51
|
Abstract
Several hypotheses have been put forth over time to explain how consciousness can be so rapidly lost, and then spontaneously regained, following mechanical head trauma. The knockout punch in boxing is a relatively homogenous form of traumatic brain injury and can thus be used to test the predictions of these hypotheses. While none of the hypotheses put forth can be considered fully verified, pore formation following stretching of the axonal cell membrane, mechanoporation, is a strong contender. We here argue that the theoretical foundation of mechanoporation can be strengthened by a comparison with the experimental method electroporation.
Collapse
Affiliation(s)
- Anders Hånell
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Elham Rostami
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Neuroscience, Karolinska Institutet (KI), Stockholm, Sweden
| |
Collapse
|
52
|
Jazayeri MH, Barzaman K, Nedaeinia R, Aghaie T, Motallebnezhad M. Human placental extract attenuates neurological symptoms in the experimental autoimmune encephalomyelitis model of multiple sclerosis-a putative approach in MS disease? AUTOIMMUNITY HIGHLIGHTS 2020; 11:14. [PMID: 33012290 PMCID: PMC7534169 DOI: 10.1186/s13317-020-00137-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Different studies have demonstrated the anti-inflammatory effects of human placental extract both in vivo and in vitro. Considering the chronic inflammatory nature of multiple sclerosis (MS) disease, we examined whether or not the administration of human placental extract is able to attenuate the neurological symptoms detected in experimental autoimmune encephalomyelitis (EAE) model of MS. METHODS The injected myelin oligodendrocyte glycoprotein (MOG) induced EAE in mice, and treatment began from day 4 post-injection by intraperitoneal administration of 0.2 mg/kg human placental extract, repeated every other day up to day 31 post-injection. At the end of the treatment, luxol fast blue (LBS) staining and hematoxylin and eosin (H&E) staining were performed to evaluate the demyelination of neurons and inflammatory responses, respectively. Further assessed were the serum concentrations of IL-23 and IL-27. RESULTS The administration of human placental extract was able to significantly reduce the mean clinical score in EAE mice, decrease the pro-inflammatory process and attenuate neural demyelination. Moreover, while the serum concentration of IL-23 was significantly diminished in the EAE mice receiving human placental extract compared to the non-treated EAE group, IL-27 concentration was significantly increased. CONCLUSIONS Our findings demonstrated the administration of human placental extract could significantly attenuate the neurological symptoms in the EAE model of MS in part through modulating the serum levels of IL-23 and IL-27 and enhancing neuroprotection and myelin repair.
Collapse
Affiliation(s)
- Mir Hadi Jazayeri
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O Box: 14665-354, Tehran, 1449614535, Iran. .,Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Khadijeh Barzaman
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O Box: 14665-354, Tehran, 1449614535, Iran.,Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebe Aghaie
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O Box: 14665-354, Tehran, 1449614535, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O Box: 14665-354, Tehran, 1449614535, Iran.,Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
53
|
Cox CD, Bavi N, Martinac B. Biophysical Principles of Ion-Channel-Mediated Mechanosensory Transduction. Cell Rep 2020; 29:1-12. [PMID: 31577940 DOI: 10.1016/j.celrep.2019.08.075] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/09/2019] [Accepted: 08/22/2019] [Indexed: 01/12/2023] Open
Abstract
Recent rapid progress in the field of mechanobiology has been driven by novel emerging tools and methodologies and growing interest from different scientific disciplines. Specific progress has been made toward understanding how cell mechanics is linked to intracellular signaling and the regulation of gene expression in response to a variety of mechanical stimuli. There is a direct link between the mechanoreceptors at the cell surface and intracellular biochemical signaling, which in turn controls downstream effector molecules. Among the mechanoreceptors in the cell membrane, mechanosensitive (MS) ion channels are essential for the ultra-rapid (millisecond) transduction of mechanical stimuli into biologically relevant signals. The three decades of research on mechanosensitive channels resulted in the formulation of two basic principles of mechanosensitive channel gating: force-from-lipids and force-from-filament. In this review, we revisit the biophysical principles that underlie the innate force-sensing ability of mechanosensitive channels as contributors to the force-dependent evolution of life forms.
Collapse
Affiliation(s)
- Charles D Cox
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Navid Bavi
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
54
|
Mehta R, Giri S, Mallick BN. REM sleep loss-induced elevated noradrenaline could predispose an individual to psychosomatic disorders: a review focused on proposal for prediction, prevention, and personalized treatment. EPMA J 2020; 11:529-549. [PMID: 33240449 DOI: 10.1007/s13167-020-00222-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
Historically and traditionally, it is known that sleep helps in maintaining healthy living. Its duration varies not only among individuals but also in the same individual depending on circumstances, suggesting it is a dynamic and personalized physiological process. It has been divided into rapid eye movement sleep (REMS) and non-REMS (NREMS). The former is unique that adult humans spend the least time in this stage, when although one is physically asleep, the brain behaves as if awake, the dream state. As NREMS is a pre-requisite for appearance of REMS, the latter can be considered a predictive readout of sleep quality and health. It plays a protective role against oxidative, stressful, and psychopathological insults. Several modern lifestyle activities compromise quality and quantity of sleep (including REMS) affecting fundamental physiological and psychopathosomatic processes in a personalized manner. REMS loss-induced elevated brain noradrenaline (NA) causes many associated symptoms, which are ameliorated by preventing NA action. Therefore, we propose that awareness about personalized sleep hygiene (including REMS) and maintaining optimum brain NA level should be of paramount significance for leading physical and mental well-being as well as healthy living. As sleep is a dynamic, multifactorial, homeostatically regulated process, for healthy living, we recommend addressing and treating sleep dysfunctions in a personalized manner by the health professionals, caregivers, family, and other supporting members in the society. We also recommend that maintaining sleep profile, optimum level of NA, and/or prevention of elevation of NA or its action in the brain must be seriously considered for ameliorating lifestyle and REMS disturbance-associated dysfunctions.
Collapse
Affiliation(s)
- Rachna Mehta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India.,Present Address: Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| | - Shatrunjai Giri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| | - Birendra N Mallick
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| |
Collapse
|
55
|
The impact of altered mechanobiology on aortic valve pathophysiology. Arch Biochem Biophys 2020; 691:108463. [PMID: 32590066 DOI: 10.1016/j.abb.2020.108463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 01/28/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most prevalent valvulopathy worldwide. Until recently, CAVD was viewed as a passive, degenerative process and an inevitable consequence of aging. Recent improvements in disease modeling, imaging, and analysis have greatly enhanced our understanding of CAVD. The aortic valve and its constituent cells are subjected to extreme changes in mechanical forces, so it follows that any changes in the underlying mechanobiology of the valve and its cells would have dire effects on function. Further, the mechanobiology of the aortic valve is intimately intertwined with numerous molecular pathways, with signal transduction between these aspects afforded by the dynamic plasma membrane. Changes to the plasma membrane itself, its regulation of the extracellular matrix, or the relay of signals into or out of the cell would negatively impact cell and tissue function. PURPOSE OF REVIEW This review seeks to detail past and current published reports related to the mechanobiology of the aortic valve with a special emphasis on the implications of altered mechanobiology in the context of calcific aortic valve disease. RECENT FINDINGS Investigations characterizing membrane composition and dynamics have provided new insights into the earliest stages of calcific aortic valve disease. Recent studies have suggested that the activation or suppression of key pathways contribute to disease progression but may also offer therapeutic targets. SUMMARY This review highlights the critical involvement of mechanobiology and membrane dynamics in normal aortic valve physiology as well as valve pathology.
Collapse
|
56
|
Shen Y, Pan Y, Guo S, Sun L, Zhang C, Wang L. The roles of mechanosensitive ion channels and associated downstream MAPK signaling pathways in PDLC mechanotransduction. Mol Med Rep 2020; 21:2113-2122. [PMID: 32323761 PMCID: PMC7115221 DOI: 10.3892/mmr.2020.11006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
The present study aimed to investigate whether the cytoskeleton, the Piezo1 ion channel and the transient receptor potential cation channel subfamily V member 4 (TRPV4) ion channel are equally functional in the mechanotransduction of periodontal ligament cells (PDLCs) and to reveal the interplay of these mechanically sensitive ion channels (MSCs). Human PDLCs (hPDLCs) were pretreated with cytochalasin D (the inhibitor of actin polymerization), GsMTx4 (the antagonist of Piezo1) and GSK205 (the antagonist of TRPV4), and then subjected to periodic mechanical loading. The expression levels of macrophage colony stimulating factor (M-CSF), receptor activator of NF-κB ligand (RANKL) and cyclooxygenase-2 (COX2) in hPDLCs were detected via western blotting. Osteoblast mineralization induction capacity of the hPDLCs was also studied and the mitogen-activated protein kinase (MAPK) expression profile was determined via protein microarray. The expression of Piezo1 and TRPV4 in the PDLCs was significantly increased at 8 h after loading. These differences in expression were accompanied by increased expression of M-CSF, RANKL and COX2. Compared with the control group, key PDLC biomarkers were suppressed after mechanical loading following treatment with the inhibitors of Piezo1 (GsMTx4) and TRPV4 (GSK205). The phosphorylated-MAPK protein array showed differential biomarker profiles among all groups. The present study suggested that both MSCs and the cytoskeleton participated as mechanical sensors, and did so independently in hPDLC mechanotransduction. Furthermore, the Piezo1 ion channel may transmit mechanical signals via the ERK signaling pathway; however, the TRPV4 channel may function via alternative signaling pathways.
Collapse
Affiliation(s)
- Yun Shen
- Institute of Stomatology, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yongchu Pan
- Institute of Stomatology, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shuyu Guo
- Institute of Stomatology, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lian Sun
- Institute of Stomatology, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chi Zhang
- Institute of Stomatology, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lin Wang
- Institute of Stomatology, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
57
|
Martinez B, Peplow PV. Protective effects of pharmacological therapies in animal models of multiple sclerosis: a review of studies 2014-2019. Neural Regen Res 2020; 15:1220-1234. [PMID: 31960801 PMCID: PMC7047782 DOI: 10.4103/1673-5374.272572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. The disability caused by inflammatory demyelination clinically dominates the early stages of relapsing-remitting MS and is reversible. Once there is considerable loss of axons, MS patients enter a secondary progressive stage. Disease-modifying drugs currently in use for MS suppress the immune system and reduce relapse rates but are not effective in the progressive stage. Various animal models of MS (mostly mouse and rat) have been established and proved useful in studying the disease process and response to therapy. The experimental autoimmune encephalomyelitis animal studies reviewed here showed that a chronic progressive disease can be induced by immunization with appropriate amounts of myelin oligodendrocyte glycoprotein together with mycobacterium tuberculosis and pertussis toxin in Freund's adjuvant. The clinical manifestations of autoimmune encephalomyelitis disease were prevented or reduced by treatment with certain pharmacological agents given prior to, at, or after peak disease, and the agents had protective effects as shown by inhibiting demyelination and damage to neurons, axons and oligodendrocytes. In the cuprizone-induced toxicity animal studies, the pharmacological agents tested were able to promote remyelination and increase the number of oligodendrocytes when administered therapeutically or prophylactically. A monoclonal IgM antibody protected axons in the spinal cord and preserved motor function in animals inoculated with Theiler's murine encephalomyelitis virus. In all these studies the pharmacological agents were administered singly. A combination therapy may be more effective, especially using agents that target neuroinflammation and neurodegeneration, as they may exert synergistic actions.
Collapse
Affiliation(s)
- Bridget Martinez
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA; Department of Medicine, St. Georges University School of Medicine, True Blue, Grenada
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
58
|
Engidaw NA, Bacha L, Kenea A. Prevalence of depression and associated factors among epileptic patients at Ilu Ababore zone hospitals, South West Ethiopia, 2017: a cross‑sectional study. Ann Gen Psychiatry 2020; 19:19. [PMID: 32174994 PMCID: PMC7065310 DOI: 10.1186/s12991-020-00268-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/23/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Depression is one of the most common and overwhelming mental disorder in patients with epilepsy. Despite its high prevalence, depression continues to be under-recognized and undertreated. This study aimed to assess the prevalence of depression and its associated factors among epileptic patients attending the outpatient department of Ilu Ababore zone hospitals, Southwest Ethiopia, 2017. METHODS Institution-based cross-sectional study was carried out among 402 individual with epilepsy. The participants were selected using systematic random sampling technique. Depression was measured using Beck's Depression Inventory II. Oslo 3 Social Support Scale was used to assess social support. Perceived Stress Scale was used to assess the stress level of epileptic patients. The data were entered into Epi Info version 7 and analyzed by the SPSS version 20 software. We computed bivariate and multivariate binary logistic regressions to assess factors associated with depression. Statistical significance was declared at p-value < 0.05. RESULTS A total of 402 study participants were interviewed with a response rate of 96.2%. The prevalence of depression was found to be 48.1%. In the final multivariate analysis, educational status [unable to read and write (AOR = 4.01,95% CI = 3.82, 8.28), primary (AOR = 3.43, 95% CI = 3.12,9.29), secondary (AOR = 2.01, 95% CI = 1.89,7.24)], high perceived stress (AOR = 3.21, 95% CI = 2.70, 8.41), poor social support (AOR = 2.04, 95% CI = 1.42, 2.78), onset of illness < 6 year (AOR = 2.40, 95%CI = 2.10,7.91), seizure frequency of [1-11 per year (AOR = 2.34, 95% = 1.41, 4.36), ≥ 12/year (AOR = 3.49, 95% CI = 3.43, 6.40)], and polytherapy (AOR = 2.73, 95%CI = 2.52, 7.14) were independent predictors of depression among epileptic patients at p-value < 0.05. CONCLUSION AND RECOMMENDATION Overall, the prevalence of depression was found to be high. Having lower educational status, early onset of illness, poor social support, high perceived stress, high seizure frequency, and polytherapy were factors statistically associated with depression. Clinicians need to give emphasis to epileptic patients with high perceived stress, low educational status, and poor social support. An early depression-focused regular screening for epileptic patient should be carried out by trained health professionals. Linkage with mental health service providers also needs to be considered.
Collapse
Affiliation(s)
- Nigus Alemnew Engidaw
- 1College of Medicine and Health Sciences, Debre Berhan University, Debre Berhan, Ethiopia
| | - Lemi Bacha
- Department of Psychiatry, Faculty of Public Health and Medical Science, Mettu University, Mettu, Ethiopia
| | - Adamu Kenea
- Department of Psychiatry, Faculty of Public Health and Medical Science, Mettu University, Mettu, Ethiopia
| |
Collapse
|
59
|
Cohen AE, Shi Z. Do Cell Membranes Flow Like Honey or Jiggle Like Jello? Bioessays 2019; 42:e1900142. [DOI: 10.1002/bies.201900142] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/31/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Adam E. Cohen
- Departments of Chemistry and Chemical Biology and PhysicsHarvard University Cambridge MA USA
- Howard Hughes Medical Institute Chevy Chase MD USA
| | - Zheng Shi
- Departments of Chemistry and Chemical Biology and PhysicsHarvard University Cambridge MA USA
| |
Collapse
|
60
|
Pacheco JM, Hines-Lanham A, Stratton C, Mehos CJ, McCurdy KE, Pinkowski NJ, Zhang H, Shuttleworth CW, Morton RA. Spreading Depolarizations Occur in Mild Traumatic Brain Injuries and Are Associated with Postinjury Behavior. eNeuro 2019; 6:ENEURO.0070-19.2019. [PMID: 31748237 PMCID: PMC6893232 DOI: 10.1523/eneuro.0070-19.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/20/2023] Open
Abstract
Millions of people suffer mild traumatic brain injuries (mTBIs) every year, and there is growing evidence that repeated injuries can result in long-term pathology. The acute symptoms of these injuries may or may not include the loss of consciousness but do include disorientation, confusion, and/or the inability to concentrate. Most of these acute symptoms spontaneously resolve within a few hours or days. However, the underlying physiological and cellular mechanisms remain unclear. Spreading depolarizations (SDs) are known to occur in rodents and humans following moderate and severe TBIs, and SDs have long been hypothesized to occur in more mild injuries. Using a closed skull impact model, we investigated the presence of SDs immediately following a mTBI. Animals remained motionless for multiple minutes following an impact and once recovered had fewer episodes of movement. We recorded the defining electrophysiological properties of SDs, including the large extracellular field potential shifts and suppression of high-frequency cortical activity. Impact-induced SDs were also associated with a propagating wave of reduced cerebral blood flow (CBF). In the wake of the SD, there was a prolonged period of reduced CBF that recovered in approximately 90 min. Similar to SDs in more severe injuries, the impact-induced SDs could be blocked with ketamine. Interestingly, impacts at a slower velocity did not produce the prolonged immobility and did not initiate SDs. Our data suggest that SDs play a significant role in mTBIs and SDs may contribute to the acute symptoms of mTBIs.
Collapse
Affiliation(s)
- Johann M Pacheco
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Ashlyn Hines-Lanham
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Claire Stratton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Carissa J Mehos
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Kathryn E McCurdy
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Natalie J Pinkowski
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Haikun Zhang
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Russell A Morton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
61
|
Hamed SA, Attiah FA. Psychosis in adults with epilepsy and its relationship to demographic, clinical and treatment variables. Neurol Res 2019; 41:959-966. [PMID: 31280704 DOI: 10.1080/01616412.2019.1638017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/26/2019] [Indexed: 11/08/2022]
Abstract
Objectives: Psychiatric symptoms and disorders are commonly reported with epilepsy. This study aimed to determine the prevalence of interictal psychosis (IIP) in adults with epilepsy and its risk predictors. Methods: The study included 710 patients (mean age: 36.40 years; age at onset: 13.58 years; duration of epilepsy: 22.80 years). All underwent neurological and psychiatric interviewing, electroencephalography and brain imaging. Results: IIP was reported in 20.65%, of them 50% had temporal lobe epilepsy with impaired awareness and/or to bilateral tonic clonic, 42.47% had frontal lobe epilepsy with impaired awareness and/or to bilateral tonic clonic and 7.53% had generalized tonic-clonic seizures. Compared to patients without psychosis, patients with psychosis were older at age of examination, had earlier age at onset, frequent seizures, longer duration of epilepsy and long-term antiepileptic drugs therapy and many relatives with epilepsy. Nearly 76.71% had history of postictal psychosis (PIP). The mean age of onset of IIP was 30.45 years and its mean duration was 3.84 months. Approximately 22% of patients with IIP had family history of psychosis. Patients developed IIP 10 years or more after epilepsy onset. Multivariate logistic regression analyses showed that predictors for IIP were the age at onset and duration of epilepsy, number of seizures, family history of epilepsy or psychosis, history of PIP and different types of epilepsy. Conclusion: IIP is not infrequent with chronic epilepsy regardless to its type. These findings emphasize the importance of optimizing patients' treatment and early recognition and management of IIP. Abbreviations: IIP: interictal psychosis; PIP: post-ictal psychosis; TLE: temporal lobe epilepsy; FLE: frontal lobe epilepsy; GTC: generalized tonic clonic; AEDs: antiepileptic drugs; CBZ: carbamazepine; VPA: valproate; LEV: levetiracetam; APDs: antipsychotic drugs.
Collapse
Affiliation(s)
- Sherifa Ahmed Hamed
- Department of Neurology and Psychiatry, Assiut University Hospital , Assiut , Egypt
| | - Fadia Ahmed Attiah
- Department of Neurology and Psychiatry, Assiut University Hospital , Assiut , Egypt
| |
Collapse
|
62
|
Investigation of axonal regeneration of Triturus ivanbureschi by using physiological and proteomic strategies. J Biosci 2019. [DOI: 10.1007/s12038-019-9950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
63
|
Ren J, Ascencio M, Raimondi T, Rainville EC, Valenzuela RM, Asche CV. Association Between Exposure of Ipratropium and Salmeterol and Diagnosis of Multiple Sclerosis: A Matched Case-control Study. Clin Ther 2019; 41:1477-1485. [PMID: 31128979 DOI: 10.1016/j.clinthera.2019.04.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Ipratropium and salmeterol were found to stimulate oligodendrocyte differentiation in a high-throughput drug screening assay; thus, they may play a role in the risk reduction of multiple sclerosis (MS). So far, they have not been examined in any clinical data. This study aims at investigating the association between ipratropium and salmeterol and reduced diagnosis of MS with the use of real-world clinical data. METHODS We conducted a 1:10 matched case-control study that compared the exposure of ipratropium and salmeterol between patients with MS and control patients over the past 2 years, using the MS Flowsheet Registry of OSF HealthCare Saint Francis Medical Center. Cases were matched to control patients, based on service year/quarter, age, sex, race, and payer type. The relationship was examined with a Poisson regression model and a generalized structural equation model. FINDINGS The sample in our analysis included 217 patients with MS and 2164 matched control patients. The mean (SD) age for both patients with MS and control patients was 41 (11.8) years with a range of 18 to 75 years. The MS group had consistently less prescriptions of ipratropium and salmeterol than the control group in the past 1, 2, and 3 years before the index date. Our multivariable analysis found that the control group had 3.2 more prescriptions (95% CI, 1.4-7.1; P = 0.006) of either ipratropium or salmeterol in the past 2 years than the MS group, even if controlling for other confounders. In the generalized structural equation model, we found that use of ipratropium and salmeterol was significantly associated with reduced diagnosis of MS (P = 0.036), whereas smokers and people with family history of MS were more likely to have a diagnosis of MS (P < 0.001). IMPLICATIONS The observed association between ipratropium and salmeterol use and reduced diagnosis of MS indicates that they might potentially serve as agents in the treatment of MS.
Collapse
Affiliation(s)
- Jinma Ren
- Center for Outcomes Research, Department of Medicine, University of Illinois College of Medicine at Peoria, Peoria, IL, USA.
| | - Marisa Ascencio
- University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Tommaso Raimondi
- University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | | | - Reuben M Valenzuela
- Illinois Neurologist Institute/OSF Saint Francis Medical Center, Peoria, IL, USA
| | - Carl V Asche
- Center for Outcomes Research, Department of Medicine, University of Illinois College of Medicine at Peoria, Peoria, IL, USA; Center for Pharmacoepidemiology and Pharmacoeconomic Research, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| |
Collapse
|
64
|
The Piezo2 ion channel is mechanically activated by low-threshold positive pressure. Sci Rep 2019; 9:6446. [PMID: 31015490 PMCID: PMC6478859 DOI: 10.1038/s41598-019-42492-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/02/2019] [Indexed: 11/25/2022] Open
Abstract
Recent parallel studies clearly indicated that Merkel cells and the mechanosensitive piezo2 ion channel play critical roles in the light-touch somatosensation. Moreover, piezo2 was suggested to be a light-touch sensing ion channel without a role in pain sensing in mammals. However, biophysical characteristics of piezo2, such as single channel conductance and sensitivities to various mechanical stimuli, are unclear, hampering a precise understanding of its role in touch sensation. Here, we describe the biophysical properties of piezo2 in human Merkel cell carcinoma (MCC)-13 cells; piezo2 is a low-threshold, positive pressure-specific, curvature-sensitive, mechanically activated cation channel with a single channel conductance of ~28.6 pS. Application of step indentations under the whole-cell mode of the patch-clamp technique, and positive pressures ≥5 mmHg under the cell-attached mode, activated piezo2 currents in MCC-13 and human embryonic kidney 293 T cells where piezo2 was overexpressed. By contrast, application of a negative pressure failed to activate piezo2 in these cells, whereas both positive and negative pressure activated piezo1 in a similar manner. Our results are the first to demonstrate single channel recordings of piezo2. We anticipate that our findings will be a starting point for a more sophisticated understanding of piezo2 roles in light-touch sensation.
Collapse
|
65
|
Ma J, Huang J, Hua S, Zhang Y, Zhang Y, Li T, Dong L, Gao Q, Fu X. The ethnopharmacology, phytochemistry and pharmacology of Angelica biserrata - A review. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:152-169. [PMID: 30408534 DOI: 10.1016/j.jep.2018.10.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica biserrata (R.H. Shan & C.Q. Yuan) C.Q. Yuan & R.H. Shan (Angelica pubescens Maxim. f. biserrata Shan et Yuan) (A.biserrata) is a widely used traditional Chinese medicine; its roots known as 'Duhuo' in China. The herb is used for expelling wind, eliminating dampness, and terminating pain. Moreover, it is used for treating the onset of anemofrigid-damp arthralgia, pain of the waist and knee and headache caused by latent wind pathogenic factor or damp-cold pathogenic factor. A.biserrata is slightly warm, bitter and pungent in taste, and it is well distributed in regions such as Sichuan and Hubei Provinces. AIM OF THE STUDY This review aims to provide critical summary of the current evidence on A.biserrata. In particular, the progress of studies in the fields of botany, ethnopharmacology, phytochemistry, pharmacology and toxicity are discussed. Possible directions for future research are also briefly proposed. MATERIALS AND METHODS Information on A.biserrata was collected from the internet database PubMed, Elsevier, China Knowledge Resource Integrated databases, ResearchGate, Web of Science, Wiley Online Library and Europe PMC using a combination of various relevant keywords. Other published books providing an overview of extant literature studies were considered for reference if they are related to the taxonomy, traditional knowledge, phytochemistry, pharmacology and toxicity of the plant. RESULTS A substantial proportion of the isolated and identified compounds of the herb were reported to be coumarins and volatile oils. Biological effects, such as neuroprotective, anti-tumor, anti-arthritis, anti-inflammatory, and sedative, were also validated in In vitro and in vivo studies. Therapeutic effects are attributed to the bioactivities of the naturally occurring compounds in this herb. CONCLUSIONS A.biserrata has been proven as a valuable medicinal sources from traditional herb. Some conventional uses has been evaluated by pharmacological investigation. Although the crude extracts of A.biserrata has been emerged to possess more pharmacological activities, it is now time to isolate and identify more active chemical constituents by Bioactivity-Guided and elucidate their structure-activity relationship. More designed investigations are need to focus on understanding the multi-target network pharmacology, clarity the molecular mechanism of action and efficacy as well as identifying the effective doses of A.biserrata. In addition, A.biserrata is not fully assessed regarding its safety. Further studies are essential to investigate its toxicity on human. It's useful to provide identify its underlying therapeutic remedy and economic value of developing new medicine in the future.
Collapse
Affiliation(s)
- Jiahua Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jun Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Shiyao Hua
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yan Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Yinchuan 750004, China
| | - Yiwei Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Tingting Li
- Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Yinchuan 750004, China
| | - Lin Dong
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Qinghan Gao
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Yinchuan 750004, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan 750004, China.
| |
Collapse
|
66
|
Saez NJ, Herzig V. Versatile spider venom peptides and their medical and agricultural applications. Toxicon 2018; 158:109-126. [PMID: 30543821 DOI: 10.1016/j.toxicon.2018.11.298] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
Spiders have been evolving complex and diverse repertoires of peptides in their venoms with vast pharmacological activities for more than 300 million years. Spiders use their venoms for prey capture and defense, hence they contain peptides that target both prey (mainly arthropods) and predators (other arthropods or vertebrates). This includes peptides that potently and selectively modulate a range of targets such as ion channels, receptors and signaling pathways involved in physiological processes. The contribution of these targets in particular disease pathophysiologies makes spider venoms a valuable source of peptides with potential therapeutic use. In addition, peptides with insecticidal activities, used for prey capture, can be exploited for the development of novel bioinsecticides for agricultural use. Although we have already reviewed potential applications of spider venom peptides as therapeutics (in 2010) and as bioinsecticides (in 2012), a considerable number of research articles on both topics have been published since, warranting an updated review. Here we explore the most recent research on the use of spider venom peptides for both medical and agricultural applications.
Collapse
Affiliation(s)
- Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
67
|
Liu X, Wang J, Sun L. Structure of the hyperosmolality-gated calcium-permeable channel OSCA1.2. Nat Commun 2018; 9:5060. [PMID: 30498218 PMCID: PMC6265326 DOI: 10.1038/s41467-018-07564-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023] Open
Abstract
In plants, hyperosmolality stimuli triggers opening of the osmosensitive channels, leading to a rapid downstream signaling cascade initiated by cytosolic calcium concentration elevation. Members of the OSCA family in Arabidopsis thaliana, identified as the hyperosmolality-gated calcium-permeable channels, have been suggested to play a key role during the initial phase of hyperosmotic stress response. Here, we report the atomic structure of Arabidopsis OSCA1.2 determined by single-particle cryo-electron microscopy. It contains 11 transmembrane helices and forms a homodimer. It is in an inactivated state, and the pore-lining residues are clearly identified. Its cytosolic domain contains a RNA recognition motif and two unique long helices. The linker between these two helices forms an anchor in the lipid bilayer and may be essential to osmosensing. The structure of AtOSCA1.2 serves as a platform for the study of the mechanism underlying osmotic stress responses and mechanosensing. In plants, hyperosmolality stimuli triggers opening of the osmosensitive channels, leading to a rapid downstream signaling cascade. Here, the authors solve the cryo-EM structure of an osmosensitive channel from Arabidopsis OSCA1.2 in its inactivated state.
Collapse
Affiliation(s)
- Xin Liu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 230027, Hefei, China
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Centre for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| | - Linfeng Sun
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 230027, Hefei, China. .,CAS Centre for Excellence in Molecular Cell Science, University of Science and Technology of China, Chinese Academy of Sciences, 230027, Hefei, China.
| |
Collapse
|
68
|
Functional analyses of heteromeric human PIEZO1 Channels. PLoS One 2018; 13:e0207309. [PMID: 30462693 PMCID: PMC6248943 DOI: 10.1371/journal.pone.0207309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
PIEZO1 and PIEZO2 are mechanosensitive channels (MSCs) important for cellular function and mutations in them lead to human disorders. We examined how functional heteromers form between subunits of PIEZO1 using the mutants E2117K, E2117D, and E2117A. Homomers of E2117K do not conduct. E2117A homomers have low conductance with rapid inactivation, and those of E2117D have high conductance with slow inactivation. Pairing E2117K with E2117D or E2117A with E2117D gave rise to new channel species representing heteromers with distinct conductances. Whole-cell currents from co-expression of E2117A and E2117D fit well with a linear-combination model of homomeric channel currents suggesting that functional channels do not form from freely-diffusing, randomly-mixed monomers in-vitro. Whole-cell current from coexpressed PIEZO1/PIEZO2 also fit as a linear combination of homomer currents. High-resolution optical images of fluorescently-tagged channels support this interpretation because coexpressed subunits segregate into discrete domains.
Collapse
|
69
|
Ombati R, Luo L, Yang S, Lai R. Centipede envenomation: Clinical importance and the underlying molecular mechanisms. Toxicon 2018; 154:60-68. [DOI: 10.1016/j.toxicon.2018.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/21/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
|
70
|
Al-Kheraif AA, Hashem M, Al Esawy MSS. Developing Charcot-Marie-Tooth Disease Recognition System Using Bacterial Foraging Optimization Algorithm Based Spiking Neural Network. J Med Syst 2018; 42:192. [PMID: 30203246 DOI: 10.1007/s10916-018-1049-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/28/2018] [Indexed: 11/24/2022]
Abstract
In the developing technology Charcot-Marie-Tooth (CMT) disease is one of the teeth diseases which are occurred due to the genetic reason. The CMT disease affects the muscle tissue which reduces the progressive growth of the muscle. So, the CMT disease needs to be recognized carefully for eliminating the risk factors in the early stage. At the time of this process, the system handles the difficulties while performing feature extraction and classification part. So, the teeth images are processed by applying the normalization method which eliminates the salt and pepper noise from data. From that, modified group delay function along with Cepstral coefficient features are extracted with effective manner. After that Bacterial Foraging Optimization Algorithm based features are selected. Then the selected features are examined by applying the Bacterial Foraging Optimization Algorithm based spiking neural network which successfully recognizes the CMT disease. At that point the productivity of the framework is assessed with the assistance of exploratory outcomes.
Collapse
Affiliation(s)
- Abdulaziz Abdullah Al-Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P.O Box 10219, Riyadh, 11433, Saudi Arabia.
| | - Mohamed Hashem
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P.O Box 10219, Riyadh, 11433, Saudi Arabia
| | | |
Collapse
|
71
|
Yao JJ, Zhao QR, Lu JM, Mei YA. Functions and the related signaling pathways of the neurotrophic factor neuritin. Acta Pharmacol Sin 2018; 39:1414-1420. [PMID: 29595190 PMCID: PMC6289377 DOI: 10.1038/aps.2017.197] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/08/2017] [Indexed: 12/29/2022]
Abstract
Neuritin is a member of the neurotrophic factor family, which is activated by neural activity and neurotrophins, and promotes neurite growth and branching. It has shown to play an important role in neuronal plasticity and regeneration. It is also involved in other biological processes such as angiogenesis, tumorigenesis and immunomodulation. Thus far, however, the primary mechanisms of neuritin, including whether or not it acts through a receptor or which downstream signals might be activated following binding, are not fully understood. Recent evidence suggests that neuritin may be a potential therapeutic target in several neurodegenerative diseases. This review focuses on the recent advances in studies regarding the newly identified functions of neuritin and the signaling pathways related to these functions. We also discuss current hot topics and difficulties in neuritin research.
Collapse
Affiliation(s)
- Jin-Jing Yao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Qian-Ru Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jun-Mei Lu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yan-Ai Mei
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
72
|
Kakouri AC, Christodoulou CC, Zachariou M, Oulas A, Minadakis G, Demetriou CA, Votsi C, Zamba-Papanicolaou E, Christodoulou K, Spyrou GM. Revealing Clusters of Connected Pathways Through Multisource Data Integration in Huntington's Disease and Spastic Ataxia. IEEE J Biomed Health Inform 2018; 23:26-37. [PMID: 30176611 DOI: 10.1109/jbhi.2018.2865569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The advancement of scientific and medical research over the past years has generated a wealth of experimental data from multiple technologies, including genomics, transcriptomics, proteomics, and other forms of -omics data, which are available for a number of diseases. The integration of such multisource data is a key component toward the success of precision medicine. In this paper, we are investigating a multisource data integration method developed by our group, regarding its ability to drive to clusters of connected pathways under two different approaches: first, a disease-centric approach, where we integrate data around a disease, and second, a gene-centric approach, where we integrate data around a gene. We have used as a paradigm for the first approach Huntington's disease (HD), a disease with a plethora of available data, whereas for the second approach the GBA2, a gene that is related to spastic ataxia (SA), a phenotype with sparse availability of data. Our paper shows that valuable information at the level of disease-related pathway clusters can be obtained for both HD and SA. New pathways that classical pathway analysis methods were unable to reveal, emerged as necessary "connectors" to build connected pathway stories formed as pathway clusters. The capability to integrate multisource molecular data, concluding to something more than the sum of the existing information, empowers precision and personalized medicine approaches.
Collapse
|
73
|
Role of neuritin in retinal ganglion cell death in adult mice following optic nerve injury. Sci Rep 2018; 8:10132. [PMID: 29973613 PMCID: PMC6031618 DOI: 10.1038/s41598-018-28425-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 06/21/2018] [Indexed: 12/31/2022] Open
Abstract
Neuritin is a small extracellular protein that plays important roles in the process of neural development, synaptic plasticity, and neural cell survival. Here we investigated the function of neuritin in a mouse model of optic nerve injury (ONI). ONI induced upregulation of neuritin mRNA in the retina of WT mice. The retinal structure and the number of retinal ganglion cells (RGCs) were normal in adult neuritin knockout (KO) mice. In vivo retinal imaging and histopathological analyses demonstrated that RGC death and inner retinal degeneration following ONI were more severe in neuritin KO mice. Immunoblot analyses revealed that ONI-induced phosphorylation of Akt and ERK were suppressed in neuritin KO mice. Our findings suggest that neuritin has neuroprotective effects following ONI and may be useful for treatment of posttraumatic complication.
Collapse
|
74
|
Knyazev DG, Kuttner R, Zimmermann M, Sobakinskaya E, Pohl P. Driving Forces of Translocation Through Bacterial Translocon SecYEG. J Membr Biol 2018; 251:329-343. [PMID: 29330604 PMCID: PMC6028853 DOI: 10.1007/s00232-017-0012-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/22/2017] [Indexed: 11/09/2022]
Abstract
This review focusses on the energetics of protein translocation via the Sec translocation machinery. First we complement structural data about SecYEG's conformational rearrangements by insight obtained from functional assays. These include measurements of SecYEG permeability that allow assessment of channel gating by ligand binding and membrane voltage. Second we will discuss the power stroke and Brownian ratcheting models of substrate translocation and the role that the two models assign to the putative driving forces: (i) ATP (SecA) and GTP (ribosome) hydrolysis, (ii) interaction with accessory proteins, (iii) membrane partitioning and folding, (iv) proton motive force (PMF), and (v) entropic contributions. Our analysis underlines how important energized membranes are for unravelling the translocation mechanism in future experiments.
Collapse
Affiliation(s)
- Denis G Knyazev
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria.
| | - Roland Kuttner
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| | - Mirjam Zimmermann
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| | | | - Peter Pohl
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| |
Collapse
|
75
|
Falleroni F, Torre V, Cojoc D. Cell Mechanotransduction With Piconewton Forces Applied by Optical Tweezers. Front Cell Neurosci 2018; 12:130. [PMID: 29867363 PMCID: PMC5960674 DOI: 10.3389/fncel.2018.00130] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/24/2018] [Indexed: 11/21/2022] Open
Abstract
Mechanical stresses are always present in the cellular environment and mechanotransduction occurs in all cells. Although many experimental approaches have been developed to investigate mechanotransduction, the physical properties of the mechanical stimulus have yet to be accurately characterized. Here, we propose a mechanical stimulation method employing an oscillatory optical trap to apply piconewton forces perpendicularly to the cell membrane, for short instants. We show that this stimulation produces membrane indentation and induces cellular calcium transients in mouse neuroblastoma NG108-15 cells dependent of the stimulus strength and the number of force pulses.
Collapse
Affiliation(s)
- Fabio Falleroni
- Neuroscience Area, International School for Advanced Studies, Trieste, Italy
| | - Vincent Torre
- Neuroscience Area, International School for Advanced Studies, Trieste, Italy
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang, China
- Center of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou Institute of Systems Medicine, Suzhou Industrial Park, Suzhou, China
| | - Dan Cojoc
- Institute of Materials, National Research Council of Italy (CNR), Trieste, Italy
| |
Collapse
|
76
|
Merten N, Fischer J, Simon K, Zhang L, Schröder R, Peters L, Letombe AG, Hennen S, Schrage R, Bödefeld T, Vermeiren C, Gillard M, Mohr K, Lu QR, Brüstle O, Gomeza J, Kostenis E. Repurposing HAMI3379 to Block GPR17 and Promote Rodent and Human Oligodendrocyte Differentiation. Cell Chem Biol 2018; 25:775-786.e5. [PMID: 29706593 DOI: 10.1016/j.chembiol.2018.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/11/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022]
Abstract
Identification of additional uses for existing drugs is a hot topic in drug discovery and a viable alternative to de novo drug development. HAMI3379 is known as an antagonist of the cysteinyl-leukotriene CysLT2 receptor, and was initially developed to treat cardiovascular and inflammatory disorders. In our study we identified HAMI3379 as an antagonist of the orphan G protein-coupled receptor GPR17. HAMI3379 inhibits signaling of recombinant human, rat, and mouse GPR17 across various cellular backgrounds, and of endogenous GPR17 in primary rodent oligodendrocytes. GPR17 blockade by HAMI3379 enhanced maturation of primary rat and mouse oligodendrocytes, but was without effect in oligodendrocytes from GPR17 knockout mice. In human oligodendrocytes prepared from inducible pluripotent stem cells, GPR17 is expressed and its activation impaired oligodendrocyte differentiation. HAMI3379, conversely, efficiently favored human oligodendrocyte differentiation. We propose that HAMI3379 holds promise for pharmacological exploitation of orphan GPR17 to enhance regenerative strategies for the promotion of remyelination in patients.
Collapse
Affiliation(s)
- Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Julia Fischer
- Institute of Reconstructive Neurobiology, LIFE&BRAIN Center, University of Bonn, 53105 Bonn, Germany
| | - Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Liguo Zhang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Ralf Schröder
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Lucas Peters
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | | | - Stephanie Hennen
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Ramona Schrage
- UCB Biopharma, CNS Research, 1420 Braine-l'Alleud, Belgium
| | - Theresa Bödefeld
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, 53115 Bonn, Germany
| | | | - Michel Gillard
- UCB Biopharma, CNS Research, 1420 Braine-l'Alleud, Belgium
| | - Klaus Mohr
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, 53115 Bonn, Germany
| | - Qing Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE&BRAIN Center, University of Bonn, 53105 Bonn, Germany
| | - Jesus Gomeza
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany.
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
77
|
Jafarzadeh A, Azizi SV, Arabi Z, Ahangar-Parvin R, Mohammadi-Kordkhayli M, Larussa T, Khatami F, Nemati M. Vitamin D down-regulates the expression of some Th17 cell-related cytokines, key inflammatory chemokines, and chemokine receptors in experimental autoimmune encephalomyelitis. Nutr Neurosci 2018; 22:725-737. [DOI: 10.1080/1028415x.2018.1436237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Abdollah Jafarzadeh
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Immunology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Sayyed Vahab Azizi
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Arabi
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Rayhaneh Ahangar-Parvin
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Tiziana Larussa
- Department of Health Science, University of Catanzaro ‘Magna Graecia’, Catanzaro, Italy
| | - Fariba Khatami
- Department of Pathology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Nemati
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
- Department of Laboratory Sciences, Para-Medicine School, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
78
|
Obara K, Waliszewska-Prosół M, Budrewicz S, Szewczyk P, Ejma M. Severe course of neuromyelitis optica in a female patient with chronic C hepatitis. Neurol Neurochir Pol 2018; 52:397-400. [PMID: 29454471 DOI: 10.1016/j.pjnns.2018.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/20/2018] [Accepted: 01/29/2018] [Indexed: 11/24/2022]
Abstract
Neuromyelitis optica (NMO) is a rare, disabling, recurring inflammatory demyelinating disease affecting the spinal cord and optic nerves with predominance in women. We present the case of a female patient with chronic C hepatitis, who, despite treatment, developed severe symptoms of NMO during pregnancy and postpartum.
Collapse
Affiliation(s)
- Krystian Obara
- Department of Neurology, Wrocław Medical University, Poland
| | | | | | - Paweł Szewczyk
- Department of General Radiology, Interventional Radiology and Neuroradiology, Wrocław Medical University, Poland
| | - Maria Ejma
- Department of Neurology, Wrocław Medical University, Poland
| |
Collapse
|
79
|
Sachs F. Mechanical Transduction and the Dark Energy of Biology. Biophys J 2018; 114:3-9. [PMID: 29320693 PMCID: PMC5984904 DOI: 10.1016/j.bpj.2017.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022] Open
|
80
|
Sanadgol N, Golab F, Tashakkor Z, Taki N, Moradi Kouchi S, Mostafaie A, Mehdizadeh M, Abdollahi M, Taghizadeh G, Sharifzadeh M. Neuroprotective effects of ellagic acid on cuprizone-induced acute demyelination through limitation of microgliosis, adjustment of CXCL12/IL-17/IL-11 axis and restriction of mature oligodendrocytes apoptosis. PHARMACEUTICAL BIOLOGY 2017; 55:1679-1687. [PMID: 28447514 PMCID: PMC6130560 DOI: 10.1080/13880209.2017.1319867] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/29/2016] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Ellagic acid (EA) is a natural phenol antioxidant with various therapeutic activities. However, the efficacy of EA has not been examined in neuropathologic conditions. OBJECTIVE In vivo neuroprotective effects of EA on cuprizone (cup)-induced demyelination were evaluated. MATERIAL AND METHODS C57BL/6 J mice were fed with chow containing 0.2% cup for 4 weeks to induce oligodendrocytes (OLGs) depletion predominantly in the corpus callosum (CC). EA was administered at different doses (40 or 80 mg/kg body weight/day/i.p.) from the first day of cup diet. Oligodendrocytes apoptosis [TUNEL assay and myelin oligodendrocyte glycoprotein (MOG+)/caspase-3+ cells), gliosis (H&E staining, glial fibrillary acidic protein (GFAP+) and macrophage-3 (Mac-3+) cells) and inflammatory markers (interleukin 17 (IL-17), interleukin 11 (IL-11) and stromal cell-derived factor 1 α (SDF-1α) or CXCL12] during cup intoxication were examined. RESULTS High dose of EA (EA-80) increased mature oligodendrocytes population (MOG+ cells, p < 0.001), and decreased apoptosis (p < 0.05) compared with the cup mice. Treatment with both EA doses did not show any considerable effects on the expression of CXCL12, but significantly down-regulated the expression of IL-17 and up-regulated the expression of IL-11 in mRNA levels compared with the cup mice. Only treatment with EA-80 significantly decreased the population of active macrophage (MAC-3+ cells, p < 0.001) but not reactive astrocytes (GFAP+ cells) compared with the cup mice. DISCUSSION AND CONCLUSION In this model, EA-80 effectively reduces lesions via reduction of neuroinflammation and toxic effects of cup on mature OLGs. EA is a suitable therapeutic agent for moderate brain damage in neurodegenerative diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Nima Sanadgol
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
| | - Zakiyeh Tashakkor
- MSc in Cell and Developmental Biology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nooshin Taki
- MSc in Cell and Developmental Biology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Samira Moradi Kouchi
- MSc in Cell and Developmental Biology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ali Mostafaie
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorban Taghizadeh
- Department of Occupational Therapy, Faculty of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
81
|
Jabbarli R, Reinhard M, Roelz R, Kaier K, Weyerbrock A, Taschner C, Scheiwe C, Shah M. Clinical relevance of anterior cerebral artery asymmetry in aneurysmal subarachnoid hemorrhage. J Neurosurg 2017; 127:1070-1076. [DOI: 10.3171/2016.9.jns161706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEAn asymmetry of the A1 segments (A1SA) of the anterior cerebral arteries (ACAs) is an assumed risk factor for the development of anterior communicating artery aneurysms (ACoAAs). It is unknown whether A1SA is also clinically relevant after aneurysm rupture. The authors of this study investigated the impact of A1SA on the clinical course and outcome of patients with aneurysmal subarachnoid hemorrhage (SAH).METHODSThe authors retrospectively analyzed data on consecutive SAH patients treated at their institution between January 2005 and December 2012. The occurrence and severity of cerebral infarctions in the ACA territories were evaluated on follow-up CT scans up to 6 weeks after SAH. Moreover, the risk for an unfavorable outcome (defined as > 3 points on the modified Rankin Scale) at 6 months after SAH was assessed.RESULTSA total of 594 patients were included in the final analysis. An A1SA was identified on digital subtraction angiography studies from 127 patients (21.4%) and was strongly associated with ACoAA (p < 0.0001, OR 13.7). An A1SA independently correlated with the occurrence of ACA infarction in patients with ACoAA (p = 0.047) and in those without an ACoAA (p = 0.015). Among patients undergoing ACoAA coiling, A1SA was independently associated with the severity of ACA infarction (p = 0.023) and unfavorable functional outcome (p = 0.045, OR = 2.4).CONCLUSIONSAn A1SA is a common anatomical variation in SAH patients and is strongly associated with ACoAA. Moreover, the presence of A1SA independently increases the likelihood of ACA infarction. In SAH patients undergoing ACoAA coiling, A1SA carries the risk for severe ACA infarction and thus an unfavorable outcome.Clinical trial registration no.: DRKS00005486 (http://www.drks.de/)
Collapse
Affiliation(s)
- Ramazan Jabbarli
- Departments of 1Neurosurgery,
- 2Department of Neurosurgery, University Hospital Essen; and
| | - Matthias Reinhard
- 3Department of Neurology and Clinical Neurophysiology, Klinikum Esslingen, Germany
- 4Neurology and Neurophysiology, and
| | | | - Klaus Kaier
- 5Institute for Medical Biometry and Medical Informatics, University Medical Center Freiburg
| | | | | | | | | |
Collapse
|
82
|
Hamed SA. The auditory and vestibular toxicities induced by antiepileptic drugs. Expert Opin Drug Saf 2017; 16:1281-1294. [PMID: 28838247 DOI: 10.1080/14740338.2017.1372420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/23/2017] [Indexed: 01/30/2023]
Abstract
Epilepsy is a chronic medical disease in one third of patients and is associated with comorbid adverse somatic conditions due to epilepsy itself or its long-term treatment with antiepileptic drugs (AEDs). Data from experimental, cross-sectional and prospective studies have evidence for the deleterious effect of some AEDs on the auditory and vestibular systems. These abnormalities may be reversible or irreversible. Areas covered: This article review the evidence that long-term treatment with some antiepileptic drugs (AEDs) [e.g. carbamazepine, phenytoin, valproate, lamotrigine, gabapentin, vigabatrin and oxcarbazepine] (even in therapeutic drug doses) may result in tinnitus, phonophobia, sensorineural hearing loss, dizziness, ataxia, disequilibrium, imbalance, nystagmus, abnormalities in saccadic and pursuit eye movements and delayed conduction within the cochlea, auditory nerve and brainstem auditory pathways evidenced by abnormalities in Brainstem auditory evoked potentials and nystagmography recordings indicating auditory and central and/or peripheral vestibular dysfunctions. Expert opinion: Identification of monitoring of patients at high risk for developing audio-vestibular manifestations is necessary for appropriate preventive and therapeutic measures.
Collapse
Affiliation(s)
- Sherifa A Hamed
- a Department of Neurology and Psychiatry , Assiut University Hospital , Assiut , Egypt
| |
Collapse
|
83
|
Kuchel PW, Shishmarev D. Accelerating metabolism and transmembrane cation flux by distorting red blood cells. SCIENCE ADVANCES 2017; 3:eaao1016. [PMID: 29057326 PMCID: PMC5647125 DOI: 10.1126/sciadv.aao1016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
Under static conditions, mammalian red blood cells (RBCs) require a continuous supply of energy, typically via glucose, to maintain their biconcave disc shape. Mechanical distortion, in a complementary way, should lead to increased energy demand that is manifest in accelerated glycolysis. The experimental challenge in observing this phenomenon was met by reversibly and reproducibly distorting the cells and noninvasively measuring glycolytic flux. This was done with a gel-distorting device that was coupled with 13C nuclear magnetic resonance (NMR) spectroscopy. We measured [3-13C]l-lactate production from [1,6-13C]d-glucose in the RBCs suspended in gelatin gels, and up to 90% rate enhancements were recorded. Thus, for the first time, we present experiments that demonstrate the linkage of mechanical distortion to metabolic changes in whole mammalian cells. In seeking a mechanism for the linkage between shape and energy supply, we measured transmembrane cation flux with Cs+ (as a K+ congener) using 133Cs NMR spectroscopy, and the cation flux was increased up to fivefold. The postulated mechanism for these notable (in terms of whole-body energy consumption) responses is stimulation of Ca-adenosine triphosphatase by increased transmembrane flux of Ca2+ via the channel protein Piezo1 and increased glycolysis because its flux is adenosine triphosphate demand-regulated.
Collapse
|
84
|
Abstract
Living organisms perceive and respond to a diverse range of mechanical stimuli. A variety of mechanosensitive ion channels have evolved to facilitate these responses, but the molecular mechanisms underlying their exquisite sensitivity to different forces within the membrane remains unclear. TREK-2 is a mammalian two-pore domain (K2P) K+ channel important for mechanosensation, and recent studies have shown how increased membrane tension favors a more expanded conformation of the channel within the membrane. These channels respond to a complex range of mechanical stimuli, however, and it is uncertain how differences in tension between the inner and outer leaflets of the membrane contribute to this process. To examine this, we have combined computational approaches with functional studies of oppositely oriented single channels within the same lipid bilayer. Our results reveal how the asymmetric structure of TREK-2 allows it to distinguish a broad profile of forces within the membrane, and illustrate the mechanisms that eukaryotic mechanosensitive ion channels may use to detect and fine-tune their responses to different mechanical stimuli.
Collapse
|
85
|
Hamed SA, Tohamy AM, Oseilly AM. Vestibular Function in Adults With Epilepsy of Unknown Etiology. Otol Neurotol 2017; 38:1217-1224. [PMID: 28742631 DOI: 10.1097/mao.0000000000001513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE This study aimed to evaluate vestibular function in adults with chronic epilepsy of unknown etiology in the inter-ictal period. BACKGROUND Epilepsy is a chronic medical disorder. Life-long therapy may be required in one-third of patients. Epilepsy is associated with comorbid somatic conditions which impairs patients' quality of life. METHODS This cross-sectional study included 28 with generalized tonic clonic (GTC) convulsions and 14 and 3 with temporal (TLE) and frontal lobe (FLE) epilepsies with secondary generalization (all were on regular carbamazepine therapy) and 40 healthy control subjects. The patients' mean age was 34.97 ± 7.35 years and the duration of illness was 18.75 ± 7.99 years. All underwent videonystagmography (VNG). RESULTS Compared with controls, patients had frequent vestibular symptoms including dizziness (62.22%) (p = 0.0001) and sense of imbalance (44.44%) (p = 0.0001). Eleven patients (24.44%) had central vestibular dysfunction (p = 0.0001); 9 (20%) had mixed vestibular dysfunction and one (2.22%) had peripheral vestibular dysfunction (p = 0.0001). Abnormalities were observed in saccadic (44.4%) and pursuit (42.2%) eye movements, optokinetic nystagmus (42.2%) and positioning/positional (11.11%) and caloric (13.33%) testing. TLE and FLE were associated with more VNG abnormalities than GTC. No significant differences were observed in the demographic and clinical characteristics between patients with and without VNG abnormalities. CONCLUSION Vestibular manifestations are frequent in patients with epilepsy. This may be a result of the permanent damaging effect of chronic epilepsy on the vestibular cortical areas and/or a toxic effect from prolonged carbamazepine therapy on the peripheral and central vestibular systems.
Collapse
Affiliation(s)
- Sherifa A Hamed
- *Department of Neurology and Psychiatry †Department of ENT, Audiology Unit, Assiut University Hospital, Assiut, Egypt
| | | | | |
Collapse
|
86
|
Abdel-Salam OME, Youness ER, Ahmed NA, El-Toumy SA, Souleman AMA, Shaffie N, Abouelfadl DM. Bougainvillea spectabilis flowers extract protects against the rotenone-induced toxicity. ASIAN PAC J TROP MED 2017; 10:478-490. [PMID: 28647186 DOI: 10.1016/j.apjtm.2017.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/20/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To investigate the effect of two extracts of Bougainvillea spectabilis (B. spectabilis) flowers with yellow and pink/purple on brain oxidative stress and neuronal damage caused in rats by systemic rotenone injection. METHODS Rotenone 1.5 mg/kg was given three times per week alone or in combination with B. spectabilis flowers extracts (25 mg or 50 mg) via the subcutaneous route for 2 weeks. Brain concentrations of the lipid peroxidation marker malondialdehyde (MDA), reduced glutathione, nitric oxide (nitrite), the pro-inflammatory cytokine interleukin-1beta (Il-1β) as well as butyrylcholinesterase, and paraoxonase-1 (PON-1) activities, were determined. Histopathology and caspase-3 immunohistochemistry were also performed. RESULTS Rotenone resulted in significant increases of brain MDA (the product of lipid peroxidation), and nitric oxide content along with decreased brain reduced glutathione. There were also marked and significant inhibition of brain PON-1 and BChE activities and increased Il-1β in brain of rotenone-treated rats. B. spectabilis flowers extract itself resulted in brain oxidative stress increasing both lipid peroxidation and nitrite content whilst inhibiting PON-1 activity. The yellow flowers extract inhibited BChE activity and increased brain Il-1β. When given to rotenone-treated rats, B. spectabilis extracts, however, decreased lipid peroxidation while their low administered doses increased brain GSH. Brain nitrite decreased by the pink extract but showed further increase by the yellow extract. Either extract, however, caused further inhibition of PON-1 activity while the yellow extract resulted in further inhibition of BChE activity. Histopathological studies indicated that both extracts protected against brain, liver and kidney damage caused by the toxicant. CONCLUSIONS These data indicate that B. spectabilis flowers extracts exert protective effect against the toxic effects of rotenone on brain, liver and kidney. B. spectabilis flowers extracts decreased brain lipid peroxidation and prevented neuronal death due to rotenone and might thus prove the value in treatment of Parkinson's disease.
Collapse
Affiliation(s)
| | - Eman R Youness
- Department of Medical Biochemistry, National Research Centre, Cairo, Egypt
| | - Nadia A Ahmed
- Department of Medical Biochemistry, National Research Centre, Cairo, Egypt
| | - Sayed A El-Toumy
- Department of Chemistry of Tannins, National Research Centre, Cairo, Egypt
| | - Ahmed M A Souleman
- Department of Phytochemistry and Plant Systematic, National Research Centre, Cairo, Egypt
| | - Nermeen Shaffie
- Department of Pathology, National Research Centre, Cairo, Egypt
| | | |
Collapse
|
87
|
Rosales D, Kister I. Common and Rare Manifestations of Neuromyelitis Optica Spectrum Disorder. Curr Allergy Asthma Rep 2017; 16:42. [PMID: 27167974 DOI: 10.1007/s11882-016-0619-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of a highly specific biomarker of neuromyelitis optica (NMO)-the anti-aquaporin-4 (AQP4) antibody-has opened new paths to understanding disease pathogenesis and afforded a way to confirm the diagnosis in clinical practice. An important consequence of the discovery is the broadening of the spectrum of syndromes seen in the context of AQP4 autoimmunity. These syndromes have been subsumed under the rubric of NMO spectrum disorder (NMOSD). The current classification recognizes not only optic neuritis and myelitis as core syndromes of NMOSD but also cerebral, diencephalic, brainstem, and area postrema syndromes. These neurologic syndromes are the focus of our review. AQP4 is also expressed in many organs outside of the central nervous system, and this may explain some of the unusual, non-neurologic features that have been occasionally reported in NMOSD. Our review catalogues non-neurologic manifestations seen in NMOSD and concludes with a discussion of frequently associated autoimmune and neoplastic comorbidities of NMOSD.
Collapse
Affiliation(s)
- Dominique Rosales
- NYU Multiple Sclerosis Comprehensive Care Center, Department of Neurology, NYU School of Medicine, 240 E 38th St, New York, NY, 10016, USA.
| | - Ilya Kister
- NYU Multiple Sclerosis Comprehensive Care Center, Department of Neurology, NYU School of Medicine, 240 E 38th St, New York, NY, 10016, USA
| |
Collapse
|
88
|
Stephan BCM, Richardson K, Savva GM, Matthews FE, Brayne C, Hachinski V. Potential Value of Impaired Cognition in Stroke Prediction: A U.K. Population-Based Study. J Am Geriatr Soc 2017; 65:1756-1762. [PMID: 28369710 PMCID: PMC5574015 DOI: 10.1111/jgs.14878] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objectives To determine whether the association between impaired cognition and greater risk of incident stroke is also observed when cognitive impairment is defined using different criteria for mild cognitive impairment (MCI). Design Prospective cohort study with 10 years of follow‐up. Setting Large multicentre study in the United Kingdom. Participants Individuals (aged 64–105) from the Medical Research Council Cognitive Function and Ageing Study (N = 13,004). From this, a subsample of 2,640 individuals was selected based on age, center, and cognitive ability to undergo a detailed cognitive assessment. Measurements Information on sociodemographic characteristics, health, cognition, and functional ability was collected in an interview. The Geriatric Mental State Automated Geriatric Examination for Computer Assisted Taxonomy and the Cambridge Cognitive Examination were used to determine cognitive status. Stroke incidence was derived from self‐report, informant report, and death certificates. Participants were divided into no, mild, moderate, and severe cognitive impairment according to their baseline Mini‐Mental State Examination (MMSE) score. MCI criteria were used to classify persons into four groups: no cognitive impairment, MCI, severe impairment (i.e. other cognitive impairment no dementia: OCIND) and dementia. Results Over 10 years, 703 incident strokes occurred. Lower MMSE score at baseline was associated with greater risk of incident stroke. When cognitive status was determined according to MCI criteria, those with severe impairment (odds ratio (OR) = 1.5, 95% confidence interval (CI) = 1.0–2.2) and dementia (OR = 2.6, 95% CI = 1.6–3.4) had a significantly greater risk of stroke than those with no cognitive impairment. Conclusion Criteria for MCI, defined using MMSE scores or clinical criteria, can capture individuals at greater stroke risk. The results highlight the need to focus on stroke risk in individuals even with MCI.
Collapse
Affiliation(s)
- Blossom C M Stephan
- Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, UK.,Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | | | - George M Savva
- School of Health Sciences, University of East Anglia, Norwich, UK
| | - Fiona E Matthews
- Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Carol Brayne
- Department of Public Health and Primary Care, Cambridge University, Cambridge, UK
| | | |
Collapse
|
89
|
Purslane protects against the reproductive toxicity of carbamazepine treatment in pilocarpine-induced epilepsy model. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
90
|
Hubbard JA, Szu JI, Binder DK. The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res Bull 2017; 136:118-129. [PMID: 28274814 DOI: 10.1016/j.brainresbull.2017.02.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/25/2022]
Abstract
Since the discovery of aquaporins, it has become clear that the various mammalian aquaporins play critical physiological roles in water and ion balance in multiple tissues. Aquaporin-4 (AQP4), the principal aquaporin expressed in the central nervous system (CNS, brain and spinal cord), has been shown to mediate CNS water homeostasis. In this review, we summarize new and exciting studies indicating that AQP4 also plays critical and unanticipated roles in synaptic plasticity and memory formation. Next, we consider the role of AQP4 in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), neuromyelitis optica (NMO), epilepsy, traumatic brain injury (TBI), and stroke. Each of these conditions involves changes in AQP4 expression and/or distribution that may be functionally relevant to disease physiology. Insofar as AQP4 is exclusively expressed on astrocytes, these data provide new evidence of "astrocytopathy" in the etiology of diverse neurological diseases.
Collapse
Affiliation(s)
- Jacqueline A Hubbard
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Jenny I Szu
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States.
| |
Collapse
|
91
|
Jaster J. Medullary neuropathology in sleep apnoea. Respirology 2017; 22:829. [DOI: 10.1111/resp.12994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/13/2016] [Indexed: 11/30/2022]
|
92
|
Gnanasambandam R, Gottlieb PA, Sachs F. The Kinetics and the Permeation Properties of Piezo Channels. CURRENT TOPICS IN MEMBRANES 2017; 79:275-307. [PMID: 28728821 DOI: 10.1016/bs.ctm.2016.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Piezo channels are eukaryotic, cation-selective mechanosensitive channels (MSCs), which show rapid activation and voltage-dependent inactivation. The kinetics of these channels are largely consistent across multiple cell types and different stimulation paradigms with some minor variability. No accessory subunits that associate with Piezo channels have been reported. They are homotrimers and each ∼300kD monomer has an N-terminal propeller blade-like mechanosensing module, which can confer mechanosensing capabilities on ASIC-1 (the trimeric non-MSC, acid-sensing ion channel-1) and a C-terminal pore module, which influences conductance, selectivity, and channel inactivation. Repeated stimulation can cause domain fracture and diffusion of these channels leading to synchronous loss of inactivation. The reconstituted channels spontaneously open only in asymmetric bilayers but lack inactivation. Mutations that cause hereditary xerocytosis alter PIEZO1 kinetics. The kinetics of the wild-type PIEZO1 and alterations thereof in mutants (M2225R, R2456K, and DhPIEZO1) are summarized in the form of a quantitative model and hosted online. The pore is permeable to alkali ions although Li+ permeates poorly. Divalent cations, notably Ca2+, traverse the channel and inhibit the flux of monovalents. The large monovalent organic cations such as tetramethyl ammonium and tetraethyl ammonium can traverse the channel, but slowly, suggesting a pore diameter of ∼8Å, and the estimated in-plane area change upon opening is around 6-20nm2. Ruthenium red can enter the channel only from the extracellular side and seems to bind in a pocket close to residue 2496.
Collapse
Affiliation(s)
- R Gnanasambandam
- State University of New York at Buffalo, Buffalo, NY, United States
| | - P A Gottlieb
- State University of New York at Buffalo, Buffalo, NY, United States
| | - F Sachs
- State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
93
|
Biffi A, Scotti L, Corrao G. Use of antidepressants and the risk of cardiovascular and cerebrovascular disease: a meta-analysis of observational studies. Eur J Clin Pharmacol 2017; 73:487-497. [DOI: 10.1007/s00228-016-2187-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/19/2016] [Indexed: 01/11/2023]
|
94
|
Maneshi MM, Maki B, Gnanasambandam R, Belin S, Popescu GK, Sachs F, Hua SZ. Mechanical stress activates NMDA receptors in the absence of agonists. Sci Rep 2017; 7:39610. [PMID: 28045032 PMCID: PMC5206744 DOI: 10.1038/srep39610] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/24/2016] [Indexed: 01/13/2023] Open
Abstract
While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca2+ influx. Extracellular Mg2+ at 2 mM did not significantly affect the shear induced Ca2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI.
Collapse
Affiliation(s)
- Mohammad Mehdi Maneshi
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York, 14260, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York 14260, USA
| | - Bruce Maki
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14260, USA
| | | | - Sophie Belin
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14260, USA
| | - Gabriela K. Popescu
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14260, USA
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York, 14260, USA
| | - Susan Z. Hua
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York, 14260, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York 14260, USA
| |
Collapse
|
95
|
Mrdjen D, Hartmann FJ, Becher B. High Dimensional Cytometry of Central Nervous System Leukocytes During Neuroinflammation. Methods Mol Biol 2017; 1559:321-332. [DOI: 10.1007/978-1-4939-6786-5_22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
96
|
Oklinski MK, Skowronski MT, Skowronska A, Rützler M, Nørgaard K, Nieland JD, Kwon TH, Nielsen S. Aquaporins in the Spinal Cord. Int J Mol Sci 2016; 17:E2050. [PMID: 27941618 PMCID: PMC5187850 DOI: 10.3390/ijms17122050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/16/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are water channel proteins robustly expressed in the central nervous system (CNS). A number of previous studies described the cellular expression sites and investigated their major roles and function in the brain and spinal cord. Among thirteen different mammalian AQPs, AQP1 and AQP4 have been mainly studied in the CNS and evidence has been presented that they play important roles in the pathogenesis of CNS injury, edema and multiple diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, amyotrophic lateral sclerosis, glioblastoma multiforme, Alzheimer's disease and Parkinson's disease. The objective of this review is to highlight the current knowledge about AQPs in the spinal cord and their proposed roles in pathophysiology and pathogenesis related to spinal cord lesions and injury.
Collapse
Affiliation(s)
- Michal K Oklinski
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Mariusz T Skowronski
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland.
| | - Agnieszka Skowronska
- Department of Human Physiology, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland.
| | - Michael Rützler
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Kirsten Nørgaard
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - John D Nieland
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu 41944, Korea.
| | - Søren Nielsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
97
|
Cox CD, Bavi N, Martinac B. Origin of the Force: The Force-From-Lipids Principle Applied to Piezo Channels. CURRENT TOPICS IN MEMBRANES 2016; 79:59-96. [PMID: 28728824 DOI: 10.1016/bs.ctm.2016.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Piezo channels are a ubiquitously expressed, principal type of molecular force sensor in eukaryotes. They enable cells to decode a myriad of physical stimuli and are essential components of numerous mechanosensory processes. Central to their physiological role is the ability to change conformation in response to mechanical force. Here we discuss the evolutionary origin of Piezo in relation to other MS channels in addition to the force that gates Piezo channels. In particular, we discuss whether Piezo channels are inherently mechanosensitive in accordance with the force-from-lipid paradigm which has been firmly established for bacterial MS channels and two-pore domain K+ (K2P) channels. We also discuss the evidence supporting a reliance on or direct interaction with structural scaffold proteins of the cytoskeleton and extracellular matrix according to the force-from-filament principle. In doing so, we explain the false dichotomy that these distinctions represent. We also discuss the possible unifying models that shed light on channel mechanosensitivity at the molecular level.
Collapse
Affiliation(s)
- C D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| | - N Bavi
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| | - B Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
98
|
Abstract
Mechanical forces will have been omnipresent since the origin of life, and living organisms have evolved mechanisms to sense, interpret, and respond to mechanical stimuli. The cardiovascular system in general, and the heart in particular, is exposed to constantly changing mechanical signals, including stretch, compression, bending, and shear. The heart adjusts its performance to the mechanical environment, modifying electrical, mechanical, metabolic, and structural properties over a range of time scales. Many of the underlying regulatory processes are encoded intracardially and are, thus, maintained even in heart transplant recipients. Although mechanosensitivity of heart rhythm has been described in the medical literature for over a century, its molecular mechanisms are incompletely understood. Thanks to modern biophysical and molecular technologies, the roles of mechanical forces in cardiac biology are being explored in more detail, and detailed mechanisms of mechanotransduction have started to emerge. Mechano-gated ion channels are cardiac mechanoreceptors. They give rise to mechano-electric feedback, thought to contribute to normal function, disease development, and, potentially, therapeutic interventions. In this review, we focus on acute mechanical effects on cardiac electrophysiology, explore molecular candidates underlying observed responses, and discuss their pharmaceutical regulation. From this, we identify open research questions and highlight emerging technologies that may help in addressing them.
Collapse
Affiliation(s)
- Rémi Peyronnet
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.)
| | - Jeanne M Nerbonne
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.)
| | - Peter Kohl
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.).
| |
Collapse
|
99
|
Bavi O, Cox CD, Vossoughi M, Naghdabadi R, Jamali Y, Martinac B. Influence of Global and Local Membrane Curvature on Mechanosensitive Ion Channels: A Finite Element Approach. MEMBRANES 2016; 6:membranes6010014. [PMID: 26861405 PMCID: PMC4812420 DOI: 10.3390/membranes6010014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 01/24/2016] [Accepted: 01/25/2016] [Indexed: 11/25/2022]
Abstract
Mechanosensitive (MS) channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. MS channels are also proposed to be molecular curvature sensors gating in response to bending in their local environment. One of the main mechanisms to functionally study these channels is the patch clamp technique. However, the patch of membrane surveyed using this methodology is far from physiological. Here we use continuum mechanics to probe the question of how curvature, in a standard patch clamp experiment, at different length scales (global and local) affects a model MS channel. Firstly, to increase the accuracy of the Laplace’s equation in tension estimation in a patch membrane and to be able to more precisely describe the transient phenomena happening during patch clamping, we propose a modified Laplace’s equation. Most importantly, we unambiguously show that the global curvature of a patch, which is visible under the microscope during patch clamp experiments, is of negligible energetic consequence for activation of an MS channel in a model membrane. However, the local curvature (RL < 50) and the direction of bending are able to cause considerable changes in the stress distribution through the thickness of the membrane. Not only does local bending, in the order of physiologically relevant curvatures, cause a substantial change in the pressure profile but it also significantly modifies the stress distribution in response to force application. Understanding these stress variations in regions of high local bending is essential for a complete understanding of the effects of curvature on MS channels.
Collapse
Affiliation(s)
- Omid Bavi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 89694-14588 Tehran, Iran.
- Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
| | - Manouchehr Vossoughi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 89694-14588 Tehran, Iran.
- Biochemical & Bioenvironmental Research Center (BBRC), 89694-14588 Tehran, Iran.
| | - Reza Naghdabadi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 89694-14588 Tehran, Iran.
- Department of Mechanical Engineering, Sharif University of Technology, 89694-14588 Tehran, Iran.
| | - Yousef Jamali
- Department of Mathematics and Bioscience, Tarbiat Modares University, Jalal Ale Ahmad Highway, 14115-111 Tehran, Iran.
- Computational physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran, Iran.
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
100
|
Fatemi I, Shamsizadeh A, Ayoobi F, Taghipour Z, Sanati MH, Roohbakhsh A, Motevalian M. Role of orexin-A in experimental autoimmune encephalomyelitis. J Neuroimmunol 2016; 291:101-9. [PMID: 26857503 DOI: 10.1016/j.jneuroim.2016.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/25/2022]
Abstract
The aim of this study was to evaluate the effects of orexin-A (OX-A) on behavioral and pathological parameters and on gene expression of some multiple sclerosis-related peptides in a model of experimental autoimmune encephalomyelitis (EAE). EAE was induced by subcutaneous administration of MOG 35-55. Following immunization, the treatment was initiated by using SB.334867 (orexin-1 receptor antagonist) and/or OX-A. Locomotor activity and exploratory behaviors were monitored using open field and T-maze continuous alternation task (T-CAT) respectively. Pain sensitivity was assessed by hot-plate test. Histopathological assessments were performed by H&E staining. The expression of TGF-β, MBP, MMP-9, IL-12, iNOS and MCP-1 were measured using real-time PCR method in lumbar spinal cord. OX-A administration in EAE mice remarkably attenuated the clinical symptoms, increased latency response in hot plate test, inhibited infiltration of inflammatory cells, up-regulated mRNA expression of TGF-β as well as MBP and down-regulated mRNA expression of iNOS, MMP-9 and IL-12. In contrast SB.334867 administration in EAE mice deteriorated the clinical symptoms, decreased the alternation in T-CAT, increased infiltration of inflammatory cells, down-regulated mRNA expression of TGF-β and MBP and up-regulated mRNA expression of iNOS. Results of this study suggest that the orexinergic system might be involved in pathological development of EAE. These findings suggest orexinergic system as a potential target for treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Iman Fatemi
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Ayoobi
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Taghipour
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Hossein Sanati
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ali Roohbakhsh
- Pharmacutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manijeh Motevalian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|