901
|
Zhang J, Kris-Etherton PM, Thompson JT, Hannon DB, Gillies PJ, Vanden Heuvel JP. Alpha-linolenic acid increases cholesterol efflux in macrophage-derived foam cells by decreasing stearoyl CoA desaturase 1 expression: evidence for a farnesoid-X-receptor mechanism of action. J Nutr Biochem 2012; 23:400-9. [DOI: 10.1016/j.jnutbio.2011.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 11/17/2022]
|
902
|
Goldberg AA, Beach A, Davies GF, Harkness TAA, Leblanc A, Titorenko VI. Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells. Oncotarget 2012; 2:761-82. [PMID: 21992775 PMCID: PMC3248158 DOI: 10.18632/oncotarget.338] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aging is one of the major risk factors of cancer. The onset of cancer can be postponed by pharmacological and dietary anti-aging interventions. We recently found in yeast cellular models of aging that lithocholic acid (LCA) extends longevity. Here we show that, at concentrations that are not cytotoxic to primary cultures of human neurons, LCA kills the neuroblastoma (NB) cell lines BE(2)-m17, SK-n-SH, SK-n-MCIXC and Lan-1. In BE(2)-m17, SK-n-SH and SK-n-MCIXC cells, the LCA anti-tumor effect is due to apoptotic cell death. In contrast, the LCA-triggered death of Lan-1 cells is not caused by apoptosis. While low concentrations of LCA sensitize BE(2)-m17 and SK-n-MCIXC cells to hydrogen peroxide-induced apoptotic cell death controlled by mitochondria, these LCA concentrations make primary cultures of human neurons resistant to such a form of cell death. LCA kills BE(2)-m17 and SK-n-MCIXC cell lines by triggering not only the intrinsic (mitochondrial) apoptotic cell death pathway driven by mitochondrial outer membrane permeabilization and initiator caspase-9 activation, but also the extrinsic (death receptor) pathway of apoptosis involving activation of the initiator caspase-8. Based on these data, we propose a mechanism underlying a potent and selective anti-tumor effect of LCA in cultured human NB cells. Moreover, our finding that LCA kills cultured human breast cancer and rat glioma cells implies that it has a broad anti-tumor effect on cancer cells derived from different tissues and organisms.
Collapse
|
903
|
Kolhatkar V, Polli JE. Structural requirements of bile acid transporters: C-3 and C-7 modifications of steroidal hydroxyl groups. Eur J Pharm Sci 2012; 46:86-99. [PMID: 22387310 DOI: 10.1016/j.ejps.2012.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/27/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
The apical sodium dependent bile acid transporter (ASBT) and sodium-taurocholate cotransporting polypeptide (NTCP) are potential prodrug targets, but the structural requirements for these transporters are incompletely defined. The objective of this study was to evaluate the effect of C-3 and C-7 substitution on bile acid interaction with these bile acid transporters. Nineteen bile acid analogs were tested against ASBT and NTCP for binding, as well as translocation. Results indicated that ASBT and NTCP accommodated a wide range of substituents for binding, but all major C-7 modifications resulted in analogs that did not demonstrate active uptake by either ASBT or NTCP. A C-3 modification that was not tolerated at C-7 still afforded translocation via ASBT and NTCP, confirming the relative unacceptability of C-7 modification. Both ASBT and NTCP demonstrated a generally similar binding potency. Results suggest that drug conjugation to the C-3 hydroxyl group, rather than C-7, has potential to lead to a successful prodrug targeting ASBT and NTCP.
Collapse
Affiliation(s)
- Vidula Kolhatkar
- Univerisity of Maryland, School of Pharmacy, Baltimore, MD 21201, USA
| | | |
Collapse
|
904
|
Leoni V, Strittmatter L, Zorzi G, Zibordi F, Dusi S, Garavaglia B, Venco P, Caccia C, Souza AL, Deik A, Clish CB, Rimoldi M, Ciusani E, Bertini E, Nardocci N, Mootha VK, Tiranti V. Metabolic consequences of mitochondrial coenzyme A deficiency in patients with PANK2 mutations. Mol Genet Metab 2012; 105:463-71. [PMID: 22221393 PMCID: PMC3487396 DOI: 10.1016/j.ymgme.2011.12.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022]
Abstract
Pantothenate kinase-associated neurodegeneration (PKAN) is a rare, inborn error of metabolism characterized by iron accumulation in the basal ganglia and by the presence of dystonia, dysarthria, and retinal degeneration. Mutations in pantothenate kinase 2 (PANK2), the rate-limiting enzyme in mitochondrial coenzyme A biosynthesis, represent the most common genetic cause of this disorder. How mutations in this core metabolic enzyme give rise to such a broad clinical spectrum of pathology remains a mystery. To systematically explore its pathogenesis, we performed global metabolic profiling on plasma from a cohort of 14 genetically defined patients and 18 controls. Notably, lactate is elevated in PKAN patients, suggesting dysfunctional mitochondrial metabolism. As predicted, but never previously reported, pantothenate levels are higher in patients with premature stop mutations in PANK2. Global metabolic profiling and follow-up studies in patient-derived fibroblasts also reveal defects in bile acid conjugation and lipid metabolism, pathways that require coenzyme A. These findings raise a novel therapeutic hypothesis, namely, that dietary fats and bile acid supplements may hold potential as disease-modifying interventions. Our study illustrates the value of metabolic profiling as a tool for systematically exploring the biochemical basis of inherited metabolic diseases.
Collapse
Affiliation(s)
- Valerio Leoni
- Laboratory of Clinical Pathology and Medical Genetics, Milan, Italy
| | - Laura Strittmatter
- Departments of Systems Biology and Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Broad Institute, Cambridge, Massachusetts 02142, USA
| | | | | | - Sabrina Dusi
- Unit of Molecular Neurogenetics–Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children: IRCCS Foundation Neurological Institute “C.Besta”, Milan, Italy
| | - Barbara Garavaglia
- Unit of Molecular Neurogenetics–Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children: IRCCS Foundation Neurological Institute “C.Besta”, Milan, Italy
| | - Paola Venco
- Unit of Molecular Neurogenetics–Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children: IRCCS Foundation Neurological Institute “C.Besta”, Milan, Italy
| | - Claudio Caccia
- Laboratory of Clinical Pathology and Medical Genetics, Milan, Italy
| | | | - Amy Deik
- Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Clary B Clish
- Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Marco Rimoldi
- Laboratory of Clinical Pathology and Medical Genetics, Milan, Italy
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Medical Genetics, Milan, Italy
| | - Enrico Bertini
- Unit of Molecular Medicine, Department of Neurosciences, Bambino Gesù Pediatric Research Hospital, Rome, Italy
| | | | - Vamsi K Mootha
- Departments of Systems Biology and Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics–Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children: IRCCS Foundation Neurological Institute “C.Besta”, Milan, Italy
- Correspondence to: Valeria Tiranti, Unit of Molecular Neurogenetics, IRCCS Foundation Neurological Institute “C. Besta”, Via Temolo, 4, 20126 Milan, Italy, Phone +390223942633, Fax +390223942619,
| |
Collapse
|
905
|
Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes. Toxicol Appl Pharmacol 2012; 261:1-9. [PMID: 22342602 DOI: 10.1016/j.taap.2012.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 01/10/2012] [Accepted: 02/02/2012] [Indexed: 01/08/2023]
Abstract
Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR® technology, BAs were measured in cells+bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells+bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3±5.9 μM in CTL rat and 183±56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16±0.21 μM in CTL rat SCH and 9.61±6.36 μM in CTL human SCH. Treatment of cells for 24h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na⁺-taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account.
Collapse
|
906
|
Haeusler RA, Pratt-Hyatt M, Welch CL, Klaassen CD, Accili D. Impaired generation of 12-hydroxylated bile acids links hepatic insulin signaling with dyslipidemia. Cell Metab 2012; 15:65-74. [PMID: 22197325 PMCID: PMC3253887 DOI: 10.1016/j.cmet.2011.11.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/06/2011] [Accepted: 11/28/2011] [Indexed: 12/27/2022]
Abstract
The association of type 2 diabetes with elevated plasma triglyceride (TG) and very low-density lipoproteins (VLDL), and intrahepatic lipid accumulation represents a pathophysiological enigma and an unmet therapeutic challenge. Here, we uncover a link between insulin action through FoxO1, bile acid (BA) composition, and altered lipid homeostasis that brings new insight to this longstanding conundrum. FoxO1 ablation brings about two signature lipid abnormalities of diabetes and the metabolic syndrome, elevated liver and plasma TG. These changes are associated with deficiency of 12α-hydroxylated BAs and their synthetic enzyme, Cyp8b1, that hinders the TG-lowering effects of the BA receptor, Fxr. Accordingly, pharmacological activation of Fxr with GW4064 overcomes the BA imbalance, restoring hepatic and plasma TG levels of FoxO1-deficient mice to normal levels. We propose that generation of 12α-hydroxylated products of BA metabolism represents a signaling mechanism linking hepatic lipid abnormalities with type 2 diabetes, and a treatment target for this condition.
Collapse
|
907
|
Ogilvie LA, Firouzmand S, Jones BV. Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome. Bioeng Bugs 2012; 3:13-31. [PMID: 22126801 PMCID: PMC3329251 DOI: 10.4161/bbug.3.1.17883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous mobile genetic elements (MGE) are associated with the human gut microbiota and collectively referred to as the gut mobile metagenome. The role of this flexible gene pool in development and functioning of the gut microbial community remains largely unexplored, yet recent evidence suggests that at least some MGE comprising this fraction of the gut microbiome reflect the co-evolution of host and microbe in the gastro-intestinal tract. In conjunction, the high level of novel gene content typical of MGE coupled with their predicted high diversity, suggests that the mobile metagenome constitutes an immense and largely unexplored gene-space likely to encode many novel activities with potential biotechnological or pharmaceutical value, as well as being important to the development and functioning of the gut microbiota. Of the various types of MGE that comprise the gut mobile metagenome, plasmids are of particular importance since these elements are often capable of autonomous transfer between disparate bacterial species, and are known to encode accessory functions that increase bacterial fitness in a given environment facilitating bacterial adaptation. In this article current knowledge regarding plasmids resident in the human gut mobile metagenome is reviewed, and available strategies to access and characterize this portion of the gut microbiome are described. The relative merits of these methods and their present as well as prospective impact on our understanding of the human gut microbiota is discussed.
Collapse
Affiliation(s)
- Lesley A Ogilvie
- Centre for Biomedical and Health Science Research, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | | | | |
Collapse
|
908
|
Studer E, Zhou X, Zhao R, Wang Y, Takabe K, Nagahashi M, Pandak WM, Dent P, Spiegel S, Shi R, Xu W, Liu X, Bohdan P, Zhang L, Zhou H, Hylemon PB. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 2012; 55:267-276. [PMID: 21932398 PMCID: PMC3245352 DOI: 10.1002/hep.24681] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/29/2011] [Indexed: 12/15/2022]
Abstract
Bile acids have been shown to be important regulatory molecules for cells in the liver and gastrointestinal tract. They can activate various cell signaling pathways including extracellular regulated kinase (ERK)1/2 and protein kinase B (AKT) as well as the G-protein-coupled receptor (GPCR) membrane-type bile acid receptor (TGR5/M-BAR). Activation of the ERK1/2 and AKT signaling pathways by conjugated bile acids has been reported to be sensitive to pertussis toxin (PTX) and dominant-negative Gα(i) in primary rodent hepatocytes. However, the GPCRs responsible for activation of these pathways have not been identified. Screening GPCRs in the lipid-activated phylogenetic family (expressed in HEK293 cells) identified sphingosine-1-phosphate receptor 2 (S1P(2) ) as being activated by taurocholate (TCA). TCA, taurodeoxycholic acid (TDCA), tauroursodeoxycholic acid (TUDCA), glycocholic acid (GCA), glycodeoxycholic acid (GDCA), and S1P-induced activation of ERK1/2 and AKT were significantly inhibited by JTE-013, a S1P(2) antagonist, in primary rat hepatocytes. JTE-013 significantly inhibited hepatic ERK1/2 and AKT activation as well as short heterodimeric partner (SHP) mRNA induction by TCA in the chronic bile fistula rat. Knockdown of the expression of S1P(2) by a recombinant lentivirus encoding S1P(2) shRNA markedly inhibited the activation of ERK1/2 and AKT by TCA and S1P in rat primary hepatocytes. Primary hepatocytes prepared from S1P(2) knock out (S1P(2) (-/-) ) mice were significantly blunted in the activation of the ERK1/2 and AKT pathways by TCA. Structural modeling of the S1P receptors indicated that only S1P(2) can accommodate TCA binding. In summary, all these data support the hypothesis that conjugated bile acids activate the ERK1/2 and AKT signaling pathways primarily through S1P(2) in primary rodent hepatocytes.
Collapse
Affiliation(s)
- Elaine Studer
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Xiqiao Zhou
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Renping Zhao
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
- China Pharmaceutical University, Nanjing, China
| | - Yun Wang
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
- China Pharmaceutical University, Nanjing, China
| | - Kazuaki Takabe
- Department of Surgery, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Masayuki Nagahashi
- Department of Surgery, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - William M. Pandak
- McGuire Veterans Affairs Medical Center, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Paul Dent
- Department of Neurosurgery, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Ruihua Shi
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Weiren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin China
| | - Xuyuan Liu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin China
| | - Pat Bohdan
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | | | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
- McGuire Veterans Affairs Medical Center, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
- McGuire Veterans Affairs Medical Center, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
909
|
Venturoni F, Gioiello A, Sardella R, Natalini B, Pellicciari R. Continuous flow synthesis and scale-up of glycine- and taurine-conjugated bile salts. Org Biomol Chem 2012; 10:4109-15. [DOI: 10.1039/c2ob25528f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
910
|
In search of sustainable chemical processes: cloning, recombinant expression, and functional characterization of the 7α- and 7β-hydroxysteroid dehydrogenases from Clostridium absonum. Appl Microbiol Biotechnol 2011; 95:1221-33. [PMID: 22198717 DOI: 10.1007/s00253-011-3798-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate-dependent 7α-hydroxysteroid dehydrogenase (7α-HSDH) and 7β-hydroxysteroid dehydrogenases (7β-HSDH) from Clostridium absonum catalyze the epimerization of primary bile acids through 7-keto bile acid intermediates and may be suitable as biocatalysts for the synthesis of bile acids derivatives of pharmacological interest. C. absonum 7α-HSDH has been purified to homogeneity and the N-terminal sequence has been determined by Edman sequencing. After PCR amplifications of a gene fragment with degenerate primers, cloning of the complete gene (786 nt) has been achieved by sequencing of C. absonum genomic DNA. The sequence coding for the 7β-HSDH (783 nt) has been obtained by sequencing of the genomic DNA region flanking the 5' termini of 7α-HSDH gene, the two genes being contiguous and presumably part of the same operon. After insertion in suitable expression vectors, both HSDHs have been successfully produced in recombinant form in Escherichia coli, purified by affinity chromatography and submitted to kinetic analysis for determination of Michaelis constants (K (m)) and specificity constants (k (cat)/K (m)) in the presence of various bile acids derivatives. Both enzymes showed a very strong substrate inhibition with all the tested substrates. The lowest K (S) values were observed with chenodeoxycholic acid and 12-ketochenodeoxycholic acid as substrates in the case of 7α-HSDH, whereas ursocholic acid was the most effective inhibitor of 7β-HSDH activity.
Collapse
|
911
|
Abstract
This review aims to provide a snapshot of the actual state of knowledge on genetic variants of nuclear receptors (NR) involved in regulating important aspects of liver metabolism. It recapitulates recent evidence for the application of NR in genetic diagnosis of monogenic ("Mendelian") liver disease and their use in clinical diagnosis. Genetic analysis of multifactorial liver diseases such as viral hepatitis or fatty liver disease identifies key players in disease predisposition and progression. Evidence from these analyses points towards a role of NR polymorphisms in common diseases, linking regulatory networks to complex and variable phenotypes. The new insights into NR variants also offer perspectives and cautionary advice for their use as handles towards diagnosis and treatment.
Collapse
Affiliation(s)
- Roman Müllenbach
- Department of Medicine II, Saarland University Medical Center, 66421 Homburg, Germany
| | | | | |
Collapse
|
912
|
Abstract
This review aims to provide a snapshot of the actual state of knowledge on genetic variants of nuclear receptors (NR) involved in regulating important aspects of liver metabolism. It recapitulates recent evidence for the application of NR in genetic diagnosis of monogenic (“Mendelian”) liver disease and their use in clinical diagnosis. Genetic analysis of multifactorial liver diseases such as viral hepatitis or fatty liver disease identifies key players in disease predisposition and progression. Evidence from these analyses points towards a role of NR polymorphisms in common diseases, linking regulatory networks to complex and variable phenotypes. The new insights into NR variants also offer perspectives and cautionary advice for their use as handles towards diagnosis and treatment.
Collapse
|
913
|
Pols TWH, Nomura M, Harach T, Lo Sasso G, Oosterveer MH, Thomas C, Rizzo G, Gioiello A, Adorini L, Pellicciari R, Auwerx J, Schoonjans K. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab 2011; 14:747-57. [PMID: 22152303 PMCID: PMC3627293 DOI: 10.1016/j.cmet.2011.11.006] [Citation(s) in RCA: 455] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 09/06/2011] [Accepted: 11/14/2011] [Indexed: 12/13/2022]
Abstract
The G protein-coupled receptor TGR5 has been identified as an important component of the bile acid signaling network, and its activation has been linked to enhanced energy expenditure and improved glycemic control. Here, we demonstrate that activation of TGR5 in macrophages by 6α-ethyl-23(S)-methylcholic acid (6-EMCA, INT-777), a semisynthetic BA, inhibits proinflammatory cytokine production, an effect mediated by TGR5-induced cAMP signaling and subsequent NF-κB inhibition. TGR5 activation attenuated atherosclerosis in Ldlr(-/-)Tgr5(+/+) mice but not in Ldlr(-/-)Tgr5(-/-) double-knockout mice. The inhibition of lesion formation was associated with decreased intraplaque inflammation and less plaque macrophage content. Furthermore, Ldlr(-/-) animals transplanted with Tgr5(-/-) bone marrow did not show an inhibition of atherosclerosis by INT-777, further establishing an important role of leukocytes in INT-777-mediated inhibition of vascular lesion formation. Taken together, these data attribute a significant immune modulating function to TGR5 activation in the prevention of atherosclerosis, an important facet of the metabolic syndrome.
Collapse
Affiliation(s)
- Thijs W H Pols
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
914
|
Ho RH, Leake BF, Urquhart BL, Gregor JC, Dawson PA, Kim RB. Functional characterization of genetic variants in the apical sodium-dependent bile acid transporter (ASBT; SLC10A2). J Gastroenterol Hepatol 2011; 26:1740-8. [PMID: 21649730 PMCID: PMC3170668 DOI: 10.1111/j.1440-1746.2011.06805.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIM The major transporter responsible for bile acid uptake from the intestinal lumen is the apical sodium-dependent bile acid transporter (ASBT, SLC10A2). Analysis of the SLC10A2 gene has identified a variety of sequence variants including coding region single nucleotide polymorphisms (SNPs) that may influence bile acid homeostasis/intestinal function. In this study, we systematically characterized the effect of coding SNPs on SLC10A2 protein expression and bile acid transport activity. METHODS Single nucleotide polymorphisms in SLC10A2 from genomic DNA of ethnically-defined healthy individuals were identified using a polymerase chain reaction (PCR)-based temperature gradient capillary electrophoresis (TGCE) system. A heterologous gene expression system was used to assess transport activity of SLC10A2 nonsynonymous variants and missense mutations. Total and cell surface protein expression of wild-type and variant ASBT was assessed by Western blot analysis and immunofluorescence confocal microscopy. Expression of ASBT mRNA and protein was also measured in human intestinal samples. RESULTS The studies revealed two nonsynonymous SNPs, 292G>A and 431G>A, with partially impaired in vitro taurocholate transport. A novel variant, 790A>G, was also shown to exhibit near complete loss of taurocholate transport, similar to the previously identified ASBT missense mutations. Examination of ASBT protein expression revealed no significant differences in expression or trafficking to the cell surface among variants versus wild-type ASBT. Analysis of ASBT mRNA and protein expression in human intestinal samples revealed modest intersubject variability. CONCLUSIONS Genome sequencing and in vitro studies reveal the presence of multiple functionally relevant variants in SLC10A2 that may influence bile acid homeostasis and physiology.
Collapse
Affiliation(s)
- Richard H. Ho
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brenda F. Leake
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brad L. Urquhart
- Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Jamie C. Gregor
- Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Paul A. Dawson
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Richard B. Kim
- Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
915
|
Steiner C, Othman A, Saely CH, Rein P, Drexel H, von Eckardstein A, Rentsch KM. Bile acid metabolites in serum: intraindividual variation and associations with coronary heart disease, metabolic syndrome and diabetes mellitus. PLoS One 2011; 6:e25006. [PMID: 22110577 PMCID: PMC3215718 DOI: 10.1371/journal.pone.0025006] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/24/2011] [Indexed: 01/12/2023] Open
Abstract
Bile acids (BAs) regulate glucose and lipid metabolism. In longitudinal and case-control-studies, we investigated the diurnal variation of serum concentrations of the 15 major BAs as well as the biosynthetic precursor 7α-hydroxy-4-cholesten-3-one (C4) and their associations, respectively, with coronary artery disease (CAD), diabetes mellitus type 2 (T2DM), and non-diabetic metabolic syndrome (MetS). In hourly taken blood samples of four healthy probands, the intraindividual 24 h variation of C4, conjugated and unconjugated BAs ranged from 42% to 72%, from 23% to 91%, and from 49% to 90%, respectively. Conjugated BA concentrations mainly increased following food intake. Serum levels of C4 and unconjugated BAs changed with daytime with maxima varying interindividually between 20h00 and 1h00 and between 3h00 and 8h00, respectively. Comparisons of data from 75 CAD patients with 75 CAD-free controls revealed no statistically significant association of CAD with BAs or C4. Comparisons of data from 50 controls free of T2DM or MetS, 50 MetS patients, and 50 T2DM patients revealed significantly increased fasting serum levels of C4 in patients with MetS and T2DM. Multiple regression analysis revealed body mass index (BMI) and plasma levels of triglycerides (TG) as independent determinants of C4 levels. Upon multivariate and principle component analyses the association of C4 with T2DM and/or MetS was not independent of or superior to the canonical MetS components. In conclusion, despite large intra- and interindividual variation, serum levels of C4,are significantly increased in patients with MetS and T2DM but confounded with BMI and TG.
Collapse
Affiliation(s)
- Carine Steiner
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Alaa Othman
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich and University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christoph H. Saely
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Philipp Rein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich and University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Katharina M. Rentsch
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
916
|
Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br J Nutr 2011; 107:1505-13. [PMID: 22067612 DOI: 10.1017/s0007114511004703] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Several studies have reported limited or no reduction in serum cholesterol in response to probiotic formulations. Recently, probiotics have shown promise in treating metabolic disease due to improved strain selection and delivery technologies. The aim of the present study was to evaluate the cholesterol-lowering efficacy of a yoghurt formulation containing microencapsulated bile salt hydrolase (BSH)-active Lactobacillus reuteri NCIMB 30242, taken twice per d over 6 weeks, in hypercholesterolaemic adults. A total of 114 subjects completed this double-blind, placebo-controlled, randomised, parallel-arm, multi-centre study. This interventional study included a 2-week washout, 2-week run-in and 6-week treatment period. Subjects were randomised to consume either yoghurts containing microencapsulated L. reuteri NCIMB 30242 or placebo yoghurts. Over the intervention period, subjects consuming yoghurts containing microencapsulated L. reuteri NCIMB 30242 attained significant reductions in LDL-cholesterol (LDL-C) of 8·92 % (P = 0·016), total cholesterol (TC) of 4·81 % (P = 0·031) and non-HDL-cholesterol (HDL-C) of 6·01 % (P = 0·029) over placebo, and a significant absolute change in apoB-100 of - 0·19 mmol/l (P = 0·049). Serum concentrations of TAG and HDL-C were unchanged over the course of the study. Present results show that consumption of microencapsulated BSH-active L. reuteri NCIMB 30242 yoghurt is efficacious and safe for lowering LDL-C, TC, apoB-100 and non-HDL-C in hypercholesterolaemic subjects. The efficacy of microencapsulated BSH-active L. reuteri NCIMB 30242 yoghurts appears to be superior to traditional probiotic therapy and akin to that of other cholesterol-lowering ingredients.
Collapse
|
917
|
Steinert RE, Beglinger C. Nutrient sensing in the gut: interactions between chemosensory cells, visceral afferents and the secretion of satiation peptides. Physiol Behav 2011; 105:62-70. [DOI: 10.1016/j.physbeh.2011.02.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 01/01/2023]
|
918
|
Vanwijngaerden YM, Wauters J, Langouche L, Vander Perre S, Liddle C, Coulter S, Vanderborght S, Roskams T, Wilmer A, Van den Berghe G, Mesotten D. Critical illness evokes elevated circulating bile acids related to altered hepatic transporter and nuclear receptor expression. Hepatology 2011; 54:1741-52. [PMID: 21800341 DOI: 10.1002/hep.24582] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
UNLABELLED Hyperbilirubinemia is common during critical illness and is associated with adverse outcome. Whether hyperbilirubinemia reflects intensive care unit (ICU) cholestasis is unclear. Therefore, the aim of this study was to analyze hyperbilirubinemia in conjunction with serum bile acids (BAs) and the key steps in BA synthesis, transport, and regulation by nuclear receptors (NRs). Serum BA and bilirubin levels were determined in 130 ICU and 20 control patients. In liver biopsies messenger RNA (mRNA) expression of BA synthesis enzymes, BA transporters, and NRs was assessed. In a subset (40 ICU / 10 controls) immunohistochemical staining of the transporters and receptors together with a histological evaluation of cholestasis was performed. BA levels were much more elevated than bilirubin in ICU patients. Conjugated cholic acid (CA) and chenodeoxycholic acid (CDCA) were elevated, with an increased CA/CDCA ratio. Unconjugated BA did not differ between controls and patients. Despite elevated serum BA levels, CYP7A1 protein, the rate-limiting enzyme in BA synthesis, was not lowered in ICU patients. Also, protein expression of the apical bile salt export pump (BSEP) was decreased, whereas multidrug resistance-associated protein (MRP) 3 was strongly increased at the basolateral side. This reversal of BA transport toward the sinusoidal blood compartment is in line with the increased serum conjugated BA levels. Immunostaining showed marked down-regulation of nuclear farnesoid X receptor, retinoid X receptor alpha, constitutive androstane receptor, and pregnane X receptor nuclear protein levels. CONCLUSION Failure to inhibit BA synthesis, up-regulate canalicular BA export, and localize pivotal NR in the hepatocytic nuclei may indicate dysfunctional feedback regulation by increased BA levels. Alternatively, critical illness may result in maintained BA synthesis (CYP7A1), reversal of normal BA transport (BSEP/MRP3), and inhibition of the BA sensor (FXR/RXRα) to increase serum BA levels.
Collapse
Affiliation(s)
- Yoo-Mee Vanwijngaerden
- Laboratory and Department of Intensive Care Medicine, University Hospitals KU Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
919
|
Abstract
Sterol metabolites are critical signaling molecules that regulate metabolism, development, and homeostasis. Oxysterols, bile acids (BAs), and steroids work primarily through cognate sterol-responsive nuclear hormone receptors to control these processes through feed-forward and feedback mechanisms. These signaling pathways are conserved from simple invertebrates to mammals. Indeed, results from various model organisms have yielded fundamental insights into cholesterol and BA homeostasis, lipid and glucose metabolism, protective mechanisms, tissue differentiation, development, reproduction, and even aging. Here, we review how sterols act through evolutionarily ancient mechanisms to control these processes.
Collapse
Affiliation(s)
- Joshua Wollam
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
920
|
Baghdasaryan A, Claudel T, Gumhold J, Silbert D, Adorini L, Roda A, Vecchiotti S, Gonzalez FJ, Schoonjans K, Strazzabosco M, Fickert P, Trauner M. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/- (Abcb4-/-) mouse cholangiopathy model by promoting biliary HCO⁻₃ output. Hepatology 2011; 54:1303-12. [PMID: 22006858 PMCID: PMC3744065 DOI: 10.1002/hep.24537] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Chronic cholangiopathies have limited therapeutic options and represent an important indication for liver transplantation. The nuclear farnesoid X receptor (FXR) and the membrane G protein-coupled receptor, TGR5, regulate bile acid (BA) homeostasis and inflammation. Therefore, we hypothesized that activation of FXR and/or TGR5 could ameliorate liver injury in Mdr2(-/-) (Abcb4(-/-)) mice, a model of chronic cholangiopathy. Hepatic inflammation, fibrosis, as well as bile secretion and key genes of BA homeostasis were addressed in Mdr2(-/-) mice fed either a chow diet or a diet supplemented with the FXR agonist, INT-747, the TGR5 agonist, INT-777, or the dual FXR/TGR5 agonist, INT-767 (0.03% w/w). Only the dual FXR/TGR5 agonist, INT-767, significantly improved serum liver enzymes, hepatic inflammation, and biliary fibrosis in Mdr2(-/-) mice, whereas INT-747 and INT-777 had no hepatoprotective effects. In line with this, INT-767 significantly induced bile flow and biliary HCO 3- output, as well as gene expression of carbonic anhydrase 14, an important enzyme able to enhance HCO 3- transport, in an Fxr-dependent manner. In addition, INT-767 dramatically reduced bile acid synthesis via the induction of ileal Fgf15 and hepatic Shp gene expression, thus resulting in significantly reduced biliary bile acid output in Mdr2(-/-) mice. CONCLUSION This study shows that FXR activation improves liver injury in a mouse model of chronic cholangiopathy by reduction of biliary BA output and promotion of HCO 3--rich bile secretion.
Collapse
Affiliation(s)
- Anna Baghdasaryan
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Thierry Claudel
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Judith Gumhold
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Dagmar Silbert
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Aldo Roda
- Laboratory of Bioanalytical and Analytical Chemistry, Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Stefania Vecchiotti
- Laboratory of Bioanalytical and Analytical Chemistry, Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kristina Schoonjans
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mario Strazzabosco
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT
- Department of Clinical Medicine and Prevention, University of Milan-Bicocca, Milan, Milan, Italy
| | - Peter Fickert
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
921
|
Degirolamo C, Modica S, Palasciano G, Moschetta A. Bile acids and colon cancer: Solving the puzzle with nuclear receptors. Trends Mol Med 2011; 17:564-72. [PMID: 21724466 DOI: 10.1016/j.molmed.2011.05.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/06/2011] [Accepted: 05/23/2011] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common malignancy worldwide and is often linked to obesity, a sedentary lifestyle, carbohydrate- and fat-rich diets and elevated fecal excretion of secondary bile acids. Accumulation of toxic bile acids triggers oxidative damage, mitochondrial dysfunction and tumor progression. Nuclear receptors are transcription factors crucially involved in the regulation of bile acid metabolism and detoxification, and their activation may confer protection from bile acid tumor-promoting activity. In this review, we explore the tangled relationships among bile acids, nuclear receptors and the intestinal epithelium, with particular emphasis on the role of the farnesoid X receptor in colorectal cancer prevention and on novel nuclear receptor-based approaches to expand the portfolio of chemotherapeutic agents.
Collapse
Affiliation(s)
- Chiara Degirolamo
- Laboratory of Lipid Metabolism and Cancer, Department of Translational Pharmacology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro (Chieti), Italy
| | | | | | | |
Collapse
|
922
|
Salamanca-Pinzón SG, Guengerich FP. A tricistronic human adrenodoxin reductase-adrenodoxin-cytochrome P450 27A1 vector system for substrate hydroxylation in Escherichia coli. Protein Expr Purif 2011; 79:231-6. [PMID: 21621619 PMCID: PMC3155662 DOI: 10.1016/j.pep.2011.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 01/01/2023]
Abstract
Cytochrome P450 (P450) 27A1 catalyzes 27-hydroxylation of cholesterol and 25-hydroxylation of vitamin D(3), serving as an important component for the maintenance of lipid homeostasis. In eukaryotic cells P450 27A1 is a membrane-bound protein located on the inner mitochondrial membrane and requires two auxiliary reduction partners, adrenodoxin (Adx) and NADPH-adrenodoxin reductase (Adr), for catalysis in the bile acid biosynthesis pathway. A strategy was developed for the functional coexpression of P450 27A1 with Adr and Adx in a tricistronic fashion (single RNA, three proteins) in Escherichia coli, mimicking the mitochondrial P450 system. Intact bacterial cells coexpressing the P450 vector (pTC27A1) efficiently hydroxylated cholesterol at the 27 position as well as vitamin D(3) at the 25 position when supplemented with glycerol as a carbon source. Thus, E. coli containing pTC27A1 is able to hydroxylate cholesterol in a self-sufficient fashion and is suitable for further applications of protein interaction, drug discovery, and inhibitor evaluation and for the study of other mitochondrial P450s and oxysterol production in microorganisms without a need for membrane reconstitution, membrane simulation by detergents, or purification of the components.
Collapse
Affiliation(s)
- S. Giovanna Salamanca-Pinzón
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - F. Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| |
Collapse
|
923
|
García-Cañaveras JC, Donato MT, Castell JV, Lahoz A. A comprehensive untargeted metabonomic analysis of human steatotic liver tissue by RP and HILIC chromatography coupled to mass spectrometry reveals important metabolic alterations. J Proteome Res 2011; 10:4825-34. [PMID: 21830829 DOI: 10.1021/pr200629p] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Steatosis, or excessive accumulation of lipids in the liver, is a generally accepted previous step to the development of more severe conditions like nonalcoholic steatohepatitis, fibrosis, and cirrhosis. We aimed to characterize the metabolic profile that defines simple steatosis in human tissue and to identify potential disturbances in the hepatic metabolism that could favor the switch to progressive liver damage. A total of 46 samples, 23 from steatotic and 23 from nonsteatotic human livers, were analyzed following a holistic LC-MS-based metabonomic analysis that combines RP and HILIC chromatographic separations. Multivariate statistical data analysis satisfactorily classified samples and revealed steatosis-associated biomarkers. Increased levels of bile acids and phospholipid degradation products, and decreased levels of antioxidant species, were found in steatotic livers, indicating disturbances in lipid and bile acid homeostasis and mitochondrial dysfunction. Changes in hypoxanthine, creatinine, glutamate, glutamine, or γ-glutamyl-dipeptides concentrations, suggestive of alterations in energy metabolism and amino acid metabolism and transport, were also found. The results show that the proposed analytical strategy is suitable to achieve a comprehensive metabolic profile of steatotic human liver tissue and provide new insights into the metabolic alterations occurring in fatty liver that could contribute to its predisposition to damage evolution.
Collapse
Affiliation(s)
- Juan C García-Cañaveras
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria-Fundación Hospital La Fe , Valencia, Spain
| | | | | | | |
Collapse
|
924
|
Hagey LR, Iida T, Ogawa S, Adachi Y, Une M, Mushiake K, Maekawa M, Shimada M, Mano N, Hofmann AF. Biliary bile acids in birds of the Cotingidae family: taurine-conjugated (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid and two epimers (25R and 25S) of 3α,7α-dihydroxy-5β-cholestan-27-oic acid. Steroids 2011; 76:1126-35. [PMID: 21600907 DOI: 10.1016/j.steroids.2011.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/25/2011] [Accepted: 04/27/2011] [Indexed: 11/29/2022]
Abstract
Three C(27) bile acids were found to be major biliary bile acids in the capuchinbird (Perissocephalus tricolor) and bare-throated bellbird (Procnias nudicollis), both members of the Cotingidae family of the order Passeriformes. The individual bile acids were isolated by preparative RP-HPLC, and their structures were established by RP-HPLC, LC/ESI-MS/MS and NMR as well as by a comparison of their chromatographic properties with those of authentic reference standards of their 12α-hydroxy derivatives. The most abundant bile acid present in the capuchinbird bile was the taurine conjugate of C(27) (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid, a diastereomer not previously identified as a natural bile acid. The four diastereomers of taurine-conjugated (24ξ,25ξ)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid could be distinguished by NMR and were resolved by RP-HPLC. The RRT of the diastereomers (with taurocholic acid as 1.0) were found to be increased in the following order: (24R,25R)<(24S,25R)<(24S,25S)<(24R,25S). Two epimers (25R and 25S) of C(27) 3α,7α-dihydroxy-5β-cholestan-27-oic acid were also present (as the taurine conjugates) in both bird species. Epimers of the two compounds could be distinguished by their NMR spectra and resolved by RP-HPLC with the (25S)-epimer eluting before the (25R)-epimer. Characterization of the taurine-conjugated (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid and two epimers (25R and 25S) of 3α,7α-dihydroxy-5β-cholestan-27-oic acid should facilitate their detection in peroxisomal disease and inborn errors of bile acid biosynthesis.
Collapse
Affiliation(s)
- Lee R Hagey
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0063, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
925
|
Bile acid signaling after an oral glucose tolerance test. Chem Phys Lipids 2011; 164:525-9. [DOI: 10.1016/j.chemphyslip.2011.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/28/2011] [Accepted: 05/10/2011] [Indexed: 01/16/2023]
|
926
|
Castro-Perez JM, Roddy TP, Shah V, Wang SP, Ouyang X, Ogawa A, McLaren DG, Tadin-Strapps M, Robinson MJ, Bartz SR, Ason B, Chen Y, Previs SF, Wong KK, Vreeken RJ, Johns DG, Hubbard BK, Hankemeier T, Mitnaul L. Attenuation of Slc27a5 gene expression followed by LC-MS measurement of bile acid reconjugation using metabolomics and a stable isotope tracer strategy. J Proteome Res 2011; 10:4683-91. [PMID: 21819150 DOI: 10.1021/pr200475g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to evaluate the use of high resolution LC-MS together with metabolomics and D(4)-cholic acid (D(4)-CA) as a metabolic tracer to measure the metabolism and reconjugation of bile acids (BAs) in vitro and in vivo. Metabolic tracers are very important because they allow for the direct detection (substrate-to-product) of small and significant biological perturbations that may not be apparent when monitoring "static" endogenous levels of particular metabolites. Slc27a5, also known as fatty acid transport protein 5 (FATP5), is the hepatic BA-CoA ligase involved in reconjugating BAs during enterohepatic BA recycling. Using Slc27a5-cKD mice, silencing of ∼90% gene expression was achieved followed by reduction in the reconjugation of D(4)-CA to D(4)-taurocholic acid (D(4)-TCA), as well as other conjugated BA metabolites in plasma (p = 0.0031). The method described allowed a rapid measure of many D(4) and endogenous BA. Analysis of bile resulted in the detection of 39 BA metabolites from a 13 min analytical run. Finally, the utilization of a novel high resolution mass spectrometry method in combination with metabolomics and a stable isotope metabolic tracer allowed for the detection of targeted and untargeted BAs following silencing of the Slc27a5 gene in primary hepatocytes and in mice.
Collapse
|
927
|
Bäckhed F. Programming of host metabolism by the gut microbiota. ANNALS OF NUTRITION AND METABOLISM 2011; 58 Suppl 2:44-52. [PMID: 21846980 DOI: 10.1159/000328042] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human gut harbors a vast ensemble of bacteria that has co-evolved with the human host and performs several important functions that affect our physiology and metabolism. The human gut is sterile at birth and is subsequently colonized with bacteria from the mother and the environment. The complexity of the gut microbiota is increased during childhood, and adult humans contain 150-fold more bacterial genes than human genes. Recent advances in next-generation sequencing technology and mechanistic testing in gnotobiotic mice have identified the gut microbiota as an environmental factor that contributes to obesity. Germ-free mice are protected against developing diet-induced obesity and the underlying mechanisms whereby the gut microbiota contributes to host metabolism are beginning to be clarified. The obese phenotype is associated with increased microbial fermentation and energy extraction; however, other microbially modulated mechanisms contribute to disease progression as well. The gut microbiota has profound effects on host gene expression in the enterohepatic system, including genes involved in immunity and metabolism. For example, the gut microbiota affects expression of secreted proteins in the gut, which modulate lipid metabolism in peripheral organs. In addition, the gut microbiota is also a source of proinflammatory molecules that augment adipose inflammation and macrophage recruitment by signaling through the innate immune system. TLRs (Toll-like receptors) are integral parts of the innate immune system and are expressed by both macrophages and epithelial cells. Activation of TLRs in macrophages dramatically impairs glucose homeostasis, whereas TLRs in the gut may alter the gut microbial composition that may have profound effects on host metabolism. Accordingly, reprogramming the gut microbiota, or its function, in early life may have beneficial effects on host metabolism later in life.
Collapse
Affiliation(s)
- Fredrik Bäckhed
- Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory and Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
928
|
Pierron F, Normandeau E, Defo MA, Campbell PGC, Bernatchez L, Couture P. Effects of chronic metal exposure on wild fish populations revealed by high-throughput cDNA sequencing. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1388-1399. [PMID: 21557025 DOI: 10.1007/s10646-011-0696-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2011] [Indexed: 05/30/2023]
Abstract
Given the inherent variability of aquatic systems, predicting the in situ effects of contaminants on such ecosystems still represents a major challenge for ecotoxicology. In this context, transcriptomic tools can help identify and investigate the mechanisms of toxicity beyond the traditional morphometric, physiological and population-level endpoints. In this study, we used the 454 sequencing technology to examine the in situ effects of chronic metal (Cd, Cu) exposure on the yellow perch (Perca flavescens) transcriptome. Total hepatic mRNA from fish sampled along a polymetallic gradient was extracted, reverse transcribed, labeled with unique barcode sequences and sequenced. This approach allowed us to identify correlations between the transcription level of single genes and the hepatic concentrations of individual metals; 71% of the correlations established were negative. Chronic metal exposure was thus associated with a decrease in the transcription levels of numerous genes involved in protein biosynthesis, in the immune system, and in lipid and energy metabolism. Our results suggest that this marked decrease could result from an impairment of bile acid metabolism by Cd and energy restriction but also from the recruitment of several genes involved in epigenetic modifications of histones and DNA that lead to gene silencing.
Collapse
Affiliation(s)
- Fabien Pierron
- Institut National de La Recherche Scientifique, INRS-Centre Eau Terre Environnement, 490 de la Couronne, Quebec, QC, G1K 9A9, Canada
| | | | | | | | | | | |
Collapse
|
929
|
Letona AZ, Niot I, Laugerette F, Athias A, Monnot MC, Portillo MP, Besnard P, Poirier H. CLA-enriched diet containing t10,c12-CLA alters bile acid homeostasis and increases the risk of cholelithiasis in mice. J Nutr 2011; 141:1437-44. [PMID: 21628634 DOI: 10.3945/jn.110.136168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mice fed a mixture of CLA containing t10,c12-CLA lose fat mass and develop hyperinsulinemia and hepatic steatosis due to an accumulation of TG and cholesterol. Because cholesterol is the precursor in bile acid (BA) synthesis, we investigated whether t10,c12-CLA alters BA metabolism. In Expt. 1, female C57Bl/6J mice were fed a standard diet for 28 d supplemented with a CLA mixture (1 g/100 g) or not (controls). In Expt. 2, the feeding period was reduced to 4, 6, and 10 d. In Expt. 3, mice were fed a diet supplemented with linoleic acid, c9,t11-CLA, or t10,c12-CLA (0.4 g/100 g) for 28 d. In Expt. 1, the BA pool size was greater in CLA-fed mice than in controls and the entero-hepatic circulation of BA was altered due to greater BA synthesis and ileal reclamation. This resulted from higher hepatic cholesterol 7α-hydroxylase (CYP7A1) and ileal apical sodium BA transporter expressions in CLA-fed mice. Furthermore, hepatic Na(+)/taurocholate co-transporting polypeptide (NTCP) (-52%) and bile salt export pump (BSEP) (-77%) protein levels were lower in CLA-fed mice than in controls, leading to a greater accumulation of BA in the plasma (+500%); also, the cholesterol saturation index and the concentration of hydrophobic BA in the bile were greater in CLA-fed mice, changes associated with the presence of cholesterol crystals. Expt. 2 suggests that CLA-mediated changes were caused by hyperinsulinemia, which occurred after 6 d of the CLA diet before NTCP and BSEP mRNA downregulation (10 d). Expt. 3 demonstrated that only t10,c12-CLA altered NTCP and BSEP mRNA levels. In conclusion, t10,c12-CLA alters BA homeostasis and increases the risk of cholelithiasis in mice.
Collapse
Affiliation(s)
- Amaia Zabala Letona
- Physiologie de la Nutrition, UMR INSERM U 866/ Université de Bourgogne, AgroSup Dijon, 21000 Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
930
|
Levi M. Nuclear receptors in renal disease. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:1061-7. [PMID: 21511032 PMCID: PMC3141223 DOI: 10.1016/j.bbadis.2011.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/21/2011] [Accepted: 04/06/2011] [Indexed: 02/07/2023]
Abstract
Diabetes is the leading cause of end-stage renal disease in developed countries. In spite of excellent glucose and blood pressure control, including administration of angiotensin converting enzyme inhibitors and/or angiotensin II receptor blockers, diabetic nephropathy still develops and progresses. The development of additional protective therapeutic interventions is, therefore, a major priority. Nuclear hormone receptors regulate carbohydrate metabolism, lipid metabolism, the immune response, and inflammation. These receptors also modulate the development of fibrosis. As a result of their diverse biological effects, nuclear hormone receptors have become major pharmaceutical targets for the treatment of metabolic diseases. The increasing prevalence of diabetic nephropathy has led intense investigation into the role that nuclear hormone receptors may have in slowing or preventing the progression of renal disease. This role of nuclear hormone receptors would be associated with improvements in metabolism, the immune response, and inflammation. Several nuclear receptor activating ligands (agonists) have been shown to have a renal protective effect in the context of diabetic nephropathy. This review will discuss the evidence regarding the beneficial effects of the activation of several nuclear, especially the vitamin D receptor (VDR), farnesoid X receptor (FXR), and peroxisome-proliferator-associated receptors (PPARs) in preventing the progression of diabetic nephropathy and describe how the discovery and development of compounds that modulate the activity of nuclear hormone receptors may provide potential additional therapeutic approaches in the management of diabetic nephropathy. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Moshe Levi
- Department of Medicine, Division of Nephrology and Hypertension, University of Colorado Denver,CO 80045, USA.
| |
Collapse
|
931
|
Kemper JK. Regulation of FXR transcriptional activity in health and disease: Emerging roles of FXR cofactors and post-translational modifications. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:842-50. [PMID: 21130162 PMCID: PMC3060272 DOI: 10.1016/j.bbadis.2010.11.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 12/26/2022]
Abstract
Abnormally elevated lipid and glucose levels due to the disruption of metabolic homeostasis play causative roles in the development of metabolic diseases. A cluster of metabolic conditions, including dyslipidemia, abdominal obesity, and insulin resistance, is referred to as metabolic syndrome, which has been increasing globally at an alarming rate. The primary nuclear bile acid receptor, Farnesoid X Receptor (FXR, NR1H4), plays important roles in controlling lipid and glucose levels by regulating expression of target genes in response to bile acid signaling in enterohepatic tissues. In this review, I discuss how signal-dependent FXR transcriptional activity is dynamically regulated under normal physiological conditions and how it is dysregulated in metabolic disease states. I focus on the emerging roles of post-translational modifications (PTMs) and transcriptional cofactors in modulating FXR transcriptional activity and pathways. Dysregulation of nuclear receptor transcriptional signaling due to aberrant PTMs and cofactor interactions are key determinants in the development of metabolic diseases. Therefore, targeting such abnormal PTMs and transcriptional cofactors of FXR in disease states may provide a new molecular strategy for development of pharmacological agents to treat metabolic syndrome. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, IL 61801, USA.
| |
Collapse
|
932
|
Burstein MT, Beach A, Richard VR, Koupaki O, Gomez-Perez A, Goldberg AA, Kyryakov P, Bourque SD, Glebov A, Titorenko VI. Interspecies Chemical Signals Released into the Environment May Create Xenohormetic, Hormetic and Cytostatic Selective Forces that Drive the Ecosystemic Evolution of Longevity Regulation Mechanisms. Dose Response 2011; 10:75-82. [PMID: 22423230 DOI: 10.2203/dose-response.11-011.titorenko] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Various organisms (i.e., bacteria, fungi, plants and animals) within an ecosystem can synthesize and release into the environment certain longevity-extending small molecules. Here we hypothesize that these interspecies chemical signals can create xenohormetic, hormetic and cytostatic selective forces driving the ecosystemic evolution of longevity regulation mechanisms. In our hypothesis, following their release into the environment by one species of the organisms composing an ecosystem, such small molecules can activate anti-aging processes and/or inhibit pro-aging processes in other species within the ecosystem. The organisms that possess the most effective (as compared to their counterparts of the same species) mechanisms for sensing the chemical signals produced and released by other species and for responding to such signals by undergoing certain hormetic and/or cytostatic life-extending changes to their metabolism and physiology are expected to live longer then their counterparts within the ecosystem. Thus, the ability of a species of the organisms composing an ecosystem to undergo life-extending metabolic or physiological changes in response to hormetic or cytostatic chemical compounds released to the ecosystem by other species: 1) increases its chances of survival; 2) creates selective forces aimed at maintaining such ability; and 3) enables the evolution of longevity regulation mechanisms.
Collapse
Affiliation(s)
- Michelle T Burstein
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
933
|
Aoki M, Konya Y, Takagaki T, Umemura K, Sogame Y, Katsumata T, Komuro S. Metabolomic investigation of cholestasis in a rat model using ultra-performance liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:1847-1852. [PMID: 21638360 DOI: 10.1002/rcm.5072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Metabolomics follows the changes in concentrations of endogenous metabolites, which may reflect various disease states as well as systemic responses to environmental, therapeutic, or genetic interventions. In this study, we applied metabolomic approaches to monitor dynamic changes in plasma and urine metabolites, and compared these metabolite profiles in Eisai hyperbilirubinemic rats (EHBR, an animal model of cholestasis) with those in the parent strain of EHBR - Sprague-Dawley (SD) rats - in order to characterize cholestasis pathophysiologically. Ultra-performance liquid chromatography/tandem mass spectrometry-based analytical methods were used to assay metabolite levels. More than 250 metabolites were detected in both plasma and urine, and metabolite profiles of EHBR differed from those of SD rats. The levels of antioxidative and cytoprotective metabolites, taurine and hypotaurine, were markedly increased in urine of EHBR. The levels of many bile acids were also elevated in plasma and urine of EHBR, but the extent of elevation depended on the particular bile acid. The levels of cytoprotective ursodeoxycholic acid and its conjugates were markedly elevated, while that of cytotoxic chenodeoxycholic acid remained unchanged, suggesting the balance of bile acids had shifted resulting in decreased toxicity. In EHBR, reduced biliary excretion leads to increased systemic exposure to harmful compounds including some endogenous metabolites. Our metabolomic data suggest that mechanisms exist in EHBR that compensate for cholestasis-related damage.
Collapse
Affiliation(s)
- Masayo Aoki
- Pharmacokinetics Research Laboratories, Dainippon Sumitomo Pharma. Co., Ltd., 3-1-98 Kasugade-naka, Osaka 554-0022, Japan.
| | | | | | | | | | | | | |
Collapse
|
934
|
Song P, Zhang Y, Klaassen CD. Dose-response of five bile acids on serum and liver bile Acid concentrations and hepatotoxicty in mice. Toxicol Sci 2011; 123:359-67. [PMID: 21747115 DOI: 10.1093/toxsci/kfr177] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Feeding bile acids (BAs) to rodents has been used to study BA signaling and toxicity in vivo. However, little is known about the effect of feeding BAs on the concentrations of BAs in serum and liver as well as the dose of the fed BAs that causes liver toxicity. The present study was designed to investigate the relative hepatotoxicity of individual BAs by feeding mice cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), or ursodeoxycholic acid (UDCA) at concentrations of 0.01, 0.03, 0.1, 0.3, 1.0, or 3% in their diet for 7 days. The data demonstrate that (1) the ability of the fed BAs to produce hepatotoxicity is UDCA<CA<CDCA<DCA<LCA; (2) the lowest concentration of each BA in the feed that causes hepatotoxicity in mice is CA and CDCA at 0.3%, DCA at 0.1%, and LCA at 0.03%; (3) BA feeding results in a dose-dependent increase in the total serum BA concentrations but had little effect on liver total BA concentrations; (4) hepatotoxicity of the fed BAs does not simply depend on the concentration or hydrophobicity of total BAs in the liver; and (5) liver BA-conjugation enzymes are saturated by feeding UDCA at concentrations higher than 0.3%. In conclusion, the findings of the present study provide guidance for choosing the feeding concentrations of BAs in mice and will aid in interpreting BA hepatotoxicity as well as BA-mediated gene regulation.
Collapse
Affiliation(s)
- Peizhen Song
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
935
|
Rose AJ, Berriel Díaz M, Reimann A, Klement J, Walcher T, Krones-Herzig A, Strobel O, Werner J, Peters A, Kleyman A, Tuckermann JP, Vegiopoulos A, Herzig S. Molecular control of systemic bile acid homeostasis by the liver glucocorticoid receptor. Cell Metab 2011; 14:123-30. [PMID: 21723510 DOI: 10.1016/j.cmet.2011.04.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/17/2010] [Accepted: 04/22/2011] [Indexed: 01/06/2023]
Abstract
Systemic bile acid (BA) homeostasis is a critical determinant of dietary fat digestion, enterohepatic function, and postprandial thermogenesis. However, major checkpoints for the dynamics and the molecular regulation of BA homeostasis remain unknown. Here we show that hypothalamic-pituitary-adrenal (HPA) axis impairment in humans and liver-specific deficiency of the glucocorticoid receptor (GR) in mice disrupts the normal changes in systemic BA distribution during the fasted-to-fed transition. Fasted mice with hepatocyte-specific GR knockdown had smaller gallbladder BA content and were more susceptible to developing cholesterol gallstones when fed a cholesterol-rich diet. Hepatic GR deficiency impaired liver BA uptake/transport via lower expression of the major hepatocyte basolateral BA transporter, Na(+)-taurocholate transport protein (Ntcp/Slc10a1), which affected dietary fat absorption and brown adipose tissue activation. Our results demonstrate a role of the HPA axis in the endocrine regulation of BA homeostasis through the liver GR control of enterohepatic BA recycling.
Collapse
Affiliation(s)
- Adam J Rose
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
936
|
Sekine S, Ogawa R, Ojima H, Kanai Y. Expression of SLCO1B3 is associated with intratumoral cholestasis and CTNNB1 mutations in hepatocellular carcinoma. Cancer Sci 2011; 102:1742-7. [PMID: 21615622 DOI: 10.1111/j.1349-7006.2011.01990.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies have shown that intratumoral cholestasis is a hallmark of CTNNB1 mutations in hepatocellular carcinomas (HCC). Here, we analyzed the expressions of genes involved in bile acid and bilirubin metabolism and their correlation with the mutational status of CTNNB1 in a series of HCC. The expressions of CYP7A1 and CYP27A1, which encode rate-limiting enzymes in bile acid synthesis, were unaltered or only marginally increased in CTNNB1-mutated HCC compared with those in HCC with wild-type CTNNB1. Among the genes involved in bile acid and bilirubin transport, the expression of SLCO1B3 was significantly elevated in HCC with CTNNB1 mutations, whereas the expression of ABCC4 was elevated in HCC with wild-type CTNNB1. Immunohistochemistry confirmed the frequent expression of SLCO1B3 in CTNNB1-mutated HCC at the protein level, but not in most HCC with wild-type CTNNB1. Immunohistochemistry for MRP4 (encoded by ABCC4) partly agreed with ABCC4 expression, but most cases did not express detectable levels of MRP4. Notably, all HCC with bile accumulation, including those without CTNNB1 mutations, expressed SLCO1B3, suggesting that SLCO1B3 expression, rather than CTNNB1 mutation, is the critical determinant of intratumoral cholestasis. As SLCO1B3 is involved in the uptake of a number of chemotherapeutic and diagnostic agents, SLCO1B3 expression and the status of CTNNB1 mutation might need to be considered in the drug delivery to HCC.
Collapse
Affiliation(s)
- Shigeki Sekine
- Pathology Division, National Cancer Center Research Institute, Tokyo, Japan.
| | | | | | | |
Collapse
|
937
|
Prawitt J, Abdelkarim M, Stroeve JH, Popescu I, Duez H, Velagapudi VR, Dumont J, Bouchaert E, van Dijk TH, Lucas A, Dorchies E, Daoudi M, Lestavel S, Gonzalez FJ, Oresic M, Cariou B, Kuipers F, Caron S, Staels B. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 2011; 60:1861-71. [PMID: 21593203 PMCID: PMC3121443 DOI: 10.2337/db11-0030] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Bile acids (BA) participate in the maintenance of metabolic homeostasis acting through different signaling pathways. The nuclear BA receptor farnesoid X receptor (FXR) regulates pathways in BA, lipid, glucose, and energy metabolism, which become dysregulated in obesity. However, the role of FXR in obesity and associated complications, such as dyslipidemia and insulin resistance, has not been directly assessed. RESEARCH DESIGN AND METHODS Here, we evaluate the consequences of FXR deficiency on body weight development, lipid metabolism, and insulin resistance in murine models of genetic and diet-induced obesity. RESULTS FXR deficiency attenuated body weight gain and reduced adipose tissue mass in both models. Surprisingly, glucose homeostasis improved as a result of an enhanced glucose clearance and adipose tissue insulin sensitivity. In contrast, hepatic insulin sensitivity did not change, and liver steatosis aggravated as a result of the repression of β-oxidation genes. In agreement, liver-specific FXR deficiency did not protect from diet-induced obesity and insulin resistance, indicating a role for nonhepatic FXR in the control of glucose homeostasis in obesity. Decreasing elevated plasma BA concentrations in obese FXR-deficient mice by administration of the BA sequestrant colesevelam improved glucose homeostasis in a FXR-dependent manner, indicating that the observed improvements by FXR deficiency are not a result of indirect effects of altered BA metabolism. CONCLUSIONS Overall, FXR deficiency in obesity beneficially affects body weight development and glucose homeostasis.
Collapse
Affiliation(s)
- Janne Prawitt
- University of Lille Nord de France, INSERM UMR1011; UDSL; Institut Pasteur de Lille, Lille, France
| | - Mouaadh Abdelkarim
- University of Lille Nord de France, INSERM UMR1011; UDSL; Institut Pasteur de Lille, Lille, France
| | - Johanna H.M. Stroeve
- Center for Liver, Digestive and Metabolic Diseases, Laboratory of Pediatrics, University Medical Center Groningen, Groningen, the Netherlands
| | - Iuliana Popescu
- University of Lille Nord de France, INSERM UMR1011; UDSL; Institut Pasteur de Lille, Lille, France
| | - Helene Duez
- University of Lille Nord de France, INSERM UMR1011; UDSL; Institut Pasteur de Lille, Lille, France
| | | | - Julie Dumont
- University of Lille Nord de France, INSERM UMR1011; UDSL; Institut Pasteur de Lille, Lille, France
| | - Emmanuel Bouchaert
- University of Lille Nord de France, INSERM UMR1011; UDSL; Institut Pasteur de Lille, Lille, France
| | - Theo H. van Dijk
- Center for Liver, Digestive and Metabolic Diseases, Laboratory of Pediatrics, University Medical Center Groningen, Groningen, the Netherlands
| | - Anthony Lucas
- University of Lille Nord de France, INSERM UMR1011; UDSL; Institut Pasteur de Lille, Lille, France
| | - Emilie Dorchies
- University of Lille Nord de France, INSERM UMR1011; UDSL; Institut Pasteur de Lille, Lille, France
| | - Mehdi Daoudi
- University of Lille Nord de France, INSERM UMR1011; UDSL; Institut Pasteur de Lille, Lille, France
| | - Sophie Lestavel
- University of Lille Nord de France, INSERM UMR1011; UDSL; Institut Pasteur de Lille, Lille, France
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Matej Oresic
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Bertrand Cariou
- University of Lille Nord de France, INSERM UMR1011; UDSL; Institut Pasteur de Lille, Lille, France
- INSERM U915; Faculty of Medicine, University of Nantes, Thorax Institute; Clinic of Endocrinology, University Hospital Center Nantes, Nantes, France
| | - Folkert Kuipers
- Center for Liver, Digestive and Metabolic Diseases, Laboratory of Pediatrics, University Medical Center Groningen, Groningen, the Netherlands
| | - Sandrine Caron
- University of Lille Nord de France, INSERM UMR1011; UDSL; Institut Pasteur de Lille, Lille, France
| | - Bart Staels
- University of Lille Nord de France, INSERM UMR1011; UDSL; Institut Pasteur de Lille, Lille, France
- Corresponding author: Bart Staels,
| |
Collapse
|
938
|
Matysik S, Orsó E, Black A, Ahrens N, Schmitz G. Monitoring of 7α-hydroxy-4-cholesten-3-one during therapy of cerebrotendinous xanthomatosis: a case report. Chem Phys Lipids 2011; 164:530-4. [PMID: 21679699 DOI: 10.1016/j.chemphyslip.2011.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/28/2011] [Accepted: 05/10/2011] [Indexed: 01/05/2023]
Abstract
Cerebrotendinous xanthomatosis (CTX) is a rare, inherited autosomal-recessive lipid-storage disorder caused by 27-hydroxylase deficiency. In this study, we report of a 30-year old man with this disorder who was treated using chenodeoxycholic acid, simvastatin, and low-density lipoprotein (LDL) apheresis. The LDL apheresis was performed weekly for nine months. The first subjective improvement was reported by the patient after his fourth LDL-apheresis. Spasticity, gait disturbances, and his entire psychomotoric test results had improved tremendously. His fine motoric skills have been regained. The efficacy of LDL-apheresis was monitored using quantitative determination of 7α-OH-4-cholesten-3-one in plasma based on a LC-MS/MS method. The clearance efficacy of 7α-hydroxy-4-cholesten-3-one from the patient's plasma per LDL-apheresis varied between 8% and 53% but returned to the initial high levels after seven days (mean value 241 ng/mL). A slight negative trend in the plasma concentration could be derived over the period of nine months.
Collapse
Affiliation(s)
- Silke Matysik
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
939
|
Pols TWH, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 2011; 54:1263-72. [PMID: 21145931 PMCID: PMC3650458 DOI: 10.1016/j.jhep.2010.12.004] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/11/2010] [Accepted: 12/02/2010] [Indexed: 02/08/2023]
Abstract
Bile acids (BAs) are amphipathic molecules that facilitate the uptake of lipids, and their levels fluctuate in the intestine as well as in the blood circulation depending on food intake. Besides their role in dietary lipid absorption, bile acids function as signaling molecules capable to activate specific receptors. These BA receptors are not only important in the regulation of bile acid synthesis and their metabolism, but also regulate glucose homeostasis, lipid metabolism, and energy expenditure. These processes are important in diabetes and other facets of the metabolic syndrome, which represents a considerable increasing health burden. In addition to the function of the nuclear receptor FXRα in regulating local effects in the organs of the enterohepatic axis, increasing evidence points to a crucial role of the G-protein coupled receptor (GPCR) TGR5 in mediating systemic actions of BAs. Here we discuss the current knowledge on BA receptors, with a strong focus on the cell membrane receptor TGR5, which emerges as a valuable target for intervention in metabolic diseases.
Collapse
Affiliation(s)
- Thijs W H Pols
- Laboratory of Integrative and Systems Physiology (LISP), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
940
|
Abstract
Type 2 diabetes (T2D) is a growing health problem worldwide, but the currently available strategies for therapy and prevention are insufficient. Recent observations indicate that bile acid homeostasis is altered in T2D. Bile acids are metabolic regulators that act as signaling molecules through receptor-dependent and -independent pathways. The most prominent signaling molecules mediating bile acid signaling are the nuclear receptor farnesoid X receptor (FXR) and the membrane receptor TGR5. Both are implicated in the regulation of lipid, glucose, and energy metabolism. Dysregulation of these pathways might contribute to the development of T2D and associated complications. Interestingly, data from studies with bile acids or bile acid sequestrants indicate that the manipulation of bile acid homeostasis might be an attractive approach for T2D therapy. In this review, we summarize the mechanisms of bile acid-mediated metabolic control that might be relevant in the pathogenesis of T2D.
Collapse
Affiliation(s)
- Janne Prawitt
- University Lille Nord de France; INSERM, U1011; UDSL; Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP245, 59019 Lille, France.
| | | | | |
Collapse
|
941
|
Fast chromatographic determination of the bile salt critical micellar concentration. Anal Bioanal Chem 2011; 401:267-74. [DOI: 10.1007/s00216-011-5082-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/06/2011] [Accepted: 05/03/2011] [Indexed: 01/12/2023]
|
942
|
Haedrich M, Dufour JF. UDCA for NASH: end of the story? J Hepatol 2011; 54:856-8. [PMID: 21145815 DOI: 10.1016/j.jhep.2010.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 10/09/2010] [Accepted: 10/11/2010] [Indexed: 12/22/2022]
|
943
|
Synthesis of the 3-sulfates of N-acetylcysteine conjugated bile acids (BA-NACs) and their transient formation from BA-NACs and subsequent hydrolysis by a rat liver cytosolic fraction as shown by liquid chromatography/electrospray ionization-mass spectrometry. Anal Bioanal Chem 2011; 400:2061-72. [PMID: 21455648 DOI: 10.1007/s00216-011-4925-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/12/2011] [Accepted: 03/16/2011] [Indexed: 01/10/2023]
Abstract
Previous work from this laboratory has reported the chemical synthesis of N-acetylcysteine (NAC) conjugates of natural bile acids (BAs) and shown that such novel conjugates can be formed in vivo in rats to which NAC has been administered. The subsequent fate of such novel conjugates is not known. One possible biotransformation is sulfation, a major pathway for BAs N-acylamidates in patients with cholestatic liver disease. Here, we report the chemical synthesis of the 3-sulfates of the S-acyl NAC conjugates of five natural BAs (cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic). We also measured the sulfation of N-acetylcysteine-natural bile acid (BA-NAC) conjugates when they were incubated with a rat liver cytosolic fraction. The chemical structures of the BA-NAC 3-sulfates were confirmed by proton nuclear magnetic resonance, as well as by means of electrospray ionization-linear ion trap mass spectrometry with negative-ion detection. Upon collision-induced dissociation of singly and doubly charged deprotonated molecules, structurally informative product ions were observed. Using a triple-stage quadrupole instrument, selected reaction monitoring analyses by monitoring characteristic transition ions allowed the achievement of a highly sensitive and specific assay. When BA-NACs were incubated with a rat liver cytosolic fraction to which 3'-phosphoadenosine 5'-phosphosulfate was added, sulfation occurred, but the dominant reaction was hydrolysis of the S-acyl linkage to form the unconjugated BAs. Subsequent sulfation occurred at C-3 on the unconjugated BAs that had been formed from the BA-NACs. Such sulfation was proportional to the hydrophobicity of the unconjugated bile acid. Thus, NAC conjugates of BAs as well as their C-3 sulfates if formed in vivo are rapidly hydrolyzed by cytosolic enzymes.
Collapse
|
944
|
Kanamaluru D, Xiao Z, Fang S, Choi SE, Kim DH, Veenstra TD, Kemper JK. Arginine methylation by PRMT5 at a naturally occurring mutation site is critical for liver metabolic regulation by small heterodimer partner. Mol Cell Biol 2011; 31:1540-50. [PMID: 21262773 PMCID: PMC3135303 DOI: 10.1128/mcb.01212-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/06/2011] [Indexed: 01/10/2023] Open
Abstract
Small Heterodimer Partner (SHP) inhibits numerous transcription factors that are involved in diverse biological processes, including lipid and glucose metabolism. In response to increased hepatic bile acids, SHP gene expression is induced and the SHP protein is stabilized. We now show that the activity of SHP is also increased by posttranslational methylation at Arg-57 by protein arginine methyltransferase 5 (PRMT5). Adenovirus-mediated hepatic depletion of PRMT5 decreased SHP methylation and reversed the suppression of metabolic genes by SHP. Mutation of Arg-57 decreased SHP interaction with its known cofactors, Brm, mSin3A, and histone deacetylase 1 (HDAC1), but not with G9a, and decreased their recruitment to SHP target genes in mice. Hepatic overexpression of SHP inhibited metabolic target genes, decreased bile acid and hepatic triglyceride levels, and increased glucose tolerance. In contrast, mutation of Arg-57 selectively reversed the inhibition of SHP target genes and metabolic outcomes. The importance of Arg-57 methylation for the repression activity of SHP provides a molecular basis for the observation that a natural mutation of Arg-57 in humans is associated with the metabolic syndrome. Targeting posttranslational modifications of SHP may be an effective therapeutic strategy by controlling selected groups of genes to treat SHP-related human diseases, such as metabolic syndrome, cancer, and infertility.
Collapse
Affiliation(s)
| | - Zhen Xiao
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC—Frederick, Inc., National Cancer Institute—Frederick, Frederick, Maryland 21702
| | - Sungsoon Fang
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Sung-E Choi
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Dong-Hyun Kim
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC—Frederick, Inc., National Cancer Institute—Frederick, Frederick, Maryland 21702
| | - Jongsook Kim Kemper
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
945
|
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that act as sensors for a broad range of natural and synthetic ligands and regulate several key hepatic functions including bile acid homeostasis, bile secretion, lipid and glucose metabolism, as well as drug deposition. Moreover, NRs control hepatic inflammation, regeneration, fibrosis, and tumor formation. Therefore, NRs are key for understanding the pathogenesis and pathophysiology of a wide range of hepatic disorders. Finally, targeting NRs and their alterations offers exciting new perspectives for the treatment of liver diseases.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria.
| | | |
Collapse
|
946
|
Rafferty EP, Wylie AR, Hand KH, Elliott CE, Grieve DJ, Green BD. Investigating the effects of physiological bile acids on GLP-1 secretion and glucose tolerance in normal and GLP-1R(-/-) mice. Biol Chem 2011; 392:539-46. [PMID: 21521075 DOI: 10.1515/bc.2011.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2025]
Abstract
Physiological secretion of bile acids has previously been linked to the regulation of blood glucose. GLP-1 is an intestinal peptide hormone with important glucose-lowering actions, such as stimulation of insulin secretion and inhibition of glucagon secretion. In this investigation, we assessed the ability of several bile acid compounds to secrete GLP-1 in vitro in STC-1 cells. Bile acids stimulated GLP-1 secretion from 3.3- to 6.2-fold but some were associated with cytolytic effects. Glycocholic and taurocholic acids were selected for in vivo studies in normal and GLP-1R(-/-) mice. Oral glucose tolerance tests revealed that glycocholic acid did not affect glucose excursions. However, taurocholic acid reduced glucose excursions by 40% in normal mice and by 27% in GLP-1R(-/-) mice, and plasma GLP-1 concentrations were significantly elevated 30 min post-gavage. Additional studies used incretin receptor antagonists to probe involvement of GLP-1 and GIP in taurocholic acid-induced glucose lowering. The findings suggest that bile acids partially aid glucose regulation by physiologically enhancing nutrient-induced GLP-1 secretion. However, GLP-1 secretion appears to be only part of the glucose-lowering mechanism and our studies indicate that the other major incretin GIP is not involved.
Collapse
Affiliation(s)
- Eamon P Rafferty
- School of Biological Sciences, Queen's University Belfast, BT9 5AG, UK
| | | | | | | | | | | |
Collapse
|
947
|
Giorgio C, Hassan Mohamed I, Flammini L, Barocelli E, Incerti M, Lodola A, Tognolini M. Lithocholic acid is an Eph-ephrin ligand interfering with Eph-kinase activation. PLoS One 2011; 6:e18128. [PMID: 21479221 PMCID: PMC3068151 DOI: 10.1371/journal.pone.0018128] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/25/2011] [Indexed: 12/03/2022] Open
Abstract
Eph-ephrin system plays a central role in a large variety of human cancers. In
fact, alterated expression and/or de-regulated function of Eph-ephrin system
promotes tumorigenesis and development of a more aggressive and metastatic
tumour phenotype. In particular EphA2 upregulation is correlated with tumour
stage and progression and the expression of EphA2 in non-trasformed cells
induces malignant transformation and confers tumorigenic potential. Based on
these evidences our aim was to identify small molecules able to modulate
EphA2-ephrinA1 activity through an ELISA-based binding screening. We identified
lithocholic acid (LCA) as a competitive and reversible ligand inhibiting
EphA2-ephrinA1 interaction (Ki = 49 µM). Since each
ephrin binds many Eph receptors, also LCA does not discriminate between
different Eph-ephrin binding suggesting an interaction with a highly conserved
region of Eph receptor family. Structurally related bile acids neither inhibited
Eph-ephrin binding nor affected Eph phosphorylation. Conversely, LCA inhibited
EphA2 phosphorylation induced by ephrinA1-Fc in PC3 and HT29 human prostate and
colon adenocarcinoma cell lines (IC50 = 48 and
66 µM, respectively) without affecting cell viability or other receptor
tyrosine-kinase (EGFR, VEGFR, IGFR1β, IRKβ) activity. LCA did not
inhibit the enzymatic kinase activity of EphA2 at 100 µM (LANCE method)
confirming to target the Eph-ephrin protein-protein interaction. Finally, LCA
inhibited cell rounding and retraction induced by EphA2 activation in PC3 cells.
In conclusion, our findings identified a hit compound useful for the development
of molecules targeting ephrin system. Moreover, as ephrin signalling is a key
player in the intestinal cell renewal, our work could provide an interesting
starting point for further investigations about the role of LCA in the
intestinal homeostasis.
Collapse
Affiliation(s)
- Carmine Giorgio
- Dipartimento di Scienze Farmacologiche,
Biologiche e Chimiche Applicate, Università di Parma, Parma,
Italy
| | - Iftiin Hassan Mohamed
- Dipartimento di Scienze Farmacologiche,
Biologiche e Chimiche Applicate, Università di Parma, Parma,
Italy
| | - Lisa Flammini
- Dipartimento di Scienze Farmacologiche,
Biologiche e Chimiche Applicate, Università di Parma, Parma,
Italy
| | - Elisabetta Barocelli
- Dipartimento di Scienze Farmacologiche,
Biologiche e Chimiche Applicate, Università di Parma, Parma,
Italy
| | - Matteo Incerti
- Dipartimento Farmaceutico, Università
di Parma, Parma, Italy
| | - Alessio Lodola
- Dipartimento Farmaceutico, Università
di Parma, Parma, Italy
| | - Massimiliano Tognolini
- Dipartimento di Scienze Farmacologiche,
Biologiche e Chimiche Applicate, Università di Parma, Parma,
Italy
- * E-mail:
| |
Collapse
|
948
|
Wu AL, Coulter S, Liddle C, Wong A, Eastham-Anderson J, French DM, Peterson AS, Sonoda J. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS One 2011; 6:e17868. [PMID: 21437243 PMCID: PMC3060878 DOI: 10.1371/journal.pone.0017868] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/11/2011] [Indexed: 12/22/2022] Open
Abstract
Fibroblast growth factor 19 (FGF19) is a hormone-like protein that regulates carbohydrate, lipid and bile acid metabolism. At supra-physiological doses, FGF19 also increases hepatocyte proliferation and induces hepatocellular carcinogenesis in mice. Much of FGF19 activity is attributed to the activation of the liver enriched FGF Receptor 4 (FGFR4), although FGF19 can activate other FGFRs in vitro in the presence of the coreceptor βKlotho (KLB). In this report, we investigate the role of FGFR4 in mediating FGF19 activity by using Fgfr4 deficient mice as well as a variant of FGF19 protein (FGF19v) which is specifically impaired in activating FGFR4. Our results demonstrate that FGFR4 activation mediates the induction of hepatocyte proliferation and the suppression of bile acid biosynthesis by FGF19, but is not essential for FGF19 to improve glucose and lipid metabolism in high fat diet fed mice as well as in leptin-deficient ob/ob mice. Thus, FGF19 acts through multiple receptor pathways to elicit pleiotropic effects in regulating nutrient metabolism and cell proliferation.
Collapse
Affiliation(s)
- Ai-Luen Wu
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California, United States of America
| | - Sally Coulter
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher Liddle
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Anne Wong
- Department of Assay and Automation Technology, Genentech, Inc., South San Francisco, California, United States of America
| | - Jeffrey Eastham-Anderson
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - Dorothy M. French
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - Andrew S. Peterson
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California, United States of America
| | - Junichiro Sonoda
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
949
|
Gofflot F, Wendling O, Chartoire N, Birling MC, Warot X, Auwerx J. Characterization and Validation of Cre-Driver Mouse Lines. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2011; 1:1-15. [PMID: 26068985 DOI: 10.1002/9780470942390.mo100103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Conditional gene manipulations in mice are increasingly popular strategies in biomedical research. These approaches rely on the production of conditional genetically engineered mutant mouse (GEMM) lines with mutations in protein-encoding genes. These conditional GEMMs are then bred with one or several transgenic mouse lines expressing a site-specific recombinase, most often the Cre recombinase, in a tissue-specific manner. Conditional GEMMs can only be exploited if Cre transgenic mouse lines are available to generate somatic mutations, and thus the number of Cre transgenic lines has significantly increased over the last 15 years. Once produced, these transgenic lines must be validated for reliable, efficient, and specific Cre expression and Cre-mediated recombination. In this overview, the minimum level of information that is ideally required to validate a Cre-driver transgenic line is first discussed. The vagaries associated with validation procedures are considered next, and some solutions are proposed to assess the expression and activity of constitutive or inducible Cre recombinase before undertaking extensive breeding experiments and exhaustive phenotyping. Curr. Protoc. Mouse Biol. 1:1-15. © 2011 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Françoise Gofflot
- Institut Clinique de la Souris (ICS), Illkirch, France.,Université Catholique de Louvain, Life Science Institute, Louvain-la-Neuve, Belgium
| | - Olivia Wendling
- Institut Clinique de la Souris (ICS), Illkirch, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Illkirch, France
| | | | | | - Xavier Warot
- Institut Clinique de la Souris (ICS), Illkirch, France.,Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Institut Clinique de la Souris (ICS), Illkirch, France.,Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
950
|
Stieger B, Geier A. Genetic variations of bile salt transporters as predisposing factors for drug-induced cholestasis, intrahepatic cholestasis of pregnancy and therapeutic response of viral hepatitis. Expert Opin Drug Metab Toxicol 2011; 7:411-25. [PMID: 21320040 DOI: 10.1517/17425255.2011.557067] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Drug-induced cholestasis, intrahepatic cholestasis of pregnancy and viral hepatitis are acquired forms of liver disease. Cholestasis is a pathophysiologic state with impaired bile formation and subsequent accumulation of bile salts in hepatocytes. The bile salt export pump (BSEP) (ABCB11) is the key export system for bile salts from hepatocytes. AREAS COVERED This article provides an introduction into the physiology of bile formation followed by a summary of the current knowledge on the key bile salt transporters, namely, the sodium-taurocholate co-transporting polypeptide NTCP, the organic anion transporting polypeptides (OATPs), BSEP and the multi-drug resistance protein 3. The pathophysiologic consequences of altered functions of these transporters, with an emphasis on molecular and genetic aspects, are then discussed. EXPERT OPINION Knowledge of the role of hepatocellullar transporters, especially BSEP, in acquired cholestasis is continuously increasing. A common variant of BSEP (p.V444A) is now a well-established susceptibility factor for acquired cholestasis and recent evidence suggests that the same variant also influences the therapeutic response and disease progression of viral hepatitis C. Studies in large independent cohorts are now needed to confirm the relevance of p.V444A. Genome-wide association studies should lead to the identification of additional genetic factors underlying cholestatic liver disease.
Collapse
Affiliation(s)
- Bruno Stieger
- University Hospital Zurich, Division of Clinical Pharmacology and Toxicology, 8091 Zurich, Switzerland.
| | | |
Collapse
|