99801
|
An SQ, Lu GT, Su HZ, Li RF, He YQ, Jiang BL, Tang DJ, Tang JL. Systematic mutagenesis of all predicted gntR genes in Xanthomonas campestris pv. campestris reveals a GntR family transcriptional regulator controlling hypersensitive response and virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1027-1039. [PMID: 21615202 DOI: 10.1094/mpmi-08-10-0180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The GntR family is one of the most abundant and widely distributed groups of helix-turn-helix transcriptional regulators in bacteria. Six open reading frames in the genome of the plant pathogen Xanthomonas campestris pv. campestris were predicted to encode GntR regulators. All six of the predicted GntR-encoding genes were individually mutagenized and mutants from five of them were successfully obtained. Plant disease response assays revealed that one, whose product belongs to the YtrA subfamily and has been named HpaR1, is involved in the hypersensitive response (HR) and virulence. Electrophoretic mobility shift assays and in vitro transcription assays revealed that HpaR1 could repress its own transcription level through binding to its promoter sequence, indicating an autoregulatory feedback inhibition mechanism for HpaR1 expression. Promoter-gusA reporter and reverse-transcription polymerase chain reaction analyses revealed that HpaR1 positively and negatively affects the expression of HR and pathogenicity (hrp) genes in host plant and standard media, respectively. Constitutive expression of the key hrp regulator, hrpG, in the hpaR1 mutant could bypass the requirement of HpaR1 for the induction of wild-type HR, suggesting that HpaR1 regulates the expression of hrp genes that encode the type III secretion system via hrpG.
Collapse
|
99802
|
Cockell CS, Kelly LC, Summers S, Marteinsson V. Following the kinetics: iron-oxidizing microbial mats in cold icelandic volcanic habitats and their rock-associated carbonaceous signature. ASTROBIOLOGY 2011; 11:679-694. [PMID: 21895443 DOI: 10.1089/ast.2011.0606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Icelandic streams with mean annual temperatures of less than 5 °C, which receive the cationic products of basaltic rock weathering, were found to host mats of iron-cycling microorganisms. We investigated two representative sites. Iron-oxidizing Gallionella and iron-reducing Geobacter species were present. The mats host a high bacterial diversity as determined by culture-independent methods. β-Proteobacteria, Actinobacteria, α-Proteobacteria, and Bacteroidetes were abundant microbial taxa. The mat contained a high number of phototroph sequences. The carbon compounds in the mat displayed broad G and D bands with Raman spectroscopy. This signature becomes incorporated into the weathered oxidized surface layer of the basaltic rocks and was observed on rocks that no longer host mats. The presence of iron-oxidizing taxa in the stream microbial mats, and the lack of them in previously studied volcanic rocks in Iceland that have intermittently been exposed to surface water flows, can be explained by the kinetic limitations to the extraction of reduced iron from rocks. This type of ecosystem illustrates key factors that control the distribution of chemolithotrophs in cold volcanic environments. The data show that one promising sample type for which the hypothesis of the existence of past life on Mars can be tested is the surface of volcanic rocks that, previously, were situated within channels carved by flowing water. Our results also show that the carbonaceous signatures of life, if life had occurred, could be found in or on these rocks.
Collapse
Affiliation(s)
- Charles S Cockell
- Centre for Earth, Planetary, Space and Astronomical Research, Open University, Milton Keynes, UK.
| | | | | | | |
Collapse
|
99803
|
Almstrand R, Lydmark P, Sörensson F, Hermansson M. Nitrification potential and population dynamics of nitrifying bacterial biofilms in response to controlled shifts of ammonium concentrations in wastewater trickling filters. BIORESOURCE TECHNOLOGY 2011; 102:7685-7691. [PMID: 21703852 DOI: 10.1016/j.biortech.2011.05.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/21/2011] [Accepted: 05/23/2011] [Indexed: 05/31/2023]
Abstract
Nitrogen removal in wastewater treatment is energy consuming and often carried out in biofilm nitrifying trickling filters (NTFs). We investigated nitrification potential and population dynamics of nitrifying bacteria in pilot-plant NTFs fed with full-scale plant wastewater with high (8-9 mg NH(4)(+)l(-1)) or low (<0.5mg NH(4)(+)l(-1)) ammonium concentrations. After ammonium shifts, nitrification potentials stabilized after 10-43 days depending on feed regime. An NTF fed with 3 days of high, and 4 days of low load per week reached a high nitrification potential, whereas a high load for 1 day a week gave a low potential. Nitrosomonas oligotropha dominated the AOB and changes in nitrification potentials were not explained by large population shifts to other AOBs. Although nitrification potentials were generally correlated with the relative amounts of AOB and NOB, this was not always the case. Ammonium feed strategies can be used to optimize wastewater treatment performance.
Collapse
Affiliation(s)
- R Almstrand
- Department of Cell and Molecular Biology/Microbiology, University of Gothenburg, Sweden
| | | | | | | |
Collapse
|
99804
|
Liesse Iyamba JM, Seil M, Devleeschouwer M, Takaisi Kikuni NB, Dehaye JP. Study of the formation of a biofilm by clinical strains of Staphylococcus aureus. BIOFOULING 2011; 27:811-821. [PMID: 21810033 DOI: 10.1080/08927014.2011.604776] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A study on biofilm formation was carried out using five methicillin-sensitive [MSSA] and five methicillin-resistant [MRSA] strains of S. aureus. In each group, there were four strains isolated from patients from Kinshasa (Democratic Republic of Congo, DRC) and one reference strain. All of the strains were hydrophobic. The adherence of the bacteria to an abiotic surface was studied with the Biofilm Ring Test (BFRT®) and the crystal violet staining method (CVSM). Both techniques showed that eight of the strains formed biofilms within 2-3 h. The extent of the biofilm formed by one strain could only be observed with the CVSM. Periodate prevented the formation of biofilms and, in separate experiments, destroyed the biofilm pre-formed by the MSSA reference, but not those pre-formed by the clinical strains. Proteinase K destroyed all pre-formed biofilms. Six of the strains were icaA+; the clinical MSSA strains were not. The results also indicated different mechanisms of biofilm development between MSSA and MRSA clinical strains. The BFRT® and the CVSM are complementary techniques to study the adhesion of bacteria and the development of biofilms.
Collapse
Affiliation(s)
- J M Liesse Iyamba
- Laboratoire de Chimie biologique et médicale et de Microbiologie pharmaceutique, Institut de Pharmacie Université libre de Bruxelles, Brussels, Belgium
| | | | | | | | | |
Collapse
|
99805
|
Potapov I, Lloyd-Price J, Yli-Harja O, Ribeiro AS. Dynamics of a genetic toggle switch at the nucleotide and codon levels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031903. [PMID: 22060399 DOI: 10.1103/physreve.84.031903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/20/2011] [Indexed: 05/31/2023]
Abstract
We study the dynamics of a model stochastic two-gene switch at the nucleotide and codon levels. First, we show that its stability, the mean lifetime of the noisy attractors, differs from that of a model where transcription and translation elongation are modeled as single-step delayed events, indicating the need of detailed models to study the dynamics of switches. Next, we vary the coupling between the two genes by varying the affinity of repressor proteins to the promoters and measure the mutual information between the two proteins times series. We find that there is a degree of coupling that maximizes information propagation between the two genes. This is explained by the effects of the coupling on mean and entropy of RNA and protein numbers of each gene, as well as correlation, 2-tuple entropy between the two proteins numbers, and, finally, the stability of the noisy attractors. We also find that increasing the rate of translation initiation increases the correlation between RNA and protein numbers and between the two proteins, due to increased stability of the noisy attractors. Increasing the rate of transcription or decreasing RNA degradation causes opposite effects to the correlation between RNA and proteins of each gene and the stability of the noisy attractors. Finally, we add a sequence-dependent transcription pause site and show that both its probability of occurrence, as well as its mean time length, affects the dynamics of the switch, further demonstrating the dependence of the dynamics of this circuit on sequence level events.
Collapse
Affiliation(s)
- Ilya Potapov
- Department of Signal Processing, Tampere University of Technology, P.O. Box 527, FIN-33101 Tampere, Finland
| | | | | | | |
Collapse
|
99806
|
Roper MC. Pantoea stewartii subsp. stewartii: lessons learned from a xylem-dwelling pathogen of sweet corn. MOLECULAR PLANT PATHOLOGY 2011; 12:628-37. [PMID: 21726365 PMCID: PMC6640275 DOI: 10.1111/j.1364-3703.2010.00698.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
UNLABELLED Pantoea stewartii subsp. stewartii is a Gram-negative enteric bacterium that primarily infects sweet corn. Studies of this bacterium have provided useful insight into how xylem-dwelling bacteria establish themselves and incite disease in their hosts. Pantoea stewartii subsp. stewartii is a remarkable bacterial system for laboratory studies because of its relative ease of propagation and genetic manipulation, and the fact that it appears to employ a minimal number of pathogenicity mechanisms. In addition, P. stewartii subsp. stewartii produces copious amounts of its quorum sensing (QS) signal, acyl-homoserine lactone (AHL), making it an excellent organism for studying QS-controlled gene regulation in a plant-pathogenic bacterium. In fact, P. stewartii subsp. stewartii has become the microbial paradigm for QS control of gene expression by both repression and activation via a QS regulator that binds DNA in the absence and dissociates in the presence of the signal ligand. Moreover, P. stewartii subsp. stewartii is a member of the Enterobacteriaceae, and lessons learned from its interaction with plants may be extrapolated to other plant-associated enterics, such as Erwinia, Dickeya and Pectobacterium spp., or enteric human pathogens associated with plants, such as Escherichia coli and Salmonella spp. TAXONOMY Bacteria; Gammaproteobacteria; family Enterobacteriaceae; genus Pantoea; species stewartii (Mergaert et al., 1993). MICROBIOLOGICAL PROPERTIES Gram-negative, motile, yellow pigmented, mucoid, facultative anaerobe. HOST RANGE Pantoea stewartii subsp. stewartii (Smith, 1898) Dye causes Stewart's wilt of corn (Zea mays). Early-maturing sweet corn varieties and some elite inbred maize lines are particularly susceptible. DISEASE SYMPTOMS There are two major phases of Stewart's wilt disease: (i) wilt and (ii) leaf blight. The wilt phase occurs when young seedlings are infected with P. stewartii subsp. stewartii (Fig. 1A). Water-soaked lesions first appear on the young expanding leaves and, later, seedlings may become severely wilted (Fig. 1B). The plants usually die when infected at the seedling stage. The leaf blight phase occurs when mature plants are infected (Fig. 1C). The bacteria enter the xylem and cause long linear yellow-grey lesions with a wavy margin that run parallel to the leaf veins. These lesions later turn necrotic and dark in colour. The leaf blight phase is most apparent after tasselling and does not generally cause death of the plant. In addition, the bacteria can sometimes break out of the xylem and cause pith rot in mature sweet corn plants. In resistant varieties, lesions are usually limited to only a few centimetres depending on the level of resistance of the particular hybrid (Claflin, 2000; Pataky, 2003). USEFUL WEBSITES http://www.apsnet.org/publications/apsnetfeatures/Pages/StewartsWilt.aspx.
Collapse
Affiliation(s)
- M Caroline Roper
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
99807
|
Nguyen M, Vedantam G. Mobile genetic elements in the genus Bacteroides, and their mechanism(s) of dissemination. Mob Genet Elements 2011; 1:187-196. [PMID: 22479685 DOI: 10.4161/mge.1.3.18448] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/15/2011] [Accepted: 10/17/2011] [Indexed: 01/25/2023] Open
Abstract
Bacteroides spp organisms, the predominant commensal bacteria in the human gut have become increasingly resistant to many antibiotics. They are now also considered to be reservoirs of antibiotic resistance genes due to their capacity to harbor and disseminate these genes via mobile transmissible elements that occur in bewildering variety. Gene dissemination occurs within and from Bacteroides spp primarily by conjugation, the molecular mechanisms of which are still poorly understood in the genus, even though the need to prevent this dissemination is urgent. One current avenue of research is thus focused on interventions that use non-antibiotic methodologies to prevent conjugation-based DNA transfer.
Collapse
Affiliation(s)
- Mai Nguyen
- Section of Digestive Diseases and Nutrition; University of Illinois; Chicago, IL USA
| | | |
Collapse
|
99808
|
Nga PT, Parquet MDC, Lauber C, Parida M, Nabeshima T, Yu F, Thuy NT, Inoue S, Ito T, Okamoto K, Ichinose A, Snijder EJ, Morita K, Gorbalenya AE. Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes. PLoS Pathog 2011; 7:e1002215. [PMID: 21931546 PMCID: PMC3169540 DOI: 10.1371/journal.ppat.1002215] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/28/2011] [Indexed: 01/07/2023] Open
Abstract
Nidoviruses with large genomes (26.3-31.7 kb; 'large nidoviruses'), including Coronaviridae and Roniviridae, are the most complex positive-sense single-stranded RNA (ssRNA+) viruses. Based on genome size, they are far separated from all other ssRNA+ viruses (below 19.6 kb), including the distantly related Arteriviridae (12.7-15.7 kb; 'small nidoviruses'). Exceptionally for ssRNA+ viruses, large nidoviruses encode a 3'-5'exoribonuclease (ExoN) that was implicated in controlling RNA replication fidelity. Its acquisition may have given rise to the ancestor of large nidoviruses, a hypothesis for which we here provide evolutionary support using comparative genomics involving the newly discovered first insect-borne nidovirus. This Nam Dinh virus (NDiV), named after a Vietnamese province, was isolated from mosquitoes and is yet to be linked to any pathology. The genome of this enveloped 60-80 nm virus is 20,192 nt and has a nidovirus-like polycistronic organization including two large, partially overlapping open reading frames (ORF) 1a and 1b followed by several smaller 3'-proximal ORFs. Peptide sequencing assigned three virion proteins to ORFs 2a, 2b, and 3, which are expressed from two 3'-coterminal subgenomic RNAs. The NDiV ORF1a/ORF1b frameshifting signal and various replicative proteins were tentatively mapped to canonical positions in the nidovirus genome. They include six nidovirus-wide conserved replicase domains, as well as the ExoN and 2'-O-methyltransferase that are specific to large nidoviruses. NDiV ORF1b also encodes a putative N7-methyltransferase, identified in a subset of large nidoviruses, but not the uridylate-specific endonuclease that - in deviation from the current paradigm - is present exclusively in the currently known vertebrate nidoviruses. Rooted phylogenetic inference by Bayesian and Maximum Likelihood methods indicates that NDiV clusters with roniviruses and that its branch diverged from large nidoviruses early after they split from small nidoviruses. Together these characteristics identify NDiV as the prototype of a new nidovirus family and a missing link in the transition from small to large nidoviruses.
Collapse
Affiliation(s)
- Phan Thi Nga
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Maria del Carmen Parquet
- Department of Virology, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki, Japan
| | - Chris Lauber
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manmohan Parida
- Department of Virology, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki, Japan
| | - Takeshi Nabeshima
- Department of Virology, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki, Japan
| | - Fuxun Yu
- Department of Virology, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki, Japan
| | - Nguyen Thanh Thuy
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Shingo Inoue
- Department of Virology, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki, Japan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical Science, Nagasaki University, Nagasaki, Japan
| | - Kenta Okamoto
- Department of Virology, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki, Japan
| | - Akitoyo Ichinose
- Central Laboratory, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Eric J. Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki, Japan
| | - Alexander E. Gorbalenya
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
99809
|
Chae K, Lord EM. Pollen tube growth and guidance: roles of small, secreted proteins. ANNALS OF BOTANY 2011; 108:627-36. [PMID: 21307038 PMCID: PMC3170145 DOI: 10.1093/aob/mcr015] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/04/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Pollination is a crucial step in angiosperm (flowering plant) reproduction. Highly orchestrated pollen-pistil interactions and signalling events enable plant species to avoid inbreeding and outcrossing as a species-specific barrier. In compatible pollination, pollen tubes carrying two sperm cells grow through the pistil transmitting tract and are precisely guided to the ovules, discharging the sperm cells to the embryo sac for fertilization. SCOPE In Lilium longiflorum pollination, growing pollen tubes utilize two critical mechanisms, adhesion and chemotropism, for directional growth to the ovules. Among several molecular factors discovered in the past decade, two small, secreted cysteine-rich proteins have been shown to play major roles in pollen tube adhesion and reorientation bioassays: stigma/style cysteine-rich adhesin (SCA, approx. 9·3 kDa) and chemocyanin (approx. 9·8 kDa). SCA, a lipid transfer protein (LTP) secreted from the stylar transmitting tract epidermis, functions in lily pollen tube tip growth as well as in forming the adhesive pectin matrix at the growing pollen tube wall back from the tip. Lily chemocyanin is a plantacyanin family member and acts as a directional cue for reorienting pollen tubes. Recent consecutive studies revealed that Arabidopsis thaliana homologues for SCA and chemocyanin play pivotal roles in tip polarity and directionality of pollen tube growth, respectively. This review outlines the biological roles of various secreted proteins in angiosperm pollination, focusing on plant LTPs and chemocyanin.
Collapse
|
99810
|
Heaslip AT, Nishi M, Stein B, Hu K. The motility of a human parasite, Toxoplasma gondii, is regulated by a novel lysine methyltransferase. PLoS Pathog 2011; 7:e1002201. [PMID: 21909263 PMCID: PMC3164638 DOI: 10.1371/journal.ppat.1002201] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 06/23/2011] [Indexed: 11/29/2022] Open
Abstract
Protozoa in the phylum Apicomplexa are a large group of obligate intracellular parasites. Toxoplasma gondii and other apicomplexan parasites, such as Plasmodium falciparum, cause diseases by reiterating their lytic cycle, comprising host cell invasion, parasite replication, and parasite egress. The successful completion of the lytic cycle requires that the parasite senses changes in its environment and switches between the non-motile (for intracellular replication) and motile (for invasion and egress) states appropriately. Although the signaling pathway that regulates the motile state switch is critical to the pathogenesis of the diseases caused by these parasites, it is not well understood. Here we report a previously unknown mechanism of regulating the motility activation in Toxoplasma, mediated by a protein lysine methyltransferase, AKMT (for Apical complex lysine (K) methyltransferase). AKMT depletion greatly inhibits activation of motility, compromises parasite invasion and egress, and thus severely impairs the lytic cycle. Interestingly, AKMT redistributes from the apical complex to the parasite body rapidly in the presence of egress-stimulating signals that increase [Ca2+] in the parasite cytoplasm, suggesting that AKMT regulation of parasite motility might be accomplished by the precise temporal control of its localization in response to environmental changes. Toxoplasma gondii is one of the most successful human parasites, infecting ∼20% of the total world population. It is the most common cause of congenital neurological defects in humans, and an agent for devastating opportunistic infections in immunocompromised patients. To cause diseases, Toxoplasma gondii and other related parasites, such as Plasmodium falciparum, must reiterate their lytic cycle, comprising host cell infection, intracellular replication and parasite egress. At each step of the lytic cycle, the parasite tightly regulates its motility, being completely immotile while intracellular, and becoming highly motile as it leaves the host cell. Changes in local ionic conditions are known to trigger this rapid transition from immotile to motile. In this study, we report a previously unknown mechanism of regulating the motility activation in Toxoplasma, mediated by a novel protein lysine methyltransferase, AKMT (for Apical complex lysine (K) methyltransferase). The depletion of this protein greatly inhibits the parasite's ability to invade into and egress from the host cell due to impaired motility activation. Interestingly, the localization of AKMT in the parasite is sensitive to egress-stimulating signals, suggesting that AKMT regulation of parasite motility might be accomplished by the precise temporal control of its localization in response to environmental changes.
Collapse
Affiliation(s)
- Aoife T. Heaslip
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Manami Nishi
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Barry Stein
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Ke Hu
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
99811
|
Foster RA, Kuypers MMM, Vagner T, Paerl RW, Musat N, Zehr JP. Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. THE ISME JOURNAL 2011; 5:1484-93. [PMID: 21451586 PMCID: PMC3160684 DOI: 10.1038/ismej.2011.26] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/08/2011] [Accepted: 02/08/2011] [Indexed: 11/17/2022]
Abstract
Many diatoms that inhabit low-nutrient waters of the open ocean live in close association with cyanobacteria. Some of these associations are believed to be mutualistic, where N(2)-fixing cyanobacterial symbionts provide N for the diatoms. Rates of N(2) fixation by symbiotic cyanobacteria and the N transfer to their diatom partners were measured using a high-resolution nanometer scale secondary ion mass spectrometry approach in natural populations. Cell-specific rates of N(2) fixation (1.15-71.5 fmol N per cell h(-1)) were similar amongst the symbioses and rapid transfer (within 30 min) of fixed N was also measured. Similar growth rates for the diatoms and their symbionts were determined and the symbiotic growth rates were higher than those estimated for free-living cells. The N(2) fixation rates estimated for Richelia and Calothrix symbionts were 171-420 times higher when the cells were symbiotic compared with the rates estimated for the cells living freely. When combined, the latter two results suggest that the diatom partners influence the growth and metabolism of their cyanobacterial symbionts. We estimated that Richelia fix 81-744% more N than needed for their own growth and up to 97.3% of the fixed N is transferred to the diatom partners. This study provides new information on the mechanisms controlling N input into the open ocean by symbiotic microorganisms, which are widespread and important for oceanic primary production. Further, this is the first demonstration of N transfer from an N(2) fixer to a unicellular partner. These symbioses are important models for molecular regulation and nutrient exchange in symbiotic systems.
Collapse
Affiliation(s)
- Rachel A Foster
- Ocean Sciences Department, University of California, Santa Cruz, CA, USA.
| | | | | | | | | | | |
Collapse
|
99812
|
Identification of new protein complexes of Escherichia coli inorganic pyrophosphatase using pull-down assay. Biochimie 2011; 93:1576-83. [DOI: 10.1016/j.biochi.2011.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 05/10/2011] [Indexed: 11/20/2022]
|
99813
|
Suzuki GT, Macedo JA, Macedo GA. Medium composition influence on Biotin and Riboflavin production by newly isolated Candida sp. Braz J Microbiol 2011; 42:1093-100. [PMID: 24031727 PMCID: PMC3768789 DOI: 10.1590/s1517-838220110003000030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/10/2010] [Accepted: 05/16/2011] [Indexed: 11/21/2022] Open
Abstract
Complex B vitamins as Biotin and Riboflavin are required by living organisms, not only for growth but also for metabolite production, and the feed market classifies them as growth promoters. Since Brazil will soon be one of the world's biggest animal protein producers, feed production is a large consumer of vitamins and micronutrients. The industry requires 10 mg riboflavin/0.2 mg biotin per kilogram of feed; a ratio of 40 ~ 50:1. Although few studies have been conducted specifically on riboflavin production using factorial design and surface response method as an optimization strategy, it is a common practice in biotechnology with many research reports available. However, there are no reports on the use of statistical design for biotin production. This study set out to evaluate medium composition influence on biotin and riboflavin production using a statistical design. There are no studies relating biotin and riboflavin production by Candida sp LEB 130. In this preliminary study to improve the simultaneous production of biotin and riboflavin, the maximum riboflavin/biotin ratio of 8.3 μg/mL was achieved with medium component concentrations of: sucrose 30 g/L, KH2PO4 2 g/L, MgSO4 1 g/L and ZnSO4 0.5mL/L.
Collapse
Affiliation(s)
- Gaby Tiemi Suzuki
- Departamento de Ciência de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas , Campinas, SP , Brasil
| | | | | |
Collapse
|
99814
|
Kumar M, Kulshreshtha J, Singh GP. Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature. Braz J Microbiol 2011; 42:1128-35. [PMID: 24031731 PMCID: PMC3768759 DOI: 10.1590/s1517-838220110003000034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 11/17/2010] [Accepted: 03/14/2011] [Indexed: 11/21/2022] Open
Abstract
In order to find out optimum culture condition for algal growth, the effect of light irradiance and temperature on growth rate, biomass composition and pigment production of Spirulina platensis were studied in axenic batch cultures. Growth kinetics of cultures showed a wide range of temperature tolerance from 20 °C to 40 °C. Maximum growth rate, cell production with maximum accumulation of chlorophyll and phycobilliproteins were found at temperature 35 °C and 2,000 lux light intensity. But with further increase in temperature and light intensity, reduction in growth rate was observed. Carotenoid content was found maximum at 3,500 lux. Improvement in the carotenoid content with increase in light intensity is an adaptive mechanism of cyanobacterium S.platensis for photoprotection, could be a good basis for the exploitation of microalgae as a source of biopigments.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Botany, University of Rajasthan , Jaipur 302004 , INDIA
| | | | | |
Collapse
|
99815
|
Abstract
Varicella zoster virus (VZV) is one of eight members of the Herpesviridae family for which humans are the primary host; it causes two distinct diseases, varicella (chickenpox) and zoster (shingles). Varicella results from primary infection, during which the virus establishes latency in sensory neurons, a characteristic of all members of the Alphaherpesvirinae subfamily. Zoster is caused by reactivation of latent virus, which typically occurs when cellular immunity is impaired. VZV is the first human herpesvirus for which a vaccine has been licensed. The vaccine preparation, v-Oka, is a live-attenuated virus stock produced by the classic method of tissue culture passage in animal and human cell lines. Over 90 million doses of the vaccine have been administered in countries worldwide, including the USA, where varicella morbidity and mortality has declined dramatically. Over the last decade, several laboratories have been committed to investigating the mechanism by which the Oka vaccine is attenuated. Mutations have accumulated across the genome of the vaccine during the attenuation process; however, studies of the contribution of these changes to vaccine attenuation have been hampered by the lack of a suitable animal model of VZV disease and by the heterogeneity that exists among the viral population within the vaccine preparation. Notwithstanding, a wealth of data has been generated using various laboratory methodologies. Studies of the vaccine virus in human xenografts implanted in severe combined immunodeficiency-hu mice, have enabled analyses of the replication dynamics of the vaccine in dorsal root ganglia, T lymphocytes and skin. In vitro assays have been used to investigate the effect of vaccine mutations on viral gene expression and sequence analysis of vaccine rash viruses has permitted investigations into spread of the vaccine virus in a human host. We present here a review of what has been learned thus far about the molecular and phenotypic characteristics of the Oka vaccine.
Collapse
MESH Headings
- Animals
- Chickenpox/immunology
- Chickenpox/prevention & control
- Chickenpox/virology
- Chickenpox Vaccine/administration & dosage
- Chickenpox Vaccine/genetics
- Chickenpox Vaccine/immunology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/immunology
- Ganglia, Spinal/pathology
- Ganglia, Spinal/virology
- Herpes Zoster/immunology
- Herpes Zoster/prevention & control
- Herpes Zoster/virology
- Herpesvirus 3, Human/drug effects
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/immunology
- Humans
- Immunity, Cellular
- Mice
- Mice, SCID
- Polymorphism, Single Nucleotide
- Sensory Receptor Cells/drug effects
- Sensory Receptor Cells/immunology
- Sensory Receptor Cells/pathology
- Sensory Receptor Cells/virology
- Skin/drug effects
- Skin/immunology
- Skin/pathology
- Skin/virology
- Transplantation, Heterologous/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Virus Activation/drug effects
Collapse
Affiliation(s)
- Mark Quinlivan
- Herpesvirus Team and National VZV Laboratory, MMRHLB, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | |
Collapse
|
99816
|
Azcárate-Peril MA, Sikes M, Bruno-Bárcena JM. The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol 2011; 301:G401-24. [PMID: 21700901 PMCID: PMC3774253 DOI: 10.1152/ajpgi.00110.2011] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the United States, and, even though 5-15% of the total CRC cases can be attributed to individual genetic predisposition, environmental factors could be considered major factors in susceptibility to CRC. Lifestyle factors increasing the risks of CRC include elevated body mass index, obesity, and reduced physical activity. Additionally, a number of dietary elements have been associated with higher or lower incidence of CRC. In this context, it has been suggested that diets high in fruit and low in meat might have a protective effect, reducing the incidence of colorectal adenomas by modulating the composition of the normal nonpathogenic commensal microbiota. In addition, it has been demonstrated that changes in abundance of taxonomic groups have a profound impact on the gastrointestinal physiology, and an increasing number of studies are proposing that the microbiota mediates the generation of dietary factors triggering colon cancer. High-throughput sequencing and molecular taxonomic technologies are rapidly filling the knowledge gaps left by conventional microbiology techniques to obtain a comprehensive catalog of the human intestinal microbiota and their associated metabolic repertoire. The information provided by these studies will be essential to identify agents capable of modulating the massive amount of gut bacteria in safe noninvasive manners to prevent CRC. Probiotics, defined as "live microorganisms which, when administered in adequate amounts, confer a health benefit on the host" (219), are capable of transient modulation of the microbiota, and their beneficial effects include reinforcement of the natural defense mechanisms and protection against gastrointestinal disorders. Probiotics have been successfully used to manage infant diarrhea, food allergies, and inflammatory bowel disease; hence, the purpose of this review was to examine probiotic metabolic activities that may have an effect on the prevention of CRC by scavenging toxic compounds or preventing their generation in situ. Additionally, a brief consideration is given to safety evaluation and production methods in the context of probiotics efficacy.
Collapse
Affiliation(s)
- M. Andrea Azcárate-Peril
- 1Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill;
| | - Michael Sikes
- 2Department of Microbiology, North Carolina State University, Raleigh, North Carolina
| | - José M. Bruno-Bárcena
- 2Department of Microbiology, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
99817
|
Jiang Y, Purchase D, Jones H, Garelick H. Effects of arsenate (AS5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2011; 13:834-844. [PMID: 21972522 DOI: 10.1080/15226514.2010.525560] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The effect of arsenate (As5+) on growth and chlorophyll a production in Chlorella vulgaris, its removal by C. vulgaris and the role of glutathione (GSH) and phytochelatins (PCs) were investigated. C. vulgaris was tolerant to As5+ at up to 200 mg/L and was capable of consistently removing around 70% of the As5+ present in growth media over a wide range of exposure concentrations. Spectral analysis revealed that PCs and their arsenic-combined complexes were absent, indicating that the high bioaccumulation and tolerance to arsenic observed was not due to intracellular chelation. In contrast, GSH was found in all samples ranging from 0.8 mg/L in the control to 6.5 mg/L in media containing 200 mg/L As5+ suggesting that GSH plays a more prominent role in the detoxification of As5+ in C. vulgaris than PC. At concentrations below 100 mg/L cell surface binding and other mechanisms may play the primary role in As5+ detoxification, whereas above this concentration As5+ begins to accumulate inside the algal cells and activates a number of intracellular cell defense mechanisms, such as increased production of GSH. The overall findings complement field studies which suggest C. vulgaris as an increasingly promising low cost As phytoremediation method for developing countries.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Natural Sciences, School of Health and Social Sciences, Middlesex University, The Burroughs, London, UK
| | | | | | | |
Collapse
|
99818
|
Akerman NH, Price RE, Pichler T, Amend JP. Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system. GEOBIOLOGY 2011; 9:436-445. [PMID: 21884364 DOI: 10.1111/j.1472-4669.2011.00291.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The hydrothermally influenced sediments of Tutum Bay, Ambitle Island, Papua New Guinea, are ideal for investigating the chemolithotrophic activities of micro-organisms involved in arsenic cycling because hydrothermal vents there expel fluids with arsenite (As(III)) concentrations as high as 950 μg L(-1) . These hot (99 °C), slightly acidic (pH ~6), chemically reduced, shallow-sea vent fluids mix with colder, oxidized seawater to create steep gradients in temperature, pH, and concentrations of As, N, Fe, and S redox species. Near the vents, iron oxyhydroxides precipitate with up to 6.2 wt% arsenate (As(V)). Here, chemical analyses of sediment porewaters from 10 sites along a 300-m transect were combined with standard Gibbs energies to evaluate the energy yields (-ΔG(r)) from 19 potential chemolithotrophic metabolisms, including As(V) reduction, As(III) oxidation, Fe(III) reduction, and Fe(II) oxidation reactions. The 19 reactions yielded 2-94 kJ mol(-1) e(-) , with aerobic oxidation of sulphide and arsenite the two most exergonic reactions. Although anaerobic As(V) reduction and Fe(III) reduction were among the least exergonic reactions investigated, they are still potential net metabolisms. Gibbs energies of the arsenic redox reactions generally correlate linearly with pH, increasing with increasing pH for As(III) oxidation and decreasing with increasing pH for As(V) reduction. The calculated exergonic energy yields suggest that micro-organisms could exploit diverse energy sources in Tutum Bay, and examples of micro-organisms known to use these chemolithotrophic metabolic strategies are discussed. Energy modeling of redox reactions can help target sampling sites for future microbial collection and cultivation studies.
Collapse
Affiliation(s)
- N H Akerman
- Department of Earth and Planetary Sciences, Washington University, St Louis, Missouri, USA.
| | | | | | | |
Collapse
|
99819
|
Suhanova EV, Dzyuba EV, Triboy TI, Nikiforova TI, Denikina NN, Belkova NL. Molecular genetic and culture diagnosis of Mycoplasma in fish family Thymallidae. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2011; 440:287-289. [PMID: 22134812 DOI: 10.1134/s0012496611050036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Indexed: 05/31/2023]
Affiliation(s)
- E V Suhanova
- Limnological Institute, Russian Academy of Sciences, Irkutsk, Russia
| | | | | | | | | | | |
Collapse
|
99820
|
Feuerbacher LA, Burgum A, Kolodrubetz D. The cyclic-AMP receptor protein (CRP) regulon in Aggregatibacter actinomycetemcomitans includes leukotoxin. Microb Pathog 2011; 51:133-41. [PMID: 21575705 PMCID: PMC3120918 DOI: 10.1016/j.micpath.2011.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 11/29/2022]
Abstract
The cyclic-AMP receptor protein (CRP) acts as a global regulatory protein among bacteria. Here, the CRP regulon has been defined in Aggregatibacter actinomycetemcomitans using microarray analysis of A. actinomycetemcomitans strain JP2 wild type cells compared to an isogenic crp deletion mutant. Genes whose expression levels changed at least 2-fold with p≤0.05 were considered significant. Of the 300 genes identified as being CRP-regulated, 139 were CRP-activated, including leukotoxin, with the remaining being CRP-repressed. The 300 genes represent 14.2% of ORFs probed which is significantly higher than what has been reported for CRP regulons in other bacteria. If the CRP-regulated genes are put into 17 functional classes, all 17 categories had at least 1 CRP-regulated gene. Several functional categories, mainly transport and binding proteins and energy metabolism proteins, were disproportionately represented in the CRP-regulated subset of genes relative to their overall representation in the genome. This is similar to the patterns seen in other bacteria. Finally, quantitative RT-PCR was used to show that the leukotoxin RNA levels were repressed 16-fold in the CRP mutant indicating that CRP activates leukotoxin transcription. However, this regulation appears to be acting through another regulatory protein since the leukotoxin promoter, unlike ∼129 other promoters of CRP-regulated genes, does not have a match to the consensus CRP-binding site. Several candidate genes for this intermediary transcription factor have been identified in the CRP regulon.
Collapse
Affiliation(s)
- Leigh A. Feuerbacher
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900 USA
| | - Alex Burgum
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900 USA
| | - David Kolodrubetz
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900 USA
| |
Collapse
|
99821
|
Cargnelutti JF, Brum MCS, Weiblen R, Flores EF. Stable expression and potential use of west nile virus envelope glycoproteins preM/E as antigen in diagnostic tests. Braz J Microbiol 2011; 42:1161-6. [PMID: 24031737 PMCID: PMC3768760 DOI: 10.1590/s1517-838220110003000040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 12/01/2010] [Accepted: 01/31/2011] [Indexed: 11/21/2022] Open
Abstract
West Nile virus (WNV) envelope glycoproteins preM/E were stably expressed in baby hamster kidney cells and tested as antigen in a fluorescent antibody assay for WNV antibodies. Sera from horses, mice and chicken immunized with an inactivated WNV vaccine and, less consistently, sera from horses acutely infected with WNV, reacted specifically with viral antigens present in preM/E-expressing cells.
Collapse
Affiliation(s)
- Juliana Felipetto Cargnelutti
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria , Santa Maria, RS , Brasil
| | | | | | | |
Collapse
|
99822
|
Bozzaro S, Eichinger L. The professional phagocyte Dictyostelium discoideum as a model host for bacterial pathogens. Curr Drug Targets 2011; 12:942-54. [PMID: 21366522 PMCID: PMC3267156 DOI: 10.2174/138945011795677782] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 10/26/2010] [Indexed: 01/24/2023]
Abstract
The use of simple hosts such as Dictyostelium discoideum in the study of host pathogen interactions offers a number of advantages and has steadily increased in recent years. Infection-specific genes can often only be studied in a very limited way in man and even in the mouse model their analysis is usually expensive, time consuming and technically challenging or sometimes even impossible. In contrast, their functional analysis in D. discoideum and other simple model organisms is often easier, faster and cheaper. Because host-pathogen interactions necessarily involve two organisms, it is desirable to be able to genetically manipulate both the pathogen and its host. Particularly suited are those hosts, like D. discoideum, whose genome sequence is known and annotated and for which excellent genetic and cell biological tools are available in order to dissect the complex crosstalk between host and pathogen. The review focusses on host-pathogen interactions of D. discoideum with Legionella pneumophila, mycobacteria, and Salmonella typhimurium which replicate intracellularly.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, Ospedale S. Luigi, 10043 Orbassano, Italy.
| | | |
Collapse
|
99823
|
Mrudula S, Murugammal R. Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol 2011; 42:1119-27. [PMID: 24031730 PMCID: PMC3768773 DOI: 10.1590/s1517-838220110003000033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 11/17/2010] [Accepted: 03/14/2011] [Indexed: 11/22/2022] Open
Abstract
Aspergillus niger was used for cellulase production in submerged (SmF) and solid state fermentation (SSF). The maximum production of cellulase was obtained after 72 h of incubation in SSF and 96 h in Smf. The CMCase and FPase activities recorded in SSF were 8.89 and 3.56 U per g of dry mycelial bran (DBM), respectively. Where as in Smf the CMase & FPase activities were found to be 3.29 and 2.3 U per ml culture broth, respectively. The productivity of extracellular cellulase in SSF was 14.6 fold higher than in SmF. The physical and nutritional parameters of fermentation like pH, temperature, substrate, carbon and nitrogen sources were optimized. The optimal conditions for maximum biosynthesis of cellulase by A. niger were shown to be at pH 6, temperature 30 °C. The additives like lactose, peptone and coir waste as substrate increased the productivity both in SmF and SSF. The moisture ratio of 1:2 (w/v) was observed for optimum production of cellulase in SSF.
Collapse
Affiliation(s)
- Soma Mrudula
- Department of Microbiology, M.G.R. College , Dr. M.G.R. Nagar, Hosur, T.N - 635 109 , India
| | | |
Collapse
|
99824
|
Remus DM, Kleerebezem M, Bron PA. An intimate tête-à-tête — How probiotic lactobacilli communicate with the host. Eur J Pharmacol 2011; 668 Suppl 1:S33-42. [DOI: 10.1016/j.ejphar.2011.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 12/28/2022]
|
99825
|
Chen J, Qiu X, Ouyang J, Kong J, Zhong W, Xing MMQ. pH and reduction dual-sensitive copolymeric micelles for intracellular doxorubicin delivery. Biomacromolecules 2011; 12:3601-11. [PMID: 21853982 DOI: 10.1021/bm200804j] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study develops novel pH and reduction dual-sensitive micelles for the anticancer drug doxorubicin (DOX) delivery owing to the fact that the tumor tissues show low pH and high reduction environment. These sub-100 nm micelles present a core-shell structure under physiological conditions, but quickly release the loaded drugs responding to acidic and reductive stimuli. With disulfide bonds in each repeat unit of poly(β-amino ester)s, the novel copolymer was synthesized via Michael addition polymerization from 2,2'-dithiodiethanol diacrylate, 4,4'-trimethylene dipiperidine, and methoxy-PEG-NH(2). DOX released faster from micelles in a weakly acidic environment (pH 6.5) than at pH 7.4 or in the presence of a higher concentration (5 mM) of reducing agent (DTT). The release is even more effective in a scenario of both stimuli (pH 6.5 and 5 mM DTT). MTT assay showed that the DOX-loaded micelles had a higher cytotoxicity for HepG2 tumor cells than DOX at higher concentrations, and that blank micelles had a very low cytotoxicity to the tumor cells. Confocal microscopy observation showed that the micelles can be quickly internalized, effectively deliver the drugs into nuclei, and inhibit cell growth. These results present the copolymer as a novel and effective pH and reduction dual-responsive nanocarrier to enhance drug efficacy for cancer cells.
Collapse
Affiliation(s)
- Jun Chen
- Department of Mechanical and Manufacturing Engineering, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
99826
|
Arkowitz RA, Bassilana M. Polarized growth in fungi: symmetry breaking and hyphal formation. Semin Cell Dev Biol 2011; 22:806-15. [PMID: 21906692 DOI: 10.1016/j.semcdb.2011.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 01/12/2023]
Abstract
Cell shape is a critical determinant for function. The baker's yeast Saccharomyces cerevisiae changes shape in response to its environment, growing by budding in rich nutrients, forming invasive pseudohyphal filaments in nutrient poor conditions and pear shaped shmoos for growth towards a partner during mating. The human opportunistic pathogen Candida albicans can switch from budding to hyphal growth, in response to numerous environmental stimuli to colonize and invade its host. Hyphal growth, typical of filamentous fungi, is not observed in S. cerevisiae. A number of internal cues regulate when and where yeast cells break symmetry leading to polarized growth and ultimately distinct cell shapes. This review discusses how cells break symmetry using the yeast S. cerevisiae paradigm and how polarized growth is initiated and maintained to result in dramatic morphological changes during C. albicans hyphal growth.
Collapse
Affiliation(s)
- Robert A Arkowitz
- Centre National de la Recherche Scientifique and Université de Nice-Sophia Antipolis, Institute of Developmental Biology and Cancer, CNRS-UMR6543 Faculté des Sciences, Nice, France.
| | | |
Collapse
|
99827
|
Doyle PS, Zhou YM, Hsieh I, Greenbaum DC, McKerrow JH, Engel JC. The Trypanosoma cruzi protease cruzain mediates immune evasion. PLoS Pathog 2011; 7:e1002139. [PMID: 21909255 PMCID: PMC3164631 DOI: 10.1371/journal.ppat.1002139] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/11/2011] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas' disease. Novel chemotherapy with the drug K11777 targets the major cysteine protease cruzain and disrupts amastigote intracellular development. Nevertheless, the biological role of the protease in infection and pathogenesis remains unclear as cruzain gene knockout failed due to genetic redundancy. A role for the T. cruzi cysteine protease cruzain in immune evasion was elucidated in a comparative study of parental wild type- and cruzain-deficient parasites. Wild type T. cruzi did not activate host macrophages during early infection (<60 min) and no increase in ∼P iκB was detected. The signaling factor NF-κB P65 colocalized with cruzain on the cell surface of intracellular wild type parasites, and was proteolytically cleaved. No significant IL-12 expression occurred in macrophages infected with wild type T. cruzi and treated with LPS and BFA, confirming impairment of macrophage activation pathways. In contrast, cruzain-deficient parasites induced macrophage activation, detectable iκB phosphorylation, and nuclear NF-κB P65 localization. These parasites were unable to develop intracellularly and survive within macrophages. IL 12 expression levels in macrophages infected with cruzain-deficient T. cruzi were comparable to LPS activated controls. Thus cruzain hinders macrophage activation during the early (<60 min) stages of infection, by interruption of the NF-κB P65 mediated signaling pathway. These early events allow T. cruzi survival and replication, and may lead to the spread of infection in acute Chagas' disease.
Collapse
Affiliation(s)
- Patricia S. Doyle
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| | - Yuan M. Zhou
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| | - Ivy Hsieh
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| | - Doron C. Greenbaum
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| | - James H. McKerrow
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| | - Juan C. Engel
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| |
Collapse
|
99828
|
Norris V, Zemirline A, Amar P, Audinot JN, Ballet P, Ben-Jacob E, Bernot G, Beslon G, Cabin A, Fanchon E, Giavitto JL, Glade N, Greussay P, Grondin Y, Foster JA, Hutzler G, Jost J, Kepes F, Michel O, Molina F, Signorini J, Stano P, Thierry AR. Computing with bacterial constituents, cells and populations: from bioputing to bactoputing. Theory Biosci 2011; 130:211-28. [PMID: 21384168 PMCID: PMC3163788 DOI: 10.1007/s12064-010-0118-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 12/15/2010] [Indexed: 10/29/2022]
Abstract
The relevance of biological materials and processes to computing-alias bioputing-has been explored for decades. These materials include DNA, RNA and proteins, while the processes include transcription, translation, signal transduction and regulation. Recently, the use of bacteria themselves as living computers has been explored but this use generally falls within the classical paradigm of computing. Computer scientists, however, have a variety of problems to which they seek solutions, while microbiologists are having new insights into the problems bacteria are solving and how they are solving them. Here, we envisage that bacteria might be used for new sorts of computing. These could be based on the capacity of bacteria to grow, move and adapt to a myriad different fickle environments both as individuals and as populations of bacteria plus bacteriophage. New principles might be based on the way that bacteria explore phenotype space via hyperstructure dynamics and the fundamental nature of the cell cycle. This computing might even extend to developing a high level language appropriate to using populations of bacteria and bacteriophage. Here, we offer a speculative tour of what we term bactoputing, namely the use of the natural behaviour of bacteria for calculating.
Collapse
Affiliation(s)
- Vic Norris
- Epigenomics Project, Genopole Campus 1, Bât. Genavenir 6, 5 rue Henri Desbruères, 91030, Évry Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99829
|
Coherent dynamics and association networks among lake bacterioplankton taxa. ISME JOURNAL 2011; 6:330-42. [PMID: 21881616 DOI: 10.1038/ismej.2011.113] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bacteria have important roles in freshwater food webs and in the cycling of elements in the ecosystem. Yet specific ecological features of individual phylogenetic groups and interactions among these are largely unknown. We used 454 pyrosequencing of 16S rRNA genes to study associations of different bacterioplankton groups to environmental characteristics and their co-occurrence patterns over an annual cycle in a dimictic lake. Clear seasonal succession of the bacterioplankton community was observed. After binning of sequences into previously described and highly resolved phylogenetic groups (tribes), their temporal dynamics revealed extensive synchrony and associations with seasonal events such as ice coverage, ice-off, mixing and phytoplankton blooms. Coupling between closely and distantly related tribes was resolved by time-dependent rank correlations, suggesting ecological coherence that was often dependent on taxonomic relatedness. Association networks with the abundant freshwater Actinobacteria and Proteobacteria in focus revealed complex interdependencies within bacterioplankton communities and contrasting linkages to environmental conditions. Accordingly, unique ecological features can be inferred for each tribe and reveal the natural history of abundant cultured and uncultured freshwater bacteria.
Collapse
|
99830
|
Sternal Osteomyelitis Caused by Mycobacterium tuberculosis After Open Heart Surgery. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2011. [DOI: 10.1097/ipc.0b013e31820428cc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
99831
|
Quantitative measurement of dynamic flow induced by Tetrahymena pyriformis (T. pyriformis) using micro-particle image velocimetry. J Vis (Tokyo) 2011. [DOI: 10.1007/s12650-011-0102-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
99832
|
Nodulation-gene-inducing flavonoids increase overall production of autoinducers and expression of N-acyl homoserine lactone synthesis genes in rhizobia. Res Microbiol 2011; 162:715-23. [DOI: 10.1016/j.resmic.2011.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 04/16/2011] [Indexed: 11/20/2022]
|
99833
|
Cavalazzi B, Westall F, Cady SL, Barbieri R, Foucher F. Potential fossil endoliths in vesicular pillow basalt, Coral Patch Seamount, eastern North Atlantic Ocean. ASTROBIOLOGY 2011; 11:619-32. [PMID: 21875356 DOI: 10.1089/ast.2011.0657] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The chilled rinds of pillow basalt from the Ampère-Coral Patch Seamounts in the eastern North Atlantic were studied as a potential habitat of microbial life. A variety of putative biogenic structures, which include filamentous and spherical microfossil-like structures, were detected in K-phillipsite-filled amygdules within the chilled rinds. The filamentous structures (∼2.5 μm in diameter) occur as K-phillipsite tubules surrounded by an Fe-oxyhydroxide (lepidocrocite) rich membranous structure, whereas the spherical structures (from 4 to 2 μm in diameter) are associated with Ti oxide (anatase) and carbonaceous matter. Several lines of evidence indicate that the microfossil-like structures in the pillow basalt are the fossilized remains of microorganisms. Possible biosignatures include the carbonaceous nature of the spherical structures, their size distributions and morphology, the presence and distribution of native fluorescence, mineralogical and chemical composition, and environmental context. When taken together, the suite of possible biosignatures supports the hypothesis that the fossil-like structures are of biological origin. The vesicular microhabitat of the rock matrix is likely to have hosted a cryptoendolithic microbial community. This study documents a variety of evidence for past microbial life in a hitherto poorly investigated and underestimated microenvironment, as represented by the amygdules in the chilled pillow basalt rinds. This kind of endolithic volcanic habitat would have been common on the early rocky planets in our Solar System, such as Earth and Mars. This study provides a framework for evaluating traces of past life in vesicular pillow basalts, regardless of whether they occur on early Earth or Mars.
Collapse
Affiliation(s)
- Barbara Cavalazzi
- Department of Geology, University of Johannesburg, Johannesburg, South Africa.
| | | | | | | | | |
Collapse
|
99834
|
Verkaik NJ, van Wamel WJB, van Belkum A. Immunotherapeutic approaches against Staphylococcus aureus. Immunotherapy 2011; 3:1063-73. [DOI: 10.2217/imt.11.84] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Staphylococcus aureus is a major cause of life-threatening infections such as bacteremia and endocarditis. Unfortunately, many strains of this bacterial species have become resistant to certain antibiotics, including methicillin and amoxicillin. These strains are known as methicillin-resistant S. aureus (MRSA). Therefore, the prophylactic and therapeutic potential of antistaphylococcal vaccines is currently being explored with priority. In animal models, (passive) immunization with (antibodies directed against) certain S. aureus surface components, staphylococcal toxins and capsular polysaccharides protects against S. aureus colonization or infection. However, immunization studies performed in humans show less promising results. So far, not a single antistaphylococcal vaccine successfully passed clinical trials. This article focuses on the results that were obtained with immunotherapeutic approaches directed against S. aureus in animal and human studies. In addition, it is discussed whether effective immunization approaches against S. aureus are feasible in humans.
Collapse
Affiliation(s)
| | - Willem JB van Wamel
- Erasmus Medical Center, Department of Medical Microbiology & Infectious Diseases, ‘s Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Alex van Belkum
- Erasmus Medical Center, Department of Medical Microbiology & Infectious Diseases, ‘s Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
- BioMérieux, 3 route de Port Michaud, La Balme-Les-Grottes, 38390, France
| |
Collapse
|
99835
|
Takeuchi H, Furuta N, Amano A. Cell entry and exit by periodontal pathogen via recycling pathway. Commun Integr Biol 2011; 4:587-9. [PMID: 22046471 DOI: 10.4161/cib.4.5.16549] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 12/18/2022] Open
Abstract
In the oral cavity, gingival epithelial cell (GEC) layers function as an innate host defense system to prevent intrusion by periodontal bacteria. Nevertheless, Porphyromonas gingivalis, the most well-known periodontal pathogen, can enter GECs and pass through the epithelial barrier into deeper tissues. An intracellular location is considered advantageous for bacteria to escape from immune surveillance by the host as well as antibiotic pressure, leading to intracellular persistence, multiplication and dissemination to adjacent tissues. P. gingivalis are invaginated by gingival epithelial cells via the endocytic pathway, and some intracellular bacteria are sorted to lytic compartments, including autolysosomes and late endosomes/lysosomes, while a considerable number of the remaining organisms are sorted to Rab11- and RalA-positive recycling endosomes, followed by bacterial exit from the cells. Exited bacteria can re-enter fresh cells. However, dominant negative forms and RNAi-knockdown of Rab11, RalA and exocyst complex subunits (Sec5, Sec6 and Exo84) significantly disturb the exit of P. gingivalis. These are the first known results to show that the endocytic recycling pathway mediates bacterial exit from infected cells to neighboring cells and may provide important information regarding the exit mechanisms of various invasive pathogens.
Collapse
Affiliation(s)
- Hiroki Takeuchi
- Department of Oral Frontier Biology; Center for Frontier Oral Science; Osaka University Graduate School of Dentistry; Osaka, Japan
| | | | | |
Collapse
|
99836
|
Kind S, Kreye S, Wittmann C. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab Eng 2011; 13:617-27. [DOI: 10.1016/j.ymben.2011.07.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 01/26/2023]
|
99837
|
Ivarsson M, Broman C, Holmström SJM, Ahlbom M, Lindblom S, Holm NG. Putative fossilized fungi from the lithified volcaniclastic apron of Gran Canaria, Spain. ASTROBIOLOGY 2011; 11:633-650. [PMID: 21895442 DOI: 10.1089/ast.2010.0593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report the discovery of fossilized filamentous structures in samples of the lithified, volcaniclastic apron of Gran Canaria, which were obtained during Leg 157 of the Ocean Drilling Program (ODP). These filamentous structures are 2-15 μm in diameter and several hundred micrometers in length and are composed of Si, Al, Fe, Ca, Mg, Na, Ti, and C. Chitin was detected in the filamentous structures by staining with wheat germ agglutinin dye conjugated with fluorescein isothiocyanate (WGA-FITC), which suggests that they are fossilized fungal hyphae. The further elucidation of typical filamentous fungal morphological features, such as septa, hyphal bridges, and anastomosis and their respective sizes, support this interpretation. Characteristic structures that we interpreted as fossilized spores were also observed in association with the putative hyphae. The fungal hyphae were found in pyroxene phenocrysts and in siderite pseudomorphs of a basalt breccia. The fungal colonization of the basalt clasts occurred after the brecciation but prior to the final emplacement and lithification of the sediment at ∼16-14 Ma. The siderite appears to have been partially dissolved by the presence of fungal hyphae, and the fungi preferentially colonized Fe-rich carbonates over Fe-poor carbonates (aragonite). Our findings indicate that fungi may be an important geobiological agent in subseafloor environments and an important component of the deep subseafloor biosphere, and that hydrothermal environments associated with volcanism can support a diverse ecosystem, including eukaryotes.
Collapse
Affiliation(s)
- Magnus Ivarsson
- Department of Palaeozoology, Swedish Museum of Natural History, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
99838
|
Klein GL, Soum-Soutéra E, Guede Z, Bazire A, Compère C, Dufour A. The anti-biofilm activity secreted by a marine Pseudoalteromonas strain. BIOFOULING 2011; 27:931-940. [PMID: 21895460 DOI: 10.1080/08927014.2011.611878] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bacterial biofilms occur on all submerged structures in marine environments. The authors previously reported that the marine bacterium Pseudoalteromonas sp. 3J6 secretes antibiofilm activity. Here, it was discovered that another Pseudoalteromonas sp. strain, D41, inhibited the development of strain 3J6 in mixed biofilms. Confocal laser scanning microscope observations revealed that the culture supernatant of strain D41 impaired biofilm formation of strain 3J6 and another marine bacterium. A microtiter plate assay of the antibiofilm activity was set up and validated with culture supernatants of Pseudoalteromonas sp. 3J6. This assay was used to determine the spectra of action of strains D41 and 3J6. Each culture supernatant impaired the biofilm development of 13 marine bacteria out of 18. However, differences in the spectra of action and the physical behaviours of the antibiofilm molecules suggest that the latter are not identical. They nevertheless share the originality of being devoid of antibacterial activity against planktonic bacteria.
Collapse
Affiliation(s)
- Géraldine L Klein
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne-Sud, UEB, Lorient, France
| | | | | | | | | | | |
Collapse
|
99839
|
Betoret E, Betoret N, Vidal D, Fito P. Functional foods development: Trends and technologies. Trends Food Sci Technol 2011. [DOI: 10.1016/j.tifs.2011.05.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
99840
|
Chen R, Vasilakis N. Dengue--quo tu et quo vadis? Viruses 2011; 3:1562-608. [PMID: 21994796 PMCID: PMC3187692 DOI: 10.3390/v3091562] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/12/2011] [Accepted: 08/12/2011] [Indexed: 02/08/2023] Open
Abstract
Dengue viruses (DENV) are by far the most important arboviral pathogens in the tropics around the world, putting at risk of infection nearly a third of the global human population. DENV are members of the genus Flavivirus in the Family Flaviviridae and comprise four antigenically distinct serotypes (DENV-1-4). Although they share almost identical epidemiological features, they are genetically distinct. Phylogenetic analyses have revealed valuable insights into the origins, epidemiology and the forces that shape DENV evolution in nature. In this review, we examine the current status of DENV evolution, including but not limited to rates of evolution, selection pressures, population sizes and evolutionary constraints, and we discuss how these factors influence transmission, pathogenesis and emergence.
Collapse
Affiliation(s)
- Rubing Chen
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; E-Mail:
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; E-Mail:
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| |
Collapse
|
99841
|
Parmar A, Singh NK, Kaushal A, Madamwar D. Characterization of an intact phycoerythrin and its cleaved 14kDa functional subunit from marine cyanobacterium Phormidium sp. A27DM. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
99842
|
Krishnan HB, Natarajan SS, Kim WS. Distinct cell surface appendages produced by Sinorhizobium fredii USDA257 and S. fredii USDA191, cultivar-specific and nonspecific symbionts of soybean. Appl Environ Microbiol 2011; 77:6240-8. [PMID: 21764962 PMCID: PMC3165413 DOI: 10.1128/aem.05366-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/05/2011] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium fredii USDA257 and S. fredii USDA191 are fast-growing rhizobia that form nitrogen-fixing nodules on soybean roots. In contrast to USDA191, USDA257 exhibits cultivar specificity and can form nodules only on primitive soybean cultivars. In response to flavonoids released from soybean roots, these two rhizobia secrete nodulation outer proteins (Nop) to the extracellular milieu through a type III secretion system. In spite of the fact that Nops are known to regulate legume nodulation in a host-specific manner, very little is known about the differences in the compositions of Nops and surface appendages elaborated by USDA191 and USDA257. In this study we compared the Nop profiles of USDA191 and USDA257 by one-dimensional (1D) and 2D gel electrophoresis and identified several of these proteins by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and liquid chromatography-tandem MS (LC-MS/MS). Examination of the surface appendages elaborated by these two strains of soybean symbionts by transmission electron microscopy revealed distinct differences in their morphologies. Even though the flagella produced by USDA191 and USDA257 were similar in their morphologies, they differed in their flagellin composition. USDA257 pili resembled long thin filaments, while USDA191 pili were short, rod shaped, and much thinner than the flagella. 2D gel electrophoresis of pilus-like appendages of USDA191 and USDA257 followed by mass spectrometry resulted in the identification of several of the Nops along with some proteins previously undetected in these strains. Some of the newly identified proteins show homology to putative zinc protease and a LabA-like protein from Bradyrhizobium sp. ORS278, fimbrial type 4 assembly proteins from Ralstonia solanacearum, and the type III effector Hrp-dependent protein from Rhizobium leguminosarum bv. trifolii.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, USDA ARS, 108 Curtis Hall, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
99843
|
Bahar O, Levi N, Burdman S. The cucurbit pathogenic bacterium Acidovorax citrulli requires a polar flagellum for full virulence before and after host-tissue penetration. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1040-50. [PMID: 21554180 DOI: 10.1094/mpmi-02-11-0041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Acidovorax citrulli causes seedling blight and bacterial fruit blotch of cucurbits. Previous reports demonstrated the contribution of type IV pili (T4P) to A. citrulli virulence and to systemic infection of melon seedlings. Microfluidic flow-chamber assays demonstrated the involvement of T4P in surface adhesion and biofilm formation, whereas polar flagella did not appear to contribute to either of these features. On the other hand, a transposon mutant impaired in the biosynthesis of polar flagella was identified in screens for reduced virulence of an A. citrulli mutant library. Further characterization of polar flagellum mutants confirmed that A. citrulli requires a polar flagellum for full virulence on melon plants. Foliage and stem inoculation experiments revealed that polar flagella contribute to A. citrulli virulence and growth in planta at both pre- and post-host-tissue penetration. Interestingly, light microscope observations revealed that almost all A. citrulli wild-type cells extracted from the xylem sap of stem-inoculated melon seedlings remained motile, supporting the importance of this organelle in virulence and colonization of the host vascular system. We also report a negative effect of polar flagellum impairment on T4P-mediated twitching motility of A. citrulli and discuss a possible co-regulation of these two motility machineries in this bacterium.
Collapse
Affiliation(s)
- Ofir Bahar
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | |
Collapse
|
99844
|
Spitzer J. From water and ions to crowded biomacromolecules: in vivo structuring of a prokaryotic cell. Microbiol Mol Biol Rev 2011; 75:491-506, second page of table of contents. [PMID: 21885682 PMCID: PMC3165543 DOI: 10.1128/mmbr.00010-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interactions and processes which structure prokaryotic cytoplasm (water, ions, metabolites, and biomacromolecules) and ensure the fidelity of the cell cycle are reviewed from a physicochemical perspective. Recent spectroscopic and biological evidence shows that water has no active structuring role in the cytoplasm, an unnecessary notion still entertained in the literature; water acts only as a normal solvent and biochemical reactant. Subcellular structuring arises from localizations and interactions of biomacromolecules and from the growth and modifications of their surfaces by catalytic reactions. Biomacromolecular crowding is a fundamental physicochemical characteristic of cells in vivo. Though some biochemical and physiological effects of crowding (excluded volume effect) have been documented, crowding assays with polyglycols, dextrans, etc., do not properly mimic the compositional variety of biomacromolecules in vivo. In vitro crowding assays are now being designed with proteins, which better reflect biomacromolecular environments in vivo, allowing for hydrophobic bonding and screened electrostatic interactions. I elaborate further the concept of complex vectorial biochemistry, where crowded biomacromolecules structure the cytosol into electrolyte pathways and nanopools that electrochemically "wire" the cell. Noncovalent attractions between biomacromolecules transiently supercrowd biomacromolecules into vectorial, semiconducting multiplexes with a high (35 to 95%)-volume fraction of biomacromolecules; consequently, reservoirs of less crowded cytosol appear in order to maintain the experimental average crowding of ∼25% volume fraction. This nonuniform crowding model allows for fast diffusion of biomacromolecules in the uncrowded cytosolic reservoirs, while the supercrowded vectorial multiplexes conserve the remarkable repeatability of the cell cycle by preventing confusing cross talk of concurrent biochemical reactions.
Collapse
Affiliation(s)
- Jan Spitzer
- Mallard Creek Polymers, Inc., 14700 Mallard Creek Road, Charlotte, NC 28262, USA.
| |
Collapse
|
99845
|
Mishra D, Pal S, Krishnamurty S. Understanding the molecular conformations of Na-dimyristoylphosphatidylglycerol (DMPG) using DFT-based method. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2011.582105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
99846
|
Hemaiswarya S, Soudaminikkutty R, Narasumani ML, Doble M. Phenylpropanoids inhibit protofilament formation of Escherichia coli cell division protein FtsZ. J Med Microbiol 2011; 60:1317-1325. [DOI: 10.1099/jmm.0.030536-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shanmugam Hemaiswarya
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Rohini Soudaminikkutty
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | | | - Mukesh Doble
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
99847
|
MacLean AM, Haerty W, Golding GB, Finan TM. The LysR-type PcaQ protein regulates expression of a protocatechuate-inducible ABC-type transport system in Sinorhizobium meliloti. Microbiology (Reading) 2011; 157:2522-2533. [DOI: 10.1099/mic.0.050542-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The LysR protein PcaQ regulates the expression of genes encoding products relevant to the degradation of the aromatic acid protocatechuate (3,4-dihydroxybenzoate), and we have previously defined a PcaQ DNA-binding site located upstream of the target pcaDCHGB operon in Sinorhizobium meliloti. In this work, we show that PcaQ also regulates the expression of the S. meliloti smb20568-smb20787-smb20786-smb20785-smb20784 gene cluster, which is predicted to encode an ABC transport system. ABC transport systems have not been shown before to transport protocatechuate, and we have designated this gene cluster pcaMNVWX. The transcriptional start site of pcaM was mapped, and the predicted PcaQ DNA-binding site was located at −73 to −58 relative to this site. Results from electrophoretic mobility shift assays with purified PcaQ and from expression assays indicated that PcaQ activates expression of the transport system in the presence of protocatechuate. To investigate this transport system further, we generated a pcaM deletion mutant (predicted to encode the substrate-binding protein) and introduced a polar insertion mutation into pcaN, a gene that is predicted to encode a permease. These mutants grew poorly on protocatechuate, presumably because they fail to transport protocatechuate. Genome analyses revealed PcaQ-like DNA-binding sites encoded upstream of ABC transport systems in other members of the α-proteobacteria, and thus it appears likely that these systems are involved in the uptake of protocatechuate.
Collapse
Affiliation(s)
- Allyson M. MacLean
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton L8S 4K1, Canada
| | - Wilfried Haerty
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton L8S 4K1, Canada
| | - G. Brian Golding
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton L8S 4K1, Canada
| | - Turlough M. Finan
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton L8S 4K1, Canada
| |
Collapse
|
99848
|
Mantareva V, Angelov I, Kussovski V, Dimitrov R, Lapok L, Wöhrle D. Photodynamic efficacy of water-soluble Si(IV) and Ge(IV) phthalocyanines towards Candida albicans planktonic and biofilm cultures. Eur J Med Chem 2011; 46:4430-40. [DOI: 10.1016/j.ejmech.2011.07.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/03/2011] [Accepted: 07/08/2011] [Indexed: 01/08/2023]
|
99849
|
Lönneborg R, Brzezinski P. Factors that influence the response of the LysR type transcriptional regulators to aromatic compounds. BMC BIOCHEMISTRY 2011; 12:49. [PMID: 21884597 PMCID: PMC3180648 DOI: 10.1186/1471-2091-12-49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/01/2011] [Indexed: 11/26/2022]
Abstract
Background The transcriptional regulators DntR, NagR and NtdR have a high sequence identity and belong to the large family of LysR type transcriptional regulators (LTTRs). These three regulators are all involved in regulation of genes identified in pathways for degradation of aromatic compounds. They activate the transcription of these genes in the presence of an inducer, but the inducer specificity profiles are different. Results The results from this study show that NtdR has the broadest inducer specificity, responding to several nitro-aromatic compounds. Mutational studies of residues that differ between DntR, NagR and NtdR suggest that a number of specific residues are involved in the broader inducer specificity of NtdR when compared to DntR and NagR. The inducer response was also investigated as a function of the experimental conditions and a number of parameters such as the growth media, plasmid arrangement of the LTTR-encoding genes, promoter and gfp reporter gene, and the presence of a His6-tag were shown to affect the inducer response in E.coli DH5α. Furthermore, the response upon addition of both salicylate and 4-nitrobenzoate to the growth media was larger than the sum of responses upon addition of each of the compounds, which suggests the presence of a secondary binding site, as previously reported for other LTTRs. Conclusions Optimization of the growth conditions and gene arrangement resulted in improved responses to nitro-aromatic inducers. The data also suggests the presence of a previously unknown secondary binding site in DntR, analogous to that of BenM.
Collapse
Affiliation(s)
- Rosa Lönneborg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | |
Collapse
|
99850
|
Scaccabarozzi L, Locatelli C, Pisoni G, Manarolla G, Casula A, Bronzo V, Moroni P. Short communication: Epidemiology and genotyping of Candida rugosa strains responsible for persistent intramammary infections in dairy cows. J Dairy Sci 2011; 94:4574-7. [DOI: 10.3168/jds.2011-4294] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/22/2011] [Indexed: 11/19/2022]
|