doses of TNP and CdCl2 were intravenously co-administered to healthy or Concanavalin A (ConA)-induced acute hepatitis mice. Co-exposures of TNP and CdCl2 increased the accumulation of Cd2+ in the liver of hepatitis mice, which was 1.42-fold higher than that of healthy mice. Co-exposures also caused liver damage only in hepatitis mice on the basis of histopathological and biochemical evidence. Further study showed that co-exposure upregulated hepatic oxidative stress, which further induced autophagy and apoptosis only in the liver of hepatitis mice. This finding underlines the potential toxicological consequences of co-exposures of TNP and CdCl2 in hepatitis sufferers.
Collapse
Affiliation(s)
- Shuaishuai Li
- School of Environmental Sciences and Engineering, Shandong University, Qingdao, 266237, China
| | - Wenwei Wang
- School of Environmental Sciences and Engineering, Shandong University, Qingdao, 266237, China
| | - Qiu Zhang
- School of Environmental Sciences and Engineering, Shandong University, Qingdao, 266237, China.
| | - Bing Yan
- School of Environmental Sciences and Engineering, Shandong University, Qingdao, 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
852
|
Qamar W, Altamimi MA, Rehman MU, Ali N, Imam F, Alanazi FE. Toxicological interaction between tobacco smoke toxicants cadmium and nicotine: An in-vitro investigation. Saudi J Biol Sci 2021; 28:4201-4209. [PMID: 34354400 PMCID: PMC8324994 DOI: 10.1016/j.sjbs.2021.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Cigarettes and other tobacco products are used to obtain nicotine that is responsible for their stimulating effects. However, a lot of other organic and inorganic chemicals are also released along with nicotine. Cadmium (Cd) is one of the several heavy metals that are health hazards and is one of the inorganic elements released in tobacco smoke. The in-vitro investigation focused on exploring the effects of nicotine hydrogen tartrate (NHT) and cadmium (Cd) and their toxic interactions in the A549 cell line. In cell viability assay NHT exhibited its IC50 at 11.71 mM concentration, and the IC50 of Cd was found to be 83 µM after a 24 h exposure. Toxic effects of NHT (5 mM and 10 mM), Cd (50 µM and 100 µM), and their combination were also investigated by flowcytometry. The investigation included apoptotic and necrotic events, the effect on different cell cycle phases, and generation of reactive oxygen species by NHT, Cd, and their combination of different concentrations. Data reveal evident toxic effects of NHT, Cd, and NHT + Cd. It also indicates that the toxic interaction of NHT and Cd is not additive and appears to be minimal when compared with NHT or Cd exposures alone.
Collapse
Affiliation(s)
- Wajhul Qamar
- Department of Pharmacology and Toxicology, and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Essa Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
853
|
Liu X, Yin S, Zhao C, Fan L, Hu H. Glycyrol alleviates the combined toxicity of fumonisin B1 and cadmium in vitro and in vivo. Toxicon 2021; 200:165-172. [PMID: 34343521 DOI: 10.1016/j.toxicon.2021.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/18/2022]
Abstract
Fumonisin B1 (FB1) is a major food-borne mycotoxin commonly found in maize and maize-based products, while cadmium is one of the most common toxic heavy metals found in food, particularly in wheat and rice. Given the possibility of co-exposure to FB1 and cadmium for consumers, we elevated combined toxicity of FB1 and cadmium using both in vitro and in vivo models. Acute toxicity setting was employed in the present study. Mouse embryonic fibroblast (MEF) and human L02 liver cells were used to determine the in vitro cytotoxicity, while C57BL/6 N mice were used to assess the in vivo toxicity. Results showed that treatment with combination of FB1 (15, 20, 25, 30, 35 μM) and cadmium (3, 4, 5, 6, 7 μM) for 24 h led to synergistic cytotoxicity in vitro, and acute treatment with the combination of FB1/cadmium (1.5 mg/kg/60 mg/kg) for 5 days increased liver damage in vivo. Mechanistically, the combined toxicity was associated with elevated activation of IRE1α-JNK pathway. Glycyrol, a representative coumarin compound isolated from licorice, was able to reduce the combination-induced toxicity both in vitro and in vivo through suppression of IRE1α-JNK axis. The combined toxicity of FB1/cadmium should be taken into consideration for performing human health risk assessment of FB1/cadmium exposure.
Collapse
Affiliation(s)
- Xiaoyi Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University No2 Yunamingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
854
|
Saeed AAH, Harun NY, Sufian S, Bilad MR, Zakaria ZY, Jagaba AH, Ghaleb AAS, Mohammed HG. Pristine and Magnetic Kenaf Fiber Biochar for Cd 2+ Adsorption from Aqueous Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7949. [PMID: 34360240 PMCID: PMC8345446 DOI: 10.3390/ijerph18157949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023]
Abstract
Development of strategies for removing heavy metals from aquatic environments is in high demand. Cadmium is one of the most dangerous metals in the environment, even under extremely low quantities. In this study, kenaf and magnetic biochar composite were prepared for the adsorption of Cd2+. The synthesized biochar was characterized using (a vibrating-sample magnetometer VSM), Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The adsorption batch study was carried out to investigate the influence of pH, kinetics, isotherm, and thermodynamics on Cd2+ adsorption. The characterization results demonstrated that the biochar contained iron particles that help in improving the textural properties (i.e., surface area and pore volume), increasing the number of oxygen-containing groups, and forming inner-sphere complexes with oxygen-containing groups. The adsorption study results show that optimum adsorption was achieved under pH 5-6. An increase in initial ion concentration and solution temperature resulted in increased adsorption capacity. Surface modification of biochar using iron oxide for imposing magnetic property allowed for easy separation by external magnet and regeneration. The magnetic biochar composite also showed a higher affinity to Cd2+ than the pristine biochar. The adsorption data fit well with the pseudo-second-order and the Langmuir isotherm, with the maximum adsorption capacity of 47.90 mg/g.
Collapse
Affiliation(s)
- Anwar Ameen Hezam Saeed
- Department of Chemical Engineering, University Teknologi PETRONAS, Seri Iskandar 31750, Malaysia; (A.A.H.S.); (S.S.)
- Centre of Urban Resource Sustainability, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Noorfidza Yub Harun
- Department of Chemical Engineering, University Teknologi PETRONAS, Seri Iskandar 31750, Malaysia; (A.A.H.S.); (S.S.)
- Centre of Urban Resource Sustainability, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Suriati Sufian
- Department of Chemical Engineering, University Teknologi PETRONAS, Seri Iskandar 31750, Malaysia; (A.A.H.S.); (S.S.)
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, University Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei;
| | - Zaki Yamani Zakaria
- School of Chemical & Energy Engineering, University Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Ahmad Hussaini Jagaba
- Department of Civil and Environmental Engineering, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (A.H.J.); (A.A.S.G.)
| | - Aiban Abdulhakim Saeed Ghaleb
- Department of Civil and Environmental Engineering, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (A.H.J.); (A.A.S.G.)
| | - Haetham G. Mohammed
- Department of Mechanical Engineering, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
| |
Collapse
|
855
|
Bovio F, Melchioretto P, Forcella M, Fusi P, Urani C. Cadmium promotes glycolysis upregulation and glutamine dependency in human neuronal cells. Neurochem Int 2021; 149:105144. [PMID: 34303722 DOI: 10.1016/j.neuint.2021.105144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 02/08/2023]
Abstract
Cadmium is a widespread pollutant, which easily accumulates inside the human body with an estimated half-life of 25-30 years. Many data strongly suggest that it may play a role in the pathogenesis of neurodegenerative diseases. In this paper we investigated cadmium effect on human SH-SY5Y neuroblastoma cells metabolism. Results showed that, although SH-SY5Y cells already showed hyperactivated glycolysis, cadmium further increased basal glycolytic rate. Both glycolytic capacity and reserve were also increased following cadmium administration, endowing the cells with a higher compensatory glycolysis when oxidative phosphorylation was inhibited. Cadmium administration also led to an increase in glycolytic ATP production rate, paralleled by a decrease in ATP production by oxidative phosphorylation, due to an impairment of mitochondrial respiration. Moreover, following cadmium administration, mitochondria increased their dependency on glutamine, while decreasing lipids oxidation. On the whole, our data show that cadmium exacerbates the Warburg effect and promotes the use of glutamine as a substrate for lipid biosynthesis. Although increased glutamine consumption leads to an increase in glutathione level, this cannot efficiently counteract cadmium-induced oxidative stress, leading to membrane lipid peroxidation. Oxidative stress represents a serious threat for neuronal cells and our data confirm glutathione as a key defense mechanism.
Collapse
Affiliation(s)
- Federica Bovio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy.
| | - Pasquale Melchioretto
- Department of Earth and Environmental Sciences, University of Milan Bicocca, Piazza della Scienza 1, 20126, Milan, Italy.
| | - Matilde Forcella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy.
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy; Integrated Models for Prevention and Protection in Environmental and Occupational Health, (MISTRAL), Interuniversity Research Center, Italy.
| | - Chiara Urani
- Department of Earth and Environmental Sciences, University of Milan Bicocca, Piazza della Scienza 1, 20126, Milan, Italy; Integrated Models for Prevention and Protection in Environmental and Occupational Health, (MISTRAL), Interuniversity Research Center, Italy.
| |
Collapse
|
856
|
Yu X, Zhao J, Liu X, Sun L, Tian J, Wu N. Cadmium Pollution Impact on the Bacterial Community Structure of Arable Soil and the Isolation of the Cadmium Resistant Bacteria. Front Microbiol 2021; 12:698834. [PMID: 34367100 PMCID: PMC8339475 DOI: 10.3389/fmicb.2021.698834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Microorganisms play an important role in the remediation of cadmium pollution in the soil and their diversity can be affected by cadmium. In this study, the bacterial community in arable soil samples collected from two near geographical sites, with different degrees of cadmium pollution at three different seasons, were characterized using Illumina MiSeq sequencing. The result showed that cadmium is an important factor to affect the bacterial diversity and the microbial communities in the high cadmium polluted area (the site H) had significant differences compared with low cadmium polluted area (the site L). Especially, higher concentrations of Cd significantly increased the abundance of Proteobacteria and Gemmatimonas whereas decreased the abundance of Nitrospirae. Moreover, 42 Cd-resistant bacteria were isolated from six soil samples and evaluated for potential application in Cd bioremediation. Based on their Cd-MIC [minimum inhibitory concentration (MIC) of Cd2+], Cd2+ removal rate and 16S rDNA gene sequence analyses, three Burkholderia sp. strains (ha-1, hj-2, and ho-3) showed very high tolerance to Cd (5, 5, and 6 mM) and exhibited high Cd2+ removal rate (81.78, 79.37, and 63.05%), six Bacillus sp. strains (151-5,151-6,151-13, 151-20, and 151-21) showed moderate tolerance to Cd (0.8, 0.4, 0.8, 0.4, 0.6, and 0.4 mM) but high Cd2+ removal rate (84.78, 90.14, 82.82, 82.39, 81.79, and 84.17%). Those results indicated that Burkholderia sp. belonging to the phylum Proteobacteria and Bacillus sp. belonging to the phylum Firmicutes have developed a resistance for cadmium and may play an important role in Cd-contaminated soils. Our study provided baseline data for bacterial communities in cadmium polluted soils and concluded that Cd-resistant bacteria have potential for bioremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Xiaoxia Yu
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, China
| | - JinTong Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - LiXin Sun
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
857
|
Ur Rahman S, Xuebin Q, Riaz L, Yasin G, Noor Shah A, Shahzad U, Shah Jahan M, Ditta A, Amjad Bashir M, Rehim A, Du Z. The interactive effect of pH variation and cadmium stress on wheat (Triticum aestivum L.) growth, physiological and biochemical parameters. PLoS One 2021; 16:e0253798. [PMID: 34252095 PMCID: PMC8274848 DOI: 10.1371/journal.pone.0253798] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/13/2021] [Indexed: 01/24/2023] Open
Abstract
Anthropogenic activities such as mining, manufacturing, and application of fertilizers release substantial quantities of cadmium (Cd) into the environment. In the natural environment, varying pH may play an important role in the absorption and accumulation of Cd in plants, which can cause toxicity and increase the risk to humans. We conducted a hydroponic experiment to examine the impact of pH on cadmium (Cd) solubility and bioavailability in winter wheat (Triticum aestivum L.) under controlled environmental conditions. The results showed that Cd concentration was significantly reduced in wheat with an increase in pH from 5 to 7, while it was dramatically increased at pH ranging from 7 to 9. However, in both cases, a significant reduction in physiological traits was observed. The addition of Cd (20, 50, and 200 μmol L-1) at all pH levels caused a substantial decline in wheat growth, chlorophyll and carotenoids contents, nutrient availability, while elevated cell membrane damage was observed in terms of electrolytic leakage (EL), osmoprotectants, and antioxidants activity. In our findings, the negative effects of acidic pH (5) on wheat growth and development were more pronounced in the presence of Cd toxicities. For instance, Cd concentration with 20, 50, and 200 μmol L-1 at acidic pH (5) reduced shoot dry biomass by 45%, 53%, and 79%, total chlorophyll contents by 26%, 41%, 56% while increased CAT activity in shoot by 109%, 175%, and 221%, SOD activity in shoot by 122%, 135%, and 167%, POD activity in shoot by 137%, 250%, and 265%, MDA contents in shoot by 51%, 83%, and 150%, H2O2 contents in shoot by 175%, 219%, and 292%, EL in shoot by 108%, 165%, and 230%, proline contents in shoot by 235%, 280%, and 393%, respectively as compared to neutral pH without Cd toxicities. On the other hand, neutral pH with Cd toxicities alleviated the negative effects of Cd toxicity on wheat plants by limiting Cd uptake, reduced reactive oxygen species (ROS) formation, and increased nutrient availability. In conclusion, neutral pH minimized the adverse effects of Cd stress by minimizing its uptake and accumulation in wheat plants.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
- Key Laboratory of High-efficient and Safe Utilization of Agriculture Water Resources of CAAS, Xinxiang, China
| | - Qi Xuebin
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
- Key Laboratory of High-efficient and Safe Utilization of Agriculture Water Resources of CAAS, Xinxiang, China
- * E-mail: (QX); (ZD)
| | - Luqman Riaz
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ghulam Yasin
- Department of Forestry Range and Wildlife Management, The Islamia University Bahawalpur, Bahawalpur, Pakistan
- Department of Forestry and Range Management, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Umbreen Shahzad
- Bahauddin Zakariya University, Bahadur Campus Layyah, Layyah, Pakistan
| | | | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Sheringal, Khyber Pakhtunkhwa, Pakistan
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | | | - Abdur Rehim
- Bahauddin Zakariya University, Bahadur Campus Layyah, Layyah, Pakistan
| | - Zhenjie Du
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
- Key Laboratory of High-efficient and Safe Utilization of Agriculture Water Resources of CAAS, Xinxiang, China
- * E-mail: (QX); (ZD)
| |
Collapse
|
858
|
Goyal T, Mitra P, Singh P, Ghosh R, Sharma S, Sharma P. Association of microRNA expression with changes in immune markers in workers with cadmium exposure. CHEMOSPHERE 2021; 274:129615. [PMID: 33545588 DOI: 10.1016/j.chemosphere.2021.129615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Human exposure to cadmium (Cd) is known to produce severe health effects. Recently, molecular mechanism of Cd toxicity has revealed the role of Cd in causing epigenetic alterations. miRNAs are small, non-coding RNAs which are involved in translational repression of genes. Therefore, the aim of the present study was to evaluate the alterations in expression of miRNAs associated with inflammation, carcinogenesis and, further, study their possible correlation with immune profile, in occupationally Cd exposed workers of Jodhpur. 106 workers from metal handicraft and welding factories were recruited as subjects, while, 80 apparently healthy non-exposed individuals served as control for this study. Blood Cd levels (BCd) were determined by Graphite Furnace Atomic Absorption Spectroscopy (GFAAS). Lymphocyte cell subset were measured by flow cytometry, serum interleukins were assessed by ELISA and miRNA expression was determined by Real Time Polymerase Chain Reaction (RT-PCR). BCd levels were significantly higher in the exposed individuals when compared to the non-exposed, with welders reporting the highest amongst all. Among the lymphocyte subset, exposed group showed significantly higher percentage of Th17 and lower percentage of Treg population. Cytokine profile expressed by exposed workers were predominantly pro-inflammatory in nature. Among, the studied miRNAs, miR-221 was significantly higher in exposed group with a fold change of 3.05. Additionally, miR-221 and miR-155 showed significant positive correlation with Th17 cell %. Regression analysis showed duration of exposure and IL-17 to have significant effect on miR-221 in exposed group. In conclusion, miR-221 was significantly upregulated in exposed and was correlated with immune alteration making it a potential candidate for further exploration of mechanism underlying Cd toxicity.
Collapse
Affiliation(s)
- Taru Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India.
| | - Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India.
| | - Preeti Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Raghumoy Ghosh
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India.
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India.
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India.
| |
Collapse
|
859
|
Hagimori M, Karimine Y, Mizuyama N, Hara F, Fujino T, Saji H, Mukai T. Selective Cadmium Fluorescence Probe Based on Bis-heterocyclic Molecule and its Imaging in Cells. J Fluoresc 2021; 31:1161-1167. [PMID: 33983566 DOI: 10.1007/s10895-021-02748-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Fluorescence probes that selectively image cadmium are useful for detecting and tracking the amount of Cd2+ in cells and tissues. In this study, we designed and synthesized a novel Cd2+ fluorescence probe based on the pyridine-pyrimidine structure, 4-(methylsulfanyl)-6-(pyridin-2-yl)pyrimidin-2-amine (3), as a low-molecular-weight fluorescence probe for Cd2+. Compound 3 could successfully discriminate between Cd2+ and Zn2+ and exhibited a highly selective turn-on response toward Cd2+ over biologically related metal ions. The dissociation constant (Kd) and the limit of detection (LOD) of 5.4 × 10- 6 mol L- 1 and 4.4 × 10- 7 mol L- 1, respectively, were calculated using fluorescence titration experiments. Studies with closely related analogs showed that the bis-heterocyclic moiety of 3 acted as both a coordination site for Cd2+ and a fluorophore. Further, the methylsulfanyl group of compound 3 is essential for achieving selective and sensitive Cd2+ detection. Fluorescence microscopy studies using living cells revealed that the cell membrane permeability of compound 3 is sufficient to detect intracellular Cd2+. These results indicate that novel bis-heterocyclic molecule 3 has considerable potential as a fluorescence probe for Cd2+ in biological applications.
Collapse
Affiliation(s)
- Masayori Hagimori
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya, 663-8179, Japan.
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852- 8501, Japan.
| | - Yasushi Karimine
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852- 8501, Japan
| | - Naoko Mizuyama
- Division of Medical Innovation, Translational Research Center for Medical Innovation, 1-5-4 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Fumiko Hara
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya, 663-8179, Japan
| | - Takeshi Fujino
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura- ku, 338-8570, Saitama, Japan
| | - Hideo Saji
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi- cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takahiro Mukai
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita Machi, Higashinada-Ku, Kobe, 658-8558, Japan
| |
Collapse
|
860
|
Younis U, Rahi AA, Danish S, Ali MA, Ahmed N, Datta R, Fahad S, Holatko J, Hammerschmiedt T, Brtnicky M, Zarei T, Baazeem A, Sabagh AEL, Glick BR. Fourier Transform Infrared Spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil. PLoS One 2021; 16:e0253390. [PMID: 34191839 PMCID: PMC8244852 DOI: 10.1371/journal.pone.0253390] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022] Open
Abstract
Fourier transform infrared spectroscopy (FTIR) spectroscopy detects functional groups such as vibrational bands like N-H, O-H, C-H, C = O (ester, amine, ketone, aldehyde), C = C, C = N (vibrational modes of a tetrapyrrole ring) and simply C = N. The FTIR of these bands is fundamental to the investigation of the effect of biochar (BC) treatment on structural changes in the chlorophyll molecules of both plants that were tested. For this, dried leaf of Spinacia oleracia (spinach) and Trigonella corniculata (fenugreek) were selected for FTIR spectral study of chlorophyll associated functional groups. The study’s primary goal was to investigate the silent features of infrared (IR) spectra of dried leave samples. The data obtained from the current study also shows that leaf chlorophyll can mask or suppress other molecules’ FITR bands, including proteins. In addition, the C = O bands with Mg and the C9 ketonic group of chlorophyll are observed as peaks at1600 (0%BC), 1650 (3%BC) and 1640, or near to1700 (5%BC) in spinach samples. In fenugreek, additional effects are observed in the FTIR spectra of chlorophyll at the major groups of C = C, C = O and C9 of the ketonic groups, and the vibrational bands are more evident at C-H and N-H of the tetrapyrrole ring. It is concluded that C-N bands are more visible in 5% BC treated spinach and fenugreek than in all other treatments. These types of spectra are useful in detecting changes or visibility of functional groups, which are very helpful in supporting biochemical data such as an increase in protein can be detected by more visibility of C-N bands in FTIR spectra.
Collapse
Affiliation(s)
- Uzma Younis
- Department of Botany, University of Central Punjab, Punjab, Pakistan
| | | | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
- * E-mail: (SD); (SF); (RD)
| | - Muhammad Arif Ali
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Niaz Ahmed
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
- * E-mail: (SD); (SF); (RD)
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Haripur, Pakistan
- * E-mail: (SD); (SF); (RD)
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agrisciences, Mendel University in Brno, Brno, Czech Republic
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agrisciences, Mendel University in Brno, Brno, Czech Republic
| | - Martin Brtnicky
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
- Faculty of Chemistry, Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Brno, Czech Republic
| | - Tayebeh Zarei
- Laboratory of Tropical and Mediterranean Symbioses, CIRAD, Mintpellier, France
| | - Alaa Baazeem
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ayman EL Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
861
|
Niekerk LA, Carelse MF, Bakare OO, Mavumengwana V, Keyster M, Gokul A. The Relationship between Cadmium Toxicity and the Modulation of Epigenetic Traits in Plants. Int J Mol Sci 2021; 22:ijms22137046. [PMID: 34209014 PMCID: PMC8268939 DOI: 10.3390/ijms22137046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/17/2023] Open
Abstract
Elevated concentrations of heavy metals such as cadmium (Cd) have a negative impact on staple crop production due to their ability to elicit cytotoxic and genotoxic effects on plants. In order to understand the relationship between Cd stress and plants in an effort to improve Cd tolerance, studies have identified genetic mechanisms which could be important for conferring stress tolerance. In recent years epigenetic studies have garnered much attention and hold great potential in both improving the understanding of Cd stress in plants as well as revealing candidate mechanisms for future work. This review describes some of the main epigenetic mechanisms involved in Cd stress responses. We summarize recent literature and data pertaining to chromatin remodeling, DNA methylation, histone acetylation and miRNAs in order to understand the role these epigenetic traits play in cadmium tolerance. The review aims to provide the framework for future studies where these epigenetic traits may be used in plant breeding and molecular studies in order to improve Cd tolerance.
Collapse
Affiliation(s)
- Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.F.C.); (O.O.B.)
| | - Mogamat Fahiem Carelse
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.F.C.); (O.O.B.)
| | - Olalekan Olanrewaju Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.F.C.); (O.O.B.)
| | - Vuyo Mavumengwana
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Tygerberg Campus, Stellenbosch University, Cape Town 7505, South Africa;
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.F.C.); (O.O.B.)
- Correspondence: (M.K.); (A.G.); Tel.: +27-587185392 (M.K. & A.G.)
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
- Correspondence: (M.K.); (A.G.); Tel.: +27-587185392 (M.K. & A.G.)
| |
Collapse
|
862
|
Quercetin Protects Human Thyroid Cells against Cadmium Toxicity. Int J Mol Sci 2021; 22:ijms22136849. [PMID: 34202188 PMCID: PMC8268548 DOI: 10.3390/ijms22136849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Various natural compounds have been successfully tested for preventing or counteracting the toxic effects of exposure to heavy metals. In this study, we analyzed the effects of cadmium chloride (CdCl2) on immortalized, non-tumorigenic thyroid cells Nthy-ori-3-1. We investigated the molecular mechanism underlying its toxic action as well as the potential protective effect of quercetin against CdCl2-induced damage. CdCl2 suppressed cell growth in a dose- and time-dependent manner (IC50 value ~10 μM) associated with a decrease in levels of phospho-ERK. In addition, CdCl2 elicited an increase in reactive oxygen species (ROS) production and lipid peroxidation. A significant increase in GRP78, an endoplasmic reticulum (ER) stress-related protein, was also observed. Supplementation of quercetin counteracted the growth-inhibiting action of CdCl2 by recovering ERK protein phosphorylation levels, attenuating ROS overproduction, decreasing MDA content and reducing the expression of GRP78 in cells exposed to CdCl2. Thus, in addition to revealing the molecular effects involved in cadmium-induced toxicity, the present study demonstrated, for the first time, a protective effect of quercetin against cadmium-induced damages to normal thyroid cells.
Collapse
|
863
|
Association of Heavy Metals with Overall Mortality in a Taiwanese Population. Nutrients 2021; 13:nu13062070. [PMID: 34204322 PMCID: PMC8235372 DOI: 10.3390/nu13062070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown links between heavy metals and many health issues. However, data on the association between heavy metals and mortality in the general population are still limited. Therefore, the aim of this study was to investigate the relationship between heavy metals and overall mortality in the general population. We enrolled 2497 participants (1001 males and 1496 females) living in southern Taiwan, and measured levels of seven heavy metals: lead (Pb) in blood and cadmium (Cd), nickel (Ni), copper (Cu), chromium (Cr), manganese (Mn) and arsenic (As) in urine. The median follow-up period was 41.8 (4-50) months, during which 40 (1.6%) patients died. Compared to the participants who survived, those who died had higher urine Cd, higher urine Cu and lower urine Mn levels. Multivariate analysis showed that high urine Cd (per 1 μg/L; hazard ratio [HR], 1.352; 95% confidence interval [CI], 1.089-1.680; p = 0.006), high urine Cu (per 1 μg/dL; HR, 1.350; 95% CI, 1.151-1.583; p < 0.001), and low urine Mn (per 1 μg/L; HR, 0.717; 95% CI, 0.557-0.923; p = 0.010) were associated with increased overall mortality. In conclusion, our results demonstrated that high levels of urine Cd and Cu and low urine Mn level were associated with increased overall mortality in the general population.
Collapse
|
864
|
Hernández-Mendoza H, Lara-Almazán N, Kuri-Cruz A, Romero-Guzmán ET, Ríos-Lugo MJ. Quadrupole inductively coupled plasma mass spectrometry and sector field ICP-MS: a comparison of analytical methods for the quantification of As, Pb, Cu, Cd, Zn, and U in drinking water. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
A comparison was carried out between quadrupole inductively coupled plasma mass spectrometry (ICP-QMS) detection and sector field ICP-MS (ICP-SFMS) detection for quantification of elements such as arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn), and uranium (U) in drinking water. A drinking water sample obtained from the International Atomic Energy Agency was used for validation measurement methods. ICP-QMS and ICP-SFMS obtained recoveries of 95–107% and 95–105%, respectively. Moreover, the relative standard deviation for ICP-QMS was <5% in comparison with ICP-SFMS, which was <2%. The limits of detection obtained in ICP-MS and ICP-SFMS for each element were under ng L−1, except for Zn. Both methods were applied to evaluate these elements in drinking water for consumption in Mexico. According to Mexican Regulation for Human Drinking Water NOM-201-SSA1-2015 and Environmental Protection Agency (EPA) from the United States, the values are within the allowable limits. In conclusion, ICP-QMS and ICP-SFMS are excellent choices for measurements of these toxic elements in water samples because of high precision and accuracy in routine analysis minutes, while also exhibiting excellent precision and accuracy in routine analysis.
Collapse
Affiliation(s)
- Héctor Hernández-Mendoza
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí , Altair 200 , ZP 78377 , San Luis , San Luis Potosí , México
- Universidad del Centro de México , Capitán Caldera 75 , ZP 78250 , San Luis , San Luis Potosí , México
| | - Nancy Lara-Almazán
- Laboratorio Nacional de Investigación en Forense Nuclear , Instituto Nacional de Investigaciones Nucleares , Carretera México-Toluca S/N km 36.5, A.P. 18-1027, La Marquesa , ZP 52750 , Ocoyoacác , México
| | - Abraham Kuri-Cruz
- Laboratorio Nacional de Investigación en Forense Nuclear , Instituto Nacional de Investigaciones Nucleares , Carretera México-Toluca S/N km 36.5, A.P. 18-1027, La Marquesa , ZP 52750 , Ocoyoacác , México
| | - Elizabeth Teresita Romero-Guzmán
- Laboratorio Nacional de Investigación en Forense Nuclear , Instituto Nacional de Investigaciones Nucleares , Carretera México-Toluca S/N km 36.5, A.P. 18-1027, La Marquesa , ZP 52750 , Ocoyoacác , México
- Departamento de Química , Instituto Nacional de Investigaciones Nucleares , Carretera México-Toluca S/N km 36.5, A.P. 18-1027, La Marquesa , ZP 52750 , Ocoyoacác , México
| | - María Judith Ríos-Lugo
- Unidad de Posgrado , Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí , Avenida Niño Artillero 130 , ZP 78210 , San Luis Potosí , San Luis Potosí , Mexico
| |
Collapse
|
865
|
Yi L, Dai J, Chen Y, Tong Y, Li Y, Fu G, Teng Z, Huang J, Quan C, Zhang Z, Zhou T, Zhang L, Shi Y. Reproductive toxicity of cadmium in pubertal male rats induced by cell apoptosis. Toxicol Ind Health 2021; 37:469-480. [PMID: 34128436 DOI: 10.1177/07482337211022615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cadmium (Cd) is a heavy metal that is widely present in modern industrial production. It is a known, highly toxic environmental endocrine disruptor. Long-term exposure to Cd can cause varying degrees of damage to the liver, kidney, and reproductive system of organisms, especially the male reproductive system. This study aimed to explore the mechanism of Cd toxicity in the male reproductive system during puberty. Eighteen healthy 6-week-old male Sprague-Dawley rats were randomly divided into three groups (control group, low-dose group, and high-dose group) according to their body weight, with six in each group. Cd (0, 1, and 3 mg/kg/day) was given by gavage for 28 consecutive days. The results showed that Cd exposure to each dose group caused a decrease in the testicular organ coefficient and sperm count, compared with the control group. Cd exposure resulted in significant changes in testicular morphology in the 3 mg/kg/day Cd group. In the 1 and 3 mg/kg/day Cd groups, serum testosterone decreased and apoptosis of testicular cells increased significantly (p < 0.05). In addition, compared with the control group, the activity of glutathione peroxidase and superoxide dismutase in each Cd exposure dose group decreased, but the content of malondialdehyde in the high-dose, 3 mg/kg/day Cd treatment group significantly increased (p < 0.05). Although Cd exposure caused an increase in the messenger RNA (mRNA) levels of Bcl-2, Caspase-3 and Caspase-9 in the testicular tissues (p < 0.05), Bcl-2 expression was unchanged (p > 0.05). The expression level of Akt mRNA in testicular tissue of rats in the high-dose 3 mg/kg/day Cd group was increased (p < 0.05). Our data suggest that Cd affected testosterone levels, and apoptosis was observed in spermatids.
Collapse
Affiliation(s)
- Lingna Yi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Juan Dai
- 369606Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Yong Chen
- Emergency Department, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Yeqing Tong
- Hubei Centers for Disease Prevention and Control, Wuhan, China
| | - You Li
- Tigermed Consulting Ltd, China
| | - Guoqing Fu
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Zengguang Teng
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Jufeng Huang
- Hanchuan Centers for Disease Prevention and Control, Hanchuan, China
| | - Chao Quan
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Zhibing Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Ting Zhou
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Yuqin Shi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
866
|
Heavy-Metal Contents and the Impact of Roasting on Polyphenols, Caffeine, and Acrylamide in Specialty Coffee Beans. Foods 2021; 10:foods10061310. [PMID: 34200293 PMCID: PMC8226649 DOI: 10.3390/foods10061310] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to determine the effect of roasting on the contents of polyphenols (PPH), acrylamide (AA), and caffeine (CAF) and to analyze heavy metals in specialty coffee beans from Colombia (COL) and Nicaragua (NIC). Samples of NIC were naturally processed and COL was fermented anaerobically. Green beans from COL (COL-GR) and NIC (NIC-GR) were roasted at two levels, light roasting (COL-LIGHT and NIC-LIGHT) and darker roasting (COL-DARK and NIC-DARK), at final temperatures of 210 °C (10 min) and 215 °C (12 min), respectively. Quantitative analyses of PPH identified caffeoylquinic acids (CQA), feruloylquinic acids, and dicaffeoylquinic acids. Isomer 5-CQA was present at the highest levels and reached 60.8 and 57.7% in COL-GR and NIC-GR, 23.4 and 29.3% in COL-LIGHT and NIC-LIGHT, and 18 and 24.2% in COL-DARK and NIC-DARK, respectively, of the total PPH. The total PPH contents were highest in COL-GR (59.76 mg/g dry matter, DM). Roasting affected the contents of PPH, CAF, and AA (p < 0.001, p < 0.011 and p < 0.001, respectively). Nickel and cadmium contents were significantly higher in the COL-GR than in the NIC-GR beans. Darker roasting decreased AA content, but light roasting maintained similar amounts of CAF and total PPH.
Collapse
|
867
|
Luparello C. Cadmium-Associated Molecular Signatures in Cancer Cell Models. Cancers (Basel) 2021; 13:2823. [PMID: 34198869 PMCID: PMC8201045 DOI: 10.3390/cancers13112823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 01/05/2023] Open
Abstract
The exposure of cancer cells to cadmium and its compounds is often associated with the development of more malignant phenotypes, thereby contributing to the acceleration of tumor progression. It is known that cadmium is a transcriptional regulator that induces molecular reprogramming, and therefore the study of differentially expressed genes has enabled the identification and classification of molecular signatures inherent in human neoplastic cells upon cadmium exposure as useful biomarkers that are potentially transferable to clinical research. This review recapitulates selected studies that report the detection of cadmium-associated signatures in breast, gastric, colon, liver, lung, and nasopharyngeal tumor cell models, as specifically demonstrated by individual gene or whole genome expression profiling. Where available, the molecular, biochemical, and/or physiological aspects associated with the targeted gene activation or silencing in the discussed cell models are also outlined.
Collapse
Affiliation(s)
- Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| |
Collapse
|
868
|
Seth E, Ahsan AU, Bamrara P, Kaushal S, Sharma VL, Chopra M. Cytoprotective and antioxidant potential of Aegle marmelos on cadmium-induced hepato-renal toxicity: an in vivo study. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
869
|
Izydorczyk G, Mikula K, Skrzypczak D, Moustakas K, Witek-Krowiak A, Chojnacka K. Potential environmental pollution from copper metallurgy and methods of management. ENVIRONMENTAL RESEARCH 2021; 197:111050. [PMID: 33753074 DOI: 10.1016/j.envres.2021.111050] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
This paper presents the latest overview of the environmental impact of wastes from the non-ferrous metallurgical industry. Ashes, slags and dusts - by-products from mining and metal processing - are sources of toxic metals, such as Pb, Cd, Hg, As, Al, as well as particulate matter. Physical, chemical and biological processes transform industrial wastes and cause water, soil and air pollution. Improperly protected heaps are subject to wind erosion and rain water leaching. Heavy metals and particulate matter are transported over long distances, contaminating the soil, living areas, watercourses, while in combination with mist they create smog. Water erosion releases heavy metals, which are leached into groundwater or surface runoff. This paper focuses on the range of pollution emissions from non-ferrous metallurgy wastes, hazards, mechanisms of their formation and fallouts, on the current state of technology and technological risk reduction solutions. The impact of pollution on human health and the biosphere, and methods of waste reduction in this industry sector are also presented. A sustainable and modern mining industry is the first step to cleaner production.
Collapse
Affiliation(s)
- Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland.
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| |
Collapse
|
870
|
Luo JS, Zhang Z. Mechanisms of cadmium phytoremediation and detoxification in plants. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.cj.2021.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
871
|
Synthesis of the hyper-branched polyamides and their effective utilization in adsorption and equilibrium isothermal study for cadmium ion uptake. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02554-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
872
|
Jain RB. Associations between concentrations of selected perfluoroalkyl acids and concentrations of blood cadmium, lead, and total mercury. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26537-26544. [PMID: 33483932 DOI: 10.1007/s11356-021-12493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Data (N = 2552) from National Health and Nutrition Examination Survey for US adults aged ≥ 20 years for 2011-2016 were analyzed to estimate the associations between the concentrations of blood cadmium, lead, and total mercury and the concentrations of seven perfluoroalkyl acids (PFAA), namely, 2-(N-Methyl-perfluorooctane sulfonamido) acetic acid (MPAH), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS). Concentrations of blood cadmium were negatively associated with the concentrations of PFHxS (β = - 0.05428, p < 0.01) and PFOS (β = - 0.0212, p = 0.02). Concentrations of blood lead were positively associated with the concentrations of MPAH (β = 0.03301, p < 0.01), PFOA (β = 0.04783, p = 0.01), PFNA (β = 0.11761, p < 0.01), PFDA (β = 0.08007, p < 0.01), PFUA (β = 0.11382, p < 0.01), and PFOS (β = 0.04996, p = 0.02). Percent increases in the concentration of blood lead were 0.32%, 0.46%, 1.13%, 0.77%, 1.09%, and 0.48% for 10% increases in the concentrations of MPAH, PFOA, PFNA, PFDA, PFUA, and PFOS, respectively. Concentrations of blood total mercury were positively associated with the concentrations of PFNA (β = 0.37105, p < 0.01), PFDA (β = 0.46875, p < 0.01), PFUA (β = 0.56934, p < 0.01), and PFOS (β = 0.17557, p < 0.01). Percent increases in the concentration of blood total mercury were 3.6%, 4.57%, 5.58%, and 1.69% for 10% increases in the concentrations of PFNA, PFDA, PFUA, and PFOS, respectively. Associations between the concentrations of PFAAs with blood total mercury were substantially stronger than the concentrations with blood lead. Higher the carbon chain length for PFAAs, stronger were the associations between PFAAs with lead and mercury.
Collapse
Affiliation(s)
- Ram B Jain
- 2959 Estate View Court, Dacula, GA, 30019, USA.
| |
Collapse
|
873
|
Fatema K, Shoily SS, Ahsan T, Haidar Z, Sumit AF, Sajib AA. Effects of arsenic and heavy metals on metabolic pathways in cells of human origin: Similarities and differences. Toxicol Rep 2021; 8:1109-1120. [PMID: 34141598 PMCID: PMC8188178 DOI: 10.1016/j.toxrep.2021.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/26/2022] Open
Abstract
There are distinctive overlaps in different heavy metal affected metabolic pathways. Affected pathways vary according to the tissue origin and maturity of the cell. Arsenic appears to have relatively more pleiotropic effects on metabolic pathways. Some of the arsenic affected pathways are associated with diabetes.
Various anthropogenic and natural events over the years have gradually increased human exposure to various heavy metals. Several of these heavy metals including cadmium, mercury, nickel, chromium, and the metalloid arsenic among others, have created major public health concerns for their high level of toxicities. Identification of the general as well as the differentially affected cellular metabolic pathways will help understanding the molecular mechanism of different heavy metal-induced toxicities. In this study, we analyzed 25 paired (control vs. treated) transcriptomic datasets derived following treatment of various human cells with different heavy metals and metalloid (arsenic, cadmium, chromium, iron, mercury, nickel and vanadium) to identify the affected metabolic pathways. The effects of these metals on metabolic pathways depend not only on the metals per se, but also on the nature of the treated cells. Tissue of origin, therefore, must be considered while assessing the effects of any particular heavy metal or metalloid. Among the metals and metalloid, arsenic appears to have relatively more pleiotropic influences on cellular metabolic pathways including those known to have association with diabetes. Although only two stem cell derived datasets are included in the current study, effects of heavy metals on these cells appear to be different from other mature cells of similar tissue origin. This study provides useful information about different heavy metal affected pathways, which may be useful in further exploration using wet-lab based techniques.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Sabrina Samad Shoily
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Tamim Ahsan
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Zinia Haidar
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Ahmed Faisal Sumit
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
874
|
Glicklich D, Frishman WH. The Case For Cadmium and Lead Heavy Metal Screening. Am J Med Sci 2021; 362:344-354. [PMID: 34048724 DOI: 10.1016/j.amjms.2021.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/18/2021] [Accepted: 05/21/2021] [Indexed: 01/24/2023]
Abstract
Exposure to cadmium and lead is widespread, and is related to environmental contamination, occupational sources, food, tobacco and other consumer products. Lower socioeconomic status increases the risk of heavy metal exposure and the diseases associated with cadmium and lead toxicity. Concurrent toxicity with both cadmium and lead is likely but has not often been assessed. There is now substantial evidence linking cadmium and lead to many diseases including hypertension, diabetes mellitus, obesity, cancer, coronary artery disease, chronic kidney disease (CKD) and lung disease. Both chronic renal failure and ischemic heart disease patients have been treated separately in recent studies with calcium disodium ethylenediaminetetraacetic acid (Ca EDTA) chelation therapy. In patients with CKD, serum creatinine 1.5-4.0 mg/dL, and increased body lead burden, weekly low dose chelation with Ca EDTA slowed the rate of decline in renal function in diabetics and non-diabetics. In patients with a history of myocardial infarction, the Trial to Assess Chelation Therapy (TACT) study showed that Ca EDTA chelation decreased the likelihood of cardiovascular events, particularly in diabetics. Ca EDTA chelation administered carefully at lower dosage (<50 mg/kg per week) is generally safe. In the past, acute renal failure associated with much higher dosage was reported. We suggest that the preponderance of the evidence favors a more activist approach towards diagnosis and possible intervention in heavy metal toxicity.
Collapse
Affiliation(s)
- Daniel Glicklich
- Kidney Transplant Division, New York Medical College/Westchester Medical Center, Valhalla, NY, USA.
| | - William H Frishman
- Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY, USA
| |
Collapse
|
875
|
Kovár M, Navrátilová A, Trakovická A, Požgajová M. Ascorbic acid supplementation suppresses cadmium-derived alterations in the fission yeast Schizosaccharomyces pombe. POTRAVINARSTVO 2021. [DOI: 10.5219/1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cadmium (Cd) a highly toxic environmental pollutant, that does not have any physiological function in the organism, represents a great concern for human health as it can be easily transported from its environmental sources to the food chain. Food, water, and air are the major sources of Cd exposure to the population. Cd-mediated impairments of the basic cellular properties largely depend on its ability to enhance the formation of reactive oxygen species (ROS) and thus triggers oxidative stress to the cell. With the use of fission yeast Schizosaccharomyces pombe (S. pombe) as the model organism, we have analyzed the impact of Cd on the cell growth intensity, as it represents the fundamental feature of all living organisms. Cells were incubated with different Cd concentrations for 3, 6, and 9 hours to investigate the effect of Cd on cell growth in a time and dose-dependent manner. Further possible Cd-derived alterations, as the peroxidation of membrane lipids or the functional impairment of the enzymatic antioxidant protection mechanisms, were investigated by determination of the MDA content and via catalase (CAT) activity detection. Moreover, ascorbic acid (AsA) pre-treatment was subjected to investigate the assumed positive effect of AsA against Cd toxicity. We show here on one hand that cells suffer under the influence of Cd, but on the other hand, they substantially profit from AsA supplementation. Because S. pombe is known to shares many molecular, and biochemical similarities with higher organisms, the effect of AsA in cadmium toxicity elimination might be expected to a similar extent also in other cell types.
Collapse
|
876
|
Garcia-Cegarra AM, Jung JL, Orrego R, Padilha JDA, Malm O, Ferreira-Braz B, Santelli RE, Pozo K, Pribylova P, Alvarado-Rybak M, Azat C, Kidd KA, Espejo W, Chiang G, Bahamonde P. Persistence, bioaccumulation and vertical transfer of pollutants in long-finned pilot whales stranded in Chilean Patagonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145259. [PMID: 33517007 DOI: 10.1016/j.scitotenv.2021.145259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Long-finned pilot whales (LFPW) are cetaceans with strong social groups often involved in mass strandings worldwide. However, these beachings occur for reasons that are not fully understood. In 2016, 124 LFPW were stranded on the Chilean Patagonian islands, offering a unique opportunity to obtain crucial information on the ecology, biology, and genetics of this population. In addition, we examined whether persistent organic pollutants (POPs) and trace elements (TEs) were responsible for this mass mortality. Stable isotopes (δ13C & δ15N) and genetic analyses were used to reconstruct the trophic ecology, social structure, and kinship of LFPW and compared to POPs and TEs levels found in LFPW. Mitochondrial DNA analyses on 71 individuals identified four maternal lineages within the stranded LFPW. Of these animals, 32 individuals were analyzed for a suite of POPs, TEs, and lipid content in blubber. The highest levels were found for ΣDDXs (6 isomers) (542.46 ± 433.46 ng/g, lw) and for total Hg (2.79 ± 1.91 mg/kg, dw). However, concentrations found in these LFPW were lower than toxicity thresholds and those reported for LFPW stranded in other regions. Evidence was found of ΣDDX, Σ7PCBs, and Cd bioaccumulation and maternal transfer of POPs in mother/offspring groups. Nevertheless, no clear relationship between contaminant concentrations and LFPW mortality was established. Further research is still needed to assess LFPW populations including conservations status and exposure to chemicals in remote areas such as Patagonia.
Collapse
Affiliation(s)
- Ana M Garcia-Cegarra
- Centro de Investigación de Fauna Marina y Avistamiento de Cetáceos (CIFAMAC), Mejillones, Chile; Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Antofagasta, Chile.
| | - Jean-Luc Jung
- Université de Brest, Muséum National d'Histoire Naturelle,CNRS, Sorbonne Université, ISYEB, F-29200 Brest, France
| | - Rodrigo Orrego
- Aquatic Toxicology Laboratory (AQUATOX), University of Antofagasta, Chile
| | - Janeide de A Padilha
- Radiositopes Lab, Biophysics Institute, Federal University of Rio de Janeiro, Brazil
| | - Olaf Malm
- Radiositopes Lab, Biophysics Institute, Federal University of Rio de Janeiro, Brazil
| | - Bernardo Ferreira-Braz
- Department of Analytical Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo E Santelli
- Department of Analytical Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karla Pozo
- Recetox (Research Center for Toxic Compounds in the Environment), Faculty of Science, Masaryk University, Czech Republic; Faculty of Engineering and Technology, San Sebastián University, Concepción, Chile
| | - Petra Pribylova
- Recetox (Research Center for Toxic Compounds in the Environment), Faculty of Science, Masaryk University, Czech Republic
| | - Mario Alvarado-Rybak
- Sustainability Research Center & PhD Program in Conservation Medicine, Life Science Faculty, Universidad Andres Bello, Santiago, Chile
| | - Claudio Azat
- Sustainability Research Center & PhD Program in Conservation Medicine, Life Science Faculty, Universidad Andres Bello, Santiago, Chile
| | - Karen A Kidd
- Department of Biology & School of Earth, Environment and Society, McMaster University, Canada
| | - Winfred Espejo
- Department of Animal Science, Facultad de Ciencias Veterinarias, Universidad de Concepción, Casilla 537, Chillán, Chile
| | - Gustavo Chiang
- Sustainability Research Center & PhD Program in Conservation Medicine, Life Science Faculty, Universidad Andres Bello, Santiago, Chile; MaREA, Laboratorio de Ecologia y Salud Acuática, Ñuñoa, Santiago, Chile
| | - Paulina Bahamonde
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados - HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile..
| |
Collapse
|
877
|
Protective Effect of Resveratrol against Hepatotoxicity of Cadmium in Male Rats: Antioxidant and Histopathological Approaches. COATINGS 2021. [DOI: 10.3390/coatings11050594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cadmium (Cd) is widely used in some industries and emitted from fossil fuels. It is a heavy metal with a number of side effects, including hepatotoxicity. Resveratrol (Rs) is considered an important polyphenol, which is a secondary plant metabolite and has the ability to scavenge free radicals. The study was designed to evaluate the effects of resveratrol on Cd, which induced hepatotoxicity, by the assessment of some histopathological and biochemical alterations. Forty male albino rats were divided into four groups: the 1st group was the control group, the 2nd group was treated with Cd (5 mg/kg), the 3rd group was given Rs (20 mg/kg), and the 4th group was treated with Cd in combination with Rs intraperitoneally for 30 successive days. The results indicate that Cd increased liver enzymes alanine aminotransferase and aspartate aminotransferase (AST and ALT), alkaline phosphatase ALP and gamma-glutamyl transferase (γ-GT) while reducing the total protein level; Cd increased the malondialdhyde (MDA) level while decreasing the levels of other antioxidant enzymes super oxide dismutase, catalase and glutathione peroxidase (SOD, CAT and GPx). Serious congestion and hemorrhage related to the hepatic tissues were noticed in the Cd group, and Rs plays a major role in alleviating histopathological injuries and hepatic oxidative damage. It is clear that Rs has the ability to minimize the hepatotoxicity induced by Cd in male rats.
Collapse
|
878
|
Cetinić KA, Previšić A, Rožman M. Holo- and hemimetabolism of aquatic insects: Implications for a differential cross-ecosystem flux of metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116798. [PMID: 33677367 DOI: 10.1016/j.envpol.2021.116798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Increased metal concentrations in aquatic habitats come as a result of both anthropogenic and natural sources. Emerging aquatic insects that play an indispensable role in these environments, transferring resources and energy to higher trophic levels in both aquatic and terrestrial habitats, may inadvertently also act as biovectors for metals and other contaminants. This study measured levels of 22 different metals detected in biofilm, aquatic and terrestrial life stages of Trichoptera and Odonata, as well as riparian spiders, to examine the uptake and transfer from freshwater to terrestrial ecosystems. We show that emerging insects transfer metals from aquatic to terrestrial ecosystems, however with large losses observed on the boundary of these two environments. Significantly lower concentrations of most metals in adult insects were observed in both hemimetabolous (Odonata) and holometabolous insect orders (Trichoptera). In holometabolous Trichoptera, however, this difference was greater between aquatic life stages (larvae to pupae) compared to that between pupae and adults. Trophic transfer may have also played a role in decreasing metal concentrations, as metal concentrations generally adhered to the following pattern: biofilm > aquatic insects > terrestrial invertebrates. Exceptions to this observation were detected with a handful of essential (Cu, Zn, Se) and non-essential metals (Cd, Ag), which measured higher concentrations in adult aquatic insects compared to their larval counterparts, as well as in aquatic and terrestrial predators compared to their prey. Overall, all metals were found to be bioavailable and biotransferred from contaminated waters to terrestrial invertebrates to some degree, suggesting that risks associated with metal-contaminated freshwaters could extend to terrestrial systems through the emergence of these potential invertebrate biovectors.
Collapse
Affiliation(s)
| | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
879
|
El Kholy S, Giesy JP, Al Naggar Y. Consequences of a short-term exposure to a sub lethal concentration of CdO nanoparticles on key life history traits in the fruit fly (Drosophila melanogaster). JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124671. [PMID: 33349477 DOI: 10.1016/j.jhazmat.2020.124671] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Nanoparticles of cadmium oxide (CdO NPs) are among the most common industrial metal oxide nanoparticles. Early adulthood (P1) fruit flies (D. melanogaster) were exposed for 7 days to a sub lethal concentration (0.03 mg CdO NPs/mL, which was 20% of the LC50), spiked into food media to test whether short episodes of CdO NPs exposures early in adult life have long-lasting effects on life history traits such as fecundity well beyond exposure times. All studied life history traits, as well as climbing behavior were adversely affected by exposure to CdO NPs. A blistered wing phenotype was also observed in the non-exposed progeny (F1) of adult flies (P1) and their fecundity was significantly decreased (-50%) compared to the fecundity of non-exposed (control) F1 flies. Expressions of antioxidant enzymes encoding genes; catalase and superoxide dismutase (SOD2) were significantly up regulated in P1 flies compared to control. Expression of metallothionein encoding genes (MTn A-D) were significantly up-regulated in both parent flies (P1) and their progeny (F1) after exposure of P1 flies to CdO NPs compared to non-exposed control flies, suggesting long-term potential effects. Taken together, these findings indicate that short-term exposure to a sub-lethal CdO NP concentration is sufficient to have long-lasting, adverse effects on fruit flies.
Collapse
Affiliation(s)
- Samar El Kholy
- Zoology Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt; General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany.
| |
Collapse
|
880
|
Functional Food Product Based on Nanoselenium-Enriched Lactobacillus casei against Cadmium Kidney Toxicity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper demonstrates the ability of a functional food based on probiotics and selenium nanoparticles (SeNPs) to annihilate the toxic effect of cadmium on the kidneys. SeNPs were obtained by eco-friendly method used Lactobacillus casei. The morphological features and size of SeNPS were characterized by Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS). Two kind of SeNPs were used, purified and Lacto-SeNPs (LSeNPs), administered by gavage at three concentrations (0.1, 0.2, and 0.4 mg/Kg b.w.) for 30 days in a mouse model of cadmium renal toxicity. The blood marker of renal injury (creatinine) significantly decreased in groups where the mice were treated with both form of SeNPs. The antioxidant capacity of plasma was evaluated by Trolox Equivalent Antioxidant Capacity (TEAC) assay and revealed that SeNPs in co-treatment with Cd, promotes maintaining antioxidant activity at the control level. Histopathological analysis of kidneys demonstrated morphological alteration in the group that received only cadmium and restored after administration of SeNPs or LSeNPs. In addition, immunohistochemical analysis revealed anti-apoptotic effects through reduction of pro-apoptotic bax and increasing of anti-apoptotic Bcl-2 protein expressions. Moreover, co-administration of Cd with SeNPs significantly decreased gene expression of kidneys inflammatory markers (TNF-α, IL-6, NF-ĸB) in a dose dependent manner, with the best results for LSeNPs at highest dose (0.4 mg/kg). Therefore, the L. casei strain is a potential SeNPs-enriched probiotic for application as functional food in the future to annihilate cadmium-induced kidneys toxicity.
Collapse
|
881
|
Fan D, Wang S, Guo Y, Liu J, Agathokleous E, Zhu Y, Han J. The role of bacterial communities in shaping Cd-induced hormesis in 'living' soil as a function of land-use change. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124996. [PMID: 33444951 DOI: 10.1016/j.jhazmat.2020.124996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Bacterial communities and soil physicochemical properties shape soil enzymes activities. However, how environmental factors and bacterial communities affect the relationship between increasing doses of soil pollutants and soil alkaline phosphatase (ALP), an index of soil microbiota activity, remains poorly understood. In this study, we investigated the response of soil ALP to 13 doses of Cd (0 and 0.01-100 mg/kg) under four land uses, viz. grassland (GL), natural forest (NF), plantation forest (PF), and wheat field (WF). We found that Cd commonly induced hormetic-like responses of soil ALP, with a maximum stimulation of 10.7%, 10.1%, 11.6%, and 14.5% in GL, NF, PF, and WF, respectively. The size of the hormetic zone (Horzone), an integrated indicator of the stimulation phase and biological plasticity, was in the order GL > WF > PF > NF, and the hormetic zone occurred in the dose range of 5-10, 0.3-10, 0.8-3, and 3-5 mg/kg, respectively. These results indicate highly pleiotropic responses of 'living' soil system to promote resilience to Cd contamination, with soil microbiota potentially contributing to soil ALP's hormetic-like response under different land uses. The hormetic-like response of 'living' soil ALP in different land uses offers a new insight into the identification and minimization of the ecological risks of land-use change in Cd-contaminated lands.
Collapse
Affiliation(s)
- Diwu Fan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shengyan Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanhui Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jian Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, Jiangsu 210044, China
| | - Yongli Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
882
|
Numa Pompilio CG, Francisco CS, Marco Tulio FDMT, Sergio Samuel SM, Fernanda Eliza GJ. Heavy metals in blood, milk and cow's urine reared in irrigated areas with wastewater. Heliyon 2021; 7:e06693. [PMID: 33937539 PMCID: PMC8079447 DOI: 10.1016/j.heliyon.2021.e06693] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
The aim of this work was to determine the content of lead (Pb), chromium (Cr), cadmium (Cd), arsenic (As), copper (Cu), strontium (Sr) and thallio (Tl) in blood, milk and urine from cows fed forage irrigated with sewage water and cultivated in the vicinity of the Popocatépetl volcano and determine the rate of transfer of these elements from blood to milk and urine. Digestion was performed in a microwave oven (CEM-MarsX). The determination was made using an ICP -OES. The Cd in the blood was significantly higher than in milk and urine. The Cr in the blood was higher than in the urine. In milk the content of Pb and Cu was significantly higher than in blood. Sr and Tl concentration in the urine was higher than that detected in milk and blood and Pb in blood. Milk transfer Index revealed a significant difference in relation to the TI values found in the urine and only in the case of Cu in milk was TI > 1. In urine, the values found of Sr and Tl were higher than milk TI. It is concluded that when metals are ingested by cows in fodder, they are easily transferred to milk and urine through the blood. Presence of heavy metals in the different matrices determines the degree of environmental and trofic chain contamination with which we can consider the cow a biomarker.
Collapse
Affiliation(s)
- Castro-González Numa Pompilio
- Facultad de Ciencias Agrícolas y Pecuarias, Benemerita Universidad Autónoma de Puebla, A.V. Universidad s/n San Juan Acateno Teziutlan, Puebla, México
| | | | | | | | - González-Juárez Fernanda Eliza
- Facultad de Ciencias Agrícolas y Pecuarias, Benemerita Universidad Autónoma de Puebla, A.V. Universidad s/n San Juan Acateno Teziutlan, Puebla, México
| |
Collapse
|
883
|
Dong W, Liu G, Zhang K, Tan Y, Zou H, Yuan Y, Gu J, Song R, Zhu J, Liu Z. Cadmium exposure induces rat proximal tubular cells injury via p62-dependent Nrf2 nucleus translocation mediated activation of AMPK/AKT/mTOR pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112058. [PMID: 33714136 DOI: 10.1016/j.ecoenv.2021.112058] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a nuclear transcription factor of great concern which is widely involved in physiological and pathological processes of the organism, but the role and regulatory mechanism of Nrf2 in kidney exposed to cadmium (Cd) remain largely unknown. Here we demonstrated that Cd exposure induced injury in primary rat proximal tubular (rPT) cells and NRK-52E cell line, which was accompanied by autophagic flux blockade and subsequent accumulation of p62. Cd-activated nucleus translocation of Nrf2 depended on p62, which promoted antioxidant genes transcription, but it failed to against Cd-induced cell injury and ultimately succumbed to Cd toxicity. CDDO Methyl Ester (CDDO-ME) or ML385 treatment aggravated or alleviated rPT cells injury induced by Cd respectively, indicating that Nrf2 nucleus translocation played a negative role during Cd-induced rPT cells injury. Phosphorylation of 5' AMP-activated protein kinase (AMPK) decreased together with enhanced Nrf2 nucleus translocation in rPT cells exposed to Cd. Dephosphorylation of AMPK induced by Cd were facilitated or restored by CDDO-ME or ML385 treatment, which confirmed AMPK is a downstream factor of Nrf2. Simultaneously, CDDO-ME further enhanced Phosphorylation of mTOR and AKT which increased during Cd exposure. While, Cd-induced phosphorylation of mTOR and AKT were reversed by ML385 treatment. These results illustrated that Cd mediated Nrf2 nucleus translocation depends on p62 accumulation which results from autophagic flux inhibition. The enhanced nucleus translocation of Nrf2 suppresses phosphorylation of AMPK to inactivate AKT/mTOR signaling, and results in rPT cells injury finally.
Collapse
Affiliation(s)
- Wenxuan Dong
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China.
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China
| | - Yun Tan
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China.
| |
Collapse
|
884
|
The Role of Toxic Metals and Metalloids in Nrf2 Signaling. Antioxidants (Basel) 2021; 10:antiox10050630. [PMID: 33918986 PMCID: PMC8142989 DOI: 10.3390/antiox10050630] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2), an emerging regulator of cellular resistance to oxidants, serves as one of the key defensive factors against a range of pathological processes such as oxidative damage, carcinogenesis, as well as various harmful chemicals, including metals. An increase in human exposure to toxic metals via air, food, and water has been recently observed, which is mainly due to anthropogenic activities. The relationship between environmental exposure to heavy metals, particularly cadmium (Cd), lead (Pb), mercury (Hg), and nickel (Ni), as well as metaloid arsenic (As), and transition metal chromium (Cr), and the development of various human diseases has been extensively investigated. Their ability to induce reactive oxygen species (ROS) production through direct and indirect actions and cause oxidative stress has been documented in various organs. Taking into account that Nrf2 signaling represents an important pathway in maintaining antioxidant balance, recent research indicates that it can play a dual role depending on the specific biological context. On one side, Nrf2 represents a potential crucial protective mechanism in metal-induced toxicity, but on the other hand, it can also be a trigger of metal-induced carcinogenesis under conditions of prolonged exposure and continuous activation. Thus, this review aims to summarize the state-of-the-art knowledge regarding the functional interrelation between the toxic metals and Nrf2 signaling.
Collapse
|
885
|
Irfan M, Liu X, Hussain K, Mushtaq S, Cabrera J, Zhang P. The global research trend on cadmium in freshwater: a bibliometric review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 30:10.1007/s11356-021-13894-7. [PMID: 33877520 DOI: 10.1007/s11356-021-13894-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Cadmium pollution turns out to be a global environmental problem. This study conducted a quantitative and qualitative bibliometric analysis based on 9188 research items from the Web of Science Core Collection published in the last 20 years (2000-2020), presenting an in-depth statistical investigation of global freshwater cadmium research progress and developing trend. Our results demonstrated that the researchers from China, the USA, and India contribute the most to this field. The primary sources of cadmium are mining, industry, wastewater, sedimentation, and agricultural activities. In developing countries, cadmium exposure occurs mainly through the air, freshwater, and food. Fish and vegetables are the main food sources of cadmium for humans because of their high accumulation capability. Source evaluation, detection, and remediation represent the main technologies used to clean up cadmium-contaminated sites. To mitigate the risk of cadmium contamination in freshwater, biomarker-based cadmium monitoring methods and integrated policies/strategies to reduce cadmium exposure merit further concern.
Collapse
Affiliation(s)
- Muhammad Irfan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China.
| | - Khalid Hussain
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Suraya Mushtaq
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Jonnathan Cabrera
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| |
Collapse
|
886
|
Ameliorative Effects of Exogenous Proline on Photosynthetic Attributes, Nutrients Uptake, and Oxidative Stresses under Cadmium in Pigeon Pea ( Cajanus cajan L.). PLANTS 2021; 10:plants10040796. [PMID: 33921552 PMCID: PMC8073620 DOI: 10.3390/plants10040796] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022]
Abstract
Proline plays a significant role in the plant response to stress conditions. However, its role in alleviating metal-induced stresses remains elusive. We conducted an experiment to evaluate the ameliorative role of exogenous proline on cadmium-induced inhibitory effects in pigeon pea subjected to different Cd treatments (4 and 8 mg/mL). Cadmium treatments reduced photosynthetic attributes, decreased chlorophyll contents, disturbed nutrient uptake, and affected growth traits. The elevated activity of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), in association with relatively high contents of hydrogen peroxide, thiobarbituric acid reactive substances, electrolyte leakage, and endogenous proline, was measured. Exogenous proline application (3 and 6 mM) alleviated cadmium-induced oxidative damage. Exogenous proline increased antioxidant enzyme activities and improved photosynthetic attributes, nutrient uptake (Mg2+, Ca2+, K+), and growth parameters in cadmium-stressed pigeon pea plants. Our results reveal that proline supplementation can comprehensively alleviate the harmful effects of cadmium on pigeon pea plants.
Collapse
|
887
|
Li D, Lin H, Zhang M, Meng J, Hu L, Yu B. Urine Cadmium as a Risk Factor for Osteoporosis and Osteopenia: A Meta-Analysis. Front Med (Lausanne) 2021; 8:648902. [PMID: 33937289 PMCID: PMC8085254 DOI: 10.3389/fmed.2021.648902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background: As society ages, the incidence of osteoporosis increases. In several studies, cadmium (Cd) is thought to be related to osteoporosis. However, there are conflicting reports about the relationship between Cd and the risk of osteoporosis and osteopenia. Therefore, the purpose of this meta-analysis was to explore the relationship between Cd and osteoporosis and osteopenia. Methods: Through a review of the literature, articles published in PubMed as of December 2020 were identified and the references of related publications and reviews were reviewed. Ultimately, 17 eligible articles were selected to determine the relationship between blood and urine Cd concentrations for the risk of osteoporosis or osteopenia. In this study, we performed a classification analysis, heterogeneity test, subgroup analysis, and evaluated publication bias. Results: A total of 17 studies were included, including seven on blood Cd and 10 on urine Cd. By combining the odds ratio (OR) and 95% confidence interval (CI) for the lowest and highest categories, the odds ratio of blood Cd concentration that increased the risk of osteoporosis or osteopenia was OR 1.21 (95% CI: 0.84–1.58) and that of urine Cd concentration that increased the risk of osteoporosis or osteopenia was OR 1.80 (95% CI: 1.42–2.18), and the results of the subgroup analysis were also consistent. Conclusions: Our research indicates that while urine cadmium (Cd) concentration may be related to increased risk of osteoporosis and osteopenia, blood Cd concentration may not. Therefore, compared to blood Cd concentration, urine Cd concentration may be more reliable as a risk factor for osteoporosis and osteopenia. This result should be interpreted with caution. Currently. research on the relationship between Cd concentration and osteoporosis and osteopenia is limited, thus, further large, high-quality prospective studies are required to elucidate the relationship between Cd concentration and osteoporosis and osteopenia.
Collapse
Affiliation(s)
- Dong Li
- The Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - HaoJie Lin
- Jinan Blood Supply and Security Center, Jinan, China
| | - Min Zhang
- Department of Nursing, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Meng
- The Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - LiYou Hu
- The Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bo Yu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
888
|
Chen J, Lai W, Deng Y, Liu M, Dong M, Liu Z, Wang T, Li X, Zhao Z, Yin X, Yang J, Yu R, Liu L. MicroRNA-363-3p promotes apoptosis in response to cadmium-induced renal injury by down-regulating phosphoinositide 3-kinase expression. Toxicol Lett 2021; 345:12-23. [PMID: 33857584 DOI: 10.1016/j.toxlet.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/09/2022]
Abstract
We previously determined that specific microRNAs (miRNAs) are involved in renal pathophysiological occurrences induced by cadmium (Cd) in rats. This study expands our studies on miRNAs, determining their role in Cd-induced nephrotoxicity in occupational workers. We performed miRNA microarray analyses of blood and urine samples from patients diagnosed as occupational chronic Cd poisoning (OCCP) with abnormally elevated concentrations of urinary beta-2-microglobulin (U-β2-MG), an indicator of tubular proteinuria. We also performed in vitro bioinformatics-based investigations of apoptosis-related genes targeted by miRNAs involved in the biological response to Cd exposure. We tested five differentially expressed miRNAs and determined a significant increase of sera miR-363-3p. Also, we determined that miR-363-3p increase is associated with phosphoinositide 3-kinase (PI3K) down-regulation and the suppressed proliferation and enhanced apoptosis of renal tubule epithelial cells. The obtained results suggest miR-363-3p involvement in the pathophysiology of Cd-induced renal injury in humans and maybe considered for possible interventional therapeutic strategies for Cd-associated kidney damage.
Collapse
Affiliation(s)
- Jiabin Chen
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Weina Lai
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China; Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong, China
| | - Yaotang Deng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Min Liu
- Dongguan Maternal and Child Healthcare Hospital, Dongguan, 523700, Guangdong, China
| | - Ming Dong
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Zhidong Liu
- Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, 516008, Guangdong, China
| | - Ting Wang
- Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, 516008, Guangdong, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Zhiqiang Zhao
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Xiao Yin
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Jinmei Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Rian Yu
- Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong, China
| | - Lili Liu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China.
| |
Collapse
|
889
|
Wang T, Wang L, Zhang Y, Sun J, Xie Y, Yuan Y, Gu J, Bian J, Liu Z, Zou H. Puerarin Restores Autophagosome-Lysosome Fusion to Alleviate Cadmium-Induced Autophagy Blockade via Restoring the Expression of Rab7 in Hepatocytes. Front Pharmacol 2021; 12:632825. [PMID: 33935722 PMCID: PMC8079953 DOI: 10.3389/fphar.2021.632825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/01/2021] [Indexed: 01/02/2023] Open
Abstract
Autophagic dysfunction is one of the main mechanisms by which the environmental pollutant cadmium (Cd) induces cell injury. Puerarin (Pue, a monomeric Chinese herbal medicine extract) has been reported to alleviate Cd-induced cell injury by regulating autophagy pathways; however, its detailed mechanisms are unclear. In the present study, to investigate the detailed mechanisms by which Pue targets autophagy to alleviate Cd hepatotoxicity, alpha mouse liver 12 (AML12) cells were used to construct a model of Cd-induced hepatocyte injury in vitro. First, the protective effect of Pue on Cd-induced cell injury was confirmed by changes in cell proliferation, cell morphology, and cell ultrastructure. Next, we found that Pue activated autophagy and mitigated Cd-induced autophagy blockade. In this process, the lysosome was further activated and the lysosomal degradation capacity was strengthened. We also found that Pue restored the autophagosome-lysosome fusion and the expression of Rab7 in Cd-exposed hepatocytes. However, the fusion of autophagosomes with lysosomes and autophagic flux were inhibited after knocking down Rab7, and were further inhibited after combined treatment with Cd. In addition, after knocking down Rab7, the protective effects of Pue on restoring autophagosome-lysosome fusion and alleviating autophagy blockade in Cd-exposed cells were inhibited. In conclusion, Pue-mediated alleviation of Cd-induced hepatocyte injury was related to the activation of autophagy and the alleviation of autophagy blockade. Pue also restored the fusion of autophagosomes and lysosomes by restoring the protein expression of Rab7, thereby alleviating Cd-induced autophagy blockade in hepatocytes.
Collapse
Affiliation(s)
- Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yi Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yilin Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
890
|
Cybulska AM, Grochans S, Kamińska MS, Bosiacki M, Skonieczna-Żydecka K, Grochans E. Are cadmium and lead levels linked to the development of anxiety and depression? - A systematic review of observational studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112211. [PMID: 33862435 DOI: 10.1016/j.ecoenv.2021.112211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The aim of this systematic review was to assess if cadmium and lead levels are linked to anxiety and depression. A systematic literature search was conducted to identify observational trials evaluating the impact of cadmium and lead on the incidence and phenotype of depression and anxiety. The search identified 1059 records. Overall eighteen studies comprising 28,304 participants with a female predominance (n = 19,483; 69%) were included. Cadmium and lead levels were analyzed in eight and thirteen studies, respectively. Five studies found an association between blood cadmium levels and depression, among them three trials which reported that individuals in the highest quartile of blood cadmium had higher odds of showing depressive symptoms. Sex and smoking status were found to be potential confounders of cadmium impact on the depressive phenotype. None of the studies found association between the level of anxiety and blood cadmium levels. Nine studies demonstrated association between depressive symptoms and blood lead concentration. High lead levels may be associated with anxiety and neurobehavioral deficits. There are many factors that influence both the levels of cadmium and lead, and the severity of depression and anxiety in the respondents. There is no clear evidence for the impact of cadmium and lead levels on the development of depressive symptoms but a lot of indirect evidence points to this.
Collapse
Affiliation(s)
- Anna Maria Cybulska
- Department of Nursing, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 48 Żołnierska St., 71-210 Szczecin, Poland.
| | - Szymon Grochans
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wielkopolskich St., 70-111, Szczecin, Poland.
| | - Magdalena Sylwia Kamińska
- Subdepartment of Long-Term Care and Palliative Medicine, Department of Social Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 48 Żołnierska St., 71-210 Szczecin, Poland.
| | - Mateusz Bosiacki
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland.
| | - Karolina Skonieczna-Żydecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460 Szczecin, Poland.
| | - Elżbieta Grochans
- Department of Nursing, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 48 Żołnierska St., 71-210 Szczecin, Poland.
| |
Collapse
|
891
|
Detection, Distribution and Health Risk Assessment of Toxic Heavy Metals/Metalloids, Arsenic, Cadmium, and Lead in Goat Carcasses Processed for Human Consumption in South-Eastern Nigeria. Foods 2021; 10:foods10040798. [PMID: 33917819 PMCID: PMC8068235 DOI: 10.3390/foods10040798] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Notwithstanding the increased toxic heavy metals/metalloids (THMs) accumulation in (edible) organs owed to goat′s feeding habit and anthropogenic activities, the chevon remains increasingly relished as a special delicacy in Nigeria. Specific to the South-Eastern region, however, there is paucity of relevant data regarding the prevalence of THMs in goat carcasses processed for human consumption. This work was, therefore, aimed to investigate the detection, distribution and health risk assessment of THMs in goat carcass processed for human consumption in South-Eastern Nigeria. To achieve this, a total of 450 meat samples (kidney, liver and muscle) were evaluated from 150 randomly selected goat carcasses processed in two major slaughterhouses in Enugu State. The detection, distribution, as well as health risk assessment parameters followed standard procedures. Results revealed that at least one THM was detected in 56% of the carcasses. Mean concentrations of arsenic (As) were 0.53 ± 0.10 mg/kg, 0.57 ± 0.09 mg/kg and 0.45 ± 0.08 mg/kg, lead (Pb) were 0.48 ± 0.38 mg/kg, 0.45 ± 0.24 mg/kg and 0.82 ± 0.39 mg/kg, cadmium (Cd) was 0.06 ± 0.32 mg/kg, 0.02 ± 0.00 mg/kg, and 0.02 ± 0.00 mg/kg for kidney, liver and muscle tissues, respectively. The estimated daily intakes (EDI) for all THMs were above the recommended safe limits. The target hazard quotient (THQ) and hazard index (HI) computed for all As, Cd and Pb fell below unity in all the studied organs, which indicated no non-carcinogenic risks. Curtailing the anthropogenic activities that aid the THM-contamination in goat production/processing lines is recommended. Screening for THM-contamination in Nigerian slaughterhouses is imperative, so as to ascertain the toxicological safety of meats intended for human consumption.
Collapse
|
892
|
Dwivedi S, Kushalan S, Paithankar JG, D'Souza LC, Hegde S, Sharma A. Environmental toxicants, oxidative stress and health adversities: interventions of phytochemicals. J Pharm Pharmacol 2021; 74:516-536. [PMID: 33822130 DOI: 10.1093/jpp/rgab044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Oxidative stress is the most common factor mediating environmental chemical-induced health adversities. Recently, an exponential rise in the use of phytochemicals as an alternative therapeutics against oxidative stress-mediated diseases has been documented. Due to their free radical quenching property, plant-derived natural products have gained substantial attention as a therapeutic agent in environmental toxicology. The present review aimed to describe the therapeutic role of phytochemicals in mitigating environmental toxicant-mediated sub-cellular and organ toxicities via controlling cellular antioxidant response. METHODS The present review has covered the recently related studies, mainly focussing on the free radical scavenging role of phytochemicals in environmental toxicology. KEY FINDINGS In vitro and in vivo studies have reported that supplementation of antioxidant-rich compounds can ameliorate the toxicant-induced oxidative stress, thereby improving the health conditions. Improving the cellular antioxidant pool has been considered as a mode of action of phytochemicals. However, the other cellular targets of phytochemicals remain uncertain. CONCLUSIONS Knowing the therapeutic value of phytochemicals to mitigate the chemical-induced toxicity is an initial stage; mechanistic understanding needs to decipher for development as therapeutics. Moreover, examining the efficacy of phytochemicals against mixer toxicity and identifying the bioactive molecule are major challenges in the field.
Collapse
Affiliation(s)
- Shiwangi Dwivedi
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Sharanya Kushalan
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Smitha Hegde
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| |
Collapse
|
893
|
Chen HL, Fang JCC, Chang CJ, Wu TF, Wang IK, Fu JF, Huang YC, Yen JS, Weng CH, Yen TH. Environmental Cadmium Exposure and Dental Indices in Orthodontic Patients. Healthcare (Basel) 2021; 9:healthcare9040413. [PMID: 33918500 PMCID: PMC8066373 DOI: 10.3390/healthcare9040413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Previous studies have shown that environmental cadmium exposure could disrupt salivary gland function and is associated with dental caries and reduced bone density. Therefore, this cross-sectional study attempted to determine whether tooth decay with tooth loss following cadmium exposure is associated with some dental or skeletal traits such as malocclusions, sagittal skeletal pattern, and tooth decay. METHODS Between August 2019 and June 2020, 60 orthodontic patients with no history of previous orthodontics, functional appliances, or surgical treatment were examined. The patients were stratified into two groups according to their urine cadmium concentrations: high (>1.06 µg/g creatinine, n = 28) or low (<1.06 µg/g creatinine, n = 32). RESULTS The patients were 25.07 ± 4.33 years old, and most were female (female/male: 51/9 or 85%). The skeletal relationship was mainly Class I (48.3%), followed by Class II (35.0%) and Class III (16.7%). Class I molar relationships were found in 46.7% of these patients, Class II molar relationships were found in 15%, and Class III molar relationships were found in 38.3%. The mean decayed, missing, and filled surface (DMFS) score was 8.05 ± 5.54, including 2.03 ± 3.11 for the decayed index, 0.58 ± 1.17 for the missing index, and 5.52 ± 3.92 for the filled index. The mean index of complexity outcome and need (ICON) score was 53.35 ± 9.01. The facial patterns of these patients were within the average low margin (26.65 ± 5.53 for Frankfort-mandibular plane angle (FMA)). There were no significant differences in the above-mentioned dental indices between patients with high urine cadmium concentrations and those with low urine cadmium concentrations. Patients were further stratified into low (<27, n = 34), average (27-34, n = 23), and high (>34, n = 3) FMA groups. There were no statistically significant differences in the urine cadmium concentration among the three groups. Nevertheless, a marginally significant p-value of 0.05 for urine cadmium concentration was noted between patients with low FMA and patients with high FMA. CONCLUSION This analysis found no association between environmental cadmium exposure and dental indices in our orthodontic patients.
Collapse
Affiliation(s)
- Hui-Ling Chen
- Department of Dentistry and Craniofacial Orthodontics, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (H.-L.C.); (C.-J.C.); (T.-F.W.)
| | - Jason Chen-Chieh Fang
- School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Chia-Jung Chang
- Department of Dentistry and Craniofacial Orthodontics, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (H.-L.C.); (C.-J.C.); (T.-F.W.)
| | - Ti-Feng Wu
- Department of Dentistry and Craniofacial Orthodontics, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (H.-L.C.); (C.-J.C.); (T.-F.W.)
| | - I-Kuan Wang
- Department of Nephrology, China Medical University Hospital, Taichung 404, Taiwan;
- College of Medicine, China Medical University, Taichung 406, Taiwan
| | - Jen-Fen Fu
- Department of Medical Research, Chang Gung Memorial Hospital, Linkou 333, Taiwan;
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | - Ya-Ching Huang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou 333, Taiwan;
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ju-Shao Yen
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (J.-S.Y.); (C.-H.W.)
| | - Cheng-Hao Weng
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (J.-S.Y.); (C.-H.W.)
| | - Tzung-Hai Yen
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (J.-S.Y.); (C.-H.W.)
- Clinical Poison Center, Kidney Research Center, Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence:
| |
Collapse
|
894
|
Yang Z, Wang S, Liu H, Xu S. MAPK/iNOS pathway is involved in swine kidney necrosis caused by cadmium exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116497. [PMID: 33540250 DOI: 10.1016/j.envpol.2021.116497] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) pollution in the environment could cause toxic damage to animals and humans. MAPK pathways could regulate their downstream inflammatory factors, and plays a crucial role in necrosis. Since the swine kidney tissue is an important accumulation site of Cd and target organ of its toxic damage, but the damage form of Cd to swine kidney and the role of MAPK pathways in it are still not clear, we selected six week old weaned piglets as the research object, and fed a diet supplemented CdCl2 (20 mg/kg) to establish the model of liver injury induced by Cd. The expressions and phosphorylation of MAPK pathways (ERK, JNK, p38), expression levels of inflammatory factors (TNF-α, NF-κB, iNOS, COX-2 and PTGE) and necrosis related genes (MLKL, RIPK1, RIPK3 and FADD) and heat shock proteins (HSPs) were detected by RT-PCR and Western blot. H.E. staining was used to determine the damage of kidney caused by Cd exposure. The results showed that Cd exposure could activate p38 and JNK pathway phosphorylation, rather than ERK 1/2, up regulated the expressions of inflammatory factors, finally induced programmed necrosis (increasing the expressions of MLKL, RIPK1, RIPK3 and FADD) in swine kidney. Our study elucidated the mechanism of Cd-damage to swine kidney and the relationship among MAPK pathways, inflammatory factors and programmed necrosis in swine.
Collapse
Affiliation(s)
- Zijiang Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
895
|
Ming T, Wu Y, Huan H, Jiang Q, Su C, Lu C, Zhou J, Li Y, Su X. Integrative proteomics and metabolomics profiling of the protective effects of Phascolosoma esculent ferritin on BMSCs in Cd(II) injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111995. [PMID: 33529923 DOI: 10.1016/j.ecoenv.2021.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Ferritin is the major intracellular iron storage protein and is essential for iron homeostasis and detoxification. Cadmium affects cellular homeostasis and induces cell toxicity via sophisticated mechanisms. Here, we aimed to explore the mechanisms of cytoprotective effect of Phascolosoma esculenta ferritin (PeFer) on Cd(II)-induced bone marrow mesenchymal stem cell (BMSC) injury. Herein, the effects of different treated groups on apoptosis and cell cycle were assessed using flow cytometric analysis. We further investigated the alterations of the three groups using integrative 2-DE-based proteomics and 1H NMR-based metabolomics profiles. The results indicate that PeFer reduces BMSC apoptosis induced by Cd(II) and delays G0/G1 cell cycle progression. A total of 19 proteins and 70 metabolites were significantly different among BMSC samples of the three groups. Notably, multiomics analysis revealed that Cd(II) might perturb the ER stress-mediated apoptosis pathway and disrupt biological processes related to the TCA cycle, amino acid metabolism, purine and pyrimidine metabolism, thereby suppressing the cell growth rate and initiating apoptosis; however, the addition of PeFer might protect BMSCs against cell apoptosis to improve cell survival by enhancing energy metabolism. This study provides a better understanding of the underlying molecular mechanisms of the protective effect of PeFer in BMSCs against Cd(II) injury.
Collapse
Affiliation(s)
- Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Hengshang Huan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Qinqin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic College, Ningbo, Zhejiang 315800, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.
| |
Collapse
|
896
|
Study on the Evaluation of (Heavy) Metals in Water and Sediment of Skadar Lake (Montenegro), with BCF Assessment and Translocation Ability (TA) by Trapa natans and a Review of SDGs. WATER 2021. [DOI: 10.3390/w13060876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Skadar Lake is a crypto-depression, a shallow lake, near to the Adriatic coast; the largest in the Balkan Peninsula and in southeastern Europe. The Lake is a very complex aquatic ecosystem in which anthropogenic activities have a long history in terms of the impact on wildlife and the overexploitation of natural resources. Such consequences related to heavy metals represent a global problem. Heavy metal pollution can cause severe ecological consequences in aquatic ecosystems. These pollutants accumulate in the aquatic biota from water, sediment and through the food chain, the impact can magnify. Aquatic macrophytes are good indicators of the health of a water body. This research was carried out to evaluate heavy metals concentration in water, sediment and in the aquatic macrophyte Trapa natans (water chestnut), with BCF (bio-concentration factor), BSAF (biota sediment accumulation factor) and TA (translocation ability), in order to determine the water quality of this specific part of the aquatic ecosystem of Skadar Lake near to the settlement of Vranjina, a fishing village. The determination of heavy metals was carried out by ICP-OES. (Inductively coupled plasma-optical emission spectrometry). Statistical analysis was established by R statistical computing software, version 3.5.3. The metal concentration in the water decreases in the following sequential order: As > Pb > Zn > Cu = Al = Cr > Cd = Hg. Meanwhile in the sediment, the descending sequence is as follows: Cr > Zn > Cu > Pb > As > Cd > Hg. The ability of plants to absorb and accumulate metals from the aqueous growth medium was assessed using a bio-concentration factor. The BCF in the stem, leaf and fruit has high values, mainly, of Al, Cr, Cu and Zn, while for the biota sediment accumulation factor, the highest values were recorded for the following elements: Hg, Cd, Cu and Zn. Analysis of the translocation ability of TA shows the dominance of four metals: Pb, Cd, Hg and As. A significant positive Kendall’s correlation coefficient between sediment and stem (R = 0.73, p < 0.05), stem and leaf (R = 0.87, p < 0.05) and leaf and fruit (R = 1, p < 0.05) was established.
Collapse
|
897
|
Azarmehr Z, Ranji N, Khazaei Koohpar Z, Habibollahi H. The effect of N-Acetyl cysteine on the expression of Fxr (Nr1h4), LXRα (Nr1h3) and Sirt1 genes, oxidative stress, and apoptosis in the liver of rats exposed to different doses of cadmium. Mol Biol Rep 2021; 48:2533-2542. [PMID: 33772418 DOI: 10.1007/s11033-021-06300-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to consider the expression of farnesoid X receptor (Fxr), liver X receptor (LXRα) and sirtuin 1 (Sirt1), oxidative stress, inflammation, apoptosis, and the protective role of N-acetylcysteine (NAC) in the liver of rats treated with cadmium (Cd). 30 Wistar rats were divided into 5 groups: G1 (control), G2 (single dose of Cd), G3 (continuous dose of Cd), G4 (single dose of Cd + continuous dose of NAC), and G5 (continuous dose of Cd + continuous dose of NAC). The apoptosis of hepatic cells was measured using the TUNEL assay. Levels of malondialdehyde (MDA), IL-10, TNF-α, and total antioxidant capacity (TAC) were measured by specific kits. The expression of Fxr, LXRα, and Sirt1 genes and ratio of Bax/Bcl2 was considered using RT-PCR. While NAC treatment improved TAC and IL-10 values, it decreased MDA and TNF-α levels in the liver of rats exposed to Cd (P < 0.001). NAC decreased Bax/Bcl2 in the liver of G4 and G5 groups (P < 0.001). Exposure to a continuous dose of Cd decreased Fxr, LXRα, and Sirt1 expression by 36.65- (P < 0.001), 12.52- (P < 0.001) and 11.34-fold (P < 0.001) compared to control, respectively. NAC increased Fxr, LXRα, and Sirt1 expression (P < 0.01) and decreased Cd concentrations in both serum and tissue samples in G4 and G5 groups. Our results suggested that NAC protects liver tissue against Cd toxicity by elevating antioxidant capacity, mitigating oxidative stress, inflammation, apoptosis and up-regulation of FXR, LXR, and SIRT1 genes.
Collapse
Affiliation(s)
- Zahra Azarmehr
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box, 3516-41335, Rasht, Iran
| | - Najmeh Ranji
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box, 3516-41335, Rasht, Iran.
| | - Zeinab Khazaei Koohpar
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Hadi Habibollahi
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box, 3516-41335, Rasht, Iran
| |
Collapse
|
898
|
Choudhury C, Mazumder R, Biswas R, Sengupta M. Cadmium exposure induces inflammation through the canonical NF-κΒ pathway in monocytes/macrophages of Channa punctatus Bloch. FISH & SHELLFISH IMMUNOLOGY 2021; 110:116-126. [PMID: 33453382 DOI: 10.1016/j.fsi.2021.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/27/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
A vast range of research related to the toxicity of the heavy metal cadmium (Cd) has been carried out in a wide variety of fish species. However, Cd induced immunomodulation in monocytes/macrophages of Channa punctatus Bloch. has rarely been explored. The present study was designed to determine Cd induced immune response, role of NF-κB (nuclear factor kappa B) pathway and the subsequent downstream molecular responses in monocytes/macrophages of C. punctatus. Fish were sampled and acclimatized, with one group treated with cadmium chloride (CdCl2) (1.96 mg/L) and another kept as untreated control group, both under observation for 7 days. Exposure to CdCl2 was found to alter hematological profile of C. punctatus in addition to incurring histo-architectural damages in the HK (head kidney) and ultrastructural changes in the monocytes/macrophages. The innate immune potential was found to be significantly compromised as evident from decreased phagocytosis, intracellular killing, cell adhesion and reduced release of nitric oxide (NO) and myeloperoxidase (MPO) in Cd intoxicated group. Also Cd triggered ROS generation, reduced cellular NO levels by forming peroxynitrite along with the upregulated expression of the inflammatory marker iNOS (inducible nitric oxide synthase) in monocytes/macrophages, both at mRNA and protein levels, indicating inflammation. Inflammation is further verified from the upregulated expression of proinflammatory cytokines viz. TNF-α, IL-1β, IL-6, IL-12 along with a central inflammatory mediator NF-κΒ and downregulation of the anti-inflammatory cytokine IL-10, both at mRNA and protein levels. It can be concluded that, a sub-lethal exposure of Cd in C. punctatus for 7 days caused significant alterations in the hematological, histological and ultrastructural profile in monocytes/macrophages; impaired innate immune parameters, triggers ROS generation and inflammation as validated from the upregulated expression of NF-κΒ, iNOS, TNF-α, IL-1β, IL-6, IL-12 and IL-10 downregulation.
Collapse
Affiliation(s)
- Chohelee Choudhury
- Department of Biotechnology, Assam University, Silchar, Assam, 788011, India
| | - Ritwik Mazumder
- Department of Economics, Assam University, Silchar, Assam, 788011, India
| | - Rajib Biswas
- Department of Pathology, Silchar Medical College, Silchar, Assam, 788014, India
| | - Mahuya Sengupta
- Department of Biotechnology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
899
|
Tang D, Geng F, Yu C, Zhang R. Recent Application of Zebrafish Models in Atherosclerosis Research. Front Cell Dev Biol 2021; 9:643697. [PMID: 33718384 PMCID: PMC7947229 DOI: 10.3389/fcell.2021.643697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerotic cardiovascular disease is one of the leading causes of death worldwide. Establishing animal models of atherosclerosis is of great benefit for studying its complicated pathogenesis and screening and evaluating related drugs. Although researchers have generated a variety of models for atherosclerosis study in rabbits, mice and rats, the limitations of these models make it difficult to monitor the development of atherosclerosis, and these models are unsuitable for large scale screening of potential therapeutic targets. On the contrast, zebrafish can fulfill these purposes thanks to their fecundity, rapid development ex utero, embryonic transparency, and conserved lipid metabolism process. Thus, zebrafish have become a popular alternative animal model for atherosclerosis research. In this mini review, we summarize different zebrafish models used to study atherosclerosis, focusing on the latest applications of these models to the dynamic monitoring of atherosclerosis progression, mechanistic study of therapeutic intervention and drug screening, and assessment of the impacts of other risk factors.
Collapse
Affiliation(s)
- Dandan Tang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Fang Geng
- School of Life Sciences, Fudan University, Shanghai, China
| | - Chunxiao Yu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
900
|
Adsorption of Cd to TiO 2-NPs Forms Low Genotoxic AGGREGATES in Zebrafish Cells. Cells 2021; 10:cells10020310. [PMID: 33546308 PMCID: PMC7913537 DOI: 10.3390/cells10020310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 01/06/2023] Open
Abstract
The aquatic environment is involved in the pollutants spreading mechanisms, including nanomaterials and heavy metals. The aims of this study were to assess the in vivo genotoxicity of Cd (1 mg/L) and to investigate the genomic effects generated by its co-exposure with TiO2-NPs (10 µg/L). The study was performed using zebrafish as a model for 5, 7, 14, 21, and 28 days of exposure. The genotoxic potential was assessed by three experimental approaches: DNA integrity, degree of apoptosis, and molecular alterations at the genomic level by genomic template stability (% GTS) calculation. Results showed an increased in DNA damage after Cd exposure with a decrease in % GTS. The co-exposure (TiO2-NPs + Cd) induced a no statistically significant loss of DNA integrity, a reduction of the apoptotic cell percentage and the recovery of genome stability for prolonged exposure days. Characterization and analytical determinations data showed Cd adsorption to TiO2-NPs, which reduced free TiO2-NPs levels. The results of our study suggest that TiO2-NPs could be used for the development of controlled heavy metal bioremediation systems.
Collapse
|